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1. Introduction

The convolution method for describing bottom fric-
tion in two-dimensional hydrodynamic models of ho-
mogeneous seas was introduced by Jelesnianski (1970)
following an idea by Welander (1957). The conven-
tional method of representing bottom friction in such
models uses a term which is linear, or quadratic, in the
depth-averaged velocity, a technique that is clearly in-
valid when the current has significant vertical shear.
The convolution method was developed to provide a
superior description of bottom friction in such cases,
and was initially applied to storm surge models where
bottom stress is of major importance.

The convolution method can provide an exact de-
scription of bottom stress, provided that a linear eddy
viscosity model is appropriate. A two-dimensional
model will then accurately reproduce the depth-aver-
aged currents and elevations that would be obtained
from a solution of the full three-dimensional equations.
Furthermore, the vertical structure of the current can
then be reconstructed at any chosen site by using the
results of the two-dimensional model (Forristall 1974;
Forristall et al. 1977). This latter technique is now
widely used with the conventional formulation of bot-
tom friction (e.g., Rothlisberg et al. 1983). Jordan and
Baker (1980) have given full details of the convolution
method for vertical eddy viscosities with various func-
tional dependencies on vertical position in the water
column.

We have been using the convolution method to in-
vestigate the steady-state flows produced by a constant
wind stress. During this study it has been found that
the convolution method gives rise to undamped inertial
oscillations. Similar oscillations have recently and in-
dependently been noted by Davies (1987).
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If a constant wind stress is applied to an open, flat-
bottomed basin at time ¢ = 0, the analytical solution
for the depth-averaged current contains the steady-
state, wind-driven, long-time limit plus transient in-
ertial oscillations of the form (for constant eddy vis-
cosity, N),

exp(—if— %’ﬁ)t 1

where k, are the eigenvalues of the eddy viscosity op-
erator (n = 1,2, 3 - - +); h is the water depth and f
the Coriolis parameter. For two particular bottom
boundary conditions:

Zeroslip:  k, = (n - %)w
Zero stress:  k, = nw.

Therefore the lowest, and least damped, mode (n = 1)
has a decay time '

2
T, =~ 04 !}V_ (zero slip, case a)
2

or =~ 0.1 % (zero stress, case b).

For example, Forristall (1974) considered a constant
wind stress applied to 100 m. of water with N = 0.02
m?2 s}, corresponding to 7, = 56 h (a) or 14 h (b).
In shallow water, T is shorter so that, for example, if
h =10 m, and N = 1073 m? s™! (corresponding to a
moderate wind stress), then T, = 11 h(a) or 3 h (b).
Thus, the decay time does not typically exceed one or
two inertial periods and may be as small as a few hours.
The convolution method, however, in contrast to the
damped modes of the real system, induces undamped
inertial oscillations such that the model does not con-
verge to a steady state.

Numerical models of storm surges are typically run
for a period of a few days duration (compatible with
the time scale of a storm surge), which is usually too
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short to reveal the presence of undamped inertial os-
cillations. For example, in the case of steady winds
cited above, with T = 56 h (i.e., a zero-slip condition),
Forristall (1974) ran the model for only 30 h. Fur-
thermore, much of the structure in the evolution of
real storm-generated currents arises from the time-de-
pendence of the wind stress. Nevertheless, if T is less
than, or of similar magnitude to the time of duration
of the storm, the undamped inertial oscillations will
give considerable errors in the predicted surge; this ef-
fect is clearly greater in shallow water, due to the smaller
values of T,. Long-term inertial oscillations are often
observed to follow storm winds, but these are usually
associated with baroclinic effects (e.g., Gordon 1982).

2. Theory

In complex notation, the linear horizontal dynamic
equation is
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where z is the vertical coordinate (—# at the seabed, 7
at the sea surface), w = u + iv, (u, v) being the com-
ponents of the horizontal velocity, N the vertical eddy
viscosity and G the complex slope-forcing variable:
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where g is gravity, 5 the surface elevation and (x, y)

the horizontal coordinates.
The surface wind stress is specified by
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where p is the water density; w is subject to some linear,
homogeneous, boundary conditions at z = —A (e.g.,
no slip or linear slip), the bottom friction stress being
given by

d
5= pN(~h) 2=
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If (4) is linearized (n = 0), the system is linear so
that, if wis zero at time ¢ = 0, its subsequent evolution
can be expressed as a sum of two convolutions involv-
ing the forcing functions 7, and G. It follows from (5)
that 75 can also be written as the sum of two such
convolutions.

The depth-average of (2) is, using (4) and (5),

ph(‘—"-@+lfﬂ))=7s—73+G (6)

ot
where w is the depth-averaged velocity.
Taking a Laplace transform of (6) and using a tilde
for transformed functions, i.e.,
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ph(s + if )W = H(s)
where &)

H(s) = #(s) — #5(s) + G(5)
The transform of the convolution for 75 has the form
75(s) = Co(5)7:(5) + Co(8)G(s) ©®

where C; and Cg are the kernels.

Inverting (8) for w(¢) involves finding the singular-
ities of the function H(s)/(s + if). The function
H (s) has simple poles which lead to an infinite series
of terms like (1), which are damped inertial oscillations
and other singularities arising from the time depen-
dence of r;and G.

If the convolution formulation (9) is employed, the
function H(s)/(s + if’) does not have a singularity at

= —if. This was noted by Jelesnianski (1970) for the
case of constant eddy viscosity. More generally, an in-
vestigation of the kernels in (9) shows that

Cis)=1—(s+ if)as(s)}
Co(s) = 1 — (s + i ag(s)

where a;, ag are analytic and nonzero at s = —if
(Hearn and Hunter 1988). Hence, by Egs. (8), (9)
and (10), H(s) has a first-order zero at s = —ifand so
w is analytic. The absence of a pole at s = —ifis vital
because it is associated with undamped inertial oscil-
lations in w(¢).

Numerical solution of (6) produces a solution for
w that depends on the form adopted for 7. If the con-
volution formulation is employed, some error is intro-
duced by the approximation used for the numerical
integration. At first sight, it might appear that any rea-
sonable approximation would produce a solution
w(t) which would tend smoothly to the true solution
as the approximation is refined. However, (8) shows
that this is not so, because the behavior of w at s = —if
depends critically on the vanishing of H (—if ). Any
finite difference approximation for (9) will, in general,
produce a value of H(—if) which is nonzero. Thus,
assuming that H is analytic at this point, w has a
simple pole and hence w(¢)will have a component of
the form

(10)

ﬁ("if) —iff
oh ¢

corresponding to undamped inertial oscillations.

The term H(—if) is a singular perturbation, in that
it critically changes the behavior of the system by in-
ducing undamped inertial oscillations.

For conventional bottom friction,

(11)

(12)

Tg = prw



1754
where r is a “friction velocity,” so (8) becomes
ph(s = ) = 7(s) + G(s); so= =if =7 (13)

The previously discussed pole in W now occurs at s,
and 75 is no longer a driving term on the right-hand
side of the equation. Hence (11) is replaced by

7e(s0) + G(S0)
———ee e
ph

which has a damping time of h/r.

The “friction velocity,” r, is roughly CpU, where
Cpis a bottom drag coeflicient and U is a typical value
of the total water velocity (which may consist of other
motions, such as tides, not explicitly included in w,
Hunter 1975). Taking Cp = 0.0025 and U = 0.2 m
s~!, r = 0.0005 m s~! and the damping times become
56 and 6 h, for # = 100 m and 2 = 10 m, respectively,
roughly in agreement with the estimates given in the
Introduction.

It should be noted that, with the convolution
method, at the inertial frequency, (8) contains no terms
in w, and hence W is effectively decoupled from the
wind stress and surface slope; however, with conven-
tional friction, (13) and (14) show that the coupling is
retained.

(14

3. Discussion

Model runs using the convolution method for bot-
tom friction have shown undamped inertial oscilla-
tions. These start immediately the wind stress is applied
and remain constant, or grow, with time. The theory
of section 2 shows that the oscillations will always be
present, no matter what numerical scheme is adopted.
They reflect a basic sensitivity of the exact two-dimen-
sional equations to numerical error at the inertial fre-
quency.

The numerical scheme used to approximate the Co-
riolis term in the dynamic equations can cause further
problems. Many schemes require the interpolation of
one component of velocity in the evaluation of this
term, which leads to an apparent reduction in the in-
ertial frequency (Simons 1980). Common techniques
also utilize a forward (first-order accurate) difference
for the time integration of the Coriolis term, yielding
a scheme which, in the absence of friction, is uncon-
ditionally unstable. The simple pole in w will hence
not occur at exactly s = —if, possibly giving rise to
growth of the inertial oscillation if the pole is displaced
appropriately from the imaginary axis. Varying the
numerical methodology alters the amplitude, and pos-
sible growth rate, of the oscillations.
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Although any finite-difference method will, in gen-
eral, produce a nonzero value for H(—if), it is im-
portant to note that, for a linear system, the value of
H(—if) is proportional to 7;(—if’); this assumes that
G(—if) arises only through a linear coupling of the
continuity and momentum equations. Consequently,
the unwanted inertial oscillations can be avoided by
filtering the wind stress (or other appropriate boundary
forcing) so that the system is not excited at the model
inertial frequency. If the required forcing variable is
denoted by F(¢), then it is common to force the model
with the variable, P(t), given by

- 0, t<0
P=
F, 0<i,

where the model simulation is effectively started at ¢

- = (. Such “step” forcing will in general introduce sig-

nificant unwanted inertial oscillations. These oscilla-
tions may be removed by convolving P with a suitable
low-pass or band-pass filter that effectively removes all
components in the vicinity of the inertial period (bear-
ing in mind that this period may be modified by the
numerical scheme). Experiments involving a steady-
state wind-driven simulation have indicated that the
use of such a filter can reduce the unwanted inertial
oscillations to a negligible level.
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