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ABSTRACT

The probability density function and the first three statistical moments of velocity, acceleration and pressure
of a gravity wave field, for points in the vicinity of still water level, are obtained taking into consideration the
effects of free surface fluctuation and using the second-order Stokes wave model. These results reduce to those

obtained previously by Tung using linear wave theory.

1. Introduction

Knowledge of wave field kinematics and dynamics
is of importance to wave researchers and particularly
ocean engineers interested in assessing wave force and
pressure. To calculate fluid particle velocity, acceler-
ation and pressure of points fixed in space in the vicinity
of still water level in a wave field, one must take into
account the fact that due to fluctuation of the free
surface, the point under consideration is in the water
only intermittently. Tung (1975), Tung and Pajouhi
(1976) and Tung (1976) calculated the probability
density function, the first three statistical moments
and covariances and spectra of the kinematics and
dynamics of deep-water linear, zero-mean Gaussian
waves and showed that the free surface fluctuation
phenomenon drastically affects these statistical prop-
erties. We now propose to extend the work to consider
nonlinear, non-Gaussian waves.

In 1963, Longuet-Higgins studied the effects of non-
linearities on statistical distribution of wave elevation
by using the Gram-Charlier series. For the problem at
hand, if this line of investigation is followed, the math-
ematics would be rather involved. Recently, in con-
sideration that sea waves are mostly narrow-band,
Tayfun (1980) and Huang et al. (1983) used the Stokes
wave to model nonlinear narrow-band random waves;
the calculation becomes simpler especially when a per-
turbation scheme (Huang et al., 1983) is introduced.

In essence, surface wave elevation of deep-water
gravity wave is given by

§'=%a2k+acosx+%a2kcos2x
+§a3k2cos3x+

= g cosy + a’k cos®*x +§a’k2 cos3x + +++, (1)
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where the amplitude a and phase x = kx — wt + ¢ of
the linear component X = a cosy are assumed to be
slowly varying and are respectively Rayleigh and uni-
formly distributed so that X is zero-mean Gaussian.
The determination of the probability density function
of the nonlinear non-Gaussian { as a function of X
then becomes a matter of transformation of random
variables. In doing so, the inverse of { must be found.
This is achieved by perturbation (Huang et al., 1983)
in view of the smallness of wave slope.

In this study, we calculate the probability density
function and the first three statistical moments of ve-
locity, acceleration and pressure using the second-order
Stokes wave model and taking into account fluctua-
tions of the free surface for points in the vicinity of
still water level.

2. Velecity

To the second order, wave elevation z = {, measured
from still water level upwards, is

¢ = a cosx + a*k cos’x,

()

where a is Rayleigh distributed, x = kx — wt + ¢, ¢
(and hence x) being uniformly distributed and k and
w are the deterministic wavenumber and frequency of
the zero-mean Gaussian linear component X = g cosx
so that in terms of X,

£=X+ X’k A3)

The horizontal and vertical velocity components are,
to that order, (Bowden, 1948),

U, = —(gk)'?e*q cosy, @)
U, = —(gk)'2e*a siny, 5)
respectively where g is gravitation acceleration. Noting
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that U, and U, are zero-mean and letting Y = a sinx,

we may write
g
U = —(—")x,
g

(2
)

where ¢ is the standard deviation of X or Y. That is,

Ela?]
2 b

6

M

o? = E[a? cos’x] = E[a? sin’x] = 8)

E] ]being the expected value of the quantity enclosed
in the brackets, and

oy = (gk) )

is the standard deviation of U, or U, as seen from (6)
and (7).

Now, due to free surface fluctuation, the velocity
components actually observed are

[71' = UIH(g._' Z)s i= 1> 2, (10)

where H( ) is the Heaviside unit function. The de-
termination of the probability distribution of U, is fa-
cilitated by the use of the theorem of total probability.
Thus,

Fg () = P(U; <

l/2 kz

%) = P(U; < ul¢ > 2)P(¢ > z)
+PUi<ult<z)P(E<z), (11)
where P( ) and P(]) denote respectively probability
and conditional probability. The event { < z, to the
second order, is equivalent to X + X2k < z by virtue
of (3). If we restrict the points under consideration to

those in the vicinity of still water level so that kz is
small, then X + X%k = z implies

-1 172
2k[ 11+ kz)']

~ ZLk [-1 (1 + 2kz — 2k?2%)] = z — 2%

to the second order of accuracy. Equivalently, by per-
turbation, write

X=z—X%%.
To the first order,
X=z
and, to the second order,
X=z-2z%

Thus, the event ({ <
(X < of) where

Z) = (X <z - z%) =

(12)

That is, 8 depends on the parameter z/s, the location
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of the point under consideration, and ¢k, a measure

of wave slope.
We thus have

P(f < z) = P(X < off)

o8 _
- [ foac=1- 0d),

5o =2 2(3)

is the probability density function of X,

(13)

where

e—x2/2

1
Z('x) (21’1)1/2

o) = f 2.

The event (U; < #{{ < z) corresponds to the situation
in which the point under consideration is not in the
water and is therefore a certain event for all u; > 0.
That is,

P(U; < uf¢ < 2) = H(i,). (14)

_ To calculate the second term in (11), we must treat
U, and U, separately. For U,, since { > z implies U,
= UI >

PO, < uy|t> 2)P(§ > z) = P(U; <

= P[—(%U)Xs i, X > aﬂ']
= P[X> —(i)d,, X> aﬁ]

= f : fdx if of > —(f{-})d,

lil,{> Z)

Substituting (13), (14) and (15) into (11) and taking
derivative with respect to %, we get the probability
density function of U,:

fo@) = [1 — QBG)

LA 800,
Oy \Oy oy
where 6( ) is the Dirac delta function.
The second term in (11), for U,, is

P(U, < wl¢ > 2)P(§ > 2) = P(U, < ity §>2)
= P[Y> —(i)ﬁz]P(X> af), (7
ay.

in view of (3), (7) and the statistical independence of
X and Y. Noting that
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(18)

AW ©
P[Y> —(;J)uz] - n[-(ala'v)ﬁsz(y)dy.

and P(X > ¢f) is the complement of P(X < ¢f) given
by (13), the probability density function of U, is, after
substituting (13), (14), (17) and (18) into (11) and taking
derivative with respect to #,,

_ - _ 1 1y _
folita) = [1 — QBNo(i) + — Z(”—)Q(ﬂ). (19)
oy ay,

The probability density functions for U; and U,
obtained previously (Tung, 1975) are

sty = [ 1= 0fZ) o
+ o)l (2 2 o -],

i=1,2. (20)
To the first order, our present model reduces to the
narrow-band linear processes { = X, U, = —(ay/0)X,

and U, = —(oy/0)Y and B = z/e. Thus, oy, = oy,
= oy as given by (9),

n = E[{U)/oyo = E[X(— i‘;—’)X] / ouo

- —EX?e? = -1, |
r, = E[{U,)/ovo = E[X(— %U)Y] / .
= —E[XY]/e* = 0.

The concurrence between (20) for i = 2 and (19) is
obvious. For i = 1, (20) also agrees with (16) if it is
recognized that

d-2)fo-rv]

u z
forr, = —1lisin factH(——l-—-—).
oy [

The jth statistical moment of U;, i =
obtained from

1, 2, may be

a0/ = [ erawd, i-12 @D
For U,, the first three moments are V
E[U,] = —ayZ(B), 4 (22)
E[0?] = 6/ BZ(B) + QB)}, (23)
E10] = =6’ Z(B)2 + B). (24)

For U,, all odd moments vanish and the second mo-

ment is
E[0,%) = 6,°0(B). (25)
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These moments may be obtained without resort to
explicit expressions of fg,(%;). Thus, for U,, from (3),
(6) and (10),

E0/) = (— gf)jE[XfH(X )

_ (_ zaz)" ) ; X

which gives, for j = 1, 2, 3, (22), (23) and (24) as can
be easily verified. For U,, from (3), (7) and (10),

(26)

ag J . -
E[U/] = (— —f) EIYE[HX — of)], (27)

giving E[U/] = 0 forj = 1, 3 and (25) for j = 2. The
first three statistical moments obtained previously
(Tung, 1975) using linear wave theory are

5101 = reu ).
aan- o) o240)

E[0] = aU,?z(f)[yi - r,-3(1 - ;):I . (30)

After dropping all higher order terms in our present
model and noting that oy, = gy, = oy and r, = —1,
r, = 0, the agreement between (22), (23), (24) and (25)
and (28), (29) and (30) for i = 1, 2 is readily seen.

(28)

(29)

3. Acceleration

To the second order, the horizontal and vertical
components of acceleration are respectively

A, = —gke*Y, (31)
A, = gke** X + gk?e®(X? + Y?). 32)
Noting that oy, = oy, = gke**o = oy where the overdot

denotes local time derivative,

4,= —(i'—”)Y, 33)
. p _
Ay = ("”)X+ ( )(X2 + Y2, (34)
g '
Considering free surface fluctuation,
A; = A;HE — 2)i =1, 2. (3%)

Because of the resemblance of 4, in (31) and U; in
(7), it is seen that the probability density function of
A, may be written as follows:

Fi@) = 1 - QBN +— Z( )Q(ﬁ) (36)

The derivation of the probability density function of
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A,, however, is much more involved because of the
nonlinear terms in X and Y in (34). Thus,

P(4, < @) = PA, < @l < 2)P(§ < 2)

+ P(4, < 4y, { > 2). 37
The first term in (37) is simply
P(A; < @)f¢ < 2)P(§ < 2) = H(@)[1 — Q). (38)

To compute the second term, for convenience, let

2
2
S = (ozg)Y (39)
_{gou oy 2
S, = ( )x+ ( ozg)x (40)
so that
A2 = S1 + Sz. (41)

In this case {, as given by (3), may be expressed in
terms of S, from (40) by perturbation, to the second

order as
2
o= ()= (2) (G- )se
oy, oyl \0§
The event { > z in the second term in (37) is therefore

5> (D (G- -e @

Thus,
P(4; < P(S, + 8, <

42)

@, {>2)= az, $; > a)

- J;:= f =0 Isis1) fsfs2)dsidsz,  (44)

(see Fig. 1) where, from (39) and (40) and by trans-
formation of random variables,

172 1
o0 = (55 - expf - 2% ) >0, (45)

Sz

s S +8,=0,

0 s,

FIG. 1. Venn diagram in (s; — s,) space for computation of

Jil(@2).
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,
Jsis2) = (1 - f, 52 + pe Szz)[(2ﬂ)”260]"

: szz)z]
-2 46
20’(}2 (s2 g > ( )

—00 < § < 00.

X exp[-

To obtain the probability density function of A4,,
we need to take the derivative of (37) with respect to
a,. While this is easily achieved for the first term from
(38), the second term results in the following integral:

a2—a

1= [1-2(52-‘81)'*'%(52—31)2]
g g

51=0

1/29-1
25t _5iE
x[amei(3) ] ool 525)

1 _ (a
X CXD{— 20 [(az —S51) - 2

= 22
———?s‘—)] }dsl. 47)
Letting x,° = gs,/o¢?, we have

A 2 . .
I=2 [1—ﬂ’(xl—5'—"xzz)
x2=0 8 4

. . 292
e Gt N
4 g

where _
X =2, (49)
(144
A= [(x1 B)g] , (50)
oy
=2 51
gy

Expanding the second exponential function in (48)
and keeping only terms to the second order, the in-
tegration may be carried out. The resulting probability
density function of 4, is )

Jalaz) = [1 — Q(B)Ié(az) + H(x, — B)
o ERCE
~ Q(8)

(47
X [1 + Eg‘—’ (=x + xﬁ)] - % XIAZ(A)} - (52)

To first order, (52) reduces to

@) = [ 1 = OfF) o) + i - £) 222 53
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which agrees with the previous result (Tung, 1975)

if welet { = X, Ay = 22 X, r, = E[4;{)/ovo = 1
g
. 4 a,
and recognize that for r, = 1, Q[(—- - — rz) /
o oy

(- rzz)‘/z] is the same as H(x. - E) .
(/3

From (38), we see that all odd moments of A, vanish
and the second moment is the same as E[U5?] in (25)
with oy replaced by oy. The calculation of statistical
moments of 4, from (52) entails integrations which

can be achieved by integration by parts, appropriate.

substitutions of variables and keeping terms only to
the second order.
After much tedious work, we have

.2
El4;] = ouZ(B) + U?U [(1 + BABZ(B) + 2Q(B)], (54)
E[47%] = o/[BZ(B) + QB)]

.3
+ "?” Z(B)6 + 282 + B, (55)
El4y] = 05’ ZB)2 + £
4
+ ﬂg"— [Z(8)(128 + 36° + 6°) + 120(8)]. ° (56)

These moments, however, may be calculated much
more gasily from (34) and (35) directly. For example,

or _ o .2 _
E[4,] = f E[XH(x — of)] + ;ZUTg {EIX?H(X — o))

+ FIY|EIHX — of)]}
2
= oy Z(B) + fgi [BZ(B) + 20(B). (57)
Similarly,
E[4,?2] = o 216Z(B) + Q)]
.3
. +2 f‘—g’j— ZB)3 + B, (58)
B4 = 6 Z(BY2 + B2)
' .
+ "?” [Z(B)(126 + 36%) + 12001 (59).
Since ' .
B=6+ ‘—’E Z, (60)

upon substituting (60) into (55), (55) and (56), ex-
panding Z(8) and Q(B) about §8 and retaining appro-
priate orders, the results in (54), (55) and (56) are seen
to agree with those in (57), (58) and (59). If higher
order terms are dropped, these moments reduce to the
results obtained earlier (Tung, 1975).
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4. Pressure

To the second order, dynamic pressure is given by
(Bowden, 1948)

P
P, =— = ¢*q cosx — L a2k
ng 2

= g cosy — % ke**(a? cos’x + a* sin*x)
= ekix — % ke¥(X? + Y?). (61)

Letting op be the standard deviation of e**a cosy, the
above may be written as

P = ("”)x k("”) X+ Y3, (62)
and the actually observed pressure is
P, = P H({ — 2). (63)

The similarity between (62) and (34) of vertical ac-
celeration shows that the derivation of the probability
density function of P, is much the same as that of 4,.
The resulting probability density function of P, is

folB1) = [1 — QB + Hex — ) 250 Z"“)

2Z(X1 )

op

X [1 +i’—§-"(x1 —x.3)] + H(B — x1)

X {[1 + “—‘z”-k (a1 — x,3):|Q(A) - %—k AZ(A)} , (64)

where _
X =2, (65)
op
_s_ 9k a
B=F-"7 az(—gp), (66)
_ 2 172
A= [;k @ - x.)] (67)

To the first order, the probability density function
in (64) reduces to

i = [ 1 = o) Jo + (x - 2) 222, o)

and our earlier result (Tung, 1975) is recovered.

The statistical moments of P, as obtained from
(64), are very much the same as those of 4, in (54),
(55) and (56) with oy replaced by op, and g by —2/k
except that for 4,, « and 8 are given by (43) and (51),
but for P, these quantities are defined in (66). Similarly,
when these moments of P, are obtained directly from
(62) and (63), they are of the same form as those of
A, in (57), (58) and (59).
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z/0 /o Z/0
2 2 2
1 ] i
efu] T, YT,
[o] | 1 o] o] | jz
2 — 3 —_ —
E[Ul] Linear I U, Linear ) YUI Linear
-2 -2 -2
(a)
22/0' 2z/cr 2Z/cr
\ L el . 95, . YA,
| 2 s | 2 - | 2 -
E [Az]Linear o Az Linear y Az Linear
-2 -2 -2
(b)
zZ/o z/o /0
27 ) 2—} 2 o
. ___ Eelr] . % . 7P
| 2 -y | 2 - | 2 —
E [Pl]Linour i l':'| Linear 7’ P| Linear
-2- -2 -2
(c)

FIG. 2. Ratio of mean, standard deviation and skewness as computed by nonlinear and linear models
for (a) horizontal velocity, (b) vertical acceleration and (c¢) dynamic pressure.
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5. Numerical results

In order to determine the severity of nonlinear ef-
fects, we compute the ratios of nonlinear and linear
results for the mean, standard deviation and skewness
(v) (skewness being defined as the ratio of third-order
central moment and the cube of standard dev1atlon)
of U,, A, and P,. That is, i.e., the mean of U, using
the nonlinear model is E[UI] = —aUZ(B) given by
(22) where B = (z/0) — (z*/¢*)ok is given by (12). The
mean of U, using linear wave theory is given by (28)
and is E[U,]. = —oyZ(z/o) so that the ratio of these
mean values is

E0,] _ 26
ElU\lL  Zzlo)"
This ratio is seen to be a function of the location z/¢
of the point under consideration and wave slope k.
It is noted that ok is related to the significant slope £
PNt R i 3 i

Ao

as defined by Huang et al. (1981) where A\, = 2I1/k is

the length of the primary component of the waves.
From (3),

(69)

B (70)

E[{] = E[X%k = o'k, an
E[£?] = EIX? + 2X%k + X2
= E[X?] + 2kE[X?] + K?E[X*] = 6 + 36%k% (72)
Thus,
(EI2) — E’[§)'7 = (6® + 26°KD)'
=o(1 +20%?)'? =~ o(l + 6k} =~ o (73)
to the second order of accuracy. That is,
¢ ok
§= ok T (74)

Similar to the ratio of the mean values for-U,, we
demonstrate that the ratio of the mean values of 4,
using nonlinear and linear wave theories is also de-
pendent only on the two parameters z/a and ¢k
= 2II!;‘ Thus, the mean value of 4, is glven by (57)
and using linear wave theory, it is
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ElA,]. = o5 Z(z/0).
The ratio is therefore

(73)

El4,] Z(B) + (ou/2)BZB) + 20(B)] (76)
E4). Z(z/0) '
Since
0_17 = ake"’ = keak(z/a),

the ratio obviously depends only on z/¢ and ok.

For £ = 0.01, the ratios are computed for values of
|z/a| < 2 and are plotted in Fig. 2. It is seen that
nonlinearity has little effect on values of standard de-
viation of U,, A, and P, and has only moderate in-
fluence on the mean and skewness values of U, . How-
ever, for the mean and skewness of 4, and P, nonlinear
effects can be quite important. It is also mentioned
that since the perturbation scheme employed here re-
quires that kz = gk(z/0) be small, the radius (z/¢) of
convergence depends on the value of ok = 2I1£ selected
for consideration.
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