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[1] Data analysis has been one of the core activities in
scientific research, but limited by the availability of analysis
methods in the past, data analysis was often relegated to
data processing. To accommodate the variety of data
generated by nonlinear and nonstationary processes in
nature, the analysis method would have to be adaptive.
Hilbert-Huang transform, consisting of empirical mode
decomposition and Hilbert spectral analysis, is a newly
developed adaptive data analysis method, which has been

used extensively in geophysical research. In this review, we
will briefly introduce the method, list some recent
developments, demonstrate the usefulness of the method,
summarize some applications in various geophysical
research areas, and finally, discuss the outstanding open
problems. We hope this review will serve as an introduction
of the method for those new to the concepts, as well as a
summary of the present frontiers of its applications for
experienced research scientists.
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1. INTRODUCTION

[2] Data are the only link we have with the unexplained

reality; therefore, data analysis is the only way through

which we can find out the underlying processes of any

given phenomenon. As the most important goal of scientific

research is to understand nature, data analysis is a critical

link in the scientific research cycle of observation, analysis,

synthesizing, and theorizing. Because of the limitations of

available methodologies for analyzing data, the crucial

phase of data analysis has in the past been relegated to

‘‘data processing,’’ where data are routinely put through

certain well-established algorithms to extract some standard

parameters. Most traditional data processing methodologies

are developed under rigorous mathematic rules; and we pay

a price for this strict adherence to mathematical rigor, as

described by Einstein [1983, p. 28]: ‘‘As far as the laws of

mathematics refer to reality, they are not certain; and as far

as they are certain, they do not refer to reality.’’ As a result,

data processing has never received the deserved attention as

data analysis should, and data processing has never fulfilled

its full potential of revealing the truth and extracting the

coherence hidden in scattered numbers.

[3] This is precisely the dilemma we face: in order not to

deviate from mathematical rigor, we are forced to live in a

pseudoreality world, in which every process is either linear

or stationary and for most cases both linear and stationary.

Traditional data analysis needs these conditions to work;

most of the statistical measures have validity only under

these restrictive conditions. For example, spectral analysis is

synonymous with Fourier-based analysis. As the Fourier

spectra can only give meaningful interpretation to linear and

stationary processes, its application to data from nonlinear

and nonstationary processes is often problematical. And

probability distributions can only represent global proper-

ties, which imply homogeneity (or stationarity) in the

population. The real world is neither linear nor stationary;

thus the inadequacy of the linear and stationary data

analysis methods that strictly adhere to mathematical rigor

is becoming glaringly obvious.

[4] To better understand the physical mechanisms hidden

in data, the dual complications of nonstationarity and non-

linearity should be properly dealt with. A more suitable

approach to revealing nonlinearity and nonstationarity in

data is to let the data speak for themselves and not to let the

analyzer impose irrelevant mathematical rules; that is, the

method of analysis should be adaptive to the nature of

the data. For the methods that involve decomposition of data,

the adaptive requirement calls for an adaptive basis. Here

adaptivity means that the definition of the basis has to be

based on and derived from the data. Unfortunately, most
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currently available data decomposition methods have an a

priori basis (such as trigonometric functions in Fourier

analysis), and they are not adaptive. Once the basis is

determined, the analysis is reduced to a convolution compu-

tation. This well-established paradigm is mathematically

sound and rigorous. However, the ultimate goal for data

analysis is not to find the mathematical properties of data;

rather, it is to unearth the physical insights and implications

hidden in the data. There is no a priori reason to believe that a

basis arbitrarily selected is able to represent the variety of

underlyingphysicalprocesses.Therefore, theresultsproduced,

thoughmathematically correct, might not be informative.

[5] A few adaptive methods are available for signal

analysis, as summarized by Widrow and Stearns [1985],

which relies mostly on feedback loops but not on an adaptive

basis. Such methods are, however, designed for stationary

processes. For nonstationary and nonlinear data, adaptivity is

absolutely necessary; unfortunately, few effective methods

are available. How should the general topic of an adaptive

method for data analysis be approached? How do we define

adaptive bases? What are the mathematical properties and

problems of these basis functions? An a posteriori adaptive

basis provides a totally different approach from the estab-

lished mathematical paradigm, and it may also present a great

challenge to the mathematical community.

[6] The combination of the well-known Hilbert spectral

analysis (HAS) and the recently developed empirical mode

decomposition (EMD) [Huang et al., 1996, 1998, 1999],

designated as the Hilbert-Huang transform (HHT) by

NASA, indeed, represents such a paradigm shift of data

analysis methodology. The HHT is designed specifically for

analyzing nonlinear and nonstationary data. The key part of

HHT is EMD with which any complicated data set can be

decomposed into a finite and often small number of intrinsic

mode functions (IMFs). The instantaneous frequency de-

fined using the Hilbert transform denotes the physical

meaning of local phase change better for IMFs than for

any other non-IMF time series. This decomposition method

is adaptive and therefore highly efficient. As the decompo-

sition is based on the local characteristics of the data, it is

applicable to nonlinear and nonstationary processes.

[7] This new empirical method offers a potentially viable

method for nonlinear and nonstationary data analysis,

especially for time-frequency-energy representations. It

has been tested and validated exhaustively [Huang and

Attoh-Okine, 2005; Huang and Shen, 2005], though only

empirically. In almost all the cases studied, HHT gives

results much sharper than most of the traditional analysis

methods. Additionally, it has been demonstrated to have

unprecedented prowess in revealing hidden physical mean-

ings in data. In this article, we will review the method and

its recent developments and applications to geophysical

sciences, as well as the directions for future developments.

2. A BRIEF DESCRIPTION OF HHT

[8] The HHT consists of empirical mode decomposition

and Hilbert spectral analysis [Huang et al., 1996, 1998,

1999]. In this section, we will introduce briefly both

components of HHT and present some properties of HHT.

It will be shown that the Hilbert transform (HT) can lead to

an apparent time-frequency-energy description of a time

series; however, this description may not be consistent with

physically meaningful definitions of instantaneous frequen-

cy and instantaneous amplitude. The EMD can generate

components of the time series whose Hilbert transform can

lead to physically meaningful definitions of these two

instantaneous quantities, and hence the combination of HT

and EMD provides a more physically meaningful time-

frequency-energy description of a time series.

2.1. Hilbert Spectral Analysis

[9] As emphasized in section 1, the purpose of the

development of HHT is to provide an alternative view of

the time-frequency-energy paradigm of data. In this ap-

proach, the nonlinearity and nonstationarity can be dealt

with better than by using the traditional paradigm of

constant frequency and amplitude. One way to express the

nonstationarity is to find instantaneous frequency and in-

stantaneous amplitude. This was the reason why Hilbert

spectrum analysis was included as a part of HHT.

[10] For any function x(t) of Lp class, its Hilbert transform

y(t) is

y tð Þ ¼ 1

p
P

Z1
�1

x tð Þ
t � t

dt; ð1Þ

where P is the Cauchy principal value of the singular

integral. With the Hilbert transform y(t) of the function x(t),

we obtain the analytic function,

z tð Þ ¼ x tð Þ þ iy tð Þ ¼ a tð Þeiq tð Þ; ð2Þ

where i =
ffiffiffiffiffiffiffi
�1

p
,

a tð Þ ¼ x2 þ y2
� �1=2

; q tð Þ ¼ tan�1 y

x
: ð3Þ

Here a is the instantaneous amplitude, and q is the

instantaneous phase function. The instantaneous frequency

is simply

w ¼ dq
dt

: ð4Þ

[11] With both amplitude and frequency being a function

of time, we can express the amplitude (or energy, the square

of amplitude) in terms of a function of time and frequency,

H(w, t). The marginal spectrum can then be defined as

h wð Þ ¼
ZT
0

H w; tð Þdt; ð5Þ

where [0, T] is the temporal domain within which the data is

defined. The marginal spectrum represents the accumulated

amplitude (energy) over the entire data span in a
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probabilistic sense and offers a measure of the total

amplitude (or energy) contribution from each frequency

value, serving as an alternative spectrum expression of the

data to the traditional Fourier spectrum. A perfect IMF,

x tð Þ ¼ e�t=256 sin
pt
32

þ 0:3 sin
pt
32

� �h i
; ð6Þ

is displayed in Figure 1, as well as its true and Hilbert

transform–based instantaneous frequency and its Fourier

spectrum and marginal spectrum.

[12] The term on the right-hand side of equation (2)

provides an apparent time-frequency-energy expression for

function x(t), such as the one given by equation (6).

However, for an arbitrary x(t), the instantaneous frequency

obtained using the above method is not necessarily physi-

cally meaningful. For example, the instantaneous frequency

method applied to a sinusoidal function of a constant

frequency riding on a nonzero reference level (e.g., coswt
+ C, where C is a constant) does not yield a constant

frequency of w; rather, the obtained frequency bears unex-

pected fluctuations [Huang et al., 1998]. An example of

such distortion associated with Hilbert transform–based

instantaneous frequency is also displayed in Figure 1, in

which the signal is specified by equation (6) but with a

constant mean of 2.0. Clearly, the Hilbert transform–based

instantaneous frequency contains unphysical negative val-

ues and is qualitatively different from that of the riding chirp

wave at any temporal location, indicating the limited

applicability of the Hilbert transform. To explore the appli-

cability of the Hilbert transform, Huang et al. [1998]

showed that a purely oscillatory function (or a monocom-

ponent) with a zero reference level is a necessary condition

for the above instantaneous frequency calculation method to

work appropriately [Huang et al., 1998]. Indeed, searching

for the expression of an arbitrary x(t) in terms of a sum of a

small number of purely oscillatory functions of which

Hilbert transform–based instantaneous frequencies are

physically meaningful was the exact motivation for the

early development of EMD [Huang et al., 1998].

2.2. Empirical Mode Decomposition

[13] The EMD, in contrast to almost all the previous

methods, works in temporal space directly rather than in the

corresponding frequency space; it is intuitive, direct, and

adaptive, with an a posteriori defined basis derived from the

data. The decomposition has implicitly a simple assumption

that, at any given time, the data may have many coexisting

simple oscillatory modes of significantly different frequen-

cies, one superimposed on the other. Each component is

defined as an intrinsic mode function (IMF) satisfying the

following conditions: (1) In the whole data set, the number

of extrema and the number of zero crossings must either

equal or differ at most by one. (2) At any data point, the

mean value of the envelope defined using the local maxima

and the envelope defined using the local minima is zero.

[14] With the above definition of an IMF in mind, one

can then decompose any function through a sifting process.

An example of obtaining an IMF from an arbitrarily given

time series is displayed in Figure 2. The input, x(t), is

displayed as the bold solid line in Figures 2a and 2b. The

sifting starts with identifying all the local extrema (see

Figure 2b, with maxima marked with diamonds and minima

marked with circles) and then connecting all the local

maxima (minima) by a cubic spline line to form the upper

(lower) envelope as shown by the thin solid lines in Figure

2c. The upper and lower envelopes usually encompass all

the data between them as shown in Figure 2c. Their mean is

designated as m1, the dashed line in Figure 2c. The

difference between the input and m1 is the first protomode,

h1, shown in Figure 2d, i.e.,

h1 ¼ x tð Þ � m1: ð7Þ

[15] By construction, h1 is expected to satisfy the defini-

tion of an IMF. However, that is usually not the case since

changing a local zero from a rectangular to a curvilinear

coordinate system may introduce new extrema, and further

adjustments are needed. Therefore, a repeat of the above

procedure, the sifting, is necessary. This sifting process

serves two purposes: (1) to eliminate background waves

on which the IMF is riding and (2) to make the wave

profiles more symmetric. The sifting process has to be

repeated as many times as is required to make the extracted

signal satisfy the definition of an IMF. In the iterating

Figure 1. Instantaneous frequencies, marginal and Fourier
spectra of a simple oscillatory function with a zero mean or
a nonzero mean. (a) Bold blue and green lines show a
simple oscillatory function specified in equation (6) riding
on a zero mean and a nonzero mean with a value of 2,
respectively. The four thin black lines are the upper and
lower envelopes, respectively. (b) True instantaneous
frequency specified in equation (6) is given by the black
line. The Hilbert transform–based instantaneous frequen-
cies of the simple oscillatory function riding on a zero mean
and a nonzero mean are displayed by the blue and green
lines, respectively. (c) Fourier spectrum (blue line) and the
marginal spectrum (green line) of the simple oscillatory
function are displayed.
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processes, h1 can only be treated as a proto-IMF, which is

treated as the data in the next iteration:

h1 � m11 ¼ h11: ð8Þ

After k times of iterations,

h1 k�1ð Þ � m1k ¼ h1k ; ð9Þ

the approximate local envelope symmetry condition is

satisfied, and h1k becomes the IMF c1, i.e.,

c1 ¼ h1k ; ð10Þ

which is the first IMF component shown in Figure 2e.

[16] The approximate local envelope symmetry condition

in the sifting process is called the stoppage (of sifting)

criterion. In the past, several different types of stoppage

criteria were adopted: the most widely used type, which

originated from Huang et al. [1998], is given by a Cauchy

type of convergence test, the normalized squared difference

between two successive sifting operations defined as

SDk ¼

XT
t¼0

hk�1 tð Þ � hk tð Þj j2

XT
t¼0

h2k�1 tð Þ
; ð11aÞ

must be smaller than a predetermined value. This definition

is slightly different from the one given by Huang et al.

[1998] with the summation signs operating for the

numerator and denominator separately in order to prevent

the SDk from becoming too dependent on local small-

amplitude values of the sifting time series. An alternative

stoppage criterion of this type is

SDk ¼

XT
t¼0

m1k tð Þj j2

XT
t¼0

h1k tð Þj j2
; ð11bÞ

which is smaller than a predetermined value.

[17] These Cauchy types of stoppage criteria are seem-

ingly rigorous mathematically. However, it is difficult to

implement this criterion for the following reasons: First,

how small is small enough begs an answer. Second, this

criterion does not depend on the definition of the IMFs for

the squared difference might be small, but there is no

guarantee that the function will have the same numbers of

zero crossings and extrema. To remedy these shortcomings,

Huang et al. [1999, 2003] proposed the second type of

criterion, termed the S stoppage. With this type of stoppage

criterion, the sifting process stops only after the numbers of

zero crossings and extrema are (1) equal or at most differ by

one and (2) stay the same for S consecutive times. Extensive

tests by Huang et al. [2003] suggest that the optimal range

for S should be between 3 and 8, but the lower number is

favored. Obviously, any selection is ad hoc, and a rigorous

justification is needed.

[18] This first IMF should contain the finest scale or the

shortest-period oscillation in the signal, which can be

extracted from the data by

x tð Þ � c1 ¼ r1: ð12Þ

[19] The residue, r1, still contains longer-period varia-

tions, as shown in Figure 2d. This residual is then treated as

the new data and subjected to the same sifting process as

described above to obtain an IMF of lower frequency. The

procedure can be repeatedly applied to all subsequent rj, and

the result is

r1 � c2 ¼ r2
. . .

rn�1 � cn ¼ rn:
ð13Þ

[20] The decomposition process finally stops when the

residue, rn, becomes a monotonic function or a function

with only one extremum from which no more IMF can be

extracted. By summing up equations (12) and (13), we have

x tð Þ ¼
Xn
j¼1

cj þ rn: ð14Þ

Thus, the original data are decomposed into n IMFs and a

residue obtained, rn, which can be either the adaptive trend

or a constant. An example is given in Figure 3 in which the

decomposition of Remote Sensing Systems (RSS) T2, the

channel 2 tropospheric temperature of the microwave

sounding unit [Mears et al., 2003], is presented.

Figure 2. Sifting process of the empirical mode decom-
position: (a) an arbitrary input; (b) identified maxima
(diamonds) and minima (circles) superimposed on the input;
(c) upper envelope and lower envelope (thin solid lines) and
their mean (dashed line); (d) prototype intrinsic mode
function (IMF) (the difference between the bold solid line
and the dashed line in Figure 2c) that is to be refined;
(e) upper envelope and lower envelope (thin solid lines) and
their mean (dashed line) of a refined IMF; and (f) remainder
after an IMF is subtracted from the input.
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[21] In the EMD method, a constant mean or zero

reference is not required since the EMD technique only

uses information related to local extrema; and the zero

reference for each IMF is generated automatically by the

sifting process. Without the need of the zero reference,

EMD avoids the troublesome step of removing the trend,

which could cause low-frequency terms in the resulting

spectra. Therefore, the detrending operation is automatically

achieved, an unexpected benefit.

2.3. Some Properties of HHT

[22] The IMFs obtained by sifting processes constitute an

adaptive basis. This basis usually satisfies empirically all

the major mathematical requirements for a time series

decomposition method, including convergence, complete-

ness, orthogonality, and uniqueness, as discussed by Huang

et al. [1998].

[23] For an arbitrary time series of length N, x(t), if EMD

is used and instantaneous frequencies and instantaneous

amplitudes of IMFs are obtained, x(t) can be expressed as

x tð Þ ¼ Re
Xn
j¼1

aj tð Þeiwj tð Þdt

" #
; ð15Þ

where Re[ ] represents the real part of terms within brackets.

Here the residue, rn, is not expressed in terns of a simple

oscillatory form on purpose for it is either a monotonic

function or a function with only one extrema not containing

enough information to confirm whether it is an oscillatory

component whose frequency is physical meaningful.

[24] Equation (15) gives both amplitude and frequency of

each component as functions of time. The same data

expanded in a Fourier representation would be

x tð Þ ¼ Re
X1
j¼1

aje
iwj t ; ð16Þ

where both aj and wj are constants. The contrast between

equations (15) and (16) is clear: the IMF represents, to a

large degree, a generalized Fourier expansion. The variable

amplitude and the instantaneous frequency not only

improve the efficiency of the expansion but also enable

the expansion to accommodate nonlinear and nonstationary

variations in data. The IMF expansion lifts the restriction of

constant amplitude and fixed frequency in the Fourier

expansion, allowing a variable amplitude and frequency

representation along the time axis.

[25] As demonstrated by Huang et al. [1998, 1999], the

distribution of amplitude (energy) in time-frequency do-

main, H(w, t), in HHT can be regarded as a skeleton form of

that in continuous wavelet analysis, which has been widely

pursued in the wavelet community. For example, Bacry et

al. [1991] and Carmona et al. [1998] tried to extract the

wavelet skeleton as the local maximum of the continuous

wavelet coefficient. While that approach reduces signifi-

cantly the ‘‘blurredness’’ in the energy distribution in time-

frequency domain caused by redundancy and subharmonics

in ideal cases, it is difficult to apply it to complex data, for it

is still encumbered by the harmonics, a side effect always

associated with an a priori basis. In contrast, the time-

frequency representation of data in HHT does not involve

spurious harmonics and hence can present more natural and

quantitative results.

[26] The HHT provides an alternative, and possibly more

physically meaningful, representation of data. The rational

for this statement can be justified by its ability to enable an

implementation of a novel concept: using instantaneous

frequency to describe intrawave frequency modulation.

Frequency is traditionally defined as

w ¼ 1

T
; ð17Þ

where T is the period of an oscillation. Although this

definition is almost the standard for frequency, it is very

crude for it fails to account for the possible intrawave

frequency modulation, a hallmark for nonlinear oscillators.

This failure can be demonstrated using the Duffing equation

d2x

dt2
þ xþ ex3 ¼ g cosat; ð18Þ

where e, g, and a are prescribed constants. The cubic term

in equation (18) is the cause of nonlinearity. If we rewrite

equation (18) as

d2x

dt2
þ 1þ ex2
� �

x ¼ g cosat; ð19Þ

clearly, the term within the parentheses could be interpreted

as a variable spring constant or varying pendulum length.

Either way, the frequency is ever changing even within a

single period. This intrawave frequency modulation was

traditionally represented by harmonics. As discussed by

Huang et al. [1998, 2003] and Huang [2005a, 2005b], such

a harmonic representation is a mathematical artifact with

Figure 3. RSS T2 decomposed using the empirical mode
decomposition. (a) RSS T2 data are shown. (b–h) IMFs of
high to low frequency, respectively, are displayed.
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little physical meaning; its existence depends on the basis

selected. The instantaneous frequency introduced here is

physical and depends on the differentiation of the phase

function, which is fully capable of describing not only

interwave frequency changes due to nonstationarity but also

the intrawave frequency modulation due to nonlinearity.

[27] Numerous tests demonstrated empirically that HHT

is a powerful tool for time-frequency analysis of nonlinear

and nonstationary data. It is based on an adaptive basis, and

the frequency is defined through the Hilbert transform.

Consequently, there is no need for the spurious harmonics

to represent nonlinear waveform deformations as in any

methods with an a priori basis, and there is no uncertainty

principle limitation on time or frequency resolution from the

convolution pairs based on a priori bases. A summary of

comparison between Fourier, wavelet, and HHT analyses is

given in Table 1.

3. RECENT DEVELOPMENTS

[28] Since the development of the basics of HHT, some

new advances have been made in the following areas: (1)

improvements in instantaneous frequency calculation meth-

ods; (2) determination of the confidence limits of IMFs and

improvement in the robustness of the EMD algorithm; (3)

creation of statistical significance test of IMFs; (4) devel-

opment of the ensemble EMD, a noise-assisted data analysis

method; and (5) development of two-dimensional EMD

methods. The advances in each area are discussed in

sections 3.1–3.5, respectively.

3.1. Normalized Hilbert Transform and the Direct
Quadrature

[29] For any IMF x(t), one obtains envelope function a(t)

and phase function q(t) through Hilbert transform of x(t), as

expressed by equation (3), i.e., x(t) = a(t)cosq(t). On the

basis of the definition of the IMF, it is always true that a(t)

contains fluctuations of significantly lower frequency than
q(t) does at any temporal location. For such a function, the

physically meaningful instantaneous frequency should only

be determined by q(t), which is equivalent to requiring the

Hilbert transform to satisfy

H a tð Þ cos q tð Þ½ 
 ¼ a tð ÞH cos q tð Þ½ 
; ð20Þ

where H[ ] is the Hilbert transform of ‘‘terms within

brackets.’’ Unfortunately, equation (20) is usually not true

since it cannot satisfy the Bedrosian theorem [Bedrosian,

1963]: the Hilbert transform for the product of two

functions, f(t) and h(t), can be written as

H f tð Þh tð Þ½ 
 ¼ f tð ÞH h tð Þ½ 
 ð21Þ

only if the Fourier spectra for f(t) and h(t) are totally disjoint

in frequency space and the frequency range of the spectrum

for h(t) is higher than that of f(t). According to the

Bedrosian theorem, equation (20) can only be true if the

amplitude is varying so slowly that the frequency spectra of

the envelope and the carrier waves are disjoint, a condition

seldom satisfied for any practical data.

[30] To circumvent this difficulty, Huang [2005a] and

Huang et al. [2008] have proposed a normalization scheme,

which is essentially an empirical method to separate the

IMF into amplitude modulation (AM) and frequency mod-

ulation (FM) parts uniquely. With this separation, we can

conduct the Hilbert transform on the FM part alone and

avoid the difficulty stated in the Bedrosian theorem.

[31] The normalization scheme is given as follows: for an

IMF, x(t), as given in Figure 1 and equation (15), we first

find absolute values of the IMF and then identify all the

maxima of these absolute values, followed by defining the

envelope by a spline through all these maxima and desig-

nating it as e1(t). For any IMF, the envelope so defined is

unique if the type (order) of spline is given. The normali-

zation is given by

f1 tð Þ ¼ x tð Þ
e1 tð Þ : ð22Þ

If e1(t) based on extrema fitting is identical to a(t), f1(t)

should be cosq(t) with all the values of f1(t) either equal to

or less than unity. However, this is often not the case, for the

fitted envelope e1(t) through the extrema often has cuts

through x(t), especially when a(t) (the AM part of x(t))

undergoes large changes within a relatively small temporal

duration. In such a case, e1(t) could have values smaller than

the data x(t) at some temporal locations and cause the

normalized function to have amplitude greater than unity at

some temporal locations. These conditions may be rare but

TABLE 1. Comparison Between Fourier, Wavelet, and HHT Analysis

Fourier Wavelet HHT

Basis a priori a priori a posteriori adaptive
Frequency convolution over global domain,

uncertainty
convolution over global domain,
uncertainty

differentiation over local domain,
certainty

Presentation energy in frequency space energy in time-frequency space energy in time-frequency space
Nonlinearity no no yes
Nonstationarity no yes yes
Feature extraction no discrete, no; continuous, yes yes
Theoretical base complete mathematical theory complete mathematical theory empirical
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are certainly not impossible. Therefore, the normalization is

again an iterative process, as follows:

f2 tð Þ ¼ f1 tð Þ
e2 tð Þ ; . . . fn tð Þ ¼ fn�1 tð Þ

en tð Þ : ð23Þ

The iteration stops at the nth step, when the normalized

maximum values are all unity. Then the empirical FM and

AM components of x(t) are defined as

F tð Þ ¼ fn tð Þ ð24aÞ

A tð Þ ¼ x tð Þ
F tð Þ ; ð24bÞ

respectively. This iteration will gradually yield the empirical

AM and FM parts of the IMF. The combination of this

normalizing iteration process and application of the Hilbert

transform to the empirical AM signal is called the

normalized Hilbert transform method, NHT for short.

[32] The instantaneous frequency calculation method

based on NHT improves the result significantly, as demon-

strated in Figure 4. The instantaneous frequency obtained

using NHT corrects, to a great degree, the irregular oscil-

lations in the instantaneous frequency calculated using the

Hilbert transform shown directly in Figure 1b. However, it

is also evident from Figure 4 that the calculated instanta-

neous frequency using NHT still underestimates the true

frequency fluctuation although its mean and periodicity are

correctly determined. The cause of this underestimation is

summarized in the Nuttall theorem [Nuttall, 1966].

[33] The Nuttall theorem states that for a complicated

phase function with its time derivative (the frequency) not

constant the Hilbert transform of the cosine of this phase

function (FM part of the IMF) is not necessarily a simple

90� phase shift. The error bound, DE, defined as the

difference between Ch, the Hilbert transform, and Cq, the

true quadrature (with phase shift of exactly 90�) of the

function can be expressed as

DE ¼
ZT
t¼0

Cq tð Þ � Ch tð Þ
�� ��2 dt ¼ Z0

�1

Sq wð Þ dw; ð25Þ

in which Sq is the Fourier spectrum of the quadrature

function. Though the theorem is elegant and the proof

rigorous, the result is hardly useful: first, it is expressed in

terms of the Fourier spectrum of a still unknown quadrature,

and, second, it gives a constant error bound over the whole

data range. For a nonstationary time series, such a constant

bound is not informative. Finally, the global bound will not

reveal the location of the error on the time axis.

[34] To construct a calculable local difference (error)

between the Hilbert transform of the cosine of a complicat-

ed phase function and its true quadrature, Huang [2005b,

2006] and Huang et al. [2008] have proposed an alternative

variable error bound based on the normalization scheme

described in this section. The error is defined as the

difference between unity and the squared sum of the FM

component and its Hilbert transform. The rationale of this

concept is simple: if the Hilbert transform is exactly the

quadrature, the squared sum of the FM component and its

Hilbert transform should be unity, and the difference (the

alternative error bound) should be zero. If the squared sum

is not exactly unity, then the Hilbert transform cannot be

exactly the quadrature. The errors have to come from a

highly complicated phase function as discussed by Huang et

al. [1998], whenever the phase plane formed from the

Hilbert transform is not a perfect circle.

[35] Although the error bounds defined by the Nuttall

[1966] theorem and, especially, by Huang [2005b] provide

insights into the possible causes of the systematic underes-

timation of the fluctuations of the instantaneous frequency

using the Hilbert transform, as shown in Figure 4a, there

was no solution being proposed in those studies. It seems

that the problem stems from the Hilbert transform itself, for

the Hilbert transform uses a global domain integral and

implicitly a global domain weighted average, while instan-

taneous frequency is a temporal local quantity. For this

reason, to improve the calculation of the instantaneous

frequency, an approach without using Hilbert transform

seems to be a necessary choice.

[36] There are indeed methods other than Hilbert trans-

form that can be used to calculate instantaneous frequency,

such as the Wigner-Ville distribution [Cohen, 1995], the

Teager energy operator [Kaiser, 1990; Maragos et al.,

1993a, 1993b], and wavelet analysis. Unfortunately, the

Figure 4. Instantaneous frequencies (IFs) of the idealized
IMF specified by equation (6) and their errors, defined as
the difference of IF calculated using a particular method and
the truth. (a) Blue line is the true IF specified in equation (6),
the magenta line is the IF based on the ‘‘direct quadrature’’
method, and the green line is the IF calculated based on the
normalized Hilbert transform method. (b) Magenta line is
the error associated with the ‘‘direct quadrature’’ method,
and the green line is the error associated with the normalized
Hilbert transform method.
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Wigner-Ville distribution is based on a global temporal

domain integration of the lagged autocorrelation so that

the instantaneous frequency can hardly be temporally local.

The Teager energy operator appears to be a nonlinear

operator, but its instantaneous frequency definition only

has physical meaning when the signal has no frequency

and amplitude modulation over the global domain. The

wavelet method, as mentioned in section 1, suffered greatly

from its subharmonics. It seems that modifying these

methods cannot lead to noticeable improvement of the

calculation of instantaneous frequencies of a complicated

time series.

[37] One alternative is to abandon the Hilbert transform

and other above mentioned methods and use the good

properties of IMF. As we mentioned earlier, an IMF is

approximately an AM/FM separated component. Therefore,

instantaneous frequencies of an IMF can be determined

from the FM part. Although such an alternative has existed

ever since the development of EMD, the actual implemen-

tation was not feasible earlier because the determination of

the FM part necessitates using the envelope (AM part) and

IMF itself, and the empirical envelope of an IMF may have

cut into the IMF. That problem has been solved with the

normalization scheme described earlier. After normaliza-

tion, the FM part of the signal is obtained, and we can then

compute the phase function using the arc-cosine of the

normalized data. This method is called the ‘‘direct quadra-

ture’’ (DQ) method, and its details are given by Huang et al.

[2008].

[38] As the DQ method is direct and simple, the results of

the calculated instantaneous frequency using DQ show a

dramatically improved version. An example is displayed in

Figure 4. The magenta line in Figure 4a is almost identical

to the true instantaneous frequency specified in equation (6).

Its error (the difference between the calculated values using

DQ and the true frequency) is an order smaller than the

corresponding error when the Hilbert transform is applied to

the same FM part. It is also clear that the error associated

with DQ has a special pattern: the error is larger in the

temporal locations where IMF has its extrema. Such sys-

tematic error can be easily corrected; see Huang et al.

[2008] for more details.

3.2. A Confidence Limit

[39] A confidence limit is always desirable in any statis-

tical analysis, for it provides a measure of reliability of the

results. For Fourier spectral analysis, the confidence limit is

routinely computed based on the ergodic assumption and is

determined from the statistical spread of subdivided N

sections of the original data. When all the conditions of the

ergodic theory are satisfied, this temporal average is treated

as the ensemble average. Unfortunately, ergodic conditions

can be satisfied only if the processes are stationary; other-

wise, the averaging operation itself will not make sense.

[40] Since the EMD is an empirical algorithm and

involves a prescribed stoppage criterion to carry out the

sifting moves, we have to know the degree of sensitivity in

the decomposition of an input to the sifting process, so the

reliability of a particular decomposition can further be

determined. Therefore, a confidence limit of the EMD is a

desirable quantity.

[41] Since the ergodic approach in Fourier spectrum

analysis cannot be applied to obtain a confidence limit of

EMD, which is a time domain decomposition, Huang et al.

[2003] proposed a different approach to examining the

confidence limit. In this approach, the fact that there are

infinitely many ways to decompose any given function into

different components using various methods is utilized. To

find the confidence limit, the coherence of the subset of the

decompositions must be found. For EMD, many different

sets of IMFs may be generated by only changing the

stoppage criterion, the S number. From these different sets

of IMFs, we can calculate the mean and the spread of any

corresponding IMFs, thereby determining the confidence

limit quantitatively. This approach does not depend on the

ergodic assumption, and, by using the same data length,

there is no downgrading of the spectral resolution in

frequency space by dividing the data into sections.

[42] An example of such a defined confidence limit of the

decomposition of RSS T2 data (see Figure 2a) is displayed

in Figure 5, in which eight sets of decompositions with

different S numbers, from 5 to 12, are used. For the first four

components, the means of the corresponding IMFs from

different decompositions are almost identical to the

corresponding IMFs displayed in Figure 3, for which the

S number is selected to be 5. The spreads of decompositions

are also quite small for these components. For the last two

components, the means resemble the corresponding IMFs in

Figure 3, but the spreads are relatively larger.

[43] From the confidence limit study, an unexpected

result is the determination of the optimal S number in the

range of 4 to 8. The result is consistent with logic: the S

number should not be too high that it would lead to

Figure 5. Confidence limit of IMFs of RSS T2 data. The
mean (blue line) and its 1-standard-deviation confidence
limit (red line) for each IMF are plotted for eight different
decompositions with S numbers ranging from 5 to 12.
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excessive sifting, which drains all physical meanings out of

the IMF, nor too low that it would lead to undersifting,

which leaves some riding waves remaining in the resulting

IMFs. An alternative confidence limit for EMD is given by

the ensemble EMD [Wu and Huang, 2008], which will be

discussed in section 3.4.

3.3. Statistical Significance of IMFs

[44] The EMD is a method of separating data into

different components by their scales. Since the data almost

always contain noise, a natural question to ask is whether a

component (an IMF for EMD) contains a true signal or is

only a component of noise. To answer this question, the

characteristics of noise in EMD should be understood first.

[45] This task was recently carried out by a few research

groups. Flandrin et al. [2004, 2005] and Flandrin and

Gonçalves [2004] studied the Fourier spectra of IMFs of

fractional Gaussian noise, which are widely used in the

signal processing community and in financial data simula-

tion. They found that the spectra of all IMFs of any

fractional Gaussian noise except the first one collapse to a

single shape along the axis of the logarithm of frequency (or

period) with appropriate amplitude scaling of the spectra.

The center frequencies (periods) of the spectra of the

neighboring IMFs are approximately halved (and hence

doubled); therefore, the EMD is essentially a dyadic filter

bank. Independently, Wu and Huang [2004, 2005a] found

the same result for white noise (which is a special case of

fractional Gaussian noise).

[46] From the characteristics they obtained, Wu and

Huang [2004, 2005a] further derived the expected energy

distribution of IMFs of white noise. However, the expected

energy distribution of IMFs is not enough to tell whether an

IMF of real data contains only noise components or has

signal components, because the energy distribution of IMFs

of a noise series can deviate significantly from the expected

energy distribution. For this reason, the spread of the energy

distribution of IMFs of noise must be determined. Wu and

Huang [2004, 2005a] argued using the central limit theorem

that each IMF of Gaussian noise is approximately Gaussian

distributed, and therefore the energy of each IMF must be a

X2 distribution. By determining the number of degrees of

freedom of the X2 distribution for each IMF of noise, they

derived the analytic form of the spread function of the

energy of the IMF. From these results, one would be able to

discriminate an IMF of data containing signals from that of

only white noise with any arbitrary statistical significance

level. They verified their analytic results with those from the

Monte Carlo test and found consistency. An example of

such a test for the IMFs of RSS T2 as displayed in Figure 3

is presented in Figure 6.

[47] Another way of testing the statistical significance of

an IMF of data is purely based on the Monte Carlo method,

as proposed by Coughlin and Tung [2004a, 2004b] and

Flandrin et al. [2005]. In this method, the special character-

istics of the data, such as lagged autocorrelation, are used to

make a null hypothesis for the type of noise process for the

data. By generating a large number of samples of the noise

series with the same length as that of the data and decom-

posing them into a large number of sets of IMFs, one

obtains numerically the distribution of a certain metric (such

as energy) of the corresponding IMFs. By comparing the

location of the same metric of IMF data with this distribu-

tion, one can tell whether an IMF contains signals with any

given confidence level. A minor drawback of this approach

is the demand of large computational resources to obtain an

accurate distribution of a metric of an IMF when the size of

the data to be analyzed is very large.

3.4. Ensemble Empirical Mode Decomposition

[48] One of the major drawbacks of EMD is mode

mixing, which is defined as a single IMF either consisting

of signals of widely disparate scales or a signal of a similar

scale residing in different IMF components. Mode mixing is

a consequence of signal intermittency. As discussed by

Huang et al. [1998, 1999], the intermittency could not only

cause serious aliasing in the time-frequency distribution but

could also make the individual IMF lose its physical

meaning. Another side effect of mode mixing is the lack

of physical uniqueness. Suppose that two observations of

the same oscillation are made simultaneously: one contains

a low level of random noise and the other does not. The

EMD decompositions for the corresponding two records are

significantly different, as shown by Wu and Huang [2005b,

2008]. An example of the mode mixing and its consequen-

ces is illustrated in Figure 7, in which the decomposition of

the University of Alabama at Huntsville (UAH) T2, an

alternative analysis of the same channel 2 tropospheric

temperature of the microwave sounding unit [Christy et

al., 2000], as well as the RSS T2, is presented. The

decomposition of UAH T2 has obvious scale mixing: local

Figure 6. Statistical significance test of IMFs of RSS T2
against white noise null hypotheses. Each ‘‘target’’ sign
represents the energy of an IMF as a function of mean
period of the IMF, ranging from the IMF 1 to IMF 6. The
solid line is the expected energy distribution of IMFs of
white noise; and the upper and lower dashed lines provide
the first and 99th percentiles of noise IMF energy
distribution as a function of mean period, respectively.
Anything that stays above the upper dashed line is
considered statistically significant at the 99th percentile.
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periods around 1990 and 2002 of the third component are

much larger than local periods elsewhere and are also much

larger than the local periods of the corresponding IMF of

RSS T2 around 1990 and 2002. The significant difference in

decompositions but only minor difference in the original

inputs raises a question: Which decomposition is reliable?

[49] The answer to this question can never be definite.

However, since the cause of the problem is due to mode

mixing, one expects that the decomposition would be

reliable if the mode mixing problem is alleviated or elim-

inated. To achieve the latter goal, Huang et al. [1999]

proposed an intermittency test. However, the approach itself

has its own problems: First, the test is based on a subjec-

tively selected scale, which makes EMD not totally adap-

tive. Second, the subjective selection of scales may not

work if the scales are not clearly separable. To overcome the

scale mixing problem, a new noise-assisted data analysis

method was proposed, the ensemble EMD (EEMD) [Wu

and Huang, 2005b, 2008], which defines the true IMF

components as the mean of an ensemble of trials, each

consisting of the signal plus a white noise of finite

amplitude.

[50] Ensemble EMD is also an algorithm, which contains

the following steps: (1) add a white noise series to the

targeted data; (2) decompose the data with added white

noise into IMFs; (3) repeat steps 1 and 2 again and again but

with different white noise series each time; and (4) obtain

the (ensemble) means of corresponding IMFs of the decom-

positions as the final result.

[51] The principle of EEMD is simple: the added white

noise would populate the whole time-frequency space

uniformly with the constituting components at different

scales. When the signal is added to this uniform back-

ground, the bits of signals of different scales are automat-

ically projected onto proper scales of reference established

by the white noise. Although each individual trial may

produce very noisy results, the noise in each trial is canceled

out in the ensemble mean of enough trials; the ensemble

mean is treated as the true answer.

[52] The critical concepts advanced in EEMD are based

on the following observations:

[53] 1. A collection of white noise cancels each other out

in a time-space ensemble mean. Therefore, only the true

components of the input time series can survive and persist

in the final ensemble mean.

[54] 2. Finite, not infinitesimal, amplitude white noise is

necessary to force the ensemble to exhaust all possible

solutions; the finite magnitude noise makes the different

scale signals reside in the corresponding IMFs, dictated by

the dyadic filter banks, and renders the resulting ensemble

mean more physically meaningful.

[55] 3. The physically meaningful result of the EMD of

data is not from the data without noise; it is designated to be

the ensemble mean of a large number of EMD trials of the

input time series with added noise.

[56] As an analog to a physical experiment that could be

repeated many times, the added white noise is treated as the

possible random noise that would be encountered in the

measurement process. Under such conditions, the ith ‘‘arti-

ficial’’ observation will be

xi tð Þ ¼ x tð Þ þ wi tð Þ; ð26Þ

where wi(t) is the ith realization of the white noise series. In

this way, multiple artificial observations are mimicked.

[57] As the ensemble number approaches infinity, the

truth, cj(t), as defined by EEMD, is

cj tð Þ ¼ lim
N!1

1

N

XN
k¼1

cjk tð Þ
 �

; ð27Þ

in which

cjk tð Þ ¼ cj tð Þ þ rjk tð Þ; ð28Þ

where rjk(t) is the contribution to the jth IMF from the added

white noise of the kth trial of the jth IMF in the noise-added

signal. The amplitude of noise wi(t) is not necessarily small.

But, the ensemble number of the trials, N, has to be large.

The difference between the truth and the result of the

ensemble is governed by the well-known statistical rule: it

decreases as 1 over the square root of N [Wu and Huang,

2005b, 2008].

[58] With EEMD, the mode mixing is largely eliminated,

and the consistency of the decompositions of slightly

different pairs of data, such as RSS T2 and UAH T2, is

greatly improved, as illustrated in Figure 8. Indeed, EEMD

represents a major improvement over the original EMD. As

the level of added noise is not of critical importance, as long

as it is of finite amplitude while allowing for a fair ensemble

Figure 7. Mode mixing and the sensitivity of decomposi-
tion of the empirical mode decomposition to low-level
noise. (a–h) Blue lines correspond to RSS T2 as displayed
in Figure 2, and red lines correspond to UAH T2 (see the
discussion in the text). RSS T2 and UAH T2, from data
analysis view, can mutually be considered a noise-perturbed
copy of the other.
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of all the possibilities, EEMD can be used without any

significant subjective intervention; thus, it provides a truly

adaptive data analysis method. By eliminating the problem

of mode mixing, it also produces a set of IMFs that may

bear the full physical meaning and a time-frequency distri-

bution without transitional gaps. The EMD, with the en-

semble approach, has become a more mature tool for

nonlinear and nonstationary time series (and other one-

dimensional data) analysis.

[59] The EEMD resolves, to a large degree, the problem

of mode mixing [Huang et al., 1999, 2003]. It might

have resolved the physical uniqueness problem too, for

the finite magnitude perturbations introduced by the added

noises have produced the mean in the neighborhood of all

possibilities.

[60] While the EEMD offers great improvement over

the original EMD, there are still some unsettled problems.

The EEMD-produced results might not satisfy the strict

definition of IMF. One possible solution is to conduct

another round of sifting on the IMFs produced by EEMD.

As the IMFs results from EEMD are of comparable scales,

mode mixing would not be a critical problem here, and a

simple sift could separate the riding waves without any

problem.

3.5. Two-Dimensional EMD

[61] Another important development is to generalize

EMD to a two-dimensional analysis tool. The first attempt

was initiated by Huang [2001], in which the two-dimen-

sional image was treated as a collection of one-dimensional

slices. Each slice was treated as one-dimensional data. Such

an approach is called the pseudo-two-dimensional EMD.

This method was later used by Long [2005] on wave data

and produced excellent patterns and statistics of surface

ripple riding on underlying long waves. The pseudo-two-

dimensional EMD has shortcomings, and one of them is the

interslice discontinuity. Recently, Wu et al. [2007b] used

this pseudo-two-dimensional EMD approach but with

EEMD replacing EMD and found that interslice disconti-

nuity can be greatly reduced. However, in such an approach,

the spatial structure is essentially determined by timescales.

If spatial structures of different timescales are easily distin-

guishable, this approach would be appropriate, as demon-

strated by Wu et al. [2007b] using the North Atlantic sea

surface temperature (SST). If it is not, the applicability of

this approach is significantly reduced.

[62] To overcome the shortcomings of the pseudo-two-

dimensional EMD, one would have to use genuine two-

dimensional EMD. For the development of a genuine two-

dimensional EMD, the first difficulty comes from the

definition of extrema. For example, should the ridge of a

saddle be considered a series of maxima? The second

difficulty comes from generating a smooth fitting surface

to the identified maxima and minima. Currently, there are

several versions of two-dimensional EMD, each containing

a fitting surface determined by different methods. Nunes et

al. [2003a, 2003b, 2005] used a radial basis function for

surface interpretation and the Riesz transform rather than

the Hilbert transform for computing the local wave number.

Linderhed [2004, 2005] used the spline for surface inter-

pretation to develop two-dimensional EMD data for an

image compression scheme, which has been demonstrated

to retain a much higher degree of fidelity than any of the

data compression schemes using various wavelet bases.

Song and Zhang [2001], Damerval et al. [2005] and Yuan

et al. [2008] used a third way based on Delaunay triangu-

lation and on piecewise cubic polynomial interpretation to

obtain an upper surface and a lower surface. Xu et al. [2006]

provided the fourth approach by using a mesh fitting

method based on finite elements. All these two-dimensional

approaches are computationally expensive. Though the

spline-fitted surface serves the purpose well, the fittings

offer only an approximation and could not go through all

the actual data points. These points need further attention

before the two-dimensional decomposition can become

practically operational. Nevertheless, the 2-D method has

been applied already. Examples of geophysical applications

have been reported by Han et al. [2002], where they used

the method to reduce speckle in synthetic aperture radar

images, and by Sinclair and Pegram [2005], where they

used the EMD for temporal-spatial rainfall data.

4. A DEMONSTRATION OF HHT AS A POWERFUL
ANALYSIS METHOD

[63] In sections 2 and 3, we introduced the HHT method

and its recent developments. We emphasized that HHT is an

adaptive and temporally local analysis method that is

capable of identifying nonlinear nonstationary processes

Figure 8. Ensemble empirical mode decomposition of
low-noise perturbed data. (a–h) Blue lines correspond to
RSS T2 as displayed in Figure 2, and red lines correspond
to UAH T2 (see the discussion in text). RSS T2 and UAH
T2, from data analysis view, can mutually be considered a
noise-perturbed copy of the other. For both decompositions,
the ensemble number is 100, and the added noise has an
amplitude of 0.2 of that of the standard deviation of the
corresponding data.
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hidden in data. In this section, we will use examples to

demonstrate that HHT is, indeed, a powerful tool for

analyzing data.

[64] To achieve this goal, time series with rich character-

istics and well-understood physics behind the data are ideal,

so that the usefulness of the results analyzed using HHT can

be easily verified. In the geophysical sciences, there are a

few such time series, such as the Southern Oscillation Index

(SOI) [Ropelewski and Jones, 1987], Vostok temperature

(VT) derived from ice core [Petit et al., 1997, 1999], and

length-of-day data (LOD) [Gross, 2001]. SOI has already

been decomposed using EEMD by previous studies [e.g.,

Wu and Huang, 2005b, 2008], showing that HHT can lead

to physically meaningful decomposition. Therefore, in the

following, we will only present the decompositions of LOD

and VT.

[65] The LOD was previously analyzed using HHT and

was studied extensively by Huang et al. [2003]. In that

study, an intermittency test was performed to properly

separate oscillations of different timescale when EMD is

used to decompose the data. Here we decompose it using

EEMD instead of EMD. The LOD being decomposed here

are from 1 January 1964 to 31 December 1999. LOD (or

part of it) has previously been studied by many researchers

[e.g., Barnes et al., 1983; Rosen and Salstein, 1983; Chao,

1989; Höpfner, 1998; Razmi, 2005]. A common approach in

previous studies was to use Fourier spectrum analysis to

identify the spectrum peaks. With the consideration of

possible quasiperiodic response to periodic forcing (e.g.,

the tidal effect caused by revolution of the Moon around the

Earth), one designs band-pass filters to isolate various

physically meaningful quasiperiodic components [e.g.,

Höpfner, 1998]. However, the filtered results are usually

sensitive to the structures of band-pass filters, and often, a

posteriori calibration is needed to obtain ‘‘neat’’ results with

‘‘neatness’’ judged by the a priori knowledge a researcher

has on the possible mechanisms involved in the change of

LOD. An even more serious problem is that a filtered

component for any earlier period may be changed if later

data are added for the calculation of the spectrum of the data

and the same filter is reapplied to obtain the component.

Furthermore, most frequency domain filters are linear. If the

waveforms are distorted by nonlinear processes, the band-

pass filter could only pick up the fundamental mode and

could leave out all the needed harmonics to reconstitute the

full waveforms. These drawbacks raise concerns about the

reliability of the filtered components and, consequently, the

corresponding scientific interpretations.

[66] The locality and adaptivity of HHT overcome the

drawbacks described above. The a priori knowledge of the

physical mechanisms behind LOD is no longer needed; the

filtered components of their local periods smaller than data

length would not be affected by adding data later on; and

the need for multiple filters to isolate components of

different timescales is no longer necessary.

[67] The LOD data and its EEMD decomposition are

displayed in Figure 9 and in Figure 10, which is an

enlargement of Figure 9 from January 1982 to December

1983 for the first three components. In this decomposition,

some standard postprocessing schemes, such as combina-

tion of neighboring components and additional EMD de-

composition of EEMD outputs, as discussed in more detail

by Wu and Huang [2005b, 2008], are applied. In Figure 9,

eight IMF-like components (C1 and C5) and IMFs (C2–4

and C6–8) are presented, as well as the low-frequency

component displayed over the LOD data.

[68] The first component, C1, has an averaged amplitude

1 order smaller than any other components. It has quasi-

regular spikes with an average period around 14 d super-

imposed on random high-frequency oscillations. These

random high-frequency oscillations may be related to

weather storms [Huang et al., 2003]. The second compo-

nent, C2, has an average period of about 14 d, which was

linked to semimonthly tides [Huang et al., 2003]. The

amplitude of C2 has small semiannual modulation super-

imposed on a 19-year modulation. The 19-year modulation

is believed to be related to the Metonic cycle. C3 has an

average period of about 28 d, which was linked to monthly

tides. Its amplitude appears to be relatively small in El Niño

years, as indicated by the red arrows in Figure 9.

[69] The fourth component, C4, is a component with

periods between a month and one-half year, with a relatively

smaller averaged amplitude that is only a fraction of

those of other components excluding C1. C5 and C6 are

semiannual and annual components, respectively. The

causes of these cycles in length of day have been attributed

to both the semiannual and annual cycles of the atmospheric

circulation and to other factors, such as tidal strength change

related to the revolution of the Earth around the Sun

[Höpfner, 1998].

[70] The next two components are the variations between

interannual timescales. C7 is quasi-biannual, and C8 has an

average period slightly longer than 4 years. In previous

studies [e.g., Chao, 1989; Gross et al., 1996], it was

documented that in El Niño years, the length of day tended

to be longer. Here we present a systematic phase locking of

C8 to the El Niño phenomenon, which is represented by the

sign-flipped Southern Oscillation Index (with amplitude

reduced to 1/10).

[71] Two more extra features of the decomposition of

LOD are worthy of special attention: First, the modulation

of the annual cycle (C8) reported here is much larger than

the corresponding modulation of the annual cycle extracted

using a predesigned band-pass filter [Höpfner, 1998]. The

reason for that is understandable: The use of Fourier

analysis–based filtering implicitly includes the global do-

main averaging, and therefore it tends to smooth amplitude

change. This argument, indeed, can be verified by applying

the same filter to subsections of LOD data; that leads to

larger-amplitude modulations of the annual cycle than the

case of applying it to the full length of LOD data.

[72] The second feature is the nonstationarity of some

components. It appears from C1, C2, C7, and C8 that some

characteristics of LOD may be changed. The semiannual

modulation of amplitudes of high-frequency components is

more obvious before the early 1980s than after. C7 has
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relatively smaller amplitude before the early 1980s than

after, while the amplitude of C8 appears to be opposite. Part

of these characteristic changes may be attributed to the

change in the density of data [Huang, 2005b]. However, it

remains to be investigated as to what causes such changes.

[73] The second example to show the power of HHT is

the decomposition of Vostok temperature derived from ice

cores. The most well-known science hidden in this time

series is the relation between Milankovitch cycles

and glacier-interglacier changes. It will be shown in this

example that HHT can, indeed, reveal the role of three

Milankovitch cycles related to the Earth’s eccentricity

(about 100 ka), axial tilt (about 41 ka), and precession

(about 23 ka).

[74] The decomposition of Vostok temperature using the

EEMD is displayed in Figure 11. From Figure 11, it is seen

that the precession component is a mixture of large oscil-

lations on precession timescale and higher-frequency oscil-

lations of small amplitude. The oscillations on precession

Figure 9. Ensemble empirical mode decomposition of the length-of-day data (the red line in the top
plot) from 1 January 1964 to 31 December 1999. In the decomposition, noise of standard deviation 0.2
(absolute value not relative as in the case displayed in Figure 8) is added for the ensemble calculation,
and the ensemble number is 800. The direct output (D1–D13, not shown here) of the decomposition has
been reprocessed with combination of its components and additional EMD calculation. C1 is D1; C2 is
the first mode of the combination of D2 and D3 subjected to additional EMD; the difference (D2 + D3 �
C2) is added to D4; and the sum is subject to an additional EMD to obtain C3. The left over in this
decomposition is added to D5 and D6. This latter sum is decomposed using an additional EMD to obtain
C4 and C5. The sum of D7, D8, and D9 is decomposed using an addition EMD to obtain C6, C7, and C8.
D10–1D3 are combined and displayed as the blue line in the top plot.

Figure 10. Enlargements of the first three components
displayed in Figure 9 for the period from 1 January 1982 to
31 December 1983.
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timescale only appear in the temporal locations in intergla-

cier periods and glacier-interglacier transition periods. The

axial tilt component has relatively regular oscillations in

both period and frequency. The eccentricity component has

relatively flat amplitude but contains relatively larger fre-

quency modulation. These results imply that the response of

the Earth’s climate system to Milankovitch cycles is highly

nonlinear. From these results, it is seen that the response to

precession cycles is larger around interglacier peaks than at

other times. Also, for each interglacier peak, the response to

the axial tilt cycles and the eccentricity cycles seems phase

locked.

[75] An advantage of the HHT analysis of Vostok tem-

perature (or other paleoclimate proxy data) is that the

physical interpretation based on the decomposition will

not be affected qualitatively by the dating error. It has been

argued that the dating error of the ice core could reach to an

order of a thousand years [EPICA Community Members,

2004]. However, since the EMD/EEMD decomposition is

based on extrema, the dating error would only cause the

peaks of the components displayed to shift slightly for

components related to Milankovitch cycles. As pointed

out by J. Chiang of University of California, Berkeley

(personal communication, 2006), such an advantage can,

indeed, be used to correct dating errors in Vostok temper-

ature derived from the ice core if other well-dated individual

paleoclimate events are used to calibrate the dating.

5. NEW FINDINGS FACILITATED BY HHT IN
GEOSCIENCES

[76] Over the last few years, there have been many

applications of HHT in scientific research and engineering.

Two books based on papers presented in symposia were

published: Huang and Shen [2005] discussed applications

in various scientific fields, and Huang and Attoh-Okine

[2005] discussed applications in engineering. The papers

contained in these two books cover only selected topics of

the theory and applications. In this section, we will provide

a brief and incomplete survey on new discoveries in the

geosciences facilitated by HHT.

5.1. Geophysical Studies

[77] The applications of HHT to geophysical data started

with the introduction of the method by Huang et al. [1998],

where they suggested that the Hilbert spectral representation

for an earthquake can reveal the nonstationary and nonlinear

nature of the phenomenon. Subsequently, Huang et al.

[2001] applied HHT to the devastating earthquake in

Chi-Chi, Taiwan, in 1999. Their study demonstrated that the

Fourier-based representations (including the response spec-

trum) seriously underrepresented low-frequency energy

because the linear characteristics of the Fourier transform

generate artificial high-frequency harmonics. This misrep-

resentation is particularly severe when the signal is highly

nonstationary. The HHT-based spectral representation was

also used by Loh et al. [2000, 2001] and Zhang et al.

[2003a, 2003b] to study ground motions and structure

responses.

[78] As seismic waves are definitely nonstationary and

the near-field motion is highly nonlinear, it is expected that

the application of HHT to the study of seismic waves will

be potentially fruitful. Indeed, the HHT has been used to

investigate seismic wave propagation and explore source

characteristics. Vasudevan and Cook [2000] used EMD to

extract the scaling behavior of reflected waves. Zhang et al.

[2003a, 2003b] and Zhang [2006] reported their efforts in

tracing seismic wave propagation. They concluded that

certain IMF components (higher-frequency ones) could be

identified as being generated near the hypocenter, with the

high-frequency content related to a large stress drop asso-

ciated with the initiation of earthquake events. The lower-

frequency components represent a general migration of the

source region away from the hypocenter associated with

longer-period signals from the rupture propagations.

5.2. Atmospheric and Climate Studies

[79] Some of the applications of HHT in the studies of

meteorological phenomena of spatial scales from local to

global have been summarized by Duffy [2004]. As atmo-

spheric and climatic phenomena are highly nonstationary

and nonlinear, HHT should potentially catch more insights

into these phenomena. Specific applications are discussed as

follows.

[80] First, let us survey wind field investigations. Among

the first applications of HHT in atmospheric science was the

study by Lundquist [2003], where she studied the intermit-

tent and elliptical inertial oscillations in the atmospheric

boundary layer, which has long been hypothesized to be

associated with the evening transition phenomena. Her

analysis using HHT revealed the intermittent nature of the

Figure 11. Ensemble empirical mode decomposition of
Vostok temperature data based on ice core. (a) Data, (b) the
high-frequency (HF) component, (c–e) the three compo-
nents corresponding to three Milankovitch cycles, and
(f) the low-frequency component are displayed. The
difference of the input data and its high-frequency
component is also shown (the red line) in Figure 11a.
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wind field and confirmed significant correlations of inertial

motions with frontal passage. Li et al. [2005] also found

strong intermittency of the turbulence content. In fact, the

whole wind field structure is highly nonuniform [Pan et al.,

2003; Xu and Chen, 2004; Chen and Xu, 2004]. The

inhomogeneity of the small-scale wind field has caused

some difficulties in measuring the local wind velocity using

lidar, which requires multiscanning and averaging. Recently,

Wu et al. [2006], using HHT as a filter, succeeded in

removing local small-scale fluctuations and obtained a stable

mean. HHT was also applied to study wind field–related

pollutant dispersion [Janosi and Muller, 2005], regional

wind variations over Turkey [Tatli et al., 2005], and multi-

decadal variability of wind over France [Abarca-Del-Rio

and Mestre, 2006].

[81] Another area that takes advantage of the power of

HHT is the study of rainfall that is highly intermittent.

Baines [2005] found that the long-term rainfall variations of

southwest Western Australia were directly related to the

African monsoon. El-Askary et al. [2004] found that the

3- to 5-year cycles of rainfall over Virginia correlated well

with the Southern Oscillation Index with a correlation

coefficient of 0.68 at a confidence level of 95%, which

indicated that the El Niño–Southern Oscillation could be

strongly teleconnected to the eastern coast of the United

States. Molla et al. [2006] and Peel and McMahon [2006]

reported that global warming, indeed, has caused flood-

drought cycles. There were also attempts to use HHT as a

tool for long-term rainfall predictions. The basic principle

behind this is quite simple: although the total rainfall record

could be highly nonstationary, a narrowband IMF could

make it amenable to prediction. Such data-based predictions

were tried by Mwale et al. [2004] for central southern

Africa, Iyengar and Kanth [2005, 2006] for the seasonal

monsoon in India, and Wan et al. [2005] for climate

patterns.

[82] HHT could provide better trend/cycle information

than any other method because of its adaptivity and tem-

poral locality [Wu et al., 2007a]. Li and Davis [2006] found

decadal variation of Antarctic ice sheet elevation using

satellite altimeter data. Bindschadler et al. [2005] identified

significant changes in the new snow thickness over a large

area in the data collected with a vertically polarized passive

radiometer at 85 GHz. Hu and Wu [2004] used HHT to

study the impact of global warming on the variability of the

North Atlantic Oscillation (NAO), and they identified shifts

of the centers of action of the NAO associated with large-

scale atmospheric wave pattern. Xie et al. [2002] revealed

the interannual and interdecadal variations of landfalling

tropical cyclones in the southeastern United States. Slayback

et al. [2003] and Pinzón et al. [2005] detected a trend of

longer growth season after they had painstakingly removed

the satellite drift with HHT and constructed a uniformly

valid advanced very high resolution radiometer (AVHRR)

normalized difference vegetation index.

[83] The climate on the Earth is connected to the Sun at

almost all timescales. In fact, the long-term variations (of

the order of 10 to 100 ka) of Milankovitch scales have been

a popular subject and even a conference topic (e.g.,

‘‘Astronomical (Milankovitch) Calibration of the Geological

Time-scale,’’ a workshop organized by the Royal Society of

London in 1998). Lin and Wang [2004, 2006] reported their

analysis of Pleistocene (1 Ma B.P. to 20 ka B.P.) climate and

found that the eccentricity band signal at that time is much

larger than earlier estimations. On a much shorter timescale

of around 10 years, the clear influence of solar activities on

the Earth’s climate had not been convincingly identified

until the studies of Coughlin and Tung [2004a, 2004b,

2005], where they extracted clear 11-year cycles in strato-

sphere temperature that is related to the 11-year cycle of

solar activity and its downward propagation to the lower

troposphere.

[84] Another area of the application of HHT to climate

study is in the examination of the climate variability of

anomaly with respect to an alternative reference frame of

amplitude-frequency modulated annual cycle (MAC) in-

stead of the traditional repeatable annual cycle [Wu et al.,

2007b, 2008]. As is expected, when a reference frame is

changed, the corresponding anomaly is changed. Conse-

quently, the physical explanations for an anomaly may

change as well.

[85] Recently, Wu et al. [2007b, 2008] developed a

method based on HHT to extract MAC in climate data.

With MAC, they defined an alternative copy of the anom-

aly. On the basis of that alternative anomaly, they found that

the ‘‘reemergence’’ mechanism may be better interpreted as

a mechanism for explaining the change of annual cycle

rather than for explaining the interannual to interdecadal

persistence of SST anomaly. They also found that the

apparent ENSO phase locking is largely due to the residual

annual cycle (the difference of the MAC and the

corresponding traditional annual cycle) contained in the

traditional anomaly and hence can be interpreted as a

scenario of a part of annual cycle phase locked to annual

cycle itself. They illustrated the problems of concepts such

as ‘‘decadal variability of summer (winter) climate’’ in the

climate study and suggested more logically consistent con-

cepts of interannual or/and decadal variability of climate.

Furthermore, they also demonstrated the drawbacks related

to the stationary assumption in previous studies of extreme

weather and climate and proposed a nonstationary frame-

work to study extreme weather and climate.

[86] HHT has also been applied to the study of upper

atmosphere and even extraterrestrial atmosphere. Chen et al.

[2001] found that the vertical velocity fluctuations of plasma

induced by the electric field followed exactly what is predicted

by the Boltzmann relation down to the length scale between 50

and 300m.Kommet al. [2001] studied the rotation residuals of

the solar convection and found that the torsional oscillation

pattern disappeared with increasing depth.

5.3. Oceanographic Studies

[87] HHT was initially motivated by the study of nonlin-

ear wave evolution as reported by Huang et al. [1998,

1999]. As a result, the applications of HHT to water wave

problems still occupy a highly visible position. As is known
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to all the wave theorists, wave study started with the

definition of a gradually changing phase function, q(x, t),
whose wave number and frequency are defined as

k ¼ @q
@x

w ¼ � @q
@t

; ð29Þ

and therefore

@k

@t
þ @w

@x
¼ 0: ð30Þ

Equation (30) is the kinematical conservation law. On the

basis of this definition, the frequency should be a

continuous and differentiable function of time and space.

However, traditional wave studies had always used the

Fourier-based frequency that is constant along the temporal

axis. As a result, the very foundation of nonlinear wave

governing equations was built on the assumption that the

carrier wave frequency is constant; therefore, the wave

envelope is governed by the nonlinear Schrödinger equation

[Infeld and Rowland, 1990]. The introduction of HHT

provided a way to define the instantaneous frequency

empirically. Huang et al. [1998, 1999] have shown that

nonlinear wave evolution processes are discrete, local, and

abrupt. The observed phenomena are quite different from

the idealized theoretical model. The results of their studies

have the potential to drastically change wave studies, when

a full theoretical foundation of HHT is established. We

desperately need a new theory and additional new data to

advance the study of waves.

[88] Observation of water waves either in the laboratory

or in the field indicated that Fourier-based analysis is

insufficient. For example, there is critical inconsistency in

the traditional Fourier-based wave spectral representation.

As waves are nonlinear, Fourier analysis needs harmonics to

simulate the distorted wave profiles. However, harmonics

are mathematical artifacts generated by imposing the linear

Fourier representation on a fully nonlinear wave system. As

a result, in the wave spectral representation we could not

separate the true energy content from the fictitious harmonic

components. Most field studies such as those of Hwang et

al. [2003], Schlurmann [2002], Datig and Schlurmann

[2004], Veltcheva [2002], Veltcheva et al. [2003], and

Veltcheva and Soares [2004] confirmed this observation.

Additionally, Hwang et al. [2006] also observed the drastic

change of wavefield energy density across the Gulf Stream

fronts, a nonlinear interaction yet to be fully explored.

[89] Water waves are nonlinear, but the effects of non-

linearity are shown most clearly only near the point of wave

breaking. HHT has been used to study such phenomena

from freak waves [Wu and Yao, 2004] to breaking, bubble

generation, and turbulence energy dissipation [Banner et al.,

2002; Gemmrich and Farmer, 2004; Vagle et al., 2005].

Recently, HHT was also employed by Wang et al. [2006] to

study underwater acoustic signals.

[90] When we examined waves of longer scale, we also

found HHT extremely useful. Huang et al. [2000] used

HHT to study seiches on the coast of Puerto Rico. Tradi-

tionally, these waves were thought to be generated

thousands of miles away, but using dispersive properties,

Huang et al. [2000] proved that the seiches were, in fact,

generated locally on the continental shelf. Lai and Huang

[2005] and Zheng et al. [2006] also studied the inertia

waves generated by passing hurricanes. They found the

hurricanes could generate inertia waves in the upper layer.

In the Gulf region, the deep layer waves (depth below the

seasonal thermocline) are actually topographic Rossby

waves.

[91] Another area of using HHT is in the determination of

the ocean-climate relationship. Yan et al. [2002] found

length of day related to the Western Pacific Warm Pool

variations. Yan et al. [2006] also used HHT to track the

movement of the middle-scale eddies in the Mediterranean

Sea in remote sensing data. Oceanic data, when analyzed

with HHT, revealed a rich mix of timescales from Rossby

waves discussed above and by Susanto et al. [2000] to the

interannual timescale of the Southern Oscillation [Salisbury

and Wimbush, 2002]. Using sea surface temperature data

collected from Nimbus 7 scanning multichannel microwave

radiometer (SMMR) for 8 years and NOAA AVHRR for

13 years, Gloersen and Huang [2004] also found that the El

Niño–Southern Oscillation is not confined only to the

equatorial region but may have impact on both the North

and the South Pacific with even larger amplitudes than at

the equator. Additional work on the climate and ocean

relationship is underway at this writing.

[92] The sea ice variation has been gaining increasing

attention. Gloersen and Huang [1999, 2003], using HHT,

found a pattern of Antarctic circumpolar waves in the

perimeter of the ice pack. This eastward propagating wave

had a quasi-quadrennial period. The geophysical implica-

tion is still unknown. Recently, Zwally et al. [2002] also

found a puzzling result using HHT: from SMMR data

covering the period from 1979 to 1998, they found an

increase in the Antarctic sea ice but a decrease in Arctic ice.

With the recent collapse of the Antarctic ice bank, their

observation added complexity to the global climate change

scenarios.

[93] From the successful applications mentioned above,

HHT is demonstrated to be a powerful tool in our future

research tool kit. It is expected that more successful appli-

cations will be made in the geophysical sciences.

6. SEARCHING FOR A THEORETICAL
FOUNDATION

[94] In sections 2–5, we have introduced HHT, its recent

methodological developments, and applications in the geo-

sciences. The power of the method has been demonstrated,

and the advantages of HHT over many previously widely

used methods are also explained. However, HHT and its

most recent developments are all empirical. A theoretical

basis for HHT, or adaptive data analysis in general, is highly

desired.

[95] By far, most of the theoretical studies on adaptive

time-frequency analysis can fit into one of three major
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categories: the first category of the studies concentrates on

finding the necessary or sufficient or both conditions for

positive definite instantaneous frequency defined as the

derivative of the phase function defined using the Hilbert

transform (see equation (11)). Sharpley and Vatchev [2006]

found that a weak IMF, defined as any function having the

same number of extrema and zero crossings, should satisfy a

simple ordinary self-adjoint differential equation. However,

such a week IMF failed to satisfy the limitation imposed by

the Bedrosian theorem. Xu and Yan [2006] investigated the

necessary and sufficient conditions to ensure the validity of

Bedrosian theory. They found a stronger sufficient condition

for Hilbert transform of a product of two functions in

temporal domain, which treats the classical Bedrosian

theorem in frequency domain as a special case. Qian

[2006a, 2006b] pursued other conditions for positive definite

instantaneous frequency defined by equation (11). Qian and

Chen [2006] also defined the condition for positive definite

instantaneous frequency for special types of equations.

[96] The above mentioned studies provide new insights

on the validity of using the Hilbert transform to define

physically meaningful instantaneous frequency. Unfortu-

nately, with EMD components (IMFs) defined in the current

way, these new insights are not going to overcome the

limitation imposed by the Bedrosian theorem. However, the

Bedrosian limitation does not vindicate the fact that the

Hilbert transform is not capable of defining correct instan-

taneous frequency; rather, it can be circumvented by using

the normalized Hilbert transform as described in section 3.1

and in greater detail by Huang et al. [2008].

[97] The second category of study uses alternative de-

composition methods to EMD to find monocomponents of

the data. A representative study of this category is that of

Olhede and Walden [2004]. They used wavelet-based pro-

jections and obtained a set of monocomponent like func-

tions, from which smooth instantaneous frequency could be

found through Hilbert transform. The problem of this

approach is that the decomposition is based on a priori

defined wavelet basis; therefore, the decomposition is linear

with respect to the selected basis. The fact that the instan-

taneous frequency values obtained through Hilbert trans-

form are smooth is a consequence of eliminating the

intrawave frequency modulation; therefore, this type of

study lacks the unique ability to represent the nonlinear

waveforms as HHT does.

[98] The third category of study is through modifying

EMD algorithm: using B spline local medium fitting to

replace the cubic spline envelope mean in traditional EMD.

With such modification, Chen et al. [2006] made an effort

to give EMD an analytic expression. The algorithm modi-

fication leads to noticeably different decompositions. How-

ever, the overall characteristics of the decompositions

remained the same. It is hoped that the B spline with the

analytic expression can lead to a proof of convergence, for

the varying diminishing property guarantees that no straight

line intersects a B spline curve more times than it intersects

the curve’s control polyline. Therefore, the B spline should

have less variation and contain fewer extrema than the

original collection of extrema. A formal proof of conver-

gence is still wanting at this time.

7. OUTSTANDING OPEN PROBLEMS

[99] Since the introduction of HHT, it has gained some

following and recognition. Up to this time, most of the

progress in HHT has been in the application areas, while the

underlying mathematical problems are mostly left untreated.

The status of HHT is similar to wavelet analysis in the early

1980s. The future of the work depends on the arrival of

someone to lay the mathematical foundation for HHT, as

Daubechies [1992] did for wavelets. The following discus-

sions of some outstanding mathematical problems are

essentially based on the work of Huang [2005b] with some

updating. The problems are set forth in sections 7.1–7.6.

7.1. Adaptive Data Analysis

[100] One of the most powerful methods in data analysis

is to decompose a complicated data set into information-

concentrated components. The established approach for data

decomposition is to define a basis (such as trigonometric

functions in Fourier analysis, for example); the analysis is

then reduced to a convolution computation. This well-

established paradigm is specious, for there is no a priori

reason to believe that the basis selected truly represents the

underlying processes for all the data all the time. Conse-

quently, most of the results produced are not informative. It

does, however, provide a definitive quantification with

respect to a known metric for certain properties of the data

based on the basis selected.

[101] If we give up this paradigm, there is no solid

foundation to tread on. Yet data analysis methods need to

be adaptive for most of the natural processes are both

nonlinear and nonstationary. Therefore, there is no universal

basis that could fit all the data all the time. Furthermore, the

goal of data analysis is to discover the underlying physical

processes; only the adaptive method can let the data reveal

their underlying processes without any undue influence

from the basis. Unfortunately, there is no mathematical

model or precedent for such an approach. Recently, adaptive

data processing has gained some attention especially in

the adaptive wavelet analysis for filtering and denoising

[Chang et al., 2000]. Adaptation in such applications is

not universal but is restricted to utilizing the difference

between the characteristics of noise and data. The other

adaptive approach depends on feedback [Widrow and

Stearns, 1985], which will depend on the stationarity

assumption. To generalize these available methods to non-

linear and nonstationary conditions is not easy; to generalize

the adaptation as a methodology requires a totally new

paradigm in mathematics. Related issues such as the

uniqueness and convergence, for example, are tasks yet to

be established.

7.2. Nonlinear System Identification

[102] Traditional system identification methods are based

on the input-output relationship. Rigorous as the traditional
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approach is, it is impossible to apply such methods to

natural systems because in most of the cases the luxury of

having such data is not available. All that might be available

is a set of data describing a phenomenon; it is usually not

known what the input actually is or the identity of the

system itself. The only additional information that might be

available is some general knowledge of the underlying

controlling processes connected with the data. For example,

the atmosphere and ocean are all controlled by the gener-

alized equations for fluid dynamics and thermodynamics,

which are nonlinear. Such a priori knowledge could guide

the search for the characteristics or the signatures of

nonlinearity. The question is whether it is possible to

identify the nonlinear characteristics from the data. This

might well be an ill-posed problem. Whether it is possible

or not to identify the system through data only is an open

question.

[103] So far, most of the available tests for nonlinearity

from any data are only necessary conditions, for example,

various probability distributions, higher-order spectral anal-

ysis, harmonic analysis, instantaneous frequency, etc. [see,

e.g., Bendat, 1990; Priestley, 1988; Tong, 1990; Kantz and

Schreiber, 1997; Diks, 1999]. There are many difficult

problems in making such identifications from observed data

only. This difficulty has made some scientists talk about

only nonlinear systems rather than nonlinear data. Such

reservations are reasonable and understandable, but this

choice of terms still does not resolve the basic problem.

The problem is made even more difficult when the process

is also stochastic and nonstationary. For a nonstationary

process, the various probabilities and the Fourier-based

spectral analyses are all problematic, for those methods

are based on global properties, with linear and stationary

assumptions.

[104] Through the study of instantaneous frequency, intra-

wave frequency modulation is proposed as an indicator for

nonlinearity. The advantage of the new approach is that the

nonlinearity is revealed at the frequency near the funda-

mental mode rather appearing in the higher-frequency

harmonics, which are usually buried in or mingled with

the noise, making the identification even more difficult.

More recently, Huang [2005b] has also identified the Teager

energy operator [Kaiser, 1990; Maragos et al., 1993a,

1993b] as an extremely local and sharp test for harmonic

distortions within any IMF derived from data. The combi-

nation of these local methods offers some hope for system

identification, but the problem is not solved, for this

approach is based on the assumption that the input is linear.

Furthermore, all these local methods also depend on local

harmonic distortion; they cannot distinguish a quasi-linear

system from a truly nonlinear system. A test or definition

for nonlinear system identification based on observed out-

put only is still needed.

7.3. End Effects of EMD

[105] End effects have unavoidably plagued all known

data analysis methods from the beginning. The accepted,

albeit timid, way to deal with it is using various kinds of

windowing, as is done routinely in Fourier spectral analysis.

Although sound in theory, such practices inevitably sacrifice

some precious data near the ends, a serious hindrance when

the data are few. In the HHT approach, we opt to extend the

data beyond the existing range; otherwise, we have to stop

the spline at the last extremum. Consequently, a method is

needed to determine the spline curve between the last

available extremum and the end of the data range. Huang

et al. [1998] introduced the idea of using a ‘‘window

frame,’’ a way to extend the data beyond the existing range

in order to tame the spline envelopes and extract some

information from all the data available.

[106] The extension of data, or data prediction, is a

difficult procedure even for linear and stationary processes.

The problem that must be faced is how to make predictions

for nonlinear and nonstationary stochastic processes. Here

the cozy shelter of the linear, stationary, low-dimensional,

and deterministic assumptions must be abandoned, and the

complicated real world must be faced. The data are mostly

from high-dimensional nonlinear and nonstationary stochas-

tic systems. Are these systems predictable? What are the

conditions needed to make them predictable? How well can

the goodness of a prediction be quantified? In principle,

data prediction cannot be made based on past data alone; the

underlying processes have to be involved. Can the available

data be used to extract enough information to make a

prediction? These are open questions at present.

[107] In practice, however, our problem is not as daunting

as discussed above, for we do not have to make the

prediction on the whole data but only on the IMF, which

has a much narrower bandwidth, for all the IMF should

have the same number of extrema and zero crossings.

Furthermore, all that is needed is the value and location

of the next extrema not all the data. Such a limited goal,

notwithstanding, the task is still challenging.

7.4. Spline Problems

[108] EMD is a ‘‘Reynolds type’’ decomposition: to

extract variations from the data by separating the mean, in

this case the local mean, from the fluctuations using spline

fits. Although this approach is totally adaptive, several

unresolved problems arise from its implementation.

[109] First, among all the spline methods, which one is

the best? This is critical for it can be easily shown that all

the IMFs other than the first are a summation of spline

functions. This is because, from equations (7) to (9), we

obtain

c1 ¼ X tð Þ � m1k þ m1 k�1ð Þ þ � � � þ m11 þ m1

� �
; ð31Þ

in which all the intermittent mean functions are generated

by splines. Therefore, from equation (6),

r1 ¼ X tð Þ � c1 ¼ m1k þ m1 k�1ð Þ þ � � � þ m11 þ m1

� �
ð32Þ

is totally determined by splines. As a result, all the rest of

the IMFs are also totally determined by spline functions.

What kind of spline is the best fit for the EMD? How can
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one quantify the selection of one spline versus another? On

the basis of our experience, it was found that the higher-

order spline functions needed additional subjectively

determined parameters, which violates the adaptive spirit

of the approach. Furthermore, higher-order spline functions

could also introduce additional length scales, which could

lead to slow convergence and even nonconvergence.

Furthermore, higher-order splines are also more time-

consuming in computation. Such shortcomings dictate that

only the cubic spline be selected. However, even with the

cubic spline, should we use the B spline as proposed by

Chen et al. [2006] or the natural cubic spline as used here?

[110] Finally, there is also the critical question of conver-

gence of the EMD method: Is there a guarantee that in finite

steps, a function can always be reduced into a finite number

of IMFs? All intuitive reasoning and experience suggest that

the procedure is converging. Under rather restrictive assump-

tions, the convergence can even be proved rigorously. The

restricted and simplified case studied had sifting with

middle points only. With further restriction of the middle

point sifting to linearly connected extrema, the convergence

proof can be established by reductio ad absurdum, and the

number of extrema of the residue function has to be less

than or equal to that in the original function. The case of

equality only exists when the oscillation amplitudes in the

data are either monotonically increasing or decreasing. In

this case, the sifting may never converge and may forever

have the same number in the original data and the IMF

extracted. The proof is not complete in another aspect: Can

one prove the convergence once the linear connection is

replaced by the cubic spline? Therefore, this approach to

establishing a proof is not complete.

[111] Recently, Chen et al. [2006] have used a B spline to

implement the sifting. If one uses B spline as the base for

sifting, then one can invoke the variation-diminishing

property of the B spline and show that the spline curve will

have less extrema. Details of this proof remain to be

established.

7.5. Best IMF Selection and Uniqueness

[112] Does EMD generate a unique set of IMFs? By

varying the parameters of sifting, the EMD method is a

tool to generate infinite sets of IMFs. How are these

different sets of IMF related? What is a criterion, or are

there criteria to guide the sifting? What is the statistical

distribution and significance of the different IMF sets?

Therefore, a critical question is the following: How do we

optimize the sifting procedure to produce the best IMF set?

The difficulty is not to sift too many times, which would

drain all the physical meanings out of each IMF component,

and, at the same time, not to sift too few times and fail to get

clean IMFs. Recently, Huang et al. [2003] has studied the

problem of different sifting parameters and established a

confidence limit for the resulting IMFs and Hilbert spec-

trum. However, the study was empirical and limited to cubic

splines only. Optimization of the sifting process is still an

open question.

[113] This question of uniqueness of the IMF can be

traced to this more fundamental one: How do we define the

IMF more rigorously? The definition given by Huang et al.

[1998, 1999] is hard to quantify. Fortunately, the results are

quite forgiving: even with the vague definition, the results

produced are similar enough. Is it possible to give a rigorous

mathematical definition and also find an algorithm that can

be implemented automatically? Is EEMD the solution?

7.6. Hilbert Transform and Quadrature

[114] Traditionally, the Hilbert transform has been con-

sidered unusable or imprecise in defining the instantaneous

frequency by two well-known theorems: the Bedrosian

theorem [Bedrosian, 1963] and the Nuttall theorem [Nuttall,

1966]. The Bedrosian theorem states that the Hilbert trans-

form for product functions can only be expressed in terms of

the product of the low-frequency function with the Hilbert

transform of the high-frequency one if the spectra of the two

functions are disjointed. This guarantees that the Hilbert

transform of a(t) cosq(t) is given by a(t) sinq(t). And, the
Nuttall theorem [Nuttall, 1966] further stipulates that the

Hilbert transform of cosq(t) is not necessarily sinq(t) for an
arbitrary function q(t). In other words, there is a discrepancy
between the Hilbert transform and the perfect quadrature of

an arbitrary function q(t). Unfortunately, the error bound

given by Nuttall [1966] is expressed in terms of the integral

of the spectrum of the quadrature, an unknown quantity.

Therefore, the single-valued error bound cannot be evaluated.

[115] Through research, the restriction of the Bedrosian

theorem has been overcome through the EMD process and

normalization of the resulting IMFs [Huang et al., 2003].

With this new approach, the error bound given by Nuttall

[1966] has been improved by expressing the error bound as

a function of time in terms of instantaneous energy. How-

ever, the influence of the normalization procedure must be

quantified. As the normalization procedure depends on a

nonlinear amplification of the data, what is the influence of

this amplification on the final results? Even if the normal-

ization is accepted for an arbitrary q(t) function, the instan-
taneous frequency is only an approximation. How can this

approximation be improved?

[116] One possible alternative is to abandon the Hilbert

transform and to compute the phase function using the arc-

cosine of the normalized data. Two complications arise from

this approach: the first one is the high precision needed for

computing the phase function when its value is near np/2.
The second one is that the normalization scheme is only an

approximation; therefore, the normalized functional value

can occasionally exceed unity. Either way, some approx-

imations are needed.

8. CONCLUSION

[117] HHT offers a potentially viable method for nonlin-

ear and nonstationary data analysis, especially for time-

frequency-energy representations. It has been tested widely

in various applications other than geophysical research but

only empirically. In all the cases studied, HHT gives results
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much sharper than most of the traditional analysis methods.

And in most cases, it reveals true physical meanings. In

order to make the method more robust, rigorous, and

friendlier in application, an analytic mathematical founda-

tion is needed. The reasons are more than aesthetic; there

are important practical justifications:

[118] 1. Only with a mathematical foundation can we

make a unified general conclusion on the validity of the

empirical results and deduce principles or laws. In the

history of science, there are plenty of examples of great

discoveries based on the empirical approach, but only with

theoretical foundation can we unify the diverse observa-

tions. A prominent example is in electromagnetism: in the

1820s, Hans Oersted discovered that a wire carrying an

electric current can generate a magnetic field. In the 1830s,

Michael Faraday discovered that a moving magnet can

produce an electric current in a moving wire passing

through the magnetic field. Both of these observations are

important and have practical applications, but it was Max-

well’s equations that unified electromagnetism, which cov-

ers all of the particular phenomena.

[119] 2. Only with a mathematical foundation can we

extend the validity to phenomena too subtle to be observed

readily.

[120] Over the past few years, the HHT method has

gained some following and recognition. Up to this time,

most of the progress in HHT was in the application areas,

while the underlying mathematical problems were mostly

left untreated. Therefore, all of the results generated thus far

are case-by-case comparisons conducted empirically. The

work with HHT is presently at the stage corresponding

historically to wavelet analysis in the early 1980s: produc-

ing great results but waiting for a unifying mathematical

foundation on which to rest its case. We sorely need some

one like Daubechies [1992], who laid the theoretical foun-

dation of wavelet analysis in her famous 10 lectures. I hope

this review will also draw the attention of mathematicians to

HHT.

[121] In our view, the most likely solutions to the out-

standing problems associated with HHT can only be for-

mulated in terms of optimization: the selection of spline, the

extension of the end, etc. can only be optimized for the time

being perhaps. This may be the area of future research.
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O. Métais, pp. 203–215, Kluwer, Dordrecht, Netherlands.

Baines, P. G. (2005), Long-term variations in winter rainfall of
southwest Australia and the African monsoon, Aust. Meteorol.
Mag., 54, 91–102.

Banner, M. L., J. R. Gemmrich, and D. M. Farmer (2002), Multiscale
measurements of ocean wave breaking probability, J. Phys. Ocea-
nogr., 32, 3364 – 3375, doi:10.1175/1520-0485(2002)032
<3364:MMOOWB>2.0.CO;2.

Barnes, R. T. H., R. Hide, A. A. White, and C. A. Wilson (1983),
Atmospheric angular momentum fluctuations, length-of-day
changes and polar motion, Proc. R. Soc. London, Ser. A, 387,
31–73.

Bedrosian, E. (1963), On the quadrature approximation to theHilbert
transform of modulated signals, Proc. IEEE, 51, 868–869.

Bendat, J. S. (1990), Nonlinear System Analysis and Identification
From Random Data, 267 pp., Wiley Interscience, New York.

Bindschadler, R., H. Choi, C. Schuman, and T. Markus (2005),
Detecting and measuring new snow accumulation on ice by
satellite remote sensing, Remote Sens. Environ., 98, 388–402,
doi:10.1016/j.rse.2005.07.014.

Carmona, R., W. L. Hwang, and B. Torresani (1998), Practical
Time-Frequency Analysis: Gabor and Wavelet Transform With
an Implementation in S, 490 pp., Academic, San Diego, Calif.

Chang, S. G., B. Yu, and M. Vetterli (2000), Adaptive wavelet
thresholding for image denoising and compression, IEEE Trans.
Image Process., 9, 1532–1546, doi:10.1109/83.862633.

Chao, B. F. (1989), Length-of-day variations caused by El Niño-
Southern Oscillation and quasi-biennial oscillation, Science, 243,
923–925, doi:10.1126/science.243.4893.923.

Chen, J., and X. L. Xu (2004), On modeling of typhoon-induced
non-stationary wind speed for tall buildings, Struct. Design Tall
Spec. Build., 13, 145–163, doi:10.1002/tal.247.

Chen, K. Y., H. C. Yeh, S. Y. Su, C. H. Liu, and N. E. Huang
(2001), Anatomy of plasma structures in an equatorial spread F
event, Geophys. Res. Lett., 28, 3107 – 3110, doi:10.1029/
2000GL012805.

Chen, Q., N. E. Huang, S. Riemenschneider, and Y. Xu (2006), A
B-spline approach for empirical mode decomposition, Adv. Com-
put. Math., 24, 171–195, doi:10.1007/s10444-004-7614-3.

Christy, J. R., R. W. Spencer, and W. D. Braswell (2000), MSU
tropospheric temperatures: Dataset construction and radiosonde
comparisons, J. Atmos. Oceanic Technol., 17, 1153–1170.

Cohen, L. (1995), Time Frequency Analysis: Theory and Applica-
tions, 320 pp., Prentice-Hall, Englewood Cliffs, N. J.

Coughlin, K., and K.-K. Tung (2004a), 11-year solar cycle in the
stratosphere extracted by the empirical mode decomposition
method, Adv. Space Res., 34, 323–329.

Coughlin, K., and K.-K. Tung (2004b), Eleven-year solar cycle
signal throughout the lower atmosphere, J. Geophys. Res., 109,
D21105, doi:10.1029/2004JD004873.

Coughlin, K., and K.-K. Tung (2005), Empirical mode decomposi-
tion and climate variability, in Hilbert-Huang Transform: Intro-
duction and Applications, edited by N. E. Huang and S. S. P.
Shen, pp. 149–165, World Sci., Singapore.

Damerval, C., S. Meignen, and V. Perrier (2005), A fast algorithm
for bidimensional EMD, IEEE Signal Process. Lett., 12, 701–
704, doi:10.1109/LSP.2005.855548.

RG2006 Huang and Wu: A REVIEW ON HILBERT-HUANG TRANSFORM

20 of 23

RG2006



Datig, M., and T. Schlurmann (2004), Performance and limitations
of the Hilbert-Huang transformation (HHT) with an application
to irregular water waves, Ocean Eng., 31, 1783 – 1834,
doi:10.1016/j.oceaneng.2004.03.007.

Daubechies, I. (1992), Ten Lectures on Wavelets, 357 pp., Soc. for
Ind. and Appl. Math., Philadelphia, Pa.

Diks, C. (1999), Nonlinear Time Series Analysis, 209 pp., World
Sci., Singapore.

Duffy, D. G. (2004), The application of Hilbert-Huang transforms
to meteorological datasets, J. Atmos. Oceanic Technol., 21, 599–
611, doi:10.1175/1520-0426(2004)021<0599:TAOHTT>2.0.
CO;2.

Einstein, A. (1983), Sidelights on Relativity, 56 pp., Dover,
Mineola, N. Y.

El-Askary, H., S. Sarkar, L. Chiu, M. Kafatos, and T. El-Ghazawi
(2004), Rain gauge derived precipitation variability over Virginia
and its relation with the El Nino Southern Oscillation, Adv. Space
Res., 33, 338–342.

EPICA Community Members, (2004), Eight glacial cycles
from an Antarctic ice core, Nature, 429, 623–628, doi:10.1038/
nature02599.
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Linderhed, A. (2005), Variable sampling of the empirical mode
decomposition of two-dimensional signals, Int. J. Wavelets Multre-
solut. Inf. Process., 3, 435–452, doi:10.1142/S0219691305000932.

Loh, C. H., Z. K. Lee, T. C. Wu, and S. Y. Peng (2000),
Ground motion characteristics of the Chi-Chi earthquake of
21 September 1999, Earthquake Eng. Struct. Dyn., 29, 867–
897, doi:10.1002/(SICI)1096-9845(200006)29:6<867::AID-
EQE943>3.0.CO;2-E.

Loh, C. H., T. C. Wu, and N. E. Huang (2001), Application of the
empirical mode decomposition-Hilbert spectrummethod to identify
near-fault ground-motion characteristics and structural responses,
Bull. Seismol. Soc. Am., 91, 1339–1357, doi:10.1785/0120000715.

Long, S. R. (2005), Applications of HHT in image analysis, in
Hilbert-Huang Transform: Introduction and Applications, edited
by N. E. Huang and S. S. P. Shen, pp. 289–305, World Sci.,
Singapore.

Lundquist, J.K. (2003), Intermittent and elliptical inertial oscillations
in the atmospheric boundary layer, J. Atmos. Sci., 60, 2661–2673,
doi:10.1175/1520-0469(2003)060<2661:IAEIOI>2.0.CO;2.

Maragos, P., J. F. Kaiser, and T. F. Quatieri (1993a), On amplitude
and frequency demodulation using energy operators, IEEE
Trans. Signal Process., 41, 1532–1550, doi:10.1109/78.212729.

Maragos, P., J. F. Kaiser, and T. F. Quatieri (1993b), Energy
separation in signal modulation with application to speech
analysis, IEEE Trans. Signal Process., 41, 3024 – 3051,
doi:10.1109/78.277799.

Mears, C. A., M. C. Schabel, and F. J. Wentz (2003), A reanalysis
of the MSU channel 2 tropospheric temperature record, J. Clim.,
16, 3650–3664.

Molla, M. K. I., M. S. Rahman, A. Sumi, and P. Banik (2006),
Empirical mode decomposition analysis of climate changes with
special reference to rainfall data, Discrete Dyn. Nat. Soc., 2006,
45348, doi:10.1155/DDNS/2006/45348.

Mwale, D., T. Y. Gan, and S. S. P. Shen (2004), A new analysis of
variability and predictability of seasonal rainfall of central south-
ern Africa for 1950–94, Int. J. Climatol., 24, 1509–1530,
doi:10.1002/joc.1062.

Nunes, J. C., Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel
(2003a), Image analysis by bidimensional empirical mode
decomposition, Image Vis. Comput. , 21 , 1019 – 1026,
doi:10.1016/S0262-8856(03)00094-5.

Nunes, J. C., O. Niang, Y. Bouaoune, E. Delechelle, and P. Bunel
(2003b), Bidimensional empirical mode decomposition modified
for texture analysis, in Image Analysis: 13th Scandinavian
Conference, SCIA 2003 Halmstad, Sweden, June 29 – July 2,
2003 Proceedings, Lect. Notes Comput. Sci., vol. 2749,
pp. 295–296, Springer, New York.

Nunes, J. C., S. Guyot, and E. Delechelle (2005), Texture analysis
based on local analysis of the bidimensional empirical mode
decomposition, Mach. Vis. Appl., 16, 177–188, doi:10.1007/
s00138-004-0170-5.

Nuttall, A. H. (1966), On the quadrature approximation to the
Hilbert transform of modulated signals, Proc. IEEE, 54, 1458–
1459.

Olhede, S., and A. T. Walden (2004), The Hilbert spectrum via
wavelet projections, Proc. R. Soc., Ser. A, 460, 955–975.

Pan, J. Y., X. H. Yan, Q. Zheng, W. T. Liu, and V. V. Klemas
(2003), Interpretation of scatterometer ocean surface wind vector
EOFs over the northwestern Pacific, Remote Sens. Environ., 84,
53–68, doi:10.1016/S0034-4257(02)00073-1.

Peel, M. C., and T. A. McMahon (2006), Recent frequency
component changes in interannual climate variability, Geophys.
Res. Lett., 33, L16810, doi:10.1029/2006GL025670.

Petit, J. R., et al. (1997), Four climate cycles in Vostok ice core,
Nature, 387, 359–360, doi:10.1038/387359a0.

Petit, J. R., et al. (1999), Climate and atmospheric history of the
past 420,000 years from the Vostok ice core, Antarctica, Nature,
399, 429–436, doi:10.1038/20859.

Pinzón, J. E.,M. E. Brown, and C. J. Tucker (2005), EMD correction
of orbital drift artifacts in satellite data stream, in Hilbert-Huang
Transform: Introduction and Applications, edited by N. E. Huang
and S. S. P. Shen, pp. 167–186, World Sci., Singapore.

Priestley, M. B. (1988), Nonlinear and Nonstationary Time Series
Analysis, 237 pp., Academic, London.

Qian, T. (2006a), Analytic signals and harmonic measures, J. Math.
Anal. Appl., 314, 526–536, doi:10.1016/j.jmaa.2005.04.003.

Qian, T. (2006b), Mono-components for decomposition of signals,
Math. Methods Appl. Sci., 29, 1187 – 1198, doi:10.1002/
mma.721.

Qian, T., and Q. H. Chen (2006), Characterization of analytic phase
signals, Comput. Math. Appl., 51, 1471–1482, doi:10.1016/
j.camwa.2006.01.007.

Razmi, H. (2005), On the tidal force of the Moon on the Earth, Eur.
J. Phys., 26, 927–934, doi:10.1088/0143-0807/26/5/024.

Ropelewski, C. F., and P. D. Jones (1987), An extension of the Tahiti-
Darwin SouthernOscillation Index,Mon.Weather Rev., 115, 2161–
2165, doi:10.1175/1520-0493(1987)115<2161:AEOTTS>2.0.
CO;2.

Rosen, R. D., and D. A. Salstein (1983), Variations in atmospheric
angular momentum on global and regional scales and the length
of day, J. Geophys. Res., 88, 5451 – 5470, doi:10.1029/
JC088iC09p05451.

Salisbury, J. I., and M. Wimbush (2002), Using modern time series
analysis techniques to predict ENSO events from the SOI time
series, Nonlinear Processes Geophys., 9, 341–345.

Schlurmann, T. (2002), Spectral analysis of nonlinear water waves
based on the Hilbert-Huang transformation, J. Offshore Mech.
Arct. Eng., 124, 22–27, doi:10.1115/1.1423911.

Sharpley, R. C., and V. Vatchev (2006), Analysis of the intrinsic
mode functions, Const. Approximation, 24, 17–47, doi:10.1007/
s00365-005-0603-z.

Sinclair, S., and G. G. S. Pegram (2005), Empirical mode
decomposition in 2-D space and time: A tool for space-time
rainfall analysis and nowcasting, Hydrol. Earth Syst. Sci., 9,
127–137.

Slayback, D. A., J. E. Pinzon, S. O. Los, and C. J. Tucker (2003),
Northern Hemisphere photosynthetic trends 1982–99, Global
Change Biol., 9, 1–15, doi:10.1046/j.1365-2486.2003.00507.x.

Song, P., and J. Zhang (2001), On the application of two-
dimensional empirical mode decomposition in the information
separation of oceanic remote sensing image (in Chinese), High
Technol. Lett., 11, 62–67.

Susanto, R. D., A. L. Gordon, J. Sprintall, and B. Herunadi (2000),
Intraseasonal variability and tides in Makassar Strait, Geophys.
Res. Lett., 27, 1499–1502, doi:10.1029/2000GL011414.

Tatli, H., H. N. Dalfes, and S. S. Mentes (2005), Surface air tem-
perature variability over Turkey and its connection to large-scale
upper air circulation via multivariate techniques, Int. J. Climatol.,
25, 331–350, doi:10.1002/joc.1133.

Tong, H. (1990), Nonlinear Time Series Analysis, 584 pp., Oxford
Univ. Press, Oxford, U.K.

Vagle, S., P. Chandler, and D. M. Farmer (2005), On the dense
bubble clouds and near bottom turbulence in the surf zone,
J. Geophys. Res., 110, C09018, doi:10.1029/2004JC002603.

RG2006 Huang and Wu: A REVIEW ON HILBERT-HUANG TRANSFORM

22 of 23

RG2006



Vasudevan, K., and F. A. Cook (2000), Empirical mode skeletoni-
zation of deep crustal seismic data: Theory and applications,
J. Geophys. Res., 105, 7845–7856, doi:10.1029/1999JB900445.

Veltcheva, A. D. (2002), Wave and group transformation by a
Hilbert spectrum, Coast. Eng. J., 44, 283–300, doi:10.1142/
S057856340200055X.

Veltcheva, A. D., and C. G. Soares (2004), Identification of the com-
ponents of wave spectra by the Hilbert-Huang transform method,
Appl. Ocean Res., 26, 1–12, doi:10.1016/j.apor.2004.08.004.

Veltcheva, A. D., P. Cavaco, and C. G. Soares (2003), Comparison
of methods for calculation of the wave envelope, Ocean Eng.,
30, 937–948, doi:10.1016/S0029-8018(02)00069-0.

Wan, S. Q., G. L. Feng, W. J. Dong, J. P. Li, X. Q. Gao, and W. P.
He (2005), On the climate prediction of nonlinear and non-
stationary time series with the EMD method, Chin. Phys., 14,
628–633, doi:10.1088/1009-1963/14/3/036.

Wang, F. T., S. H. Chang, and C. Y. Lee (2006), Signal detection in
underwater sound using the empirical mode decomposition,
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E89-A,
2415–2421.

Widrow, B., and S. D. Stearns (1985), Adaptive Signal Processing,
474 pp., Prentice Hall, Upper Saddle River, N. J.

Wu, C. H., and A. F. Yao (2004), Laboratory measurements of
limiting freak waves on currents, J. Geophys. Res., 109,
C12002, doi:10.1029/2004JC002612.

Wu, S. H., Z. S. Liu, and B. Y. Liu (2006), Enhancement of lidar
backscatters signal-to-noise ratio using empirical mode decom-
position method, Opt. Commun., 267, 137–144, doi:10.1016/
j.optcom.2006.05.069.

Wu, Z., and N. E. Huang (2004), A study of the characteristics of
white noise using the empirical mode decomposition method,
Proc. R. Soc., Ser. A, 460, 1597–1611.

Wu, Z., and N. E. Huang (2005a), Statistical significant test of
intrinsic mode functions, in Hilbert-Huang Transform: Introduc-
tion and Applications, edited by N. E. Huang and S. S. P. Shen,
pp. 125–148, World Sci., Singapore.

Wu, Z., and N. E. Huang (2005b), Ensemble empirical mode
decomposition: A noise-assisted data analysis method, COLA
Tech. Rep. 193, Cent. for Ocean-Land-Atmos. Stud., Calverton,
Md. (Available at ftp://grads.iges.org/pub/ctr/ctr_193.pdf)

Wu, Z., and N. E. Huang (2008), Ensemble empirical mode
decomposition: A noise-assisted data analysis method, Adv.
Adapt. Data Anal., in press.

Wu, Z., N. E. Huang, S. R. Long, and C.-K. Peng (2007a), On the
trend, detrending, and the variability of nonlinear and non-
stationary time series, Proc. Natl. Acad. Sci. U. S. A., 104,
14,889–14,894.

Wu, Z., E. K. Schneider, B. P. Kirtman, E. S. Sarachik, N. E.
Huang, and C. J. Tucker (2007b), The modulated annual
cycle—An alternative reference frame for climate anomaly,
COLA Tech. Rep. 193, Cent. For Ocean-Land-Atmos. Stud.,
Calverton, Md. (Available at ftp://grads.iges.org/pub/ctr/
ctr_244.pdf)

Wu, Z., E. K. Schneider, B. P. Kirtman, E. S. Sarachik, N. E.
Huang, and C. J. Tucker (2008), Amplitude-frequency
modulated annual cycle: An alternative reference frame for
climate anomaly, Clim. Dyn., in press.

Xie, L., L. J. Pietrafesa, and K. J. Wu (2002), Interannual and
decadal variability of landfalling tropical cyclones in the south-
east coastal states of the United States, Adv. Atmos. Sci., 19,
677–686, doi:10.1007/s00376-002-0007-y.

Xu, Y., and D. Yan (2006), The Bedrosian identity for the Hilbert
transform of product functions, Proc. Am. Math. Soc., 134,
2719–2728, doi:10.1090/S0002-9939-06-08315-8.

Xu, Y., B. Liu, J. Liu, and S. Riemenschneider (2006), Two-
dimensional empirical mode decomposition by finite elements,
Proc. R. Soc. Ser., 462, 3081–3096.

Xu, Y. L., and J. Chen (2004), Characterizing nonstationary wind
speed using empirical mode decomposition, J. Struct. Eng., 130,
912–920, doi:10.1061/(ASCE)0733-9445(2004)130:6(912).

Yan, X.-H., Y. Zhou, J. Pan, D. Zheng, M. Fang, X. Liao, M.-X.
He, W. T. Liu, and X. Ding (2002), Pacific warm pool excitation,
Earth rotation and El Niño southern oscillations, Geophys. Res.
Lett., 29(21), 2031, doi:10.1029/2002GL015685.

Yan, X. H., Y. H. Jo, W. T. Liu, and M. X. He (2006), A new study
of the Mediterranean outflow, air-sea interactions, and meddies
using multisensor data, J. Phys. Oceanogr., 36, 691–710,
doi:10.1175/JPO2873.1.

Yuan, Y., M. Jin, P. Song, and J. Zhang (2008), Empirical and
dynamical detection of the sea bottom topography from synthetic
aperture radar image, Adv. Adapt. Data Anal., in press.

Zhang, R. R. (2006), Characterizing and quantifying earthquake-
induced site nonlinearity, Soil Dyn. Earthquake Eng., 26, 799–
812, doi:10.1016/j.soildyn.2005.03.004.

Zhang, R. R., S. Ma, and S. Hartzell (2003a), Signatures of the
seismic source in END-based characterization of the 1994 North-
ridge, California, earthquake recordings, Bull. Seismol. Soc. Am.,
93, 501–518, doi:10.1785/0120010285.

Zhang, R. R., S. Ma, E. Safak, and S. Hartzell (2003b), Hilbert-Huang
transform analysis of dynamic and earthquake motion recordings,
J. Eng. Mech., 129, 861 – 875, doi:10.1061/(ASCE)0733-
9399(2003)129:8(861).

Zheng, Q., R. J. Lai, N. E. Huang, J. Y. Pan, and L. W. Timothy
(2006), Observation of ocean current response to 1998 Hurricane
Georges in the Gulf of Mexico, Acta Oceanol. Sin., 25, 1–14.

Zwally, H. J., J. C. Comiso, C. L. Parkinson, D. J. Cavalieri,
andP.Gloersen (2002),VariabilityofAntarctic sea ice,1979–1998,
J. Geophys. Res., 107(C5), 3041, doi:10.1029/2000JC000733.

�������������������������
N. E. Huang, Research Center for Adaptive Data Analysis, National

Central University, 300 Jhongda Road, Chungli, 32001 Taiwan.
(norden@ncu.edu.tw)
Z. Wu, Center for Ocean-Land-Atmosphere Studies, Calverton, MD

20705, USA.

RG2006 Huang and Wu: A REVIEW ON HILBERT-HUANG TRANSFORM

23 of 23

RG2006


