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ABSTRACT

The inertial dissipation method for estimating seabed friction velocities from near-bed turbulence spectra
requires few measurements; it is relatively insensitive to errors in sensor orientation and measurement of mean
flows. However, the method is only valid if turbulence spectra are measured at a height above the seabed that
is small enough to be within the constant stress layer but large enough to produce an inertial subrange. It is
shown that such a height exists only if the friction velocity exceeds a critical value (typically 0.8 cm s™! for a
midlatitude ocean). Recent measurements from combined wave and mean flow conditions on the continental
shelf do not satisfy this requirement. However, an empirical modification to the inertial dissipation method is
suggested to allow estimation of the friction velocity even when a true inertial subrange does not exist. The
modified method is applied to the combined wave and mean flow field data; it virtually removes an increase in
estimated friction velocity with height, and results in values which are in good agreement with theoretical
expectation. If generally applicable, the modified method will significantly extend the range of conditions in

which the inertial dissipation method can be used.

1. Introduction

The “inertial dissipation method” has been widely
used to estimate bottom stresses in atmospheric
boundary layers from measurements of turbulent ve-
locity spectra. The method was originally described by
Deacon (1959) and has been reviewed by Champagne
et al. (1977).

Recently, Grant et al. (1984) have used the inertial
dissipation method to estimate seabed stresses on the
Northern Californian continental shelf under condi-
tions in which both steady flows and oscillatory wave
flows were present. Huntley and Hazen (1988) describe
similar measurements from the continental shelf of
Nova Scotia, Canada. In such combined wave and
mean flow conditions the inertial dissipation method
is particularly important. The presence of large hori-
zontal oscillatory motion close to the seabed makes
estimation of seabed stresses by the direct eddy cor-
relation (Reynolds stress) method extremely sensitive
to sensor orientation. Generally, the requirement on
the accuracy of alignment to the vertical component
of flow is much greater than can be achieved in practice.
Use of the mean flow profile to estimate the bottom
stress is possible, but it requires sensors at several
heights above the seabed and measurements accurate
enough to measure the velocity shear in the boundary
layer. The inertial dissipation method, on the other
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hand, in principle requires measurements of just one
component of turbulent velocity and will yield a stress
estimate at each height that such a measurement is
made. It is also quite insensitive to sensor orientation.

However, the results of both Grant et al. (1984) and
Huntley and Hazen (1988) using the inertial dissipation
technique show an unexpected increase in the esti-
mated stress with increased distance from the seabed.
The measurements in both cases were made either
within the predicted constant stress layer or somewhat
above it where the stress is expected to decrease with
height.

The purpose of this paper is to show that this increase
in estimated bottom stress arises because the funda-
mental assumptions in the inertial dissipation method
are being violated. We show that this is inevitable uniess
the bottom stress exceeds a critical value. We also sug-
gest a modification of the inertial dissipation method
whereby the true bottom stress can be recovered from
the inertial dissipation estimates despite this violation
of the assumptions. Our modified inertial dissipation
method is found to remove the trend of increasing stress
with height, and results in stress changes with height
which are in agreement with expectations.

If generally valid, this modified inertial dissipation
method will significantly extend the range of conditions
in which the method can be used.

2. The inertial dissipation method

Three different methods are available for estimating
seabed stresses from measurements of flow in the bot-
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tom boundary layer. First is the “mean flow method.”
Within the lower part of a simple turbulent boundary
layer the mean flow u is expected to vary logarithmi-
cally with height above the seabed z, according to the
equation (e.g., Tennekes, 1973):

u = (uy/x) In(z/zo) ()

where u, = 1[1—/;, 7 is the bottom stress, « is von Kar-
man’s constant and z, is an appropriate bottom rough-
ness length. Thus with measurements of mean flow at
a sufficient number of heights above the bed, u, and
zy can be estimated from the slope and intercept re-
spectively of a plot of u against Inz. Recent theories of
combined wave and mean flow boundary layers assume
that Eq. (1) remains valid in the mean flow boundary
layer when waves are present, but with both v, and z,
enhanced by the presence of a thin wave boundary
layer near the seabed (e.g., Smith, 1977; Grant and
Madsen, 1979). Field measurements described by
Grant et al. (1984) and Wiberg and Smith (1983) ap-
pear to confirm this assumption.

However, use of this method requires a number of

sensors within the logarithmic layer, and the mean -

flows must be measured with sufficient accuracy at each
level to provide a reliable estimate of the velocity dif-
ference between sensors at different heights above the
bed. This last requirement is particularly stringent for
measurements in wave/mean flow conditions. Here

"flowmeters must be able to respond accurately to rap-
idly changing wave flows, and any nonlinearities or
zero-drift in the sensors can cause errors in the mean
flow estimates. Where measurements are made in rel-
atively low current conditions, these errors can prevent
accurate estimation of friction velocity by this method.
An additional problem is uncertainty in the heights of
sensors above the bed. Both Grant et al. (1984) and
Wiberg and Smith (1983) made empirical adjustments,
of a few centimeters, to the assumed location of the
seabed, a procedure which reduces confidence in their
resulting stress estimates.

The second and perhaps most direct method is
known as the “eddy correlation” method. The time
average of the product of the horizontal, 1/, and vertical,
w', velocity fluctuations, in the form —pu'w’ (where p
is the water density and the overbar denotes a time
average), is known as the Reynolds stress, and measures
the turbulent momentum flux, and hence the stress, at
the measurement height. Direct measurement of the
Reynolds stress has been widely used for estimating
stress in steady flow environments (e.g., Bowden and
Ferguson, 1980; Grant et al., 1985) but suffers from
the disadvantage that it is sensitive to errors in the
alignment of the vertical and horizontal axes. The er-
rors introduced by misalignment of the sensor axes
depend upon the correlation coefficient between the
vertical and horizontal fluctuations (Kaimal, 1969;
Hyson et al., 1977). When mean flows dominate, errors
of 10% per degree of tilt out of the vertical are typical.
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However, if oscillatory wave flows are significant, with
large horizontal flows in quadrature with smaller ver-
tical flows, the correlation coefficient decreases and
sensitivity to alignment errors is enormously increased.
An approximate calculation suggests that alignment
accuracy of the order of one-tenth of a degree or less
may be necessary to provide an accurate estimate of
the Reynolds stress. Such alignment accuracy is un-
attainable in the field. Moreover, the commonly used
method of aligning the vertical axis to coincide with
zero mean flow during subsequent analysis (e.g.,”
Soulsby, 1980) will be insufficiently accurate in wave
flows, as a rule, due to uncertainty in the mean flow
measured by the sensors (e.g., Huntley and Hazen,
1988). Other methods for aligning the axes at the data
analysis stage are being investigated but none have to
date proved viable.

The third possible technique for estimating turbulent
stress involves the use of spectra of the turbulent fluc-
tuations and is commonly known as the inertial dis-
sipation method. If the wavenumbers at which tur-
bulent energy is produced are well separated from the
(higher) wavenumbers at which turbulent energy is
dissipated by viscosity, then the range of wavenumbers
between production and dissipation is known as the
inertial subrange. In this range the flux of energy from
low to high wavenumbers must be equal to the dissi-
pation rate, ¢, since there are no local sources or sinks
for the energy. This leads to the result that the three-
dimensional inertial subrange spectrum must be given
by (e.g., Tennekes and Lumley, 1972):

E(k) = ae353 (2)

where k is the radian wavenumber and « is the three-
dimensional Kolmogorov constant, determined ex-
perimentally. v

In practice, measurements in the boundary layer
generally do not provide estimates of the scalar wave-
number spectrum E(k) but of the one-dimensional
spectra, which are functions of the wavenumber com-
ponent in the direction of the mean flow, k,. These
one-dimensional spectra can be denoted ¢,;(k;), where
i = 1(3) corresponds to spectra of longitudinal (trans-
verse) turbulent fluctuations (Hinze, 1975). In the in-
ertial subrange the one-dimensional spectra take a
similar form to E(k):

¢ii(k)) = ok 5P 3)

but the one-dimensional Kolmogorov constant de-
pends upon the value of i considered. The appropriate
choices of i and «; will be discussed later.

In order to use Eq. (3) to estimate bottom stress we
need an expression linking the dissipation rate e to the
bottom stress. Two assumptions are made in finding
such an expression. First, a local balance is assumed
between the production and dissipation of turbulent
energy, an assumption which is approximately valid
(with an error probably much less than 30%; Wyngaard
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and Coté, 1971) in the lower part of the boundary layer.
The production of turbulent energy is given by (v/p)ou/
dz. In the logarithmic part of the boundary layer, du/
0z = uy/xz [Eq. (1)}, and in the lower part of the log-
arithmic layer the local stress is equal to the bottom
stress, 7 = puZ. Thus if we make the second assump-
tion, that measurements are made within the constant
stress part of the logarithmic layer, we can write
= 13 /kz. Substituting this expression into Eq. (3) and
rearranging gives

Uy = (9(RK> /o) *(k2)' ©)

where k is now used to denote the along-flow wave-
number component k. Thus this method of estimating
bottom stress involves calculating a one-dimensional
wavenumber spectrum of turbulent velocity, finding
the range of wavenumbers over which the energy den-
sity falls off as k53 (usually limited by sensor dimen-
sions as well as limits to the inertial subrange; see
Soulsby, 1980) and using the level of the spectrum in
this range in Eq. (4) to estimate u,.

The spectrum of any of the three orthogonal com-
ponents of turbulent velocities can be used in Eq. (4)
provided that the appropriate value of Kolmogorov
constant is chosen. In steady flows the longitudinal
(along-flow) turbulence spectra have frequently been
used (e.g., Champagne et al., 1977; Williams and Paul-
son, 1977), but in combined wave and mean flow con-
ditions, it is better to use vertical flow spectra since
these will include much less contamination from any
wave motion in the inertial subrange (Grant et al.,
1984).

The major attraction of this method of estimating
bottom stress is its relative insensitivity to errors in axis
alignment. Since the expected ratio of longitudinal to
vertical spectral amplitude in the inertial subrange is
4.3, the stress error even from a gross misalignment of
axes should not exceed 33%. In fact an empirical test
of sensitivity to alignment error by Huntley and Hazen
(1988) showed only 0.8% error in stress per degree of
misalignment.

A potential complication in the use of the method
arises from the fact that measurements of turbulence
are generally in the form of time series and therefore
provide spectra as functions of frequency rather than
wavenumber. To convert to wavenumber spectra, we
need to invoke the Taylor concept of “frozen turbu-
lence,” in which

bii(k) = ¢l f)/2m/it) &)

where # is the mean velocity and f the frequency in
Hz. In order for this frozen turbulence concept to be
valid we require the time scale of an eddy to be much
larger than the time for that eddy to be advected past
the measurement point by the mean flow. Tennekes
and Lumley (1972) estimate the time scale of an eddy
with wavenumber & to be 2w/(k3¢(k))'/?, where k¢'/?
is an estimate of the velocity in the eddy based on the
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spectrum ¢(k). The time scale for such an eddy to pass
a point is 2w/kii. Hence for frozen turbulence we re-
quire k¢/i1* < 1. In practice this criterion is generally
casily met. For the data discussed later the parameter
on the left of the inequality is typically 1073 or less.

It might also be anticipated that the Taylor hypoth-
esis would need to be substantially revised in an en-
vironment with significant oscillatory wave flows.
However, Lumley and Terray (1983) show that, for
isotropic turbulence and horizontal wave velocities
much larger than vertical velocities, the friction velocity
corrected for the influence of wave advection is given
approximately by

uy = (1 = 0.16(urme/)%)' 1l (6)
where ., is the root-mean-square horizontal wave
velocity and 1, is the value of friction velocity found
from vertical spectra using the Taylor hypothesis
(Lumley and Terray (1983) Eq. (A16) to order (ins/
i)?). Corrections using Eq. (6) have been made to the
friction velocity estimates discussed later, but the largest
reduction in friction velocity is only about 5% so this
effect is not of major importance compared to other
sources of measurement error.

Thus, the inertial dissipation method appears to be
well suited to estimation of bottom stress, particularly
in combined wave and current conditions. However,
we show in the next section that the assumptions lead-
ing to Eq. (4) dre frequently violated in oceanic bound-
ary layers. In particular, the measurements of Grant
et al. (1984) and Huntley and Hazen (1988) generally
do not comply with these assumptions, so the values
of friction velocity deduced using Eq. (4) are in error.

3. Criteria for the validity of the inertial dissipation
method

The existence of a true inertial subrange depends
upon full separation in wavenumber space between
the low wavenumber production and the high wave-
number dissipation of turbulence. By considering scales
of turbulent production and dissipation, Tennekes and
Lumley (1972) suggest that, in a steady flow boundary
layer, this separation will only occur if the turbulent
Reynolds number is greater than some critical Reyn-
olds number, Re,:

Re = u.kz/v > Re, @)
where v is the kinematic viscosity of water. Tennekes
and Lumley (1972) estimate that Re. might be around
4000, though the actual value is sensitive to assump-
tions about the degree of separation required between
turbulence production and dissipation. Gross and
Nowell (1985b) show field measurements of one-di-
mensional longitudinal turbulence spectra in tidal flows
that support the hypothesis of a critical Reynolds
number. Based on their Figs. 9 and 10, the observed
critical Reynolds number lies in the range 2500-3500.
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Gross and Nowell (1985b) also describe spectra for
steady canal flow; we shall show that these spectra are
not inconsistent with Re, = 2500, though the mea-
surements do not extend close enough to the boundary
to provide definite evidence for the existence of a crit-
ical Reynolds number in this steady flow, higher fric-
tion case. Zimmerman (1967) compares his results
from upper atmosphere turbulence with previous
measurements from a round turbulent air jet and from
open channel flow, and concludes that the critical
Reynolds number, as defined in Eq. (7), is about 3000.
Thecritical Reynolds numberis further discussed in sec-
tion 4.

Assuming that Eq. (7) is generally valid, we can re-
write it to give a critical height above which measure-
ments must be made to ensure an inertial subrange:

®)

In deriving Eq. (4), we also required that the mea-
surements be made within the constant stress part of
the logarithmic layer. In fact, we will now show that,
for low values of friction velocity, there is no height at
which measurements are high enough above the bed
to satisfy the Reynolds number criterion [Eq. (7)] while
also being close enough to the bed to be within the
constant stress layer, and hence no height at which Eq.
(4) is valid.

The thickness of a steady, unstratified, not-depth-
limited boundary layer, defined in terms of the mean
velocity profile, is generally taken to lie within the range
(0.25 to 0.40)u,/f, where fis the Coriolis parameter
(Blakadar and Tennekes, 1968). The thickness of the
logarithmic layer is expected to be about 10%-15% of
this height (Hinze, 1975; Businger and Arya, 1974;
Tennekes, 1973). The constant stress layer is consid-
erably thinner than the logarithmic layer. The stress
defect equations given by Tennekes (1973) lead to a
constant (to within 10%) stress layer thickness equal
to about one-half of the logarithmic layer thickness.
Thus, the thickness of the constant stress layer is given
approximately by

z, = (0.013 t0 0.030)u,/f

z, = Rew/(kuy).

®

Comparing Egs. (8) and (9), we find that there will
only be a height within the constant stress layer with
a true inertial subrange if

Z, > Zer
and this leads to the inequality
u%/(f¥) > Re/[(0.013 to 0.030)].

The dimensionless parameter on the left-hand side of
this inequality can be written (u,/f)/(v/uy) and is
therefore a ratio between the geophysical boundary
layer thickness scale and the viscous length scale, in
other words a boundary layer Reynolds number. It can
also be thought of as a viscous Rossby number. For
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typical values, for a midlatitude ocean, of f(107% s7")
and v (0.015 cm? s7"), and with Re, = 3.0 + 0.5 X 10°
the inequality suggests that '

uy >08+02cms™!

if Eq. (4) is to be valid at any height. If we relax this
condition to include measurements within the loga-
rithmic layer but above the constant stress layer [Eq.
(4) will not be strictly valid here but values of friction
velocity can, in principle, be corrected for the reduction
in stress as will be shown later (see also Grant and
Williams, 1985)], then the right-hand side of the in-
equality becomes (0.55 + 0.15) cm s~ . It should be
noted that these u, conditions are necessary but not
sufficient conditions for the correct application of Eq.
(4). Even where u, exceeds these minimum conditions,
Eq. (4) is valid only for measurements above z,, [Eq.
(8)] and below the top of the constant stress or the
logarithmic layer. It should also be noted that for os-
cillatory or depth-limited flows, determination of the
thickness of the constant stress layer will be more com-
plex than shown here {e.g., Soulsby, 1983). Neverthe-
less, a minimum value of u, will still exist if the inertial
dissipation method is to be valid, and its magnitude
will typically be of the same order as that estimated
here for steady, unlimited-depth flows.

Thus, for much of the time on continental shelves,
and particularly during calmer periods when near bed
measurements are easiest to make, the use of Eq. (4)
is not justified. Even where the friction velocity exceeds
these minima, measurements have generally been made
below the critical height, z.,, and the use of Eq. (4) is
again unjustified.

4. A proposed extention of the inertial dissipation
method to low Reynolds number conditions

The longitudinal turbulence measurements of Gross
and Nowell (1985b) in a tidal flow boundary layer sug-
gest that spectra of turbulent velocity measured below
the critical height [Eq. (8)] do not increase with de-
creasing height as expected for an inertial subrange in
a constant stress layer [Eq. (4)], but remain at the mag-
nitude appropriate to the critical height. Soulsby (pri-
vate communication) and Andreas and Paulson (1979)
have also made measurements below the critical height
in tidal and atmospheric boundary layers, respectively,
which show anomalies which may be consistent with
this observation. As we shall show in section 5, the
ocean wave/current boundary layer spectra also appear
to support these observations of Gross and Nowell
(1985b). The universality of this behavior below the
critical Reynolds number is not clear, particularly in
laboratory studies of turbulence. It is generally agreed
that a k™3 region in turbulence spectra persists to
Reynolds numbers much smaller than critical values
for a true inertial subrange (e.g., Champagne, 1978;
Coantic et al., 1981), but the wind tunnel measure-
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TABLE 1. Inertial dissipation of friction velocity from Gross and
Nowell (1985b, Table 2) denoted i#,, and values recalculated using
the modified inertial dissipation, Eq. (11), denoted u,.

Accelerat- Decelerat-
ing ing Canal flow
Height Z e Uy y Uy s Uy
(cm) (cms™) (cms™) (cms™")
19 135 196 157 219 288 347
32 1.74 207 174 208 3.17 329
42 185 203 196 2.12 3.17
55 191  1.94 2.07 3.27
70 2.14 2.31 —
90 2.18 2.40 3.36
110 2.07 2.44 3.52
158 2.16 2.35 3.65
210 2.07 2.35 3.55
270 1.89 2.29 3.49
360 1.93 2.05 3.68
Critical heights
(based on average
u, above z,,) 55 cm 50 cm 325cm

ments of Ligrani and Moffat (1986), for example, lead
to spectra of longitudinal turbulence which continue
to scale as kz to Reynolds numbers below those ob-
served by Gross and Nowell (1985b) (and also below
the Reynolds numbers observed in the wave/current
boundary layers discussed in section 5). Reasons for
this apparent disagreement between laboratory and
geophysical boundary layers are not clear and merit
further investigation. Nevertheless, the observed lim-
iting behavior does appear to be a feature of a wide
range of geophysical boundary layers.

Based on the observations of Gross and Nowell
(1985b), we tentatively propose the following scheme
for correcting inertial dissipation estimates of u, from
measurements from below the critical height, z,,, but
within the constant stress layer.

Let 4, be the value of friction velocity estimated
from Eq. (4) at a height z < z,,, and let u, be the true
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value. Then the observations of Gross and Nowell
(1985b) suggest that

Uy = Uy(ze/2)'? (10)
and if we substitute for z., from Eq. (8) we get
uy = [43 Reg/(k2)]* for z<z,  (11)

Although the corrections made to 7, using Eq. (11)
will be seen to be nearly as large as a factor of two for
some of the data to be discussed below, the one-quarter
power ensures that the correction is not strongly de-
pendent on the value assumed for the critical Reynolds
number: changing the number by +1000 about a mean
value of 3000 results in changes of less than +10%
in u,.

Table 1 shows the results of applying Eq. (11) to the
inertial dissipation estimates of friction velocity mea-
sured by Gross and Nowell (1985b, Table 2). The crit-
ical Reynolds number has been taken to be 3000. Not
surprisingly, since Eq. (11) and the chosen value of Re,
were based on the results from the accelerating and
decelerating tidal flow, application of Eq. (11) increases
the low values of friction velocity near the boundary,
bringing them into good agreement with the estimates
higher in the water column. Of interest is the fact that
applying Eq. (11) to the steady canal flow, also with
Re, = 3000, similarly brings the values from the lowest
two current meters closer to the average of the values
from higher in the water column. Thus the average u,
for z > 32 cm is 3.46 cm s~!, compared with 3.47 and
3.29 cm s7! for the modified values at 19 and 32 cm,
respectively. Gross and Nowell (1985b) comment that
the low values at the lowest meter might be due to a
spatial resolution problem owing to the proximity of
the bottom. However, their discussion of the spatial
resolution of the sensors in Gross and Nowell (1985a)
suggests that its effect on the inertial subrange spectrum
at 19 cm should be much smaller than can account
for the reductions in @, shown in Table 1. Clearly,

TABLE 2. Friction velocity estimates from Grant et al. (1984) with corrections.

Hegh v s vt ug z,
(cm) (cms™) (cms™) (ems™) (cms™) Ugjugete (cm) (cm)
53 (a) 0.41 0.49 0.68 0.71 1.26 137 235
(b) 0.39 0.47 0.66 0.69 1.22 141 228

103 0.44 0.53 0.61 0.67 1.18 147 220
203 0.48 0.58 0.58* 0.69 1.22 141 228

U$¥S—quoted by Grant et al. (1984)

U¢—without ¥ applied to spectra, and with a = 0.69
UB—after correction using Eq. (11)

US~—after correction for decrease of stress with height

** No correction with Eq. (11) is made because height is above Z,,

(a) Value at 53 cm from Grant et al. (1984)

(b) Value at 53 cm from mean of range from Grant and Williams Table 3d, (1985a).
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modification using Eq. (11) provides an alternative ex-
planation for these low values.

5. Application to wave/current field data

Grant et al. (1984) report values of friction velocity
for the CODE-1 site on the Northern Californian con-
tinental shelf which were estimated using both the
mean velocity profile and the inertial dissipation
method. They find that the estimates made by the in-
ertial dissipation method are consistently smaller than
the single estimate found from the mean flow profile.
In addition, the friction velocities estimated by the in-
ertial dissipation method at three heights above the
seabed increase with height.

Since their friction velocities are con51derably below
the critical value that we have proposed for the validity
of the inertial dissipation method, we have revised their
estimates using Eq. (11), making the assumption that
the equation is equally valid for the transverse turbu-
lence spectra used in these wave-current studies as for
the longitudinal spectra measured by Gross and Nowell

(1985b). For this revision we have used » = 1.3 X 107"

cm? s~!, appropriate for the approximately 10°C bot-
tom water at the CODE site. Three other changes have
also been made to the estimates reported by Grant et
al. (1984):

1) Gust (1985) points out that the correct spectrum
to use in Eq. (4) is one which integrates, over positive
frequencies, to the variance of the turbulent motion,
not to the total turbulent kinetic energy. The wave-
number spectra of Grant et al. (1984) should therefore
be increased by a factor of two.

2) Gust (1985), Huntley (1985) and Grant and Wil-
liams (1985a) agree that Grant et al. (1984) used a low
value of Kolmogorov constant by choosing ¢ = 0.5.
We have recalculated their friction velocities using o
= (.69. This value is 4/3 the average longitudinal Kol-
mogorov constant estimated by Champagne et al.
(1977) and Williams and Paulson (1977), where the
4/3 factor is the theoretically expected ratio of the
spectra of vertical and along-flow turbulent velocities
(e.g., Tennekes and Lumley, 1972). Bowden and Fer-
guson (1980) present field measurements of this spectral
ratio from tidal flows. Their observed ratio becomes
essentially constant for kz = 2#, with an average value
of 1.44 but with error bounds that readily encompass
the theoretical value of 1.33. Since Grant et al. (1984)
‘(and Huntley and Hazen (1988) discussed below) used
wavenumber ranges with kz = 2, use of 4/3 for the
ratio seems justified, though its validity has not been
demonstrated at low Reynolds numbers.

3) Grant and Williams (1985a) point out that their
sensors extended above the constant stress layer, and
the friction velocity is therefore expected to show a
decrease with height. Based on their analysis, we have
corrected their measured values to the values expected
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within the constant stress layer. For this correction we
have used Egs. (3), (4) and (5) from Grant and Williams
(1985a; after Tennekes, 1973) and have iteratively
chosen & such that the final corrected u, values are
consistent with § = ku,/f.

The results of applying these various corrections are
summarized in Table 2. The original estimates of fric-
tion velocity from the inertial dissipation method are
given in column 2. We have added a revised value for
53 ¢m, based on the average (of two values) of the
range of dissipation estimates for this height given in
Table 3d of Grant and Williams (1985a). The original
estimate of friction velocity given by Grant et al. (1984)

“for this height is larger than that based on the largest

estimate in Table 3d, so we have included in Table 2
both their original estimate, labeled (), and the revised
estimate, labeled (b). At the other levels the inertial
dissipation estimates given in Table 3d are consistent
with the friction velocity estimates given by Grant et
al. (1984). As noted by these authors, the values in
column 2 of Table 2 are consistently below the value
of 0.556 cm s™! found from the mean velocity profile,
up to 30% lower at 53-cm and 14% lower at 203 cm.
They also show a systematic trend, with increasing
friction velocity as the height above the bed increases.
This increase is up to 23% from 53 to 203 cm.

Column 3 of Table 2 gives the values of friction
velocity corrected for the factor of two and the revised -
Kolmogorov constant (points 1 and 2 above). Column
4 of Table 2 shows values corrected using Eq. (11),
with the critical Reynolds number taken as 3000. No
correction has been applied to the value at 203 c¢cm
since the critical height, based on the final estimate of
friction velocity, is below this height. Application of
equation 11 has clearly reversed the trend of the values,
the estimates now decreasing with height about 15%
(using estimate a at 53 cm) or 12% (using b) from 53
to 203 cm.

Finally, in column 5 of Table 2, the estimates cor-
rected for the expected decrease in local friction velocity
with height are shown. Encouragingly this final cor-
rection substantially reduces the spread of friction ve-
locity estimates to 6% using estimate a at 53 cm and
to 3% using estimate b. The systematic trend in the
values of u, with height is also no longer evident, pro-
viding additional support for the corrections, particu-
larly the large correction based on Eq. (11).

Unfortunately, the corrected values are now larger
than the estimate from the mean velocity profile by
between 18% and 26% (column 6; Table 2). Some po-
tential problems with the profile method have been
pointed out earlier, but it is difficult to assess their im-
portance for the CODE-1 data. In any event the dis-
agreement is no worse than that found by Grant et al.
(1984) for the uncorrected values. [Note that the cor-
rected dissipation estimates would be in much better
_agreement with the profile estimate (between 3% and
11% below the profile estimate) if the factor of 2 applied
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TABLE 3. Measured values of friction velocity (Huntley and Hazen, 1988).

) Estimated Estimated height of
Height Uy Uy critical height constant stress layer
(z (cm)) (ems™) (cm) (cm)
52 0.42 0.64 176 96
Cow Bay { 52 0.38 0.59 191 89
22 0.28 0.58 194 87
51% 11%
44 0.58 0.83 136 124
Sable Island Bank { 21 0.48 0.89 126 134
19% 7%

to the spectra (point 1 above) were incorrect. However,
on the basis of information given by Grant et al. (1984)
and Grant and Williams (1985b), it appears that the
factor of two must be included.]

Huntley and Hazen (1988) describe measurements
from combined wave and mean flow boundary layers
on the continental shelf off Nova Scotia. The mea-
surements were made at two sites, at Cow Bay in 25
m water depth where the ratio of root-mean-square
wave amplitude to mean flow was around 0.7, and
over Sable Island Bank in 45 m depth where the ratio
was around 0.2. Table 3 shows their estimates using
the inertial dissipation method, i, , and their corrected
estimates after application of Eq. (11), u,. The two
values for 52 cm height at Cow Bay result from having
two independent vertical velocity sensors at that height.
As with the CODE-1 data, the uncorrected estimates
show an increase in friction velocity with height, but
the trend is essentially removed by correcting the values
using Eq. (11). Huntley and Hazen (1988) also show
that the corrected values are in good agreement with
predictions based on the theory of Grant and Madsen
(1979), if the significant wave orbital velocity (the av-
erage of the highest one-third of measured wave am-
plitudes in a time series) is used in the prediction
scheme.

6. Summary and conclusions

The inertial dissipation method for estimating bot-
tom stress, through spectra of turbulent fluctuations,
is very useful, particularly in conditions of coexisting
wave and mean flows where alternative methods are
very sensitive to measurement errors. However, we
have shown that the conditions for the validity of the
inertial dissipation method are very restrictive. The
twin requirements of being within the constant stress
layer and yet high enough above the seabed to allow
fullseparation between the production and dissipation
wavenumbers [the Reynolds number criterion of
equation (7)] can only be met if the friction velocity
exceeds a critical value, typically for the oceanic
boundary layer about 0.8 + 0.2 cm s™!. Even where

the friction velocity exceeds this value, the Reynolds
number criterion severely restricts the range of heights
above the bed for which the inertial dissipation method
is valid.

Using the observations of Gross and Nowell (1985b),
we have suggested a modification of the inertial dissi-
pation method which extends its use to Reynolds
numbers much lower than the critical Reynolds num-
ber. The proposed correction, Eq. (11), is simple to
apply and is relatively insensitive to the value assumed
for the critical Reynolds number.

When applied to the field data of Grant et al. (1984)
and Huntley and Hazen (1988), the modified method
removes an apparent increase in friction velocity with
height above the bed. The resulting modified friction
velocity estimates of Huntley and Hazen (1988) are
independent of height, as expected for measurements
from within the constant stress layer, while the modified
estimates from the data of Grant et al. (1984) extend
above the constant stress layer and show a decrease
with height which is well accounted for by predictions
based on the stress defect equations of Tennekes (1973).

The corrections to the original inertial dissipation
estimates of friction velocity are almost a factor of two
for some of these field data, and are applied to data
with Reynolds numbers as small as 13% of the critical
Reynolds number. Nevertheless, it is encouraging that
the results are consistent with the expected behavior
of the stress as the height above the bed changes. Hunt-
ley and Hazen (1988) also show that their corrected
estimates are consistent with predictions based on the
theory of Grant and Madsen (1979).

A remaining problem is the lack of agreement in the
data of Grant et al. (1984) between the modified inertial
dissipation estimates and the profile estimate of friction
velocity. The lack of agreement, ranging from 18% to
26%, is perhaps marginally smaller than that found
with the uncorrected inertial dissipation estimates, and
is probably within the broad measurement error
bounds expected. However, it is not clear why the dif-
ference occurs.

The modification of the inertial dissipation method

-proposed here is, as yet, purely empirical and based on
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a very small number of observations. The results of
applying it to field data are very encouraging but are
far from conclusive owing to the small amount of data
available. Nevertheless, we have shown that some form
of correction to the inertial dissipation method is es-
sential for measurements made in low friction velocity
conditions or made below a critical height above the
seabed. If the modification to the inertial dissipation
method proposed here proves generally applicable, it
will significantly increase the range of conditions over
which the method can be applied.
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