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is seen that all entries under A, B and C are of order
10 dyn ¢m™® or less. Incidentally, in the cross-
stream direction the forces are typically 1072 dyn
cm™2, so that the forces involved in the downstream
direction are at least an order of magnitude smaller
than those in the cross-stream direction.

The role played by the vertical advection term is
to be noted. ’
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ABSTRACT

The significant slope of a random wave field is found to be an important parameter in empirical wind-
wave studies. This significant slope S, is defined as §, = (£)¥¥/),, with ¢ as the mean-square surface
elevation and A, as the wavelength corresponding to the waves at the peak of the spectrum. With this
parameter, the relationship between E and 7 is reduced to an identity expressing a pure geometric measure
of the sea state, because Efi* = (2w S,)*. By applying the significant slope as a parameter explicitly, we
proposed that the traditional empirical formulas relating the nondimensional energy E, fetch £ and fre-
quency /i be combined into a single unified relationship as En/x = (9/40)S,**. This unified empirical
formula governs the wind-wave data equally as well in the field as in the laboratory.

1. Introduction

The shape of the wave is a very important param-
eter in the studies of wave dynamics. For a single
train of sinusoidal waves, the shape is characterized
by the slope of the wave ¢, i.e., € = ak, witha as the
amplitude and k as the wavenumber. Although, by
definition, € is only a geometrical similarity param-
eter, it measures the degree of nonlinearity of the
waves that governs the wave propagation and wave-
wave interactions. Since the dynamics of the waves
in a random wave field are governed by the same
set of equations, a similar kind of geometrical
similarity parameter also should play an important
role. By analogy, we designate this geometrical
similarity parameter as the significant slope §, which
is defined as

Ss = ()", )

with 22 as the mean square surface elevation and
Ay, the wavelength corresponding to the waves at the
peak of the spectrum.
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The importance of this geometric parameter in
wind-wave studies has been demonstrated by Huang
and Long (1980) and Huang et al. (1981), who
showed that S, was the controlling parameter in
determining the statistical properties and the spec-
tral function of the wind-wave field. These results
are in agreement with the theoretical results of
Longuet-Higgins (1963) and Hasselmann et al.
(1976).

As can be seen easily, the definition of the signifi-
cant slope depends only on the wave characterics.
Therefore S, is an internal parameter, as contrasted
with the external ones, which are defined by wind
speed, fetch, etc. Even though the wind-wave prop-
erties can be successfully characterized by the
internal parameter which measures the integrated
effects of wind, fetch, duration, etc., it still would
be necessary to establish rules governing the varia-
tion of this internal parameter as a function of the
environmental variables. This last step is the core of
the wind-wave generation problem. A quantitative
solution, however, has yet to be achieved. For lack
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of such a solution, the relationship between the
internal and external variables would have to be
empirical. In this short note we will review some of
the past results, and then propose a unified empirical
formula that includes the significant slope of the
wave field as an explicit parameter. Since the sig-
nificant slope is a measure of the nonlinearity of the
wave field, the inclusion of S, enables the formula
to be valid over a much wider range of wave condi-
tions. Comparison with both laboratory and field
data shows that the unified formula applies equally
well to both conditions.

2. A unified empirical formula

In empirical studies of wind-wave problems, the
nondimensionalized fetch &, frequency 7 and energy
E are used routinely. The definitions of these param-
eters are

X = gx/uy’

(2

= nou,lg R
E ="0%%u*

with x as the fetch, u, the friction velocity, n, the
frequency at the spectral peak, and g the gravita-
tional acceleration. All these quantities are defined
by external variables. However, since S, is similar
to €, which is an indicator for nonlinearity, and which
controls wave-wave interactions or the energy trans-
fer among different components in a spectrum, wave
breaking and wind-wave interaction (see, e.g.,
Phillips, 1977), it is only natural that this geometrical
similarity parameter should be included explicitly in
the formulation of the empirical relationships. Un-
fortunately, it has been largely neglected.
Past examples of empirical relationships are

fi = C &, ©)
E = C,x, G
E = Cyi, )

by Toba (1973), and

A = DE ™, (6)
E = D,x, )
E = Dga™, 8)

by Phillips (1977) with C;and D; (i = 1, 2, 3)in (3)-
(8) as absolute constants. Not all the equations in
the sets (3)~(5) and (6)~(8) are independent. For ex-
ample, it can be shown easily that

C13C2 = C3]
, DD, =D,
Since Eqs. (4) and (7) are identical, the choice in

the past has been between the —3rd or —4th power
dependence of E on 7.

®
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With the introduction of §, as an explicit param-
eter in wind-wave studies, it becomes obvious that
Eq. (8) cannot be true. This can be easily demon-
strated by using the definitions of the parameters as,
in Eq. (2) and the dispersion relationship; then Eq.
(8) becomes

Ent = QuaS,)? = D,. (10

Eq. (10) requires that all the waves, under different
wind and fetch conditions, to have identical geo-
metric shape in the mean, a condition certainly un-
realizable. Thus the invalidity of Eq. (8) is es-
tablished.

Next, we examine Eq. (7). Since Eq. (4) is identi-
cal to (7), this examination would be a critical test to
both sets of past empirical formulas. Published
laboratory data by Hidy and Plate (1966), Mitsuyasu
(1968), and Toba (1973), together with the field data
from JONSWAP sub-group A as given by Miiller
(1976), are shown in Fig. 1 in comparison with our
laboratory results discussed in detail by Huang and
Long (1980) and Huang et al. (1981). The bulk of
the data fits the straight line very well. But scatter-
ing is obvious, especially for the laboratory data.
Judging the critical role (4) and (7) play in both sets,
we decided to test the value of the constant in the
equation in detail by rewriting the equation as

Elx = C. 1)
The constancy of C can be tested by plotting E/% as
a function of ;. The results using the same data set
are shown in Fig. 2. '
Two features are evident in the figure. The first is
a strong dependence of C on S,. This is especially
clear for the laboratory data covering a range of two
decades of S, values. For the field data the trend is
also unmistakable, but because of the limited S,
range, the variation is not so clear as it is for the
laboratory data. The data show that C may vary by
as much as three to four decades for the laboratory
values. Even for the field data, a decade of scatter-
ing can be detected. The second feature is the sepa-
ration of field and laboratory data sets. On close
examination of the data, we found that the difference
in E/% value between the laboratory- and field-data
clusters was approximately one decade, which was
precisely the same order as the differences in 7.
Guided by this observation, we propose the follow-
ing formula
En/x = (9/40)S 24, (12)
as an alternative to those of Toba and Phillips. Fig.
(3) shows this relationship as a solid line drawn
against field and laboratory data. The field and
laboratory data were brought together. This shows
that the field and laboratory results can be repre-
sented in a unified way by using the proper param-
eters. The key in this new formula is the introduction
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FiG. 1. Comparison of existing empirical relationship for fetch-limited wave field with data: E vs
%; solid line according to Egs. (4) and (7) with constant value at 1.5 x 10-*. Symbols for data for all
figures except otherwise noted: (0 Huang and Long (1980) and Huang e al. (1981); (4 Mitsuyasu (1968);
Hidy and Plate (1966); X Toba (1972); A JONSWAP (1976).
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of S,. In principle, a unified formula also makes
good sense because, in a wind-wave field, the wave
energy, frequency, wind speed and fetch are all
intertwined.

Eq. (12) forms the foundation governing the sea
state under all conditions. By using some simple
algebraic steps and the definition of S, one can easily
write an alternative form of (12) as

1wt
-
-
}_
SS -
A
107 |
r
b D
L
o
1078 [ N AN R A N R} [N ERE RNy
107 107 107 1wt 107

E/ X

Fi1G. 2. Variation of the empirical constant in existing relationships as a function of the significant slope.
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FiG. 3. Comparison of the new unified empirical relationship for a fetch-limited wave field with data.
Solid line according to Eq. (12).

A%t = 1607*/95 1. (13)

This expression is similar to (3) except that 72°x is
not a constant anymore. Neither (12) nor (13) can be
derived from simple algebraic manipulations from
the existing formulas. However, judging from the
forms of Eqs. (3) and (13), any improvement over
(3) will be marginal because even for a 10? range of
change in S|, the change in C, is only +16%. Here
Toba’s formula seems to work better than Phillips’s,
but the unified formula works the best. From JON-
SWAP data, the value of S, is always between 0.005
and 0.02. Then according to (13), the value of 7%k
will be between 660 and 466. The corresponding
C, value in (3) would be between 8.71 and 7.76.
Although a direct comparison here would be mean-
ingless because the coefficient suggested is not an
absolute constant as required in (3), nevertheless,

the close agreement of the value to that from past

data is reassuring.
Another alternative way to write Eq. (12) is

16072 \*
S, = ( il ) .

973k
This formula would enable us to compute the sig-
nificant slope of a wave field as a function of x and 7i.

This coupled with the empirical relationship relating
ny to wind speed U as

ny = glU,

(14)

(15)

will make spectral calculation according to internal
variables possible as proposed by Huang ez al. (1981).

3. Conclusion

The steepness of the wave always plays a critical
role in wave dynamics studies. This was clearly
realized in all the theoretical studies (see, for exam-
ple, Phillips, 1977). But experimental studies have
been slow to use this important steepness param-
eter. Recently, experimental data were analyzed
specifically to test the importance of the geometri-
cal similarity parameter. The results indicated that
the steepness of the waves are an important param-
eter for determining the statistical properties of the
random surface (Huang and Long, 1980) and the
energy spectral level (Huang et al., 1981). For a ran-
dom wave field the measure of this geometric similarity
is the significant slope. Using this parameter ex-
plicitly, we reduced the existing empirical formulas
relating E, 77 and % into a single unified formula.
Significantly, with S, the past discrepancies between
the field and laboratory data were reconciled suc-
cessfully. The empirical formula also enables one to
relate the internal parameter to the external ones.
Thus using the spectral model depending on an inter-
nal parameter for wave prediction becomes a real
possibility.
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ABSTRACT

A conversion formula between pressure and depth is obtained employing the recently adopted equa-
tion of state for seawater (Millero et al., 1980). Assuming the ocean of uniform salinity 35§ NSU and
temperature 0°C the following equation is proposed, namely, z = (1 — ¢)p — ¢,p®. If pis in decibars and z
inmetersc; = (5.92 + 5.25sin?¢) x 10-%, where ¢islatitudeand c, = 2.21 x 1078, To take account of the
physical conditions in the water column a dynamic height correction is to be added but for many purposes

this may be ignored.

This note updates the conclusions reported by
Saunders and Fofonoff (1976) and results from the
adoption of a more accurate description of the equa-
tion of state of seawater (Miller et al., 1980) than was
available previously.

Integration of the hydrostatic equation yields a
conversion from depth z to pressure p of the form

4 n
J gdz = J adp

0 0

where a«, the specific volume, is the reciprocal of
density and p is reckoned zero at the surface. We
allow for an increase of gravitational acceleration g
with depth, viz ¢ = g, + vz, where g,, the surface
value, is a function of latitude ¢ and is given by

& = 9.780318(1 + 5.3024 X 1072 sin’*¢
- 59 % 10.”6 sin®2¢) [m s
and vy has a value 2.226 X 107° s~2. Hence

»
(g; + Voyz2)z = J adp.

0

If z is replaced by p in the correction term (yz = y'p)
with v’ = 2.226 x 107 db~! m s~2, then
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(4
z= J adp/(g, + 2Y'p).
(1]

Given a set of observations of temperature and
salinity versus pressure in the water column, the
above equation may be evaluated numerically. Near
the surface, data should be no more than 50 db apart
and deeper the interval should be no more than 200
db. In the absence of such data (or to check such a
calculation) the following procedure is recom-
mended. The equation a = (35, 0, p) + & defines
8, the specific-volume anomaly, where «(3S, 0, p)
is the specific volume of the standard ocean (taken
by convention to have salinity 35 and temperature
0°C). Consequently,

» » »
J adp = J (35, 0, p)dp + j &dp.
0 (1] 0

We now consider the contribution from the first inte-
gral for which the new equation of state is

35,0, p) = a(35, 0, 0)| 1 ~ d ]
o P) = ol 0 )[ (K + Ap + Bp?)

where a(35, 0, 0) is 0.972662 x 10~ m® kg™, K the
secant bulk modulus is 21582.27 bar, and A and B,



