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a b s t r a c t

Unsteady two-dimensional Navier–Stokes equations and Navier–Stokes type model equations for porous

flow were solved numerically to simulate the propagation of water waves over a permeable rippled bed. A

concerning the spatial distribution of wave amplitudes over impermeable and permeable rippled beds

with the analytical solutions. For periodic incident waves, the flow field over the wavy wall is discussed in

terms of the steady Eulerian streaming velocity. The trajectories of the fluid particles that are initially

located close to the ripples were also determined. One of the main results herein is that under the action of

periodic water waves, fluid particles on an impermeable rippled bed initially moved back and forth

around the ripple crest, with increasing vertical distance from the rippled wall. After one or two wave

periods, they are then lifted towards the next ripple crest. All of the marked particles on a permeable

rippled bed were shifted onshore with a much larger displacement than those on an impermeable bed.

Finally, the flow fields and the particle motions close to impermeable and permeable beds induced by a

solitary wave are elucidated.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Several studies have examined the propagation of water waves over
rippled beds to elucidate the transport mechanism of sediment on
erodible beds. Laboratory experiments on oscillating flows over ripples
have revealed that two stationary cells are always present between
ripple crests (Horikawa and Watanabe, 1968; Johnson and Carlsen,
1976). Laser Doppler velocimetry has also been used to measure the
flow fields near the crest and trough section of wavy walls (Sato et al.,
1987; Ranasoma and Sleath, 1992). The flows above the ripples are
commonly turbulent. The characteristics of the turbulent flows close to
the ripples have been discussed in terms of eddy viscosity, and the
production and dissipation rates of the turbulent energy in the
boundary layer close to the wall, and the relationship between these
properties and vortex formation has been considered.

Lyne (1971) was the first to study theoretically oscillating flows
over a rippled bottom. The important physical parameters in this
problem are the frequency o and the amplitude A of the oscillatory
flow, the ripple amplitude as, the ripple wavelength ls (wavenumber
ks¼2p/ls), and the fluid viscosity u. Hara and Mei (1990a) indicated
that these parameters could be used to determine three dimensionless
numbers, the ripple slope e¼ksas, the Keulegan–Carpenter number
a¼ksA and the viscous diffusion parameters¼ksd, whered¼
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the characteristic thickness of the boundary layer. Analytical solutions
for different values of e and a were obtained by Hara and Mei (1990b),
Blondeaux (1990) and Blondeaux and Vittori (1991).

Davies and Villaret (1999) proposed an analytical model to
predict the Eulerian drift that is caused by progressive waves over
rippled, or very rough beds. The behavior of this drift differs
markedly from that predicted by Longuet-Higgins (1953) for a flat
bed. Ridler and Sleath (2000) made measurements to study the
Eulerian time-mean drift that is induced by progressive water
waves over rough beds. They observed that within certain ranges of
parameters, near-bed mean drift was in the direction opposite to
that of the wave propagation. Marin (2004) performed laboratory
experiments to compare the experimental Eulerian drifts with the
analytical drifts that were obtained by Davies and Villaret (1999)
and Longuet-Higgins (1953).

The resonant Bragg scattering of surface waves over wavy walls
has also attracted much attention as one of the mechanisms for the
development of multiple shore-parallel bars. Since resonant Bragg
scattering causes the strong reflection of incident water waves,
artificial periodic bars can be employed as a wave control system.
Davies and Heathershaw (1984) studied reflection from a sinusoi-
dal undulation over a horizontal bottom and evaluated the reflec-
tion coefficient. Their experimental results indicated a resonant
Bragg reflection when the wavelength of the bottom undulation
was half of the wavelength of the surface wave, as was predicted by
their theory. Kirby (1986) derived a general wave equation by
extending the mild slope equation of Berkhoff (1972) to analyze the
transformation of waves that propagate over a rippled bed.
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Fig. 1. Schematic diagram of water waves propagating over impermeable or permeable

rippled bed.
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Huang and Dong (2002) solved numerically the unsteady, two-
dimensional Navier–Stokes equations with exact free surface
boundary conditions to simulate the propagation of water waves
over impermeable rippled beds. Based on their results, the propa-
gation of a solitary wave above a rigid rippled bed produces a near-
bed current in the direction opposite to that of the wave. This effect
differs from that associated with periodic waves. Barr et al. (2004)
examined turbulent oscillatory flow over sand ripples by using
three-dimensional numerical simulations. They found that the
presence of sand ripples increases the dissipation rate of the
shoaling wave energy above that associated with flow over smooth
boundary. Malarkey and Davies (2004) proposed a formula for eddy
viscosity for oscillatory flow over vortex ripples, based on the
results for ripples of various shapes and steepness, determined
using a discrete vortex model.

Previous works have assumed that the rippled bed is imperme-
able and that an equilibrium configuration has been reached, such
that the gravitational force that acts on the sedimentary particles
balances the drag associated with the motion of the fluid. Martin
(1970) performed laboratory experiments to elucidate the effect of
a porous sand bed on the incipient motion of sediment. He reported
that seepage may either enhance or hinder incipient motion,
depending on the relative magnitude of the boundary layer stress
and the seepage stress. Mase et al. (1995) extended Kirby’s theory
(1986) to derive a time-dependent wave equation for waves that
propagate over permeable rippled beds. The unsteady motion of
the fluid in the porous bed was determined by the equation of
Sollitt and Cross (1972). They found that the permeability of the
rippled bed makes the amplitude of transmitted waves small. The
friction factor, the thickness of the porous layer, and the porosity all
affect the reflection and transmission coefficients. Silva et al. (2002)
used an approach similar to that presented by Chamberlain and
Porter (1995) to obtain a new modified mild slope equation for the
interaction of waves with a submerged porous structure. Their
model was validated by comparing their results for the spatial
distribution of wave height above a rippled porous bed with the
analytical results of Mase et al. (1995). The results of Mase et al.
(1995) are also used herein to confirm the accuracy of the proposed
numerical model. Hsiao and Liu (2003) investigated the viscous
boundary layer flows above and within a permeable wavy bed that
are induced by an oscillatory horizontal flow. They noted that
permeability significantly altered the steady streaming pattern,
such that this pattern changes from having two pairs of recirculat-
ing cells in the inner and outer layers above an impervious wavy
bed to just a pair of recirculating cells above a permeable bed.

A review of the literature reveals that the propagation of water
waves over permeable rippled beds has seldom been investigated.
The effects of the porosity and permeability on the flow field and
the particle motion near an undulating bottom remain to be
determined. Such a determination depends on appropriate govern-
ing equations for the porous flows and suitable boundary condi-
tions around the permeable rippled bed.

Although the porous flow model of Sollitt and Cross (1972) has
been extensively used to study the interaction of water waves and
porous structures, several have recently proposed Navier–Stokes
type models. They include van Gent (1995), Liu et al. (1999), and
Huang et al. (2003). Compared to the previous models, the Navier–
Stokes type models retain both the convective inertial force term and
the viscous force term. The convection term captures the nonlinear
effect for the wave structure interaction, while the viscous term
completes the forces on the pore flow. The model of Huang et al.
(2003) differs from that of van Gent (1995) and Liu et al. (1999) in
that it maintains the inertial coefficient and the laminar and
turbulent resistance coefficients of Sollitt and Cross (1972). The
model of Liu et al. (1999) has been used and further modified by
some authors (Hsu et al., 2002; Lara et al., 2006; Losada et al., 2008;
Cheng et al., 2009, among many others). Similarly, Huang et al.
(2008) and Shao (2010) used the model of Huang et al. (2003) to
elucidate the interactions of waves with porous structures.

The present work develops a numerical model to investigate the
interaction of free surface waves and a porous rippled bed whose
ripples have a wavelength that is significantly smaller than the
wavelength of incident waves. This rippled bed represents sea
ripples rather than shore-parallel bars, whose size is usually
comparable with the wavelength of sea waves. The Navier–
Stokes equations and the Navier–Stokes type model equations
proposed by Huang et al. (2003) for porous flows were solved
numerically to determine the flows in the water region and in the
porous rippled bed, respectively. The accuracy of the numerical
approach was verified by comparing the numerical results for the
spatial distribution of wave heights on the impermeable and
permeable rippled beds with the analytical solutions of Mase
et al. (1995). The characteristics of the flow fields near the rippled
bed that are induced by periodic waves and solitary waves were
discussed. The trajectories of the fluid particles with initial loca-
tions close to the ripples were also determined.

Since the model that is proposed in this work solves the viscous
flow equations under the complete boundary conditions at the free
surface and the interfaces, the model is extensively applicable for
predicting both the wave and flow fields associated with the
propagation of waves over submerged porous structures. The
assumption of laminar flow regimes in the water region can be
eliminated if, instead of the Navier–Stokes equations, the Reynolds
Averaged Navier–Stokes (RANS) equations are solved, and a
suitable turbulent flow model, such as the k–e model, is adopted.
This work demonstrates the application of this model to examine
the interaction of water waves with a porous wavy wall using a
body-fitted coordinate system.
2. Governing equations and boundary conditions

This work studies the propagation of water waves over rippled
beds. The rippled bed can be impermeable or permeable. Fig. 1
schematically depicts the rippled bed at the bottom of a two-
dimensional numerical wave tank. A piston-type wavemaker with
stroke So is located at x¼0 and generates incident periodic and
solitary waves. The still water depth is ho. When the rippled bed is
permeable, the porosity, nw, and the intrinsic permeability, Kp(with
dimension L2, where L is length), are assumed to be homogeneous.
The flow outside the rippled bed is assumed to be laminar and
determined by solving unsteady two-dimensional Navier–Stokes
equations. The pore flow in the permeable rippled bed is described
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by the dimensionless Navier–Stokes type equations (Huang et al.,
2003)
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where u and v are the horizontal and vertical velocity components in
the Cartesian coordinates (x,y); t is time; p represents hydrodynamic
pressure; S¼1+(1�nw)Cm/nw is the inertial coefficient, and Cm is the
coefficient of added mass. The velocity in the above equations is the
discharge velocity, which equals the Darcian velocity divided by the
porosity; it is physically interpreted as a spatially averaged quantity.
In Eqs. (1)–(3), the velocity and length are non-dimensionalized
using uo and ho, where uo¼cHi/ho; c is the phase speed, and Hi is the
incident wave height. Time is non-dimensionalized using to¼uo/ho.
The pressure is non-dimensionalized using ru2

o , where r is the
density of the fluid. The Reynolds number Re, and the dimensionless
parameters K and Kf are defined as

Re¼ uoho=u, K ¼ unwho=KPuo and Kf ¼ Cf n2
who=

ffiffiffiffiffiffi
KP

p
ð4Þ

where u is the kinematic viscosity of the fluid and Cf is a dimension-
less turbulent resistance coefficient.

To solve Eqs. (2) and (3), the permeability coefficient Kp, the
nonlinear resistance force Cf, and the inertial coefficient S, must be
determined. According to McDougal (1993), if the porosity and the
grain size d of the porous structure are known, then Kp can be
determined as follows:

Kp ¼ 1:643� 10�7 dðmmÞ

do

� �1:57 n3
w

ð1�nwÞ
2

, do ¼ 10mm ð5Þ

According to Arbhabhiramar and Dinoy (1973),

Cf ¼ 100 dðmÞ
nw

Kp

� �1=2
" #�1:5

ð6Þ

The inertial coefficient S must be determined experimentally. It is
commonly taken as one in analysis. In this study, S was taken as
unity. Notably, the mechanical properties of the porous flow depend
on not only the permeability and the porosity, but also the inertia
coefficient, S. Therefore, to determine in detail the effects of the
porous structure on porous flows, attention must also be paid to the
effect of S. Van Gent (1995) offered a good explanation of the range of
the inertial coefficients obtained in oscillating flow tests.

To make the computational meshes consistent with the rippled
beds, the proposed model adopts a boundary-fitted coordinate
system. The curvilinear grid system is generated using the algebraic
coordinate method (Thompson et al., 1985). The physical domain (x,y)
is transformed into the computational domain (x,Z). To transform the
equations of motion from the familiar orthogonal coordinates (x,y), to
the new coordinate system (x,Z), a partial transformation was used,
meaning that only the independent coordinate variables were
transformed, leaving the dependent variables (the velocity compo-
nents) in the original orthogonal coordinates. Therefore, the variables
are transformed from physical space (x,y,t) into computational space
(x,Z,t). Huang and Dong (2002) presented the transformed forms of
the continuity equation and the Navier–Stokes equations. Eqs. (2) and
(3) differ from the Navier–Stokes equations only in that they contain
additional porous flow terms.

To solve the Navier–Stokes equations for the motion of water
above the bed, the boundary conditions at all of the boundaries of
the solution domain must be provided, and initial conditions set
throughout the domain. The fully-nonlinear kinematic and dyna-
mic boundary conditions at the free surface are satisfied (Huang
et al., 1998). Dong and Huang (2004) provided details concerning
the accuracy of the numerical wave and velocity profiles obtained
using a piston-type wavemaker. The no-slip boundary condition is
imposed on the bottom of the impervious rippled bed. The
boundary conditions at the interface between the water and the
permeable rippled bed are the continuity of the velocities and
the continuity of normal and tangential stresses (Deresiewicz and
Skalak, 1963). They are expressed in dimensionless form as (Huang
et al., 2003)
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where the subscript ‘‘w’’ refers to physical variables in the water,
while ‘‘p’’ refers to those in the porous media.

The downstream boundary condition used by Huang and Dong
(2002) was also applied herein to ensure that at a large distance
from the wavemaker, the wave is outgoing without reflection. The
velocities, hydrodynamic pressure and surface displacements are
set to zero at time t¼0. Both the governing equations and the
boundary conditions, including the kinematic and dynamic free
surface boundary conditions (Huang and Dong, 2002), the interface
boundary conditions, Eqs. (9) and (10), as well as the downstream
boundary conditions, are transformed herein from the physical
space (x,y,t) into computational space (x,Z,t). These transformed
equations are then solved numerically.
3. Numerical method

In this study, the finite-analytical method (Chen and Chen, 1982;
Chen and Patel, 1987) was applied as in Huang and Dong (2002) to
discretize the transformed forms of the unsteady two-dimensional
Navier–Stokes equations and the Navier–Stokes type model equa-
tions for porous flows. The SIMPLER algorithm developed by Patankar
(1980) was used to calculate the coupled velocity and pressure fields.
A staggered numerical grid was used. The velocity components u and
v are defined at the boundaries of a control volume, while the pressure
p is defined at the center. The Marker and Cell method (Harlow and
Welch, 1965) and its modified version SUMMAC (Chan and Street,
1970) were combined to calculate the free surface boundary.

The value of each variable at each nodal point was related to the
values of the four neighboring nodal points, except at the interface
or on the boundaries. To interpret the boundary conditions at the
interface, the variable values at the interface must be carefully
determined. Accordingly, numerical grid cells were distributed on
both sides of the interfaces (see Fig. 2). The values for uw and up on
both sides of the interface were determined from Eqs. (7) and (10),
in which the unknown value of v was replaced with its value in the
previous time step. Since only one equation, Eq. (8), is available to
determine vw and vp at the interface, the conservation of mass is
applied to the cell beneath the interface to determine vp and then
vw was computed from Eq. (8). The pressure pw on the upper side of
the interface was determined from the flow domain using a three-
point extrapolation formula. The pressure pp on the lower side of
the interface was then calculated from pw using Eq. (9).



1wyΔΔΔ ==

p

u
v

wp wu

pv pp
wv

pu

1pyΔΔ ==

1xΔΔ ==

( )w

( )p
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Fig. 4. Comparison of numerical and theoretical pore water pressure induced by

propagation of waves over a porous bed under the same conditions as in Fig. 3.
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4. Results and discussions

4.1. Verification of the numerical scheme

Before the propagation of water waves over permeable rippled beds
can be investigated, the suitability of the proposed model equations for
pore flows must be tested. The model equations were employed to
simulate the propagation of waves over a permeable bed. Liu et al.
(1996) studied this problem both theoretically and experimentally.
Both the analytical solutions and the experimental velocity profiles
within the bottom boundary layer above the porous bed were available.
The analytical solutions also yield the velocity and pressure in the
porous bed. Fig. 3 compares the numerical, theoretical and experi-
mental velocity profiles near the interface induced by incident waves of
T¼1.114 s, Hi¼1.074 cm, uN¼3.567 cm/s, and ho¼24 cm that pro-
pagate over a porous bed of nw¼0.39, d50¼0.5 mm, Kp ¼ 0:235�
10�9 m2, and hp¼33.5 cm, where T and Hi are the period and the height
of the incident waves; ho is the depth of the still water; nw and hp are the
porosity and the depth of the porous bed, and d50 is the mean grain
diameter. The permeability coefficient Kp was calculated using Eq. (5).
In Fig. 3, u1 ¼ ao=sinhkho, and d denotes the characteristic thickness
of the bottom boundary layer, d¼

ffiffiffiffiffiffiffiffiffi
u=o

p
, where a, o and k are the

amplitude, the angular frequency and the wavenumber of the waves,
respectively. The flow velocity in the porous bed is the Darcian velocity.
Although in Sections 2 and 3, the symbols u, x, p, t and others, are non-
dimensionalized physical variables, in this section and in the figures, for
simplicity, these symbols are adopted to represent the original physical
variables. Fig. 3 reveals that although both the theoretical and the
numerical results match the experimental data, the numerical results
are closer to the experimental data. Fig. 4 compares the numerical and
theoretical pore pressures at the wave crest under the same conditions
as in Fig. 3. In Fig. 4, po denotes the pore pressure at the interface. Liu
et al. (1996) determined the theoretical pore pressure as

p¼ rga
coshkðyþhpÞ

coshkho coshkhp
ð11Þ
where g is the gravitational acceleration. The numerical pore pressure is
exactly the theoretical value. The comparisons in Figs. 3 and 4 show
that the porous flow model equations accurately describe the flow in
porous structures.

To confirm the accuracy of the proposed numerical scheme, the
numerical results for the spatial distributions of wave height on
both impermeable and permeable rippled beds were compared
with the analytical solutions of Mase et al. (1995). In their work,
the incident wave period T¼1.31 s, the wave height Hi¼3.0 cm, the
still water depth ho¼0.313 m, the wavelength L¼2.01 m, and the
rippled bed had several ripples with a wavelength of ls¼1.0 m
(ks¼2p/ls) and a height of as¼10.0 cm (Fig. 5). The total length of
the rippled bed was 10 m. The geometry of the ripples was

ys ¼
1

2
as sinðksxsÞ, st rxsrml ð12Þ

where st is the beginning of the rippled bed, m is the number of
ripples and m¼10. The y coordinate of the flat bottom was set to
0.0; hence, the y coordinates of the ripple crest and trough were
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+5.0 and �5.0 cm, respectively. The permeable rippled bed had a
mean depth of hp¼0.2 m and porosity nw¼0.4. Mase et al. (1995)
did not provide the grain size. In this investigation, d50 was taken as
1.5 cm. Wave and rippled bed conditions examined by Mase et al.
(1995) are presented in Table 1 and denoted as Case Test-I and Case
Test-P, with the former representing the impermeable rippled bed
and the latter the permeable rippled bed.

Fig. 6 plots the numerical grid distribution in the rippled section
of the computational domain. The rippled bed begins at x/ho¼107.85
and ends at x/ho¼139.80. One hundred grid cells are distributed
between each pair of successive ripple crests; for clarity, only 20 are
shown in Fig. 6. The vertical mesh interval Dy/ho varies from about
0.01 in the near-bed region to 0.034 in the lower region and 0.05 in
the upper region of the physical domain. The physical domain (x,y)
and the computational domain (x,Z) are related as

x=ho ¼
0:01ðls=hoÞx in the rippled section

0:25x outside the rippled section

(
ð13Þ

y=ho ¼

0:05Z for y=hoZ0:30

ð0:3�ys=hoÞZ=30 for 0:0ry=hor0:3

ðys=ho�0:3ÞZ=30 for �0:3ry=hor0:0

0:034Z for �0:64ry=hor�0:3

8>>>><
>>>>:

ð14Þ
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-0.05
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Fig. 5. Geometry of ripples in the Test Case.

Table 1
Numerical conditions.

Wave type Periodic waves Solitary wave

Case Test-I Test-P 1 2 3 4 5

ho (m) 0.313 0.313 0.17 0.17 0.17 0.17 0.17

Hi (cm) 3.0 3.0 6.0 6.0 6.0 2.55 2.55

T (s) 1.31 1.31 1.09 1.09 1.09 – –

L (m) 2.01 2.01 1.27 1.27 1.27 – –

Ur 3.96 3.96 19.7 19.7 19.7 – –

as (cm) 10.0 10.0 1.0 1.0 1.0 1.0 1.0

ls (cm) 100.0 100.0 5.0 5.0 5.0 5.0 5.0

m 10 10 10 10 10 10 10

hp/ho – 0.64 – 0.5 0.5 – 0.5

nw – 0.4 – 0.4 0.521 – 0.4

d50 (cm) – 1.5 – 1.5 2.09 – 1.5

Kp(�10�7 m2) – 0.522 – 0.522 3.22 – 0.522

Cf – 0.39 – 0.39 0.73 – 0.39

Wall type A A B B B B B

Note: A¼ripple form using Eq. (12), B¼ripple form using Eq. (15) and Ur ¼HiL
2=h3

o .
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0.4
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  y___ 
  ho

120.0115.0110.0

Fig. 6. Numerical grids in rippled se
The increments of x and Z, Dx and DZ, are set to 1.0. The
independence of the numerical results from the grid was tested
using finer grids in both x- and y-directions. A successive over-
relaxation factor, between 1.2 and 1.4, was used to accelerate the
convergence of the SIMPLER algorithm for pressure.

Fig. 7(a) and (b) compare the numerical and theoretical spatial
distributions of wave height on an impermeable and a permeable
rippled bed, respectively. The beginning of the rippled bed was set
to X¼0 m. The factor, fc, represents the friction coefficient of the
permeable bed in the model of Mase et al. (1995). In Fig. 7, the
condition of L/lsffi2.0 is satisfied, and the variation of the wave
heights is remarkable. Fig. 7 demonstrates that the numerically
determined wave heights on both impermeable and permeable
rippled beds herein agree very well with the analytical solutions
determined by Mase et al. (1995). Fig. 7 reveals that when the
bottom is permeable, the amplitudes and their variations become
small downstream.
4.2. Propagation of regular waves over permeable rippled beds

Following the verification of the accuracy of the numerical
method, the propagation of the water waves over a permeable
rippled bed is investigated. Table 1 presents the incident waves and
the rippled bed conditions. The incident waves are chosen to be
either Stokes waves or the solitary waves. Both waves are
generated using a piston-type wavemaker in the computational
domain. The wave conditions and the geometry of the rippled bed
in Table 1 were selected to reproduce the results of Huang and Dong
(2002) for an impermeable rippled bed. They explored the propa-
gation of waves over an impermeable rippled bed using the same
approach as the present one. Notably, the rippled bed in Cases 1 to
5 is not the same as that used in the test cases. The geometry of the
X (m)

0.0
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Fig. 7. Spatial distribution of wave heights under resonant condition; (—) analytical
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Fig. 8. Variation of free surface elevations and velocity fields within a wave period for impermeable (Case 1) and permeable (Case 2) rippled beds.
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ripples studied in Cases 1 to 5 is given by

xs ¼ z�
1

2
as sinksz ð15aÞ
ys ¼
1

2
as cosksz ð15bÞ

The y coordinate of the ripple troughs is set to y/ho¼0.
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Fig. 10. Steady Eulerian streaming velocity near the wall for flow field in Case 2.
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Fig. 8 plots the variation of the free surface elevations and velocity
fields in a single wave period as Stokes waves propagate over a rippled
bed in Cases 1 and 2 from Table 1. The accuracy of the numerical flow
fields was verified by Huang and Dong (2002), who compared the
numerical results of the instantaneous velocity field near rigid ripples
with the experimental data of Hwung and Hwang (1993). To visualize
the flow field in the rippled porous bed, the velocity of the flow field is
enlarged. The scale ratio is indicated in the figure; for example, the
scale ratio¼3 at t/T¼1/16. Fig. 8 reveals that when a wave crest
propagates over the crest of the rippled bed, such as at t/T¼3/16, flow
separation with reattachment occurs, subsequently forming a clock-
wise vortex later on the lee side of the ripple crest, at t/T¼5/16 and
7/16. Conversely, when a wave trough propagates onto the ripple
crest, such as at t/T¼11/16, flow separation occurs and subsequently
develops into a counter-clockwise vortex later on the weather side of
the ripple crest, at t/T¼13/16 and 15/16. The dimensions and heights
of the oscillating vortices are comparable with the ripple wavelength
and markedly exceed the thickness of the Stokes layer.

When the rippled bed is permeable, the water surface elevation
becomes slightly less than that above an impermeable bed, because
the flow friction in the porous bed dissipates additional wave
energy. Since the flow is allowed to penetrate into or through the
porous bed, the clockwise vortex forms on the lee side of ripple (at
t/T¼7/16) and the counter-clockwise vortex at the weather side of
the ripple (at t/T¼15/16) become smaller.

Figs. 9 and 10 present the steady Eulerian streaming velocity
close to the wall for the flow fields in Fig. 8. The streaming velocity
at each fixed location was calculated by taking a time average over
32 instantaneous velocities over a wave period. Figs. 9 and 10
reveal that the counter-clockwise circulating cell is larger than the
clockwise circulating cell on the lee side of the ripple crest. This
phenomenon is related to the property of Stokes waves that the
time interval of the negative surface elevation is longer than those
of the positive surface elevation. Since the counter-clockwise
vortex on the weather side of the ripple crest was generated when
the wave trough propagated over there, more time was available
for the vortex on the weather side to develop. Such a steady
streaming velocity differs from that obtained in the oscillating flow,
in which the sinusoidal flow field causes the two circulating cells to
be of equal size. It is believed that once the sediments are
mobilized, these circulating cells can keep them in suspension.
As presented in Fig. 10, the circulating cells between the successive
ripple crests of a permeable rippled bed are smaller than those over
an impermeable rippled bed, because the flow can penetrate the
porous bed. The steady streaming velocities in Figs. 9 and 10
indicate that the vortices on the lee and weather sides of the ripples
will scour the bottom and keep the sediments in suspension.

To obtain more information on the possible transport of
sediment around the rippled bed, the trajectories of the fluid
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Fig. 9. Steady Eulerian streaming velocity near the wall for flow field in Case 1.
particles whose initial locations were close to the bed are deter-
mined. Since the specific weight of the fluid particles differs from
that of sands, the trajectories of the fluid particles are not identical
to those of the sand particles. However, the former may provide
insight into the transport of sediment near the wall. Fig. 11 depicts
the initial positions of ten marked fluid particles between two
successive ripple crests. These particles are released at the same
time when the waves reach the steady state and are traced over
three wave periods to determine their trajectories.

Fig. 12(a)–(h) display the trajectories of the first, second, fourth,
fifth, sixth, seventh, eighth and tenth marked particles over three
wave periods. The ‘‘e’’ in Fig. 12 marks the end of trajectories. The
trajectories of the first and second marked particles on an
impermeable rippled bed (Case 1) initially move back and forth
around the ripple crest with increasing vertical distance from the
ripple wall; then, after one or two wave periods, they are lifted up.
The first and second particles seem to shift offshore. The fourth
particle initially moves in the wave direction toward the next ripple
crest; in the second and third wave periods, it was lifted up and
transported toward the next ripple crest. The fifth, sixth and
seventh particles move initially in the wave direction toward the
neighboring ripple crest, and then back and forth around this ripple
crest. During the first wave period, the eighth and tenth particles
move in the wave direction toward the next ripple crest, and were
then lifted up and transported to the next ripple crest, where they
again moved back and forth.

Notably, of the eight particle trajectories displayed in Fig. 12,
five shift onshore and three shift offshore within three wave
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periods. However, over the permeable rippled bed, as also dis-
played in Fig. 12, all of the particles shift onshore with a much larger
displacement than that over the impermeable bed. The reasons for
this difference are identified by examining the steady Eulerian
streaming velocity in both cases, as shown in Figs. 9 and 10. In the
permeable case, the clockwise circulating cell is much smaller than
the counter-clockwise circulating cell. Accordingly, the negative
(offshore) streaming velocity is much lower than the positive
(onshore) streaming velocity near the porous bed. Therefore, the
back and forth motion in the impermeable case ceases to dominate
the motion of the particles near the porous bed. Most of the back
and forth motion occurs on the weather side of the ripple crest
because the strongly circulating cell is there. Other than on the
weather side of the ripple crest, the particle moves rather straight-
forwardly in the wave direction.

Fig. 13 displays the steady Eulerian streaming velocity in Case 3,
in which the porosity is 0.521, increased from nw¼0.4 in Case 2. The
pattern of the circulating cells is approximately the same as that
shown in Fig. 11.
x/ho

Fig. 13. Steady Eulerian streaming velocity near the wall for flow field in Case 3.

4.3. Propagation of a solitary wave over permeable rippled beds

This section discusses the propagation of a solitary wave over an
impermeable or a permeable rippled bed. A solitary wave is
frequently used to represent certain characteristics of tsunamis,
storm surges, and other long free surface waves. The boundary
layer that is induced by a solitary wave propagating over imperme-
able and permeable flat beds has attracted considerable attention
recently (e.g., Huang and Dong, 2001; Liu and Orfila, 2004; Liu et al.,
2007; Huang et al., 2008). One of their main findings is that flow
separation within the boundary layer occurs in the rear part of the
wave profile. This reversed flow is generated by an adverse
pressure gradient, which can be recognized from the wave profile,
because the pressure fields beneath a solitary wave are nearly
hydrostatic (Huang and Dong, 2001). This characteristic persists
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Fig. 14. Instantaneous velocity fields over impermeable (Case 4) and permeable rippled beds (Case 5) induced by a solitary wave of Hi/ho¼0.15 at various times.
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even when the bed is permeable (Huang et al., 2008). This
information should be considered as more detailed flow behaviors
near the rippled bed are to be investigated.

Fig. 14(a)–(e) plot the variation in the flow fields close to imperme-
able (Case 4) and permeable rippled beds (Case 5), while Fig. 15 plots
the instantaneous velocity fields over the whole rippled bed at two
instants, induced by a solitary wave of Hi/ho¼0.15. In these figures, the
time is normalized using t(g/ho)1/2 and set to zero when the wave crest
reaches the beginning of the wavy wall, such as at x/ho¼106.5. Notably,
when the wave crest propagates onto the impermeable ripple section,
t(g/ho)1/2

¼�1.10, flow separation with reattachment occurred on the
lee side of each ripple crest. The flow separation gradually develops
into a clockwise vortex that covers the entire region between two
successive ripple crests, t(g/ho)1/2

¼2.63. The size of the vortex declines
in the wave propagation direction (Fig. 15). The wall effect lifts the
generated vortices, t(g/ho)1/2

¼6.36, and induces a secondary counter-
clockwise vortex on the weather side of the ripple crest, t(g/ho)1/

2
¼10.71. The strengths and dimensions of the secondary vortices are

much smaller than those of the primary vortices. However, these
periodically arranged vortices establish a current in the direction
opposite to the wave propagation, t(g/ho)1/2

¼15.69. This current flows
above the ripples and may have an important role in sediment
transport because when the primary vortices lift the sands into a
suspension, this current may carry the sands away.

When the rippled bed is permeable, the same flow as described
above occurs, but the clockwise vortex is smaller than when it is
impermeable, as displayed in Fig. 14(b), because the flow could pass
through the porous wall, reducing the velocity gradient near the wall.
This drop in the velocity gradient in turn reduces the strength of the
vorticity. Subsequently, the secondary vortices on the weather side of
the ripple crests, induced by the primary vortex, are smaller, as shown
in Fig. 14(d). The current above the porous ripples is also weaker.

Fig. 16 plots the trajectories of fluid particles P1, P2, P5, P6, P7, P8, P9

and P10 to provide more information about the characteristics of the
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Fig. 15. Instantaneous velocity fields over all impermeable and p
flow near the rippled bed. The initial locations of the marked fluid
particles are the same as those in Fig. 11, and these particles are
released when the wavemaker starts to move. The numbers on the
trajectories specify the time order. The ‘‘0’’ time order applies when
the wave crest reaches the beginning of the rippled bed. The time
interval between two successive numbers is 4(g/ho)�1/2. The location
of the particles at the successive times is indicated, but only the first
two positions are numbered. The information in Fig. 16 is consistent
with Figs. 14 and 15, and the fluid particles near the impermeable
rippled bed are raised by the primary vortices and are transported by
the induced current in the direction that is opposite to that of the
wave, indicating that under a solitary wave the sediment may be
transported in the direction opposite to that of the wave propagation.
This situation differs from the case of periodic waves, in which most of
the sediment is transported in the direction of the waves.

The trajectories of fluid particles above the permeable rippled bed
are similar to those on the impermeable rippled bed. As stated earlier
in reference to Fig. 16, both the primary and the secondary vortices,
and the current above the porous ripples, are smaller than those on
the rigid ripples. Hence, most of the particles shown in Fig. 16 exhibit a
smaller final horizontal displacement. Notably, although all of the
fluid particles on the impermeable rippled bed eventually move in the
opposite direction of waves, some particles on the porous rippled bed,
such as P5, P8 and P9, do move in the direction of the wave.
5. Conclusions

In this work, the unsteady two-dimensional Navier–Stokes
equations and Navier–Stokes type model equations for porous
flow were solved numerically to investigate the flow fields near
permeable and impermeable rippled bed induced by water waves.
The boundary-fitted coordinate system was adopted herein. After
the accuracy of the numerical scheme was verified, the viscous flow
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Fig. 16. Trajectories of marked fluid particles in flow fields in Fig. 15.

C.-J. Huang et al. / Ocean Engineering 38 (2011) 579–591590
fields and the associated fluid particle trajectory close to the
impermeable and permeable beds were determined. The numerical
results support the following conclusions.
1.
 The propagation of periodic waves propagates over rigid rippled
bed produces a clockwise vortex on the lee side of the ripple
crest, and a counter-clockwise vortex on the weather side.
When the incident waves are Stokes waves, the counter-clock-
wise circulating cell is larger than the clockwise one. This fact is
related to the property of the incident Stokes waves.
2.
 When the rippled bed is permeable, the water surface elevation
becomes slightly lower than that above the impermeable bed,
because the flow friction in the porous bed dissipates additional
wave energy. The vortices that are generated on both the weather
and the lee sides of the porous ripples are also smaller, because
the flow is allowed to penetrate into or through the porous bed.
3.
 In the case of periodic water waves, fluid particles on the
impermeable rippled bed initially move back and forth around
the ripple crest with increasing vertical distance from the ripple
wall. After one or two wave periods they are lifted up and shifted
towards the next ripple crest.
4.
 All of the marked particles on the permeable rippled bed shift
onshore with a much larger displacement than on the imperme-
able bed. The motion of the particles is not predominantly back
and forth, except on the weather side of the ripple crest.
5.
 The propagation of a solitary wave over a ripple section generates a
clockwise vortex that covers the region between each pair of
successive ripple crests. The generated vortices move upward and
induce secondary counter-clockwise vortices on the weather side of
each ripple crest. The periodically arranged vortices seem to induce
a current in the direction opposite to that of the wave propagation.
6.
 When the rippled bed is permeable, the same flow as described
above occurs, but the clockwise vortex is smaller than in the
impermeable case. Subsequently, the secondary vortices on the
weather side of the ripple crests are smaller and the current
above the porous ripples is also smaller.
7.
 Under the action of a solitary wave, the fluid particles close to
the rippled bed are lifted up by the primary vortices and
transported by the induced current in the direction opposite
to that of the solitary wave. The trajectories of fluid particles
above the permeable rippled bed are similar to those on the
impermeable bed. Although all of the fluid particles on the
impermeable rippled bed eventually move in the direction
opposite to that of the solitary wave, some particles on the
permeable rippled bed do move in the direction of the wave.
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