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ABSTRACT

The evolution of moderately short, steep two-dimensional gravity–capillary waves, from the onset of the

parasitic capillary ripples to a fully developed quasi-steady stage, is studied numerically using a spectrally

accurate model. The study focuses on understanding the precise mechanism of capillary generation, and on

characterizing surface roughness and the underlying vortical structure associated with parasitic capillary

waves. It is found that initiation of the first capillary ripple is triggered by the fore–aft asymmetry of the

otherwise symmetric carrier wave, which then forms a localized pressure disturbance on the forward face

near the crest, and subsequently develops an oscillatory train of capillary waves. Systematic numerical

experiments reveal that there exists a minimum crest curvature of the carrier gravity–capillary wave for the

formation of parasitic capillary ripples, and such a threshold curvature (’0.25 cm21) is almost independent of

the carrier wavelength. The characteristics of the parasitic capillary wave train and the induced underlying

vortical structures exhibit a strong dependence on the carrier wavelength. For a steep gravity–capillary wave

with a shorter wavelength (e.g., 5 cm), the parasitic capillary wave train is distributed over the entire carrier

wave surface at the stage when capillary ripples are fully developed. Immediately underneath the capillary

wave train, weak vortices are observed to confine within a thin layer beneath the ripple crests whereas strong

vortical layers with opposite orientation of vorticity are shed from the ripple troughs. These strong vortical

layers are then convected upstream and accumulate within the carrier wave crest, forming a strong ‘‘capillary

roller’’ as postulated by Longuet-Higgins. In contrast, as the wavelength of the gravity–capillary wave in-

creases (e.g., 10 cm), parasitic capillary ripples appear as being trapped in the forward slope of the carrier

wave. The strength of the vortical layer shed underneath the parasitic capillaries weakens, and its thickness

and extent reduces. The vortices accumulating within the crest of the carrier wave, therefore, are not as

pronounced as those observed in the shorter gravity–capillary waves.

1. Introduction

Capillary ripples riding on longer gravity-dominant

carrier waves are commonly observed on ocean sur-

faces. These parasitic capillary waves, with length scales

ranging from a few centimeters down to fractions of

millimeters, can be distributed over the entire surface or

trapped on the leading slope of carrier waves. The for-

mation of parasitic capillary waves is of fundamental

importance in remote sensing of ocean surfaces involv-

ing microwave scattering by surface roughness (e.g.,

Gade et al. 1998; Plant 1997). Their presence can also

change the flow processes within the sublayer immedi-

ately beneath the ocean surface, and accordingly, sig-

nificantly influence the transport of gas and heat across

the air–water interface (e.g., Peirson and Banner 2003).

Cox (1958), in a pioneering laboratory study, pointed

out the occurrence of high-frequency waves trapped on

the forward face of a wind-generated gravity wave. As the

wind speed increases, ripples are also observed on the

rear face together with a persistent leading face trapping

of ripples. Cox’s measurements also indicate the im-

portance of nonlinear effects associated with these high-

frequency ripples on dominant gravity waves. Analysis

explaining the generation of parasitic capillary ripples

on a gravity–capillary wave (GCW) was first given by

Longuet-Higgins (1963). The generation mechanism is

attributed to localized normal stresses arising from

surface tension effects near the sharp GCW crest; cap-

illary waves can be generated without the action of

wind. Subsequent laboratory experiments (e.g., Chang
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et al. 1978; Ermakov et al. 1986; Ebuchi et al. 1987;

Perlin et al. 1993; Zhang 1995; Fedorov et al. 1998) and

theoretical analyses (e.g., Ruvinsky et al. 1991; Longuet-

Higgins 1995; Watson and Buchsbaum 1996; Fedorov

and Melville 1998) confirmed the existence of parasitic

capillary ripples and indicated their generation mecha-

nism on a GCW.

The first attempt to understand the flow structures

underneath a wind-generated GCW was made by Okuda

(1982). His laboratory experiment by flow visualization

identified a region of high vorticity, or a roller, under-

neath the crest of the carrier wave. [Such a feature was

also pointed out by Ebuchi et al. (1987), who conducted

the experiment in the same wind–wave flume as that of

Okuda (1982), but focused on studying the surface

structures on wind–wave surfaces.] Okuda attributed the

occurrence of such a high-vorticity region to large local

tangential wind stress on the windward face near the crest

of the carrier wave. Longuet-Higgins (1992) proposed

another explanation, and argued that a very likely

source of the crest vorticity is the parasitic capillaries

close to the forward edge of the vorticity region; the

crest roller and the capillaries form a cooperative sys-

tem, each sustaining the other. He also suggested that

the direct effect of the wind in producing a crest roller is

small compared to that of the capillaries.

Later numerical simulations and laboratory experi-

ments, nevertheless, reveal a different picture of the

vorticity distribution from that observed in the experi-

ments of Okuda (1982), and argued theoretically by

Longuet-Higgins (1992). Mui and Dommermuth (1995)

conducted the first Navier–Stokes simulation of a fully

nonlinear, free-propagating GCW to study the underly-

ing boundary layer and the associated vortical structure.

The strong vortical region in the crest of the GCW

is absent in their numerical simulations; instead, they

identified a weak crest vortex with a sign opposite to

that observed by Okuda (1982) and argued by Longuet-

Higgins (1992). They conjectured that a strong crest

roller with a sign that corresponds to the results of Okuda

(1982), Ebuchi et al. (1987), and Longuet-Higgins (1992)

could only form under the action of wind; the mere dif-

fusion of the vorticity from underneath the parasitic

capillaries is not sufficient to generate a crest roller. Such

a result seems to be supported by a more recent lab-

oratory experiment by Lin and Perlin (2001), who have

applied the particle–imaging–velocimetry technique to

measure the near-surface velocity fields beneath free-

propagating GCWs with parasitic ripples. Lin and Perlin

(2001) did not observe strong vorticity regions under-

neath the GCW crests for the three GCW wavelengths (5,

7, and 10 cm) they considered; this is in agreement with

the simulation result of Mui and Dommermuth (1995).

The above contrary findings concerning vortical struc-

tures underneath GCWs with parasitic capillary rip-

ples motivated the present study. By using a recently

developed, spectrally accurate numerical model (Tsai

and Hung 2007), the evolution of moderately short,

steep GCWs from the onset of the parasitic capillaries

to a fully developed quasi-steady stage, is studied

numerically The objectives of the present numerical

simulations are twofold: 1) to reappraise the precise mech-

anism of the generation of parasitic capillaries and the

subsequent evolution of the GCW and 2) to clarify the

contrary vortical structures underneath the GCW crest

reported in the previous studies by revealing the source

and transport of the vorticity field. The variability and

the characteristics of the parasitic capillary waves are

also explored by conducting simulations with various

wavelengths and steepnesses of the GCWs.

The paper is organized as follows. The numerical

model and the implementation of the simulation are

first summarized in section 2. The evolution of the

surface waves is then reported in section 3. The char-

acteristics of the parasitic capillary wave train are dis-

cussed in section 4 by showing various properties deduced

from the simulations and by comparing the present

numerical results with previous experimental measure-

ments. The underlying flow structures associated with

the parasitic capillary ripples are presented in section 5.

The process of vortex shedding by the presence of

capillary ripples and its transport as a contributing fac-

tor in the formation of the crest roller are discussed in

section 6. The paper concludes with discussions on the

impact of wind stress on the formation of parasitic cap-

illary waves, and on the explanation of the contrary

vortical structures observed by Mui and Dommermuth

(1995) and Lin and Perlin (2001), and postulated by

Longuet-Higgins (1992). (Supplemental material is avail-

able online at the Journals Online Web site http://dx.

doi.org/10.1175/2009JPO3992.sl.)

2. Numerical model and simulation implementation

We consider the two-dimensional flow of a viscous

fluid bounded by a free-moving water surface: z 5 h(x,t).

The surface–tension effect (with a constant surface ten-

sion s 5 0.073 N m21) is incorporated for the present

study of GCW. The fluid, with a density r 5 1000 kg m23

and a kinematic viscosity n 5 1026 m2 s21, is assumed to

be incompressible and Newtonian such that the velocity

(u,w) and the dynamic pressure p are governed by the

solenoidal condition and the Navier–Stokes equations.

Cyclic conditions are employed in the horizontal di-

rections; and a free-slip condition is imposed on the

lower boundary. Balance of the tangential and normal
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stresses, respectively, on the free-surface boundary re-

sults in tangential-stress and normal-stress dynamic

conditions. The free-surface boundary is a material sur-

face that gives rise to a kinematic condition governing

the deformation and motion of the wavy surface.

A numerical model has been developed for simulat-

ing such a fully nonlinear free-surface flow by the pre-

sent authors. Details of the model formulation and

numerics, and the model capabilities for resolving sur-

face waves of various length scales, ranging from the

gravity waves to capillary ripples, are reported in Tsai

and Hung (2007). With the focus being on understand-

ing the detailed process of parasitic-capillary generation

and the associated underlying vortical structure, only

the two-dimensional version of the three-dimensional

model is adopted in the present study.

The simulation is started with a nonlinear progressive

gravity wave of wavelength l and steepness a0k, where

a0 is half that of the initial wave height H0 5 2a0 and k 5

2p/l is the wavenumber. The initial surface elevation

and the velocity field are specified by the steady Stokes–

wave solution of Fenton (1988). Accordingly, the GCW

is initiated with an irrotational flow field without any

prescribed capillary ripples and vortical structures.

Noted that such an assumption to initiate the GCW

simulation with a pure gravity wave may become un-

realistic for very short GCWs with large amplitude. It

has been demonstrated both theoretically (Chen and

Saffman 1979; Hogan 1980) and numerically (Chen and

Saffman 1980; Schwartz and Vanden-Broeck 1979) that

in this range of parameters, several classes of solutions

would exist for a steady, symmetric, progressive GCW.

In particular the analysis of Chen and Saffman (1979)

showed the existence of continuous bifurcation between

waves of degree 1 and (1,N) due to resonant interactions

between the fundamental and the Nth harmonic and

leading to the formation of (N 2 1) capillaries along the

profile of the basic wave. These results indicate the

complexity of the combined gravity–capillary wave even

in the case of steady, symmetric wave. The focuses of

the present numerical experiment are on the formation

process of capillary ripples ridding on the dominant

gravity wave and the associated rotational flow struc-

tures underneath. The use of a pure gravity wave

as the initial condition, therefore, is aimed to trigger

the initial capillary ripples and to isolate the generation

mechanism. It can be shown numerically that for the

posed initial condition the computed transient wave

converges to a unique solution as the number of grids

increases (see below). It is possible that variation in the

initial condition may lead to different classes of tran-

sient solutions due to nonlinear resonant interactions

as revealed by Chen and Saffman (1979) for the steady,

FIG. 1. Computation results of (a),(b) surface elevation h and

(c),(d) vorticity v0 using grid resolutions (horizontal grids 3 ver-

tical grids): 32 3 64 (dotted lines), 64 3 96 (dashed lines), 128 3

128 (solid lines), and 256 3 256 (thick solid lines) for the GCW

with wavelength l 5 5 cm and initial steepness a0k 5 0.25 at two

representative times (a),(c) t 5 T0 and (b),(d) 3T0. The GCW

propagates from left to right.
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symmetric GCW. This will be a matter for further

study.

To compare with the previous experimental mea-

surements (Okuda 1982; Ermakov et al. 1986; Fedorov

et al. 1998; Lin and Perlin 2001) and numerical simu-

lation of Mui and Dommermuth (1995), the simulations

are conducted for four GCW wavelengths (3.9, 5, 7, and

10 cm) with various GCW steepnesses. As will be dis-

cussed in the later sections, the characteristics of the

parasitic capillaries and the underlying velocity field vary

drastically for the range of GCW wavelengths consid-

ered. As such, the required grid resolution to achieve a

FIG. 2. Evolution of the (a) surface elevation h, (b) the surface slope hx, and (c) the surface curvature k

of the GCW with wavelength l 5 5 cm and initial steepness a0k 5 0.25. The GCW, which is periodic in

space, propagates from left to right. For clarity, the periodic domain is repeated twice and the frame of

reference moves with the linear phase speed c0. (top to the bottom) The instantaneous profiles are at the

time intervals t 5 nT0 /4, where n is integer ranging from 0 to 12. The instantaneous locations of the

maximum elevation of the crest, the local maximum convex curvature, and the local maximum concave

curvature are marked with an open circle, a solid circle, and an open triangle, respectively. The GCW

propagates from left to right.
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converged numerical solution of the simulation also

depends on the GCW wavelength. To assure the con-

vergence and accuracy of the simulation, we increase

the number of the computational grids until the com-

puted surface elevation and velocity field do not change

with the grid resolution.

To demonstrate the convergence property of the

computations, distributions of surface elevation h and

vorticity v0 using various grid resolutions are depicted

in Fig. 1 for GCW of l 5 5 cm with an initial steepness

a0k 5 0.25. Note that vorticity is related to velocity

gradients. As shown in Figs. 1a,b, the computed surface

elevations are virtually indistinguishable for the simu-

lations using 1282 and 2562 grid resolutions. Very small

deviations are observed at some local maximum of the

surface vorticity distribution at some later time of the

simulation (Fig. 1d). The result indicates that a 1282

grid resolution will be sufficient for the simulations of

l 5 5 cm. Similar systematic numerical experiments

conclude that for the computations of l 5 3.9 and 7 cm,

a resolution with 128 grids in both horizontal and ver-

tical directions will result in converged solutions. For

the case of l 5 10 cm, a much finer resolution with 384

grids in both horizontal and vertical directions is

needed.

For temporal integration of the velocity field and the

surface elevation, discrete time steps T0/2000 and T0/

4000 are used for the 1282 and 3842 grid resolution

FIG. 3. Consecutive evolution of surface profiles following that of Fig. 2. (top to the bottom) The

instantaneous profiles are at the time intervals t 5 nT0 /4, where n is integer ranging from 13 to 24.
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simulations, respectively, where T0 5 2p(gk 1 sk3/r)21/2

is the linear period of the GCW.

We also monitor the properties of mass and energy

conservation in the computations. For all the simulated

results presented in the following sections, the mean

free surface is conserved to be within the machine pre-

cision ðk2
Ð l

0hdx , 10�16Þ, the error norm of the velocity

divergence, ðgkÞ�1=2
= � yk kL2

; is less than 10210, and the

maximum velocity divergence, ðgkÞ�1=2
= � yk kL‘

; is less

than 1028. The energy lost at the end of the simulation is

only about 0.01% of the initial total energy, and the rate

of relative energy loss due to numerical dissipation and

errors remains at about 1% of the viscous dissipation.

3. Evolution of the surface waves

To reveal the formation process of the parasitic capil-

laries, we begin the presentation of the simulation re-

sults by first showing the cases where strong capillary

ripples appear on the carrier GCWs in this section. Two

representative examples of the surface evolution are

shown in Figs. 2 and 3 for the GCW with wavelength

FIG. 4. As in Fig. 2, but the GCW with wavelength l 5 10 cm and initial steepness a0k 5 0.3.
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l 5 5 cm and initial steepness a0k 5 0.25, and in Figs. 4

and 5 for l 5 10 cm and a0k 5 0.3. The various surface

characteristics are exemplified by depicting the elevation

h, the slope hx and the curvature k 5 hxx=ð1 1 h2
xÞ

3=2 in

Figs. 2–5. The curvature is positive (negative) if the sur-

face is concave (convex). To better reveal the surface

variations, the periodic profile is repeated twice and the

frame of reference moves with the linear phase speed

c0 5 (g/k 1 sk/r)1/2. To elucidate the impact of surface

tension, the corresponding evolution of a pure gravity

wave of l 5 5 cm with vanishing surface tension (s 5 0)

is also depicted in Fig. 6.

Since the simulation is started with a nonlinear

progressive gravity wave, the initial surface elevation

(slope) is symmetric (antisymmetric) with respect to

the crest (and also the trough); and is flatter in the

trough region and becomes sharper approaching the

crest. The maximum convex curvature (negative) occurs

right at the highest crest initially. (The instantaneous

locations of the maximum elevation of the crest and

the maximum convex are marked with open and solid

circles, respectively, in the figures.) Note that there are

no short-wavelength ripples riding on the initial GCW.

As time proceeds, the crest skews forward and the shape

of the surface elevation becomes considerably asym-

metric as observed experimentally by Chang et al. (1978).

The maximum convex curvature grows and moves

away from the highest crest along the forward face of

FIG. 5. As in Fig. 3, but for the consecutive evolution of surface profiles following that of Fig. 4.
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the carrier GCW (see, e.g., t 5 0.25T0 in Figs. 2 and 4).

This leads to the formation of a ‘‘bulge’’ in the surface

profile on the forward face of the carrier wave. Ahead

of the bulge, a local maximum concave curvature

(positive value, marked with an open triangle) occurs,

which corresponds with the ‘‘toe’’ of the bulge (see t 5

0.5T0 in Figs. 2 and 4). Note that the present use of the

terms bulge and toe is different from that in Duncan

et al. (1994). The bulge and toe described by Duncan

et al. (1994) are formed during an incipient wave-

breaking process, which is a different process than the

formation of bulge and toe in the steep GCWs without

breaking.

As the GCW continues evolving, capillary ripples form

from the toe and propagate downstream along the for-

ward face of the dominant gravity wave (see t $ 0.75T0

in Figs. 2 and 4). Depending on the wavelength of the

GCW, drastically different patterns of the capillary waves

are observed. For the shorter GCW (l 5 5 cm), the

process of generation and propagation of the capillaries

continues, and the leading ripples of the capillary train

even travel across the trough and reach the backward

FIG. 6. Corresponding evolution of surface profiles of Fig. 2 (l 5 5 cm, a0k 5 0.25) of a pure gravity wave

but with vanishing surface tension (s 5 0). The gravity wave propagates from left to right.
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face of the next cyclic carrier wave (Figs. 2 and 3). For

the longer GCW (l 5 10 cm), the amplitudes of the cap-

illary waves decay quickly downstream from the crest,

and the ripples appear as being trapped along the

leading face of the GCW (Figs. 4 and 5). The generation

of the capillary ripples eventually reaches a quasi-steady

state (roughly after t . 1.25T0 in Figs. 2 and 4), and the

GCW profile consists of a capillary train with an ap-

proximately constant number of ripples riding on the

dominant gravity wave. (The characteristic properties of

the parasitic capillaries and their dependence on GCW

wavelength and steepness will be discussed in section 4.)

The amplitudes of the capillary ripples, however, un-

dergo recursive modulation for both short and long

GCWs. Since the frame of reference moves with the

linear phase speed of the GCW, the shift of the location

of the highest crest (marked with an open circle)

downstream indicates a rise in the phase speed of the

quasi-steady GCW.

In contrast to the GCW, no short-wavelength ripples

appear on the pure gravity wave as shown in Fig. 6;

the surface profiles remain similar to that of the initial

Stokes wave and the evolution exhibits very minor de-

cay in amplitude attributed to fluid viscosity. Such a

contrast also implies the significance of surface tension

in the formation of parasitic capillaries.

The first explanation for the generation of parasitic

capillaries was given by Longuet-Higgins (1963). The

theory argues that the parasitic capillaries are attributed

to the perturbation in the pressure brought about by the

localized surface tension near the crest of the gravity

wave, where the curvature is relatively large. Viewed in

a reference frame moving with the phase velocity, the

wave appears as a current flowing in the opposite di-

rection of the wave propagation. The localized pressure

near the crest then produces ripples upstream of the

crest; that is, on the forward face of the carrier wave.

The theory was confirmed by the experiments of Chang

et al. (1978) and Ermakov et al. (1986), and improved in

Longuet-Higgins (1995).

To demonstrate the physical explanation of Longuet-

Higgins, distributions of the total pressure pt 5 p 2 rgh,

where p is the hydrodynamic pressure, during the initial

development of parasitic capillaries are shown in Fig. 7.

The distributions clearly reveal a localized action of

pressure on the initial crest (Fig. 7a) and the leading

slope near the crest of the GCW (Figs. 7b–e).

4. Characteristics of parasitic capillaries

Previous experimental studies (e.g., Ermakov et al.

1986; Fedorov et al. 1998) and theoretical analyses (e.g.,

Ruvinsky et al. 1991; Fedorov and Melville 1998)

FIG. 7. Total pressure distributions (solid curves) pt (dyne cm22)

on the water surface during the initial development of parasitic

capillary ripples at (a) t 5 0, (b) T0 /4, (c) T0 /2, (d) 3T0 /4, and (e) T0.

The GCW wavelength l 5 5 cm and the initial steepness a0k 5 0.25.

The dotted curves are the corresponding surface profiles. The

GCW propagates from left to right. The vertical arrows indicate the

locations of local pressure maxima.
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indicate that the appearance of parasitic capillaries on a

GCW is very sensitive to the wavelength and steepness

of the GCW. To reveal such a dependency, instanta-

neous surface elevations and slopes (at t 5 2T0) of

GCWs with l 5 3.9, 5, 7, and 10 cm are shown in Figs. 8–

11, respectively, for various steepnesses. The qualitative

characteristics of the parasitic capillaries observed in

the present numerical simulations are identical to the

previous experimental and theoretical findings: when

the parasitic capillary train forms along the surface of the

GCW, both the wavelengths and the amplitudes of the

capillary ripples decrease along the forward surface. For

a particular GCW wavelength, the steepness of the

parasitic capillaries increases with that of the GCW;

however, the wave patterns, including the total number

and the wavelengths of the ripples, are independent of

the GCW steepness.

A salient difference between the shorter (l 5 3.9, 5,

and 7 cm) and the longer (l 5 10 cm) GCWs, as dis-

cussed in section 3, can be observed from these simu-

lation results. For the shorter waves, the capillary ripples

distribute along the entire surface of the GCW (Figs. 8–

10); while for longer waves, the amplitudes of the cap-

illary ripples decay rapidly and the visible ripples are

trapped on the forward face of the GCW (Fig. 11). Such

a feature was also noticed in the experiments of Ermakov

et al. (1986) and Fedorov et al. (1998). We, however, do

not observe the instability near the crest of the GCW,

FIG. 8. Profiles of (a)–(d) surface elevations and (e)–(h) slopes at t 5 2T0 for GCW wave-

length l 5 3.9 cm and various initial GCW steepnesses: a0k 5 (a),(e) 0.12; (b),(f) 0.16; (c),(g)

0.23; and (d),(h) 0.28. The profiles have been shifted such that phase angle of the highest crest is

f 5 0. The GCW propagates from left to right.
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which appears as irregular capillary ripples as reported

by Fedorov et al. (1998). Fedorov et al. (1998) postu-

lated that such irregularity in the capillary ripples might

be due to modulational instability of the underlying

GCWs at these amplitudes and wavelengths.

As noted in section 3, the evolution of the GCWs and

their formation of parasitic capillaries are transient in

the present simulations. This is similar to the waves

observed in the laboratory experiments (e.g., Ermakov

et al. 1986; Fedorov and Melville 1998). Consequently,

the amplitude of the simulated GCW attenuates slowly

with time, and the appearance of the parasitic capillaries

can only be considered as quasi-stationary. Figure 12,

showing the temporal evolution of the carrier wave

height H for l 5 3.9, 5, 7, and 10 cm, and various initial

steepnesses a0k, depicts such a temporal decay. Com-

parison among the results of various initial steepnesses

reveals an important property that a steeper GCW, of

which the amplitudes of parasitic capillaries are also

larger, possesses a greater decaying rate. As such, a

steeper GCW can continue to attenuate with time, and

its wave height may eventually decreases to be less than

those GCWs with lower steepnesses (e.g., see l 5 3.9

cm and a0k 5 0.25 in Fig. 12a, l 5 5 cm and a0k 5 0.28

in Fig. 12b, and l 5 7 cm and a0k 5 0.3 in Fig. 12c).

Such a feature also implies the efficiency of the parasitic

capillary ripples in dissipating the GCW energy.

To further quantify the characteristics of the parasitic

capillary ripples and their temporal evolution, two

properties of the ripples are computed from our nu-

merical results and compared with those by theoretical

analyses and/or experimental measurements. Figure 13

FIG. 9. As in Fig. 8, but for GCW wavelength l 5 5 cm and various initial GCW steepnesses:

a0k 5 (a),(e) 0.12; (b),(f) 0.16; (c),(g) 0.2; and (d),(h) 0.28.
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shows temporal evolution of the average steepness of the

first capillary ripple ur on the forward face of the GCW

for wavelengths l 5 3.9, 5, 7, and 10 cm, and various

initial steepnesses a0k. Following Ermakov et al. (1986),

the average steepness of the first ripple ur is defined as

ur 5 0.5(umax 2 umin), as illustrated in Fig. 14, where umax

and umin are the maximum and minimum slopes, respec-

tively, along the ripple surface. The GCWs are initiated

without any capillary ripples in the numerical simula-

tions; as soon as the capillary ripples are excited, the

average steepness of the first capillary ur increases rap-

idly with time. The steepness reaches its maximum and

then decreases to a minimum. The process of amplifi-

cation and attenuation of the capillary steepness re-

peats, and the parasitic capillaries exhibit a modulating

pattern as depicted in Figs. 2–5. The modulation period

is almost invariant with carrier GCW steepness and

wavelength; and is approximately 3 times the linear

carrier wave period (approximately 0.43, 0.51, 0.62, and

0.76 s for l 5 3.9, 5, 7, and 10 cm, respectively). Such

temporal modulation over times of O(1) s was also

observed in the experiment of Fedorov et al. (1998).

They noticed that the undulating unsteadiness becomes

more substantial for longer GCWs, in agreement with

the present numerical results. The origins of this re-

currence phenomenon and the parameters controlling

the modulation period, however, are still unclear, and

deserve further investigation. It appears that the mod-

ulational instability of the carrier GCW cannot be the

appropriate process to explain it because the time scale

is very short, and this modulation is particularly well

pronounced for waves of scale as small as l 5 3.9 cm

FIG. 10. As in Fig. 8, but for GCW wavelength l 5 7 cm and various initial GCW steepnesses:

a0k 5 (a),(e) 0.2; (b),(f) 0.23; (c),(g) 0.28; and (d),(h) 0.3.
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[the analysis of Hogan (1985) indicates that instability is

impossible in a range of 0.155 , ks , 0.5, corresponding

to 2.43 cm , l , 4.36 cm, where the dimensionless cap-

illary number ks 5 4p2s/rgl2]. Thus, it is feasible that

such a recurrent modulation is caused by the nonlinear

interaction between the carrier GCW and the parasitic

capillary ripples.

A direct comparison of the average ripple steepness

ur between the present numerical results and the ex-

perimental measurements of Ermakov et al. (1986) and

Fedorov et al. (1998) is shown in Fig. 15. Since both ur

and ak change with time, the transient numerical results

are averaged over the interval from t 5 T0 to 4T0. The

chosen averaging interval is roughly the modulation

period of the average ripple steepness ur as shown in

Fig. 13. The numerical results provide good quantitative

agreement with the experimental measurements for the

entire steepness range of l 5 3.9-, 5-, and 7-cm GCWs.

Larger deviations, however, occur for the longer GCW

of l 5 10 cm.

The results of characteristic capillary steepness ur de-

picted in Figs. 13 and 15 reveal that there exists a min-

imum critical steepness of the GCW for the formation

of visible parasitic capillaries; and such a critical steep-

ness increases with the GCW wavelength. The present

numerical results also confirm the finding of Ermakov

et al. (1986) that ripple excitation can initiate with a

relatively small GCW steepness 4–5 times less than that

of the maximum steepness of GCW. Since the forma-

tion of capillary ripples on a steep GCW is due to the

development of local pressure anomaly near the GCW

crest, the existence of this minimal GCW steepness can be

linked to a threshold in the magnitude of such pressure

disturbance. Furthermore, pressure distribution on the

FIG. 11. As in Fig. 8, but for GCW wavelength l 5 10 cm and various initial GCW steepnesses:

a0k 5 (a),(e) 0.22; (b),(f) 0.25; (c),(g) 0.28; and (d),(h) 0.3.
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water surface is predominantly balanced by surface-

normal component of the surface tension, sk. As such,

this localized pressure perturbation can be evaluated by

surface curvature k at the GCW crest. To reveal the

possible correlation between the minimal GCW steep-

ness and the critical GCW crest curvature for the for-

mation of capillary ripples, the dependence of crest

curvature k on initial steepness a0k for various GCW

wavelengths is shown in Fig. 16. The appearance of

parasitic capillaries on a carrier GCW is identified if the

averaged capillary steepness ur is higher than 0.002 at

any time of the evolution as shown in Fig. 13. The GCW

steepness, which forms capillary ripples, is marked with

a solid symbol in Fig. 16. The result clearly indicates that

there exists a minimal GCW crest curvature, almost

independent of the wavelength of the carrier wave, for

the formation of capillary ripples on the carrier GCW.

Such a threshold curvature is estimated to be 0.25

cm21 from our systematic numerical experiments. The

corresponding critical initial steepnesses a0k for ripple

initiation are approximately 0.12, 0.14, 0.18, and 0.24 for

GCW wavelengths l 5 3.9, 5, 7, and 10 cm, respec-

tively. This finding also supports the previous laboratory

observation of Ermakov et al. (1988) that the condition

for generation of capillary ripples on a GCW is gov-

erned solely by the crest curvature of the GCW.

Temporal evolution of the wavelength of the first

capillary on the forward face of the GCW next to the

crest, lr, for various GCW wavelengths l and initial

steepnesses a0k is shown in Fig. 17. The capillary wave-

length lr is defined as the distance between the first and

second slope maxima, as illustrated in the schematic of

Fig. 14. In contrast to the ripple steepness ur, the tem-

poral variation of wavelength lr is minimal for the ranges

of GCW wavelength and steepness considered. The cap-

illary ripples are shorter for longer GCWs as revealed in

Fig. 18. Comparisons of lr between the present nu-

merical results and the measurements by Ermakov et al.

(1986) and Fedorov et al. (1998) are depicted in Fig. 18,

which also show quantitative agreement for the ranges

of wavelength and steepness considered. For a constant

GCW wavelength, the capillary wavelength decreases

slightly with the increasing GCW steepness. Such a

dependency on GCW steepness, however, is not as

significant as that of capillary steepness (Fig. 15).

The temporal evolution of the number of parasitic

capillary ripples Np riding along the GCW for l 5 3.9, 5,

7, and 10 cm, and various initial steepnesses a0k is shown

in Fig. 19. The number of capillary ripples is determined

by counting the numbers of local minimum slopes, as

depicted in Figs. 8–10. Since the simulations are initiated

without any prescribed capillary ripples, the number of

capillary ripples increases rapidly when the steepness of

the gravity capillary wave reaches the critical value for

ripple generation. For the GCWs of l 5 3.9, 5, and 7 cm,

the number of ripples Np eventually reaches a constant

level with small variations as the carrier wave evolves;

FIG. 12. Temporal evolution of the nondimensional wave height

H/l of the GCWs for l 5 (a) 3.9, (b) 5, (c) 7, and (d) 10 cm, and

various initial steepnesses a0k as shown in the figures. The GCW

wave height H is defined as the difference between the maximum

and minimum surface elevations.
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and the number of ripples increases with the GCW

wavelength l, but is not affected by the initial steepness

a0k. For the GCW of l 5 10 cm, however, the ripple

number Npmodulates significantly with time.

The number of parasitic ripples can also be estimated

by assuming constant wavelengths of the ripples lp and

from the resonance condition that the linear phase speed

of the GCW matches that of the parasitic capillary ripples

(Cox 1958; Fedorov and Melville 1998): Np ’ l/lp 5

rgl2/4p2s. For the GCWs of wavelengths l 5 3.9, 5, 7,

and 10 cm, the estimated numbers of parasitic capillaries

are Np 5 5, 8, 16, and 34, respectively. The results are

close to that from the present simulations (Fig. 19).

5. Underlying flow structures

The corresponding flow structures underneath the

GCWs of Figs. 2 and 3 (l 5 5 cm) and Figs. 4 and 5 (l 5

10 cm) are depicted in Figs. 20 and 21 , respectively. The

instantaneous distributions of velocities (u and w) and

vorticity (v 5 ›u/›z 2 ›w/›x) at various stages of the

wave evolution are also plotted in a reference frame

moving with the linear phase speed. The distribution of

the flow field at the initial stage of the simulation is

dominated by that of the gravity wave, but begins to

skew toward the forward face of the carrier wave (see

t 5 0.25T0 in Figs. 20a,e,i and 21a,e,i). Note that a thin

layer of counterclockwise vortices (negative vorticity, in

blue) is observed immediately beneath the crest of the

FIG. 14. A schematic illustrating the definitions of ur and lr.

Following Ermakov et al. (1986), the average steepness of the

capillary ripple on the forward face of the GCW immediately next

to the crest, ur, is defined as ur 5 0.5(umax 2 umin), where umax and

umin are the maximum and minimum slopes along the ripple sur-

face, respectively. The wavelength lr is defined as the distance

between the first and second horizontal coordinates with the local

maximum slopes.

FIG. 13. Temporal evolution of the average steepness ur of the

capillary ripple on the forward face and immediately next to the

crest of the GCW for l 5 (a) 3.9, (b) 5, (c) 7, and (d) 10 cm, and

various initial steepnesses a0k as shown in the figure. The average

steepness ur is defined as the schematic depicted in Fig. 14.
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carrier wave, and clockwise vortices underneath the

trough (Figs. 20i and 21i).

As the wave evolves, capillary wavelets begin to form

on the forward slope near the GCW crest and inter-

fere with the gravity-dominant carrier wave. However,

completely different flow structures are observed un-

derneath the shorter (l 5 5 cm) and longer (l 5 10 cm)

GCWs. For the case of l 5 5 cm, the perturbations

induced by the parasitic capillary waves on the under-

lying velocity field grow significantly as the capillary

wave train develops (Figs. 20c,g). The magnitudes of

the perturbed velocities eventually surpass those of

the carrier wave and dominate the GCW velocity field

(Figs. 20d,h). (Note that the pattern of the velocity

field induced by an individual capillary ripple is similar

to that induced by the dominant gravity wave.) In

contrast, for the GCW with l 5 10 cm, the velocities

attributed to the gravity wave are still the prevailing

components in the velocity field (cf. Figs. 21a and

21b–d; cf. Figs. 21e and 21f–h). At the stage when

parasitic capillaries are fully developed, the riding

ripples only cause minimal velocity disturbances con-

fined within a shallow region beneath the forward

slope of the carrier wave (Figs. 21d,h).

Accompanying the generation of parasitic capillary

ripples on the forward slope of the carrier GCW, vor-

tical layers with alternate vorticity orientations are

observed to form immediately underneath the capil-

lary wave train (Figs. 20j and 21j). Each vortical layer

with positive (clockwise) vortices shed from the capil-

lary trough is accompanied by a neighboring, negative

(counterclockwise) vortical region, which has formed

underneath the capillary crest; and the vorticity strength

of the trough vortical layer is stronger than that of the

neighboring crest vortices. Both the vorticity strength

and the thickness of these alternate vortical layers decay

away from the GCW crest along the forward surface.

Such a vortical structure, with weak, counterclockwise

vortices underneath the capillary crest and strong,

clockwise vortices shed from the trough, is quantita-

tively consistent with the previous simulation result of

Mui and Dommermuth (1995) and also the experimental

FIG. 15. Comparisons between the present numerical simula-

tions and the experimental measurements of Ermakov et al. (1986)

and Fedorov et al. (1998) for the temporal-averaged steepness ur of

the capillary ripple on the forward face and immediately next to

the crest of the GCW. The steepnesses of the carrier GCW con-

sidered in the experiment of Lin and Perlin (2001) (ak 5 0.13, 0.14,

and 0.16 for l’ 5 cm; ak 5 0.17, 0.2, and 0.225 for l’ 7 cm; ak 5

0.14, 0.18, and 0.225 for l’ 10 cm) are marked with arrows in the

ak axes: l5 (a) 3.9, (b) 5, (c) 7, and (d) 10 cm.
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observations of Lin and Rockwell (1995) and Lin and

Perlin (2001). Similar to the distribution of velocity

field, the deepening of the vortical layers induced by

the parasitic capillaries is more pronounced in a shorter

GCW than in a longer GCW (the thickness of the shear

layer underneath the GCW crest is about 2.5% of the

GCW wavelength in Fig. 20 and is about 1.5% in Fig. 21).

The structure of the vortical layers shown in Fig. 20k

can be further elucidated from the velocity distributions

in Figs. 20c,g. The velocity distribution of an individual

parasitic capillary ripple is similar to that of the domi-

nant gravity wave: pronounced forward (backward)

horizontal velocities are observed underneath the crest

(trough); and upward (downward) vertical velocities

underneath the forward (backward) face of the ripple

surface. Accordingly, underlying a capillary ripple, the

strong vortical layer generated from the trough is con-

vected backward and lifted up along the forward surface

of the ripple crest behind, forming a vortex shedding

wake; and the accompanying weak vorticity region be-

neath the crest is stretched toward the backward ripples’

surface.

As the parasitic capillary waves continue developing,

both the strength and the thickness of the underlying

vortical layers grow, and the regions extend toward the

GCW crest. The vortical layers shed from the capillary

troughs outgrow those developing beneath the capillary

crests (Figs. 20k and 21k). These outgrowing vortical

layers with clockwise vortices eventually become con-

nected, and form the predominant vortical structure un-

derneath the carrier GCW, as shown in Figs. 20l and 21l.

The extended region of such a predominant vortical layer

covers the entire GCW crest. This strong vortical region

FIG. 16. Dependence of crest curvature k on initial steepness a0k

for GCW wavelength l 5 3.9, 5, 7, and 10 cm. The pair of GCW

steepness and crest curvature, which results in capillary ripples is

marked with a solid symbol, and the open symbol represents pa-

rameter with no capillaries formed. The estimated threshold crest

curvature (’ 0.25 cm21) is marked with a horizontal line.

FIG. 17. Temporal evolution of the wavelength lr (cm) of the

capillary ripple on the forward face and immediately next to the

crest of the GCW for l 5 (a) 3.9, (b) 5, (c) 7, and (d) 10 cm, and

various initial steepnesses a0k as shown in the figure. The capillary

wavelength lr is defined as shown in Fig. 14.
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underneath the entire crest of the GCW resembles the

‘‘capillary rollers’’ pointed out by Longuet-Higgins

(1992, see their Fig. 12). The present simulation there-

fore confirms the postulate of Longuet-Higgins (1992)

that the source of this crest vortical roller can be from

the parasitic capillaries on the forward face of a GCW.

The vortices are shed from the capillaries ahead of the

GCW crest attributed to the large curvatures of the

capillary troughs. These vortices then flow back and

accumulate mainly underneath the crest of the domi-

nant gravity wave. Our numerical experiment further

indicates that as the GCW wavelength increases, the

strength of the vortical layer shed underneath the par-

asitic capillaries weakens, and its thickness and extent

reduce. The vortices accumulated within the GCW

crest, therefore, are not as pronounced as the crest roller

of the shorter GCWs (cf. Figs. 20l and 21l).

Such a vortex shedding process is further revealed in

Fig. 22 by correlating the vorticity distributions to their

corresponding vorticity transport rates at two represen-

tative times when the capillaries just arise (t 5 T0; Figs.

22a–c) and when the capillaries fully develop (t 5 2T0;

Figs. 22d–f). In Fig. 22, the coordinate moves with the

instantaneous phase velocity c of the GCW; and the re-

sulting flow corresponds to a backward flow with a free-

stream velocities 2c. The transport rates of vorticity

attributed to convection and diffusion, accordingly, are

2[(u 2 c)›v/›x 1 w›v/›z] and nD2v, respectively.

The distributions of the vorticity transports are simi-

lar at both instances when the capillaries just arise and

fully develop. Strong diffusion transport is observed

near the vicinity of individual ripple trough where the

maximum vorticity influx occurs (see the next section

and Fig. 23). The wake of the concave region of positive

diffusion is followed by a convex region of intensified

convection transport. Such a region with strong, positive

convection extends toward the submerged area beneath

the neighboring ripple crest. The shed vortices near the

capillary troughs are therefore convected toward the

crest and form the observed strong vortical structure

beneath the crest.

6. Vorticity interaction with the surface

The underlying vorticity field discussed in the previ-

ous section is generated by the surface deformation and

FIG. 18. Comparisons between the present numerical simula-

tions and the experimental measurements of Ermakov et al. (1986)

for the temporal-averaged wavelength lr (cm) of the capillary

ripple on the forward face and immediately next to the crest of the

GCW: l 5 (a) 3.9, (b) 5, (c) 7, and (d) 10 cm.
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motion of the capillary ripples. The surface vorticity

[v0 5 v(z 5 h)] on an unsteady free-surface boundary

can be derived from the balance condition of tangential

stresses and expressed as (Wu 1995)

v0 5 �2
›un

›s
� 2kus; ð1Þ

where s is the tangential curvilinear coordinate along

the surface, and us and un are the tangential and the

normal velocities on the surface, respectively. The dis-

tributions of surface vorticity calculated from the nu-

merical simulation and the theoretical expression in (1)

are shown in Fig. 23 for the corresponding time inter-

vals of Figs. 20 and 22. The maximum relative error

between the numerical and theoretical results is less

than 2%, implying the capability of the present model

in accurately satisfying the dynamic free-surface bound-

ary conditions and in resolving the capillary ripples.

The variations of surface vorticity (Figs. 23b,e,h,k)

well correlate with that of surface curvatures (Figs.

23a,d,g,j). The vorticity strengths on the ripple troughs

are greater than those on the ripple crests, which is

consistent with the underlying vorticity field discussed

in the previous section. Also plotted in Figs. 23b,e,h,k

are the steady and linear approximation of the free-

surface vorticity (Longuet-Higgins 1995): v0 ’ 2kc0.

Only small deviations from the unsteady, nonlinear

values are observed, indicative of minimal effects of

the unsteadiness and the nonlinearity of the base flow

(the carrier GCW).

To further reveal the production sources of the un-

derlying vortices, the vorticity flux at the free surface is

then examined. For a two-dimensional vortical flow, the

processes of vortex stretching and tilting are absent;

viscous diffusion is the only mechanism governing vor-

ticity transport. The rate of vorticity transport in a two-

dimensional flow can be expressed as

ð ð ð
V

Dv

Dv
dV5

ð ð ð
V

y=2vdV5

ð ð
S

y
›v

›n
dS; ð2Þ

where Gauss’s theorem has been used to convert the

volume integral to a surface integral, and the surface

normal vector n points outward. The physical meaning

of Eq. (2) is that the net rate of vorticity change within

the flow is balanced by the flux of vorticity diffusing

across the free surface as a result of viscous forces. The

diffusion flux of vorticity across the free surface can be

further expressed in a curvilinear coordinate system

along the surface (s,n) as (Rood 1995; Gharib and

Weigand 1996):

FIG. 19. Temporal evolution of the number of parasitic capil-

lary ripples Np riding along the GCW for l 5 (a) 3.9, (b) 5, (c) 7,

and (d) 10 cm, and various initial steepnesses a0k as shown in the

figure.
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where u is the angle of the surface with respect to the

gravity vector. Equation (3) is derived by projecting

the momentum equation onto the surface tangent. It

decomposes the total vorticity influx �nð›v=›nÞn50

� �
into contributions from local acceleration ð�›us=›tÞ; con-

vective accelerations ð�us›us=›s� un›un=›s� unvÞ; pres-

sure gradient ð�r�1›p=›sÞ; and gravity (2gcosu).

The distributions of the total vorticity influx at the

free surface and its contributing components are shown

in Figs. 23c,f,i,l. The contribution by local accelera-

tion (dashed lines) to the vorticity flux is very weak

throughout the entire wave evolution. At the initial

stage when the gravity wave dominates the base flow

and the capillary ripples have not developed, both the

surface vorticity and the vorticity flux are weak (Figs.

23b,c); the surface vorticity production is dominated by

the gravitational effect (dashed–dotted line). At the time

when localized surface tension triggers the formation of

capillary ripples, the effects of convective acceleration

(dashed–dotted–dotted line) and pressure gradient (solid

line) on the vorticity flux become as significant as that

attributed to gravitation (Fig. 23f). At the time when

parasitic capillary waves become fully developed, the

variation of the dominant contribution by pressure gra-

dient (and also the total vorticity influx) is well correlated

with the distribution of parasitic capillaries as shown in

Figs. 23i,l. The inward vorticity flux attributed to the

pressure gradient is positive on the forward face of

capillaries, and negative on the leeward face. The pres-

sure gradient effect, therefore, dominates the vorticity

production by the parasitic capillary ripples.

FIG. 20. Instantaneous distributions of (a)–(d) horizontal velocity u (cm s21), (e)–(h) vertical

velocity w (cm s21), and (i)–(l) vorticity v (1 s21) for GCW wavelength l 5 5 cm and initial

steepness a0k 5 0.25 at t 5 (a),(e),(i) 0.25T0; (b),(f),(j) 0.5T0; (c),(g),(k) T0; and (d),(h),(l) 2T0.

The positions of the bulge and toe are marked with a solid circle and triangle, respectively. The

GCW propagates from left to right.
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7. Discussion

The generation and evolution of parasitic capillary

ripples on gravity–capillary waves are studied numeri-

cally by solving the initial–boundary–value problem of a

free-surface flow. Two distinct features of the present

computations are the following: 1) The complete free-

surface boundary conditions are satisfied on the de-

formable water surface without any approximation or

linearization. As such, the nonlinear dynamics involved

in the formation of parasitic capillary waves and their

interactions with the underlying flow are modeled by

the first-principle formulation. 2) The numerical model

implements a spectrally accurate scheme for the hori-

zontal discretization and adopts stretched finer grids

approaching the water surface. Accordingly, the model

is capable of resolving surface wavelets of the capillary

scale and the underlying flow with length scale down to

the viscous sublayer immediately next to the wavy sur-

face. Our simulation result shows good quantitative

agreements of the capillary characteristic properties

(i.e., steepness, wavelength, number of wavelets) with

the measurements of Ermakov et al. (1986) and Fedorov

et al. (1998), which validate the use of the model to ex-

plore the formation mechanism and the underlying flow

structure of the parasitic capillary waves.

Our simulation results confirm the generation mech-

anism originally proposed by Longuet-Higgins (1963)

that the initial capillary wavelets are triggered by the

combined effect of pressure from localized surface

tension forces on the forward slope near the crest and

the underlying current attributed to phase translation of

the carrier wave. Force exerted by wind is not necessary

for the formation of capillary ripples, and the source of

energy for parasitic capillary waves is the carrier GCW

itself. Systematic numerical experiments reveal that

the crest curvature of the carrier GCW is the major

parameter governing the occurrence of the parasitic

capillaries. There exists a minimum crest curvature of

the GCW for the formation of parasitic capillary ripples;

FIG. 21. As in Fig. 20, but for GCW wavelength l 5 10 cm and initial steepness a0k 5 0.3 at

t 5 (a),(e),(i) 0.25T0; (b),(f),(j) 0.5T0; (c),(g),(k) T0; and (d),(h),(l) 2T0.
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and such a threshold curvature (’0.25 cm21) is almost

independent of the carrier wavelength.

Note that in parallel with the present numerical com-

putation concerning the dynamical evolution of non-

symmetric GCWs, there are also theoretical analyses

(e.g., Chen and Saffman 1979; Hogan 1980) and numer-

ical solutions (e.g., Chen and Saffman 1980; Schwartz and

Vanden-Broeck 1979) of steady symmetric GCWs of

finite amplitude. These studies show the multiplicity of

solutions due to resonant interactions of waves leading to

bifurcations between different continuous families of

solutions, and indicate the exceptional complexity even

in the symmetric GCWs of permanent form. Among

other phenomenon, the theoretical analysis made by

Chen and Saffman manifests that the solution bifurca-

tion due to resonant interactions between the funda-

mental and the Nth harmonic waves can result in the

formation of N 2 1 capillaries along the surface of the

basic wave. The present numerical results also reveal

strong evidence that nearly resonant nonlinear inter-

actions play a major role in the formation of parasitic

ripples. This is supported by at least two facts: 1) the

wave profile reaches a quasi-steady state after a tran-

sient regime certainly controlled by the initial condi-

tions; and 2) the number of capillary ripples Np observed

strikingly checks the resonant condition that the linear

phase velocity of the GCW matches that of the parasitic

capillaries.

Both the characteristics of the parasitic capillaries and

the underlying vortical structures exhibit strong sensi-

tivity to the wavelength of the carrier GCW. For shorter

GCWs (wavelength approximately less than 10 cm), the

parasitic capillary wave train is distributed over the en-

tire surface of the carrier wave. The leading ripple of the

capillary wave train can even pass through the rear face

of the adjacent crest, and interfere with the tail ripples

(the ripples on the forward face and immediately next to

the crest). In contrast, for longer GCWs, the amplitudes

of the parasitic capillary wave train decay rapidly, and

the capillary ripples appear as being trapped on the

forward face between the crest and the trough. Such

distinct features of the parasitic capillary wave trains on

shorter and longer GCWs can be attributed to the wave

energy propagation and thus, to the respective values of

the parasitic ripple group velocity and the carrier wave

phase speed. The linear phase velocity of the gravity-

dominant carrier wave is proportional to l1/2, whereas

the linear group velocity of the capillary ripple is pro-

portional to lr
21/2. As revealed in Figs. 17 and 18, the

wavelength of the parasitic capillaries decreases slightly

FIG. 22. Instantaneous distributions of (a),(d) vorticity v (s21); (b),(e) vorticity transport rate

of vorticity due to convection �½ðu� cÞ›v=›x 1 w›v=›z�[ u (s22); and (c),(f) vorticity

transport rate due to diffusion n=2v [ c (s22) for GCW wavelength l 5 5 cm and initial wave

steepness a0k 5 0.25 at t 5 (a)–(c) T0 and (d)–(f) 2T0.
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as the wavelength of the carrier GCW increases and so

does the group velocity of the capillary; while on the

contrary, the carrier wave propagates faster (slower)

when its wavelength increases (decreases). When the

carrier wave wavelength increases above a certain value,

it turns out immediately that the phase velocity of carrier

gravity component can be in excess of the group velocity

of the parasitic capillaries riding on the orbital velocity

of the gravity component, and the capillary wave train

energy can never catch up with the propagation of the

carrier GCW; the capillary ripples, however, continue

being generated along the forward face of the GCW. As

such, the capillary wave train appears to be blocked on

the forward face between the crest and the trough. While

FIG. 23. Distributions of (a),(d),(g),(h) surface elevation h (solid lines, cm) and curvature k

(dashed lines, cm21); (b),(e),(h),(k) surface vorticity v0 from numerical simulation (solid lines,

in s21) and theoretical prediction of Eq. (1) (open circles, s21), and steady, linear approxi-

mation (dashed lines, in s21); (c),(f),(i),(l) vorticity influx (dotted lines, cm21 s21), and the

separated components in Eq. (3): the local acceleration term (dashed lines, cm21 s21), the

convective acceleration term (dashed–dotted–dotted lines, cm21 s21), the pressure gradient

term (solid lines, cm21 s21), and the gravity term (dashed–dotted lines, cm21 s21) for GCW

wavelength l 5 5 cm and initial steepness a0k 5 0.25 at (a)–(c) t 5 0.25T0; (d)–(f) 0.5T0; (g)–(i)

T0; and ( j)–(l) 2T0. The vertical arrows in (a), (d), (g), and (j) indicate the horizontal positions

where the maximum vorticity influxes occur.
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on the contrary, when the phase velocity of a shorter

GCW is lower than that of the group velocity of capillary

waves, the capillary wave train can propagate over the

entire surface of the carrier wave.

Similar to surface distribution of the parasitic capil-

laries, the underlying velocity and vorticity fields also

exhibit distinctive patterns depending on the GCW

wavelength. At the time when parasitic capillaries are

fully developed, both the velocity and the vorticity fields

of a shorter GCW are overtaken by that induced by

the capillary ripples. In particular, an enhanced vortex

layer is formed within the surface boundary layer. The

vortices shed from the troughs of the capillary ripples

prevail in the vortical layer, and are convected toward

the GCW crest to form the observed crest roller, in

support of the analysis of Longuet-Higgins (1992). In

contrast to the shorter GCWs, the vortices generated

underneath the parasitic capillaries become weaker as

the GCW wavelength increases, and the accumulated

crest roller is less significant. These findings, however,

seem to contradict the previous numerical simulation of

Mui and Dommermuth (1995) and the measurements of

Lin and Perlin (2001). The explanations for these con-

trary conclusions are as follows.

Both Mui and Dommermuth (1995) and Lin and

Perlin (2001) considered free-propagating GCWs with-

out the action of wind stresses, as in the present nu-

merical study. To reduce the computation time for

solving the Navier–Stokes equations of a viscous flow,

Mui and Dommermuth (1995) spun up their simulation

by assuming irrotationality of the initially developing

flow and adopting a faster potential solver up to the

time when the capillary wave train forms on the carrier

GCW (t ’ 1.8T0). The subsequent simulation was then

switched to a Navier–Stokes solver for a fraction of the

period of the GCW (’ 0.136T0). This means that they

have only simulated the processes of vortex shedding

from the parasitic capillaries and the transport for a very

short time interval. Our numerical result indicates that

it would take about a GCW period (’ T0, see Fig. 20)

for the shed vortex layer to fully develop and to be

convected to the GCW crest. This explains why Mui and

Dommermuth (1995) have not observed a strong vor-

tical structure underneath the GCW crest in their sim-

ulation (l 5 5 cm, a0k 5 0.2827).

Lin and Perlin (2001) conducted particle image ve-

locimetry (PIV) measurements of velocity fields be-

neath GCWs with wavelengths l 5 5, 7, and 10 cm. But,

in comparison with the previous experiments, the

steepness of the GCWs considered by Lin and Perlin

(2001) (ak 5 0.13, 0.14 and 0.16 for l ’ 5 cm; ak 5 0.17,

0.2, and 0.225 for l ’ 7 cm; ak 5 0.14, 0.18, and 0.225 for

l ’ 10 cm) is relatively much lower (for comparison,

these steepnesses are marked with arrows in Fig. 15).

We have also conducted simulations within the range of

these steepnesses (see Fig. 15); the strong vorticity re-

gions underneath the moderate-steep GCW crests are

not realized in the numerical simulations, in agreement

with the experimental results of Lin and Perlin (2001).

Okuda (1982) measured the internal velocity distri-

butions of wind-generated waves with wavelengths

ranging from 10 to 15 cm. He argued that the occurrence

of the high-vorticity region near the crest is associated

with a large local tangential wind stress on the windward

face near the crest of the carrier wave. [Such a feature

was also pointed out by Ebuchi et al. (1987), who used

the same wind–wave flume as in the experiment of

Okuda (1982) did.] The analysis of Longuet-Higgins

(1992) suggested that the direct effect of the wind stress

in producing the crest vorticity is small, compared with

that generated by the parasitic capillaries. The present

numerical simulation, however, indicates that for the

GCW of l ’ 10 cm the vorticity generated by the pres-

ence of parasitic capillaries alone is not strong enough to

retain a crest roller with a significant extent.

To manifest the possibility that wind shear stress can

be a source of near-surface vorticity comparable to that

of parasitic capillaries, numerical simulations of the l 5

10-cm GCW subject to a shear stress imposed at the

water surface are also conducted. Two types of shear

stress distributions ts
t ; are considered: the distribution

measured by Okuda (1982, see his Fig. 7) and the more

recent measurement of Banner and Peirson (1998, see

their Fig. 5). Figure 24 depicts two instantaneous dis-

tributions of the surface profiles and the underlying

vorticity field plotted following the style of Fig. 3 in

Okuda (1982). For comparison the results of the free-

propagating GCW are also plotted in Fig. 24. Note that

parasitic capillary ripples are barely visible for the free-

propagating GCW of l 5 10 cm with an initial steepness

a0k 5 0.23 as shown in Figs. 24a,b, and also indicated by

the experiment of Lin and Perlin (2001). Vertical dis-

tributions of vorticity below the crest and the trough of

the carrier GCW at various times are depicted in Fig. 25.

As expected, the exerting shear stress induces a strong

vortical layer immediately underneath the backward

surface of the GCW at the early stage of the wave de-

velopment when the formation of parasitic capillaries is

still not significant (Figs. 24c,e). This surface stress in-

duced vortical layer is convected backward beneath the

rear slope of the carrier wave, and becomes submerged

underneath the trough (Figs. 25d,f). The wind stress,

nevertheless, enhances the generation of capillary rip-

ples as the wave continues evolving as shown in Figs.

24d,f; and vortical layers form underneath these capil-

laries and intensify the vorticity region in the crest. The
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FIG. 24. Instantaneous distributions of the surface profiles and the underlying vorticity fields

for the GCW of l 5 10 cm and a0k 5 0.23 subject to three types of tangential-stress boundary

conditions at t 5 (a),(c),(e) 2T0 and (b),(d),(f) 4T0. (a),(b) The results for the free-propagating

GCW with no shear stress at the water surface; (c),(d) the distributions for the same GCW but is

driven by the tangential surface stress measured by Okuda (1982); and (e),(f) the distributions

for the GCW driven by the shear-stress measurement of Banner and Peirson (1998). The

corresponding distributions of the exerting shear stress at the water surface are plotted at top of

(c)–(f). Five contours are shown with vorticity values evenly distributed ranging from 20 to 60

s21. The areas in red are regions with vorticities higher than 60 s21. The GCW propagates from

left to right.
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vortex layer underneath the GCW crest indeed is

thicker than those beneath the forward and backward

surfaces of the GCW. Underneath the GCW trough, a

new thin vortical layer immediately next to the water

surface is induced by the formation of the capillary

ripples (see t 5 3T0 and 4T0 in Figs. 25d,f). The present

numerical experiment therefore demonstrates that the

formation of a crest roller within a wind-generated

GCW can be attributed to both local wind stress as

observed by Okuda (1982) and parasitic capillary rip-

ples as suggested by Longuet-Higgins (1992). Despite

the distinct difference in the surface stress distributions,

the vorticity fields resemble one another under the two

stress-driven water surfaces; and are also similar to the

observation of Okuda (1982) in both pattern and strength

(see Okuda’s Fig. 3).

In this study, we have only considered the formation

and evolution of parasitic capillary ripples on two-

dimensional GCWs, although our developed numerical

model is capable of simulating three-dimensional flows.

Parasitic ripples commonly appear with more irregular

patterns and exhibit high intermittency on natural water

surfaces (e.g., Ebuchi et al. 1987; Zhang 1995). In ad-

dition to the capillary trains trapped ahead of the crest,

FIG. 25. Vertical distributions of vorticity vy (s21) below the GCW (a),(c),(e) crest and

(b),(d),(f) trough for l 5 10 cm and a0k 5 0.23 subject to three types of tangential-stress

boundary conditions at times t 5 T0, 2T0, 3T0, and 4T0. (a),(b) The results for the free-propagating

GCW with no shear stress at the water surface; (c),(d) the distributions for the same GCW but is

driven by the tangential surface stress measured by Okuda (1982); and (e),(f) the distributions

for the GCW driven by the shear-stress measurement of Banner and Peirson (1998). Note that

for clarity the distributions at various times are shifted. The horizontal scale of the vorticity vy is

the same for the four distributions in each panel, but varies in different panels. Since the flow is

irrotational in the submerged water, the vertical distribution of the vorticity quickly attenuate

to a vanishing value away from the water surface.
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predominant streaks aligned in the wind direction are

also observed on the backward face of a wind-driven

GCW (Ebuchi et al. 1987). The vortical structures un-

derneath these surface features, therefore, are certainly

three dimensional. These vortical layers can also lead to

separation and, eventually, the flow becomes turbulent

(Qiao and Duncan 2001). To shed light on these more

complex flow structures, we are currently conducting

full three-dimensional simulations.
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