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over a smooth or rough seabed
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Laboratory experiments by earlier authors have shown that the near-surface velocity
of an otherwise uniform current is reduced by following waves, but is increased by
opposing waves. By a boundary-layer analysis with depth-dependent eddy viscosities,
we show analytically that this is the consequence of second-order effects of wave–
current interaction. Physical effects of waves on the current profile due to the moving
free surface, wave attenuation and convective inertia are discussed. Comparisons with
available experiments for smooth and rough seabeds are discussed. New predictions
of the longitudinal variations along the current are made.

1. Introduction
Fine sediments on the bottom of a shallow lake or sea can be resuspended by waves

and transported by the current. Since these particles can be carriers of contaminants
and nutrients, their distribution is crucial to the health of the water body. Quantitative
understanding of the mutual influence between waves, current and wind is therefore of
basic importance to the prediction of biological and/or chemical processes in shallow
water. Omitting the direct effects of wind, Grant & Madsen (1979, 1986) have studied
the effects of turbulence by a simple eddy-viscosity model, with attention focused on
the region close to the seabed where sediment transport is often the most important.
Based on experiments by Bakker & Doorn (1978) and Mathisen & Madsen (1996a, b)
and by others, they find that a current followed by waves experiences a reduction
of speed near the bed, hence an increase of the apparent roughness. The record of
Bakker & Doorn (1978) also shows a notable reduction of current velocity near
the water surface. Later Kemp & Simons (1982, 1983), and Klopman (1994, 1997)
reported full-depth profiles by similar experiments and showed that the near-surface
velocity of a current is increased (reduced) if opposed (followed) by waves; consistent
reduction near the bed was observed for wave-oppposing currents. In experiments by
Nepf et al. (1995) on Langmuir circulation in a channel of finite width, mechanically
generated breaking waves along a steady current also retard the current near the free
surface along the centreplane of the flume.

Since very fine sediments in lakes or shallow seas can be readily resuspended far
above the bottom, the mean velocity distribution in the entire depth is of importance
to their transport. Theoretical models for the prediction of wave–current interaction
should therefore also include the region near the free surface. An eddy-viscosity
model for this problem has been attempted by Nielsen & You (1996). Several
ad hoc assumptions were added and the agreement with measured data is not
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very satisfactory. Dingemans et al. (1996) attributed the wave-induced change of
the Eulerian mean velocity to Langmuir circulation induced by the lateral boundaries
of the wave tank. The results of their three-dimensional computations based on a
k − ε model agree reasonably well with the measurement of Klopman only for waves
following, but not opposing, the current. Allowing the current to be as strong as the
phase velocity of waves, Groeneweg & Klopman (1998) treated the two-dimensional
problem by combining the method of generalized Lagrangian mean (GLM) and
a numerical turbulence model. By an empirical estimate of the eddy viscosity and
numerical computations, they found good agreement between the computed and
measured profiles of the longitudinal velocity for both coflowing and counterflowing
currents of Klopman (1994). Their method was further extended by Groeneweg &
Battjes (2003) to study the sidewall effects in the three-dimensional motion in a
long flume of finite width. Transverse circulation due to the presence of the vertical
sidewalls was calculated, but was found to have only weak effects on the longitudinal
velocity profiles.

Since simple eddy-viscosity models facilitate analytical examination of the physical
phenomenon, they have been used in early studies of wave generation by wind.
Townsend (1972) proposed an eddy-viscosity model in which the mixing length is
measured from the moving water surface. Thus the eddy viscosity near the sea surface
is modified by waves and depends on time. In consequence, the mean wind velocity
near the water surface is significantly affected. Similar ideas about the wave-modified
mixing length have been used by Jacobs (1987) and Van Duin & Janssen (1992).
Essentially equivalently Miles (1993) assumed that the eddy viscosity is conserved
along the streamlines. The common feature of these models is that the mixing length
in the air flow is measured from the moving air–water interface, which restricts the
size of local turbulent eddies. As a result the eddy viscosity is now the sum of a steady
part and a transient part; the latter is associated with free-surface oscillations. While
these models are still crude and heuristic representations of the complex physics of
turbulence, they can help mimic the averaged motion without elaborate numerical
computations.

Based on existing laboratory data on waves in finite depth, smooth and rough
beds must be distinguished. Over a smooth bed, a steady current of the assumed
magnitude is usually turbulent as the Reynolds threshold 〈ū∗

c〉h/ν > 2100 is easily
superseded (for example, by a typical case with 〈ū∗

c〉 > 21 cm s−1, and h = 10 cm).
However, a pure wave with comparable orbital velocity becomes turbulent in the
bed boundary layer only if Rew ≡ ωa2

b/ν > N × 104 where ω is the wave frequency
and ab the orbital amplitude just above the smooth bed. The coefficient N varies
from 1.26 (Jonsson 1966) to about 30 (Kamphuis 1975). Laboratory waves often fall
below this threshold (e.g., ab = 5 cm and ω = 2π s−1 gives Rew = 1.57 × 104). In this
case, turbulence in the bed wave boundary layer is dominated by the pre-existing
current. For a rough bed, it is known that the ratio ab/kN , where kN is the Nikuradse
sand grain size, is another important factor. When ab/kN decreases, the threshold
Rew decreases. Only above a certain transitional range of Rew is the bottom flow
fully turbulent (see, Kamphuis 1975 or Sleath 1984). By defining δ = O(κuf /ω)
as the thickness of the wave boundary layer (Kajiura 1968), and uf = ωab

√
fw/2,

it follows that δ/kN = O[(κ
√

fw/2)(ab/kN )]. Only when δ/kN (∝ ab/kN ) � 1, are
the roughness elements deeply buried inside the fully turbulent zone which can be
described as the boundary layer. For such cases which are relevant to most field-
scale applications, a theoretical model for the wave–current boundary layer has
been developed by Grant & Madsen (1979, 1986) by introducing an enhanced eddy
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viscosity. Their scheme has been found useful for quantitative modelling of coastal
dynamics (Tang & Grimshaw 1999).

We shall give a boundary-layer theory incorporating eddy-viscosity models which
account for the moving free surface and different seabed conditions. In particular, the
eddy viscosity νe diminishes to zero at both the moving free surface and the seabed
and is the largest at mid-core. For a smooth seabed, νe diminishes continuously
from the core. For a rough bed, a different eddy viscosity linear in height with a
larger friction velocity is assumed in the bed wave boundary layer (BWBL), and is
discontinuous at the upper edge of the layer. After normalization and order estimates,
the governing equation for the wave-perturbed current velocity in the core is derived
by including the effects of wave-induced Reynolds stress, and energy dissipation.
While the first-order oscillatory motion gives the dissipation rate in BWBL, the
second-order mean motion gives rise to wave Reynolds stress affecting the core
current. For both a smooth bed and a rough bed where the roughness elements
are deeply immersed inside the wave boundary layer, a second-order analysis also
provides the lower boundary value for the core current. Near the free surface, we first
show that the wave boundary layer is unimportant. A second-order analysis gives the
mean shear stress at the mean sea-level. With this as the upper boundary condition
the core current is solved analytically. Determination of the friction velocities will be
discussed. Quantitative predictions of the current profiles affected by waves in the
same or opposite direction will be compared with experimental data at one station.
For a smooth bed the agreement is excellent. For a rough bed, existing laboratory
data are all for roughness either of moderate ab/kN , or formed by well separated
strips. For these beds, the boundary-layer model is tenuous at best. Nevertheless we
shall show that good agreement is still found for the damping rate and the velocity
profiles can also be predicted well if empirical fitting at the lower boundary is made.
Physical mechanisms responsible for current reduction or increase near the surface
will be explained. For future experiments, we also present predictions of the spatial
variation of current profiles in the direction of flow.

2. Formulation
We shall use asterisks to distinguish dimensional from dimensionless variables, and

from other parameters. Let waves propagate in the positive x∗-direction, and the
mean current either follows or opposes waves in the positive or negative x∗-direction,
respectively.

Let {u∗
i } ≡ {u∗, w∗} be the velocity components in x∗

i = {x∗, z∗} directions, and
p∗ the dynamic pressure, where the total pressure is p∗ − ρgz∗. The two-dimensional
motion is governed by the Reynolds equations

∂u∗
j

∂x∗
j

= 0, (2.1)

ρ
∂u∗

i

∂t∗ + ρ
∂u∗

i u
∗
j

∂x∗
j

= −∂p∗

∂x∗
i

+
∂τ ∗

ij

∂x∗
j

, (2.2)

where ρ is the water density. The Reynolds stress is modelled by

τ ∗
ij = ρνe

(
∂u∗

i

∂x∗
j

+
∂u∗

j

∂x∗
i

)
. (2.3)
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On the free surface z∗ = η∗(x∗, t∗), the kinematic condition requires

∂η∗

∂t∗ + u∗ ∂η∗

∂x∗ − w∗ = 0, z∗ = η∗. (2.4)

Assuming no wind, the shear and normal stresses must vanish on the moving free
surface,

−[−(p∗ − ρgη∗) + τ ∗
xx]

∂η∗

∂x∗ + τ ∗
xz = 0, z∗ = η∗; (2.5)

[−(p∗ − ρgη∗) + τ ∗
zz] − τ ∗

xz

∂η∗

∂x∗ = 0, z∗ = η∗. (2.6)

We define the seabed z∗ = −h + zB , to be the depth where no slippage occurs,

u∗ = w∗ = 0, z∗ = −h + zB, (2.7)

where zB is the hydraulic roughness whose determination will be discussed later.
Borrowing the ideas of Townsend (1972) and Jacobs (1987) in their studies of wind

near the wavy sea surface, we adopt the following eddy-viscosity model for the core
region outside the BWBL

νe ≡ νc = −κuf c(z
∗ − η∗)

(
1 +

z∗

h

)
, − h + δ < z∗ < η∗, (2.8)

where η∗ is the water surface displacement, κ = 0.4 is the von Kármán constant,
h the water depth, uf c the friction velocity and δ is the thickness of BWBL to be
determined.

Near the seabed, we distinguish three cases.
Case A. Laminar wave boundary layer over a smooth bed. Rew < N × 104 and

ab/kN → ∞. Turbulence is dominated by the current, and the eddy viscosity is the
near-bottom approximation of (2.8),

νe ≡ νb = κuf c(h + z∗), − h + zB < z∗ = −h + δ, smooth bed. (2.9)

Thus the eddy viscosity is continuous everywhere.
Case B. Rough seabed with (δ/kN, ab/kN ) � 1. Wave-induced turbulence can

be described by a boundary-layer theory. A larger eddy viscosity accounting for
contributions by both waves and currents is assumed,

νe ≡ νb = κuf b(h + z∗), − h + zB < z∗ = −h + δ, rough bed, (2.10)

where uf b �= uf c is the friction velocity combining the effects of both current and
waves. This friction velocity uf b will be determined by the procedure of Grant &
Madsen. Clearly, νe is discontinuous at the edge of BWBL.

Case C. Rough seabed with moderate (δ/kN or ab/kN ). Wave-induced turbulence
is two- or three-dimensional and cannot be described accurately by boundary-
layer approximation. The threshold for ab/kN is around 10 to 115, according to
Kamphuis (1975), Sleath (1984), Mathisen & Madsen (1996a, b). Beds roughened by
well-separated strips fall into this class.

We shall only consider waves of gentle slope so that

ε ≡ ka =� 1 (2.11)

where a and k are the characteristic wave amplitude and wavenumber, respectively. In
addition, the basic current is assumed to be comparable to the wave orbital velocity,

ū∗ ∼ ũ∗ = O(εC), C = ω/k = phase velocity. (2.12)
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where ū∗ and ũ∗ are the mean and fluctuating velocity of the water motion,
respectively.

An a priori order estimate can be made of the friction velocities uf c of the core
current and uf b of the bed boundary layer. For uf c, the knowledge of open channel
flows ū∗

0 given by

ū∗
0 = ±uf c

κ
ln

(
z∗ + h

zB

)
(2.13)

is relevant. The plus sign is for the positive current (from left to right) and the minus
sign for the negative current (from right to left). The friction velocity uf c is related
to the friction factor fc, commonly defined by

ρ(uf c)
2 = ρ

fc

2
〈ū∗

0〉2, (2.14)

where 〈ū∗
0〉 stands for the depth average of the basic current. It follows that

uf c =

√
fc

2
|〈ū∗

0〉| , (2.15)

The common empirical value of the friction factor is about fc ∼ 0.01. In view of
the assumption that O(〈ū∗〉) = O(ũ∗) = O(εC), we shall regard uf c/ũ

∗ = O (ε), or
equivalently,

uf c = O(ε2C). (2.16)

Equation (2.13) is consistent with (2.16) if

ln
h

zB

= O

(
1

ε

)
, (2.17)

which we shall assume. Note that the corresponding shear rate of the basic current is

h

C

∂ū∗
0

∂z∗ = ±uf c

κC

h

z∗ + h
, (2.18)

which is O(ε2) when z∗ + h = O(h), but of order O(1) when (z∗ + h)/h = O(ε2),
i.e. near or inside the bed boundary layer. This difference is associated with the
logarithmic variations near the bottom.

Though different in numerical values, the friction velocity in the BWBL must be
of the same order of magnitude as those in the core current. This is because waves
and current are of comparable strength here. Hence, we estimate

uf b

C
∼ uf c

C
= O(ε2), (2.19)

which can be checked after applying the procedure of Grant & Madsen (1979, 1986).

3. Normalization by core scales
We shall first normalize all equations by the scales appropriate for the core. In

the BWBL, modification will later be made so that the vertical coordinate will be
renormalized by the boundary-layer thickness.

Let us denote the characteristic wavenumber by k = 2π/wavelength, the angular
frequency by ω = 2π/T , and the phase speed by C = ω/k according to the linearized
theory. The normalized outer variables (without asterisks) are defined as follows:

t = ωt∗, (x, z, η) = k(x∗, z∗, η∗), ui = u∗
i /C, (τij , p) = (τ ∗

ij , p
∗)/ρC2. (3.1)
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Conservation of mass requires

∂u

∂x
+

∂w

∂z
= 0. (3.2)

In the momentum conservation laws, convective inertia terms are written in two
equivalent forms,

∂u

∂t
+

∂(uu)

∂x
+

∂(uw)

∂z
≡ ∂u

∂t
+

∂E

∂x
+ wΩ = −∂p

∂x
+

∂τxx

∂x
+

∂τxz

∂z
, (3.3)

∂w

∂t
+

∂(uw)

∂x
+

∂(ww)

∂z
≡ ∂w

∂t
+

∂E

∂z
−uΩ = −∂p

∂z
+

∂τxz

∂x
+

∂τzz

∂z
, (3.4)

where

E = 1
2
(u2 + w2) (3.5)

is the kinetic energy, and

Ω =
∂u

∂z
− ∂w

∂x
(3.6)

is the vorticity component in the y-direction. The dynamic pressure p is related to
the total pressure P by p = P + (gk/ω2)z. Using the eddy viscosity modelled by (2.8)
in the core and (2.10) in the bed boundary layer, the dimensionless Reynolds stresses
are related to the strain rates by,

τxx = 2αε2S
∂u

∂x
, τzz = 2αε2S

∂w

∂z
, τxz = αε2S

(
∂u

∂z
+

∂w

∂x

)
, (3.7)

where S is the shape factor of the eddy viscosity,

S =

Sc = − (z − η)
(
1 +

z

kh

)
, core,

Sb = 1 +
z

kh
, BWBL,

(3.8)

and α is the dimensionless friction velocity,

α = αc = κuf c/Cε2, core, (3.9)

α = αb =

{
κuf c/Cε2, BWBL, Case A,

κuf b/Cε2, BWBL, Cases B.
(3.10)

In accordance with (2.19), we have O(αc) = O(αb) = O(1), We further rewrite Sc in
(3.8) as

Sc = S̄c + Ŝcη, (3.11)

so that S̄c is the time mean of Sc and Ŝcη is the surface distortion of the eddy viscosity,
where

S̄c = −z
(
1 +

z

kh

)
, Ŝc = 1 +

z

kh
. (3.12)

Note from (3.7) that the Reynolds stresses are of order O(ε3) in the core region.
For later use, we give the vorticity equation by eliminating the pressure p from the

momentum equations (3.3) and (3.4)

∂Ω

∂t
+ u

∂Ω

∂x
+ w

∂Ω

∂z
= Π (3.13)
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where

Π ≡ ∂

∂z

(
∂τxx

∂x
+

∂τxz

∂z

)
− ∂

∂x

(
∂τxz

∂x
+

∂τzz

∂z

)
. (3.14)

We now introduce averages with respect to a wave period, and refer to all period
averages† as mean quantities from here on. Let us separate the mean current and the
wave motion so that

(u, w, p, η, Ω) = (ū, w̄, p̄, η̄, Ω̄) + (ũ, w̃, p̃, η̃, Ω̃),

(τxx, τxz, τzz) = (τ̄xx, τ̄xz, τ̄zz) + (τ̃xx, τ̃xz, τ̃zz),
(3.15)

where quantities with bars represent the time mean and those with tildes the wave
motion. By taking the time-average of the governing equations (3.2),(3.3) and (3.4),
we obtain the governing equations of the current

∂ū

∂x
+

∂w̄

∂z
= 0, (3.16)

∂(ūū)

∂x
+

∂(ūw̄)

∂z
+

∂Ēw

∂x
+ w̃Ω̃ = −∂p̄

∂x
+

∂τ̄xx

∂x
+

∂τ̄xz

∂z
, (3.17)

∂(ūw̄)

∂x
+

∂(w̄w̄)

∂z
+

∂Ēw

∂z
− ũΩ̃ = −∂p̄

∂z
+

∂τ̄xz

∂x
+

∂τ̄zz

∂z
, (3.18)

where Ēw is the wave kinetic energy

Ēw = 1
2
(ũ2 + w̃2) = O(ε2) (3.19)

The wave-averaged Reynolds stresses are obtained by taking the time-average of
(3.7), which are, in the core,

τ̄xx = 2αcε
2S̄c

∂u

∂x
+ 2αcε

2Ŝcη̃
∂ũ

∂x
, (3.20)

τ̄zz = 2αcε
2S̄c

∂w̄

∂z
+ 2αcε

2Ŝcη̃
∂w̃

∂z
, (3.21)

τ̄xz = αcε
2S̄c

(
∂ū

∂z
+

∂w̄

∂x

)
+ αcε

2Ŝcη̃

(
∂ũ

∂z
+

∂w̃

∂x

)
. (3.22)

In the boundary layer, the wave-averaged Reynolds stresses are obtained simply by
replacing αc with αb, S̄c with Sb and setting Ŝc to zero.

4. Basic current
In addition to the well-known result (2.13) we summarize the salient relations of

the basic current for later convenience. Let subscript ()0 signify the basic current

ū = εū0, w̄0 = 0, p̄ = εp̄0. (4.1)

Omitting the wave-perturbed parts in (3.17 ), we obtain the equation governing ū0

∂p̄0

∂x
= ε2α0

∂

∂z

(
S̄c

∂ū0

∂z

)
where α0 = κuf c/Cε2, (4.2)

† These are period averages of stochastic averages.



260 Z. Huang and C. C. Mei

to which the solution is (2.13). In (4.2), p̄0 is constant in depth from the vertical
momentum equation. The pressure gradient of the basic current can be identified
with the normalized friction velocity by

−∂p̄0

∂x
= ±ε3 α2

0

κ2
. (4.3)

For later use, we note that the mean shear stress of the basic current has the following
form

(τ̄xz)0 = ±ε4 α2
0

κ2

(
−z

kh

)
(4.4)

and is O(ε4).

5. Length scale of wave attenuation
Owing to disspation, waves will attenuate in x. Since other mean quantities may in

turn be affected, we must first ascertain the scale of attenuation by considering the
mechancial energy in waves.

Let the leading-order surface displacement of the surface wave be

η̃ = ε

(
A

2
eiθ + c.c.

)
+ O(ε2), (5.1)

where εA = O(ε) is the dimensionless wave amplitude and θ = x − t the wave phase.
Since, by assumption, the eddy viscosity is of O(ε2) and the rotational core current
of O(ε), the leading-order wave field is irrotational,

ũ = ε

(
A

2

cosh(kh + z)

sinh(kh)
eiθ + c.c.

)
+ O(ε2), (5.2)

w̃ = ε

(
−i

A

2

sinh(kh + z)

sinh(kh)
eiθ + c.c.

)
+ O(ε2), (5.3)

p̃ = ε

(
A

2

cosh(kh + z)

sinh(kh)
eiθ + c.c.

)
+ O(ε2). (5.4)

Using standard arguments we can derive from the conservation laws the equation
of mechanical energy in waves

ε2

2

∫ −kh+kδ

−kh+kzB

αbSb

(
∂ũi

∂xj

+
∂ũj

∂xi

)2

dz +
ε2

2

∫ 0

−kh+kδ

αcS̄c

(
∂ũi

∂xj

+
∂ũj

∂xi

)2

dz

= − ∂

∂x

∫ 0

−kh+kzB

ũp̃ dz, (5.5)

where kδ = O(ε2) is the dimensionless thickness of the BWBL. For reference, a
derivation is sketched in Appendix A. Note that there are two depth integrals
corresponding to the BWBL and the core. In the core S̄c = O(1), we can ignore the
BWBL and obtain

ũp̃ ∝ ε2AA∗,

∫ 0

−kh

S̄c

(
∂ũi

∂xj

+
∂ũj

∂xi

)2

dz ∝ ε2AA∗, (5.6)

where A∗ is the complex conjugate of A. Because Sb = O(kδ), balance of the transient
acceleration and the oscillatory viscous stress implies that kδ = O(ε2). Thus the
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integral across the bed boundary layer is∫ kδ

−kh+kzB

Sb

(
∂ũi

∂xj

+
∂ũj

∂xi

)2

dz ∝ ε2AA∗. (5.7)

Two inferences may be made. First, dissipation in the two regions are comparably
important; weak shear in the core is compensated by the large eddy viscosity there.
Secondly, the length scale of horizontal length scale of attenuation is O(ε−2) times
that of the wavelength. This should affect all mean quantities associated with wave
disturbances. Therefore, we introduce the slow coordinate x2 = ε2x. The x derivative
of every wave-periodic mean f̄ is

∂f̄

∂x
= ε2 ∂f̄

∂x2

= O(ε2f̄ ). (5.8)

Also, (5.5) should yield formally

∂AA∗

∂x2

= −βAA∗, (5.9)

where β > 0 is the wave energy dissipation rate, which will be calculated explicitly
later.

6. Core
6.1. Order estimate of wave-induced core current

Extending (4.1), we express the total mean motion as the sum of the basic and
wave-induced parts

ū = εū0 + µ1(ε)ū
′

c, w̄ = µ2(ε)w̄
′

c, p̄ = εp̄0 + µ1(ε)p̄
′

c, (6.1)

where ū
′

c, w̄
′

c and p̄
′

c are the velocity and pressure of the wave-induced current in the
core, all of them of O(1). The gauge functions µi(ε), i = 1, 2 are to be determined.
In an infinitely long flume or unbounded sea, waves are damped out at x ∼ ∞. The
total steady-state discharge at any x must be equal to that of the pre-existing basic
current, ∫ η

−kh+kzB

u dz =

∫ η

−kh+kzB

(ū + ũ) dz = ε

∫ 0

−kh+kzB

ū0 dz. (6.2)

Taylor expansion of the middle integral of (6.2) for small η and substitution of (6.1)
into the resulting equation yield

µ1(ε)

∫ 0

−kh+kδ

ū′
c dz + [ũ]0η̃ = O(ε3), (6.3)

where [ũ]0 denotes the orbital velocity at z = 0. The contribution of the BWBL has
been ignored owing to the small thickness of O(ε2).

It is evident that µ1(ε) = ε2. After using the linear wave solutions for η̃ and ũ, the
discharge condition (6.3) becomes∫ 0

−kh+kδ

ū′
c dz = −AA∗

2
coth(kh). (6.4)
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As waves propagate in the positive x-direction, this term diminishes with x because
of damping. Therefore the total flux of the Eulerian current,∫ 0

−kh+kzB

ū dz =

∫ 0

−kh+kδ

(εū0 + ε2ū′
c) dz + O(ε3),

must increase (decrease) its flux in the downstream direction for a wave-following
(wave-opposing) current.

As a further inference, continuity requires

ε2 ∂ū′
c

∂x
+ µ2(ε)

∂w̄′
c

∂z
= 0. (6.5)

Since ∂ū′
c/∂x = ε2∂ū′

c/∂x2 because of wave damping, we conclude that µ2 = ε4 so
that (6.1) can be replaced by

ū = εū0 + ε2ū
′

c, w̄ = ε4w̄
′

c, p̄ = εp̄0 + ε2p̄
′

c. (6.6)

The presence of waves also modifies the friction velocity uf c from that of the pure
current, hence the value of αc from α0.

6.2. Momentum balance of mean motion

In the core region, the total Reynolds stresses (3.7) which appear on the right-hand
sides of (3.17)–(3.18) can be approximated up to O(ε4) by using the linear wave
solutions (5.2), (5.3) and (5.4), and the basic current (4.4),

τ̄xx = O(ε5), τ̄zz = O(ε5), (6.7)

τ̄xz = αcε
2S̄c

(
ε
∂ū0

∂z
+ ε2 ∂ū′

c

∂z

)
+ αcε

2Ŝcη̃

(
∂ũ

∂z
+

∂w̃

∂x

)
+ O(ε5)

= ε4

[
±α0αc

κ2

(
−z

kh

)
+ αcS̄c

∂ū′
c

∂z
+ αcAA∗Ŝc

sinh(kh + z)

sinh(kh)

]
+ O(ε5). (6.8)

The period-averaged Reynolds stress τ̄xz can be written as the sum of the basic and
perturbed parts

τ̄xz = ±ε4 α2
0

κ2

(
−z

kh

)
+ ε4(τ̄ ′

xz)c. (6.9)

The perturbed mean Reynolds stress is of order O(ε4) with

(τ̄ ′
xz)c = ±α0(αc − α0)

κ2

(
−z

kh

)
+ αcS̄c

∂ū′
c

∂z
+ αcAA∗Ŝc

sinh(kh + z)

sinh(kh)
. (6.10)

Note that the mean turbulent shear stress αcS̄c(∂ū′
c/∂z), associated directly with local

eddy viscosity, is just a part of the perturbed Reynolds stress (τ̄ ′
xz)c, which includes

also direct effects of wave fluctuations. The momentum equation (3.17) can now be
approximated up to O(ε4) by

ε2 ∂

∂x2

(Ēw + ε2p̄′
c) + w̃Ω̃ = ε4 ∂(τ̄ ′

xz)c

∂z
+ O(ε5), (6.11)

which governs the current shear in the core. Terms of the basic current disappear by
cancellation.
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To further simplify (6.11), we first note from the vertical momentum equation (3.18)
that, upto O(ε2),

∂

∂z
(Ēw + ε2p̄′

c) = O(ε3) (6.12)

Thus (6.11) can be written as

ε2 ∂

∂x2

[Ēw + ε2p̄′
c]0 + w̃Ω̃ = ε4 ∂(τ̄ ′

xz)c

∂z
+ O(ε5). (6.13)

To complete the equation governing the mean shear stress, we shall calculate in the

next subsection the vortex force term w̃Ω̃ up to O(ε4).

6.3. Vortex force w̃Ω̃

Let us first find Ω̃ up to O(ε3) from the oscillatory part of (3.13),

∂Ω̃

∂t
+ ū

∂Ω̃

∂x
+ w̄

∂Ω̃

∂z
+ ũ

∂Ω̄

∂x
+ w̃

∂Ω̄

∂z
+ ˜̃u∂Ω̃

∂x
+ ˜̃w∂Ω̃

∂z
= Π̃. (6.14)

Π̃ is the oscillatory part of (3.14). From the definition (3.7), the oscillatory parts of
the Reynolds stresses must be of O(ε3),

τ̃xx = 2αcε
2S̄c

∂ũ

∂x
+ O(ε4), τ̃zz = 2αcε

2S̄c

∂w̃

∂z
+ O(ε4), (6.15)

τ̃xz = αcε
2S̄c

(
∂ũ

∂z
+

∂w̃

∂x

)
+ O(ε4). (6.16)

Using these results and the linear wave solutions in (3.14), we obtain

Π̃ = 2ε2αc

∂2S̄c

∂z2

∂ũ

∂z
+ O(ε4). (6.17)

For calculating w̃Ω̃ at O(ε4), we shall only need the first harmonic component of

Ω̃ at O(ε3). Hence the last two terms on the left-hand side of (6.14) are of no concern.

Using the fact that w̄ = w̄′ = O(ε4), we obtain the governing equation for Ω̃ correct
to O(ε3)

∂Ω̃

∂t
+ ū

∂Ω̃

∂x
+ w̃

∂Ω̄

∂z
= 2ε2αc

∂2S̄c

∂z2

∂ũ

∂z
+ SHT + O(ε4), (6.18)

where SHT represents the second harmonic terms. After integrating (6.18) with
respect to t , we obtain

Ω̃ = −ū

∫
∂Ω̃

∂x
dt − ∂Ω̄

∂z

∫
w̃ dt + 2ε2αc

∂2S̄c

∂z2

∫
∂ũ

∂z
dt + SHT + O(ε4). (6.19)

Among all terms on the right-hand side, the second term dominates so that

Ω̃ = −∂Ω̄

∂z

∫
w̃ dt + O(ε3) = O(ε2). (6.20)

Thus the vorticity fluctuation is due to the convection of the mean vorticity by vertical
oscillations. However, this term is out of phase with w̃, hence does not contribute to
the vortex force. Note that the first term on the right-hand side of (6.19), which is of
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O(ε3), can be estimated by (6.20).

ū

∫
∂Ω̃

∂x
dt = −ū

∂Ω̄

∂z

∫ (∫ t ∂w̃

∂x
dt ′

)
dt + O(ε4), (6.21)

which is also out of phase with w̃, hence does not affect the vortex force. Thus only
the third term in (6.19) matters.

Finally, substituting (6.19) in w̃Ω̃ , we find

w̃Ω̃ = 2ε2αc

∂2S̄c

∂z2
w̃

∫
∂ũ

∂z
dt + O(ε4)

= −αcε
4AA∗ ∂2S̄c

∂z2

sinh2(kh + z)

sinh2(kh)
+ O(ε5). (6.22)

It is interesting that the vortex force is related to the curvature of the eddy viscosity.

6.4. Mean shear stress of wave-perturbed current

With the vortex force calculated, let us return to the governing equation for the
wave-perturbed mean motion in the core, (6.13)

∂

∂x2

[p̄′
c + ε−2Ēw]0 − αcAA∗ ∂2S̄c

∂z2

sinh2(kh + z)

sinh2(kh)
=

∂(τ̄ ′
xz)c

∂z
. (6.23)

Integrating once with respect to z from z = 0, we obtain

z
∂

∂x2

[p̄′
c + ε−2Ēw]0

= αcAA∗ ∂2S̄c

∂z2

(
sinh(2(kh + z)) − sinh(2kh) − 2z

4 sinh2(kh)

)
+ (τ ′

xz)c − [(τ̄ ′
xz)c]0, (6.24)

where ∂2S̄c/∂z2 = −2/kh = constant has been used.
The wave-induced pressure gradient can be expressed in terms of the wave-induced

mean shear [(τ̄ ′
xz)c]+, at the top edge of the BWBL. By setting z = −kh + kδ in (6.24),

we have

∂

∂x2

[p̄′
c + ε−2Ēw]0

=
−1

kh

{
αcAA∗ ∂2S̄c

∂z2

(
− sinh(2kh) + 2kh

4 sinh2(kh)

)
+ [(τ̄ ′

xz)c]+ − [(τ̄ ′
xz)c]0

}
. (6.25)

This result can be used in (6.24) to eliminate the pressure gradient. On the other
hand, we have from (6.10),

z

kh
[(τ̄ ′

xz)c]+ + (τ̄ ′
xz)c =

z

kh
αc

[
S̄c

∂ū′
c

∂z

]
+

+ αcS̄c

∂ū′
c

∂z
+ αcAA∗Ŝc

sinh(kh + z)

sinh(kh)
.

It then follows that (6.24) can be written as

αcAA∗ ∂2S̄c

∂z2

(kh + z) sinh(2kh) − kh sinh(2(kh + z))

4kh sinh2(kh)
+

(
1 +

z

kh

)
[(τ̄ ′

xz)c]0

= αc

z

kh

[
S̄c

∂ū′
c

∂z

]
+

+ αcS̄c

∂ū′
c

∂z
+ αcAA∗Ŝc

sinh(kh + z)

sinh(kh)
. (6.26)
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Next, we recall the definition of uf c and its dimensionless equivalent αc

α2
c = ±κ2ε−4[τ̄xz]+. (6.27)

Making use of (6.8) in (6.27), we have

αc = ±κ2ε−1

[
S̄c

∂ū0

∂z

]
+

± κ2

[
S̄c

∂ū′
c

∂z

]
+

+ O(ε) = α0 ± κ2

[
S̄c

∂ū′
c

∂z

]
+

, (6.28)

where (4.4) has been used in the last step. We obtain by definition, the expected result

αc − α0 = ±κ2

[
S̄c

∂ū′
c

∂z

]
+

. (6.29)

Finally, the perturbed turbulent shear stress in the core is obtained,

αcS̄c

∂ū′
c

∂z
= αcAA∗ ∂2S̄c

∂z2

(kh + z) sinh(2kh) − kh sinh(2(kh + z))

4kh sinh2(kh)

+

(
1 +

z

kh

)
[(τ̄ ′

xz)c]0 ± αc(αc − α0)

κ2

(
−z

kh

)
− αcAA∗Ŝc

sinh(kh + z)

sinh(kh)
. (6.30)

This result will be integrated later to obtain the wave-perturbed current ū′
c. Clearly,

two boundary values are needed: the velocity ū′
c at the upper edge of the bed boundary

layer and the mean shear stress [(τ̄ ′
xz)c]0 on the mean free surface. For the former, we

must analyse the wave-perturbed mean motion inside the bed boundary layer.

7. Bed boundary layer
A unified treatment can be given for cases A and B. Recalling that kδ = O(ε2), an

inner depth variable Z will be defined by

Z =
z + kh

αbε2
. (7.1)

For case A, we need only set αb = αc. Let us first estimate the orders of magnitude
of the vertical velocities, both mean and oscillatory, in the bed boundary layer. The
horizontal velocities and dynamic pressures are more obvious. Let us express the
mean and oscillatory flow fields as follows.

ū = εū0 + ε2ū′
b, w̄ = σ1(ε)w̄

′
b + · · · , p̄ = εp̄0 + ε2p̄′

b, (7.2)

ũ = εũb, w̃ = σ2(ε)w̃b, p̃ = εp̃b, (7.3)

where the gauge functions σ1(ε) and σ2(ε) are to be determined. From the time-
averaged continuity equation,

ε4 ∂ū′
b

∂x2

+
σ1(ε)

αbε2

∂w̄′
b

∂Z
= 0. (7.4)

Clearly σ1 = O(ε6) so that we can write w̄ = ε6w̄′
b = O(ε6).

To find the order of the oscillatory motion inside the boundary layer, we invoke
the continuity equation,

ε
∂ũb

∂x
+ ε3 ∂ũb

∂x2

+
σ2(ε)

αbε2

∂w̃b

∂Z
= 0, (7.5)
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hence σ2 = O(ε3). It follows from (7.5) that

w̃′
b = −αb

∫ Z

ZB

∂ũb

∂x
dZ + O(ε) with ZB =

kzB

αbε2
. (7.6)

With these estimates, we can now simplify the mean horizontal momentum equation
in order to show just what is needed from the oscillatory motion. Explicit calculations
of the required oscillatory motion will then be worked out, and finally the horizontal
component of wave-perturbed current velocity will be found.

7.1. Approximate momentum balance of the mean motion

Substituting (7.2) and (7.3) into (3.7), we obtain the total Reynolds stress inside the
boundary layer

τ̄xx = 2ε8α2
bZ

∂ū′
b

∂x2

, τ̄zz = 2ε8αbZ
∂w̄′

b

∂Z
, τ̄xz = ±ε4 α2

0

κ2
+ ε4(τ̄ ′

xz)b. (7.7)

In the equation for τ̄xz, where the first term on the right-hand side is the shear stress
of the basic current, and the second is the wave-induced mean shear (τ̄ ′

xz)b, given by

(τ̄ ′
xz)b = αbZ

∂ū′
b

∂Z
+ ε−2(αb − α0)Sb

∂ū0

∂z
= αbZ

∂ū′
b

∂Z
± (αb − α0)

α0

κ2
, (7.8)

the last term above has been simplified by using (4.4). After substituting (7.2), (7.3)
and (7.7) into the horizontal mean momentum equation (3.17), we obtain,

∂ũbw̃b

∂Z
=

∂(τ̄ ′
xz)b

∂Z
+ O(ε). (7.9)

Integrating this with respect to Z from the upper edge of the boundary layer,

Z = Zδ ≡ kδ

αbε2
, (7.10)

we obtain

ũbw̃b − [ũbw̃b]+ = (τ̄ ′
xz)b − [(τ̄ ′

xz)b]+ = (τ̄ ′
xz)b − [(τ̄ ′

xz)c]+. (7.11)

The last equality follows by the continuity of stress at the top edge of the BWBL,
signified by the subscript [· · ·]+. Physically, (7.9) or (7.11) states that the total mean
shear stress is not constant across the bed boundary layer†. Second-order mean shear
is forced by the Reynolds stress due directly to oscillations in the boundary layer,
which should be distinguished from Reynolds stress due to turbulent fluctuations.
This result is similar to that of Eulerian streaming in a oscillatory laminar boundary
layer of Stokes.

By using (6.10), (7.8) and then (6.29), the right-hand side of (7.11) can be written as

(τ̄ ′
xz)b − [(τ̄ ′

xz)c]+ = αbZ
∂ū′

b

∂Z
± α0αb − α2

c

κ2
+ O(ε). (7.12)

It then follows from (7.8), (7.11) and (7.12) that

Z
∂ū′

b

∂Z
=

ũbw̃b

αb

−
(

±α0αb − α2
c

αbκ2
+

[ũbw̃b]+
αb

)
+ O(ε), (7.13)

† In the theory by Grant & Madsen (1979, 1986), the oscillation-induced Reynolds stress was
not accounted for, therefore their current profile remains logarithmic in height even with waves.
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which can be integrated from Z = ZB , to give the wave-perturbed current in the bed
boundary layer

ū′
b(Z) =

∫ Z

ZB

ũbw̃b

αbZ
dZ −

(
±α0αb − α2

c

αbκ2
+

[ũbw̃b]+
αb

)
ln

(
Z

ZB

)
+ O(ε). (7.14)

Its value at the upper edge of the BWBL (Z = Zδ) gives the lower boundary condition
for ū′

c

[ū′
c]+ =

∫ Zδ

ZB

ũbw̃b

αbZ
dZ −

(
±α0αb − α2

c

αbκ2
+

[ũbw̃b]+
αb

)
ln

(
Zδ

ZB

)
+ O(ε), (7.15)

which holds for both cases A and B. In case A, we need only set αc = αb. In (7.15)
the wave-Reynolds stress is to be determined in the next section after solving the
oscillatory motion inside the BWBL. Note that [ū′

c]+ depends implicitly on αc and αb

which are yet to be found.

7.2. Oscillatory motion: ũb

Making use of (7.6), the wave-induced Reynolds stress in (7.13) can be expressed as

ũbw̃b = −αbũb

∫ Z

ZB

∂ũb

∂x
dZ + O(ε). (7.16)

The oscillatory flow ũb is required only to the leading order in order to integrate
(7.14) for ū′

b. After using (7.3) and (7.6), and the oscillatory parts of the Reynolds
stress (3.7), the boundary-value problem for the oscillatory motion is that of the
Stokes problem with a depth-linear eddy viscosity. The solution has been given by
Kajiura (1968)

ũb =
A

2 sinh(kh)
(1 − K(Z)) eiθ + c.c. where K(Z) =

K0(2
√

Ze−iπ/4)

K0(2
√

ZBe−iπ/4)
, (7.17)

with K0 being the Kelvin function of the zeroth order. We now follow Grant &
Madsen (1979) and define the outer edge of the bottom wave boundary layer Zδ by
the condition |ũb/[ũb]+| = 0.95† or from (7.17)

|K(Zδ)| = 0.05. (7.18)

Now the wave-induced Reynolds stress (7.16) can be calculated from (7.17)

ũbw̃b(Z) = − αb AA∗

4 sinh2(kh)

[
(1 − K∗)

∫ Z

ZB

i(1 − K) dZ + c.c.

]
+ O(ε). (7.19)

At the upper edge of the boundary layer, K → 0, thus,

[ũbw̃b]+ = − αb AA∗

2 sinh2(kh)

∫ Zδ

ZB

Im(K) dZ + O(ε). (7.20)

8. Wave damping rate
After finding the oscillatory flow field (7.17) inside the bed boundary layer, we can

now calculate the rate of wave damping explicitly. In view of (7.3) and (7.6), the first

† We have checked for case A, that this numerical value is immaterial as long as it is close to 1.
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integral on the left-hand side of the mechanical energy equation (5.5) representing
dissipation inside the bed boundary layer can be approximated as follows∫ Zδ

ZB

Z

(
∂ũb

∂Z

)2

dz =
αbAA∗

2 sinh2(kh)

∫ ∞

ZB

Z
∂K(Z)

∂Z

(
∂K(Z)

∂Z

)∗

dz. (8.1)

The integral on the right-hand side can be evaluated numerically. The second term
in (5.5) which represents energy dissipation in the core, can be easily calculated from
the linear wave solution

ε2 1

2

∫ 0

−kh+kδ

αcS̄c

(
∂ũi

∂xj

+
∂ũj

∂xi

)2

dz = ε4αcAA∗ 2kh cosh2(kh) − sinh(2kh)

2kh sinh2(kh)
, (8.2)

where (3.8) has been used for S̄c and terms smaller by the factor of kδ = O(ε2) have
been ignored. Similarly, the rate of pressure working on the right-hand side of (5.5)
can also be evaluated

− ∂

∂x

∫ 0

−kh+kzB

ũp̃ dz ≈ −
(

sinh(2kh) + 2kh

8 sinh2(kh)

)
∂AA∗

∂x2

. (8.3)

Summarizing (5.5) and (8.1)–(8.3), we have

∂AA∗

∂x2

= −βAA∗, (8.4)

where

β = αcβc + αbβb, (8.5)

βc = 4
2kh cosh2(kh) − sinh(2kh)

kh (sinh(2kh) + 2kh)
, (8.6)

βb =
2AA∗

sinh(2kh) + 2kh

∫ ∞

ZB

Z
∂K(Z)

∂Z

(
∂K(Z)

∂Z

)∗

dz, (8.7)

with βc and βb representing contributions from the core and the bed boundary-layer,
respectively.

Since the damping rate affects the evolution over distances much longer than both
the wave length and the roughness size, local inaccuracies due to boundary-layer
approximation may not be crucial. Hence, the results here may even apply for a
rough bed with large and/or well-separated roughness elements (case C). This will be
checked later.

9. Perturbed Reynolds stress on the still water surface
Near the free surface, a wave boundary layer also exists in principle. Because of

the stress-free condition, this boundary layer is weak. In Appendix B it is shown that,
to the desired accuracy, the boundary-layer corrections can be ignored in calculating
the current. We shall therefore use only the outer solution to derive an approximate
surface boundary condition for the mean current at the mean water level. Our
approach is to integrate the governing equations from the moving surface down to
the still water surface at z = 0, invoke the surface boundary conditions, and then
approximate the time-averaged results to the desired accuracy. This approach has
been employed before by Liu & Davis (1977) in their study of wave-induced current,
and is essentially the same as that in the theory of radiation stresses arising in the
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depth-integrated and time-averaged momentum balance of a wave field (see, e.g.
Phillips 1977; Mei 1989).

By integrating the horizontal momentum equation from z = 0 to the instantaneous
sea level, applying the boundary conditions, and taking the time averages, we obtain
the following exact result,

[τ̄xz]0 − [uw]0 = − ∂

∂x

∫ η

0

(uu + P − τxx) dz. (9.1)

On z = 0, the basic current ū0 has zero shear stress. It follows from (6.8) that the
leading term is the result of wave disturbance, i.e. [τ̄xz]0 = ε4[τ̄ ′

xz]0. Up to O(ε4), not
only the wave boundary-layer corrections can be ignored, but the right-hand side of
(9.1) can be approximated so that

ε4[τ̄ ′
xz]0 = [uw]0 − ∂

∂x

∫ η

0

Pdz + O(ε5). (9.2)

On the right-hand side, the first term represents the averaged wave-induced
momentum flux (wave-induced Reynolds stress) while the second is the averaged
net pressure force in the horizontal direction; their sum makes up the mean shear
stress at the mean sea level. We now calculate these two terms.

From the definition of the dynamic pressure, p = P + (gk/ω2)z, we obtain

∂

∂x

∫ η

0

Pdz = ε2 ∂

∂x2

([p]0η) − ε2 ∂

∂x2

(
η2

2

gk

ω2

)
+ O(ε5). (9.3)

Making use of the linear wave solutions on the right-hand side, we obtain

∂

∂x

∫ η

0

Pdz = ε4 coth(kh)

4

∂AA∗

∂x2

+ O(ε5). (9.4)

Clearly, this variation owes its existence to wave attenuation.
Next we compute the wave-induced Reynolds stress on the mean surface, [uw]0.

For this we turn to the core and recall the following identity

∂u2

∂x
+

∂uw

∂z
=

∂E

∂x
+ wΩ. (9.5)

Since ū = εū0 + ε2ū′, ∂f̄ /∂x2 = O(ε2f ), and w̄ = O(ε3), we have

∂uw

∂z
=

∂ũw̃

∂z
+ O(ε5) = ε2 1

2

∂

∂x2

(w̃2 − ũ2) + w̃Ω̃ + O(ε5). (9.6)

Making use of (6.22) for w̃Ω̃ and the linear wave solutions in (9.6), we obtain

∂ũw̃

∂z
= −αcε

4AA∗ ∂2S̄c

∂z2

sinh2(kh + z)

sinh2(kh)
− ε4

4 sinh2(kh)

∂AA∗

∂x2

+ O(ε5).

This equation can be integrated from the upper edge of the bottom boundary layer
to give

ũw̃(z) = [ũw̃]+ − αcε
4AA∗ ∂2S̄c

∂z2

sinh(2(kh + z)) − 2(kh + z)

4 sinh2(kh)

− ε4(kh + z)

4 sinh2(kh)

∂AA∗

∂x2

+ O(ε5), kh + z > kδ. (9.7)
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Because of (7.3), the first term on the right-hand side can be matched to the boundary-
layer solution given by (7.20),

[ũw̃]+ = ε4[ũbw̃b]+ = −ε4 αb AA∗

2 sinh2(kh)

∫ Zδ

ZB

Im(K) dz, (9.8)

where Zδ = δ/(αbε
2). Substituting this result in (9.7), we obtain

ũw̃ = −ε4 αb AA∗

2 sinh2(kh)

∫ Zδ

ZB

Im(K) dz − ε4(kh + z)

4 sinh2(kh)

∂AA∗

∂x2

− αcε
4AA∗ ∂2S̄c

∂z2

sinh(2(kh + z)) − 2(kh + z)

4 sinh2(kh)
+ O(ε5), kh + z > kδ, (9.9)

for all z in the core. In particular, its value at z = 0 is

[ũw̃]0 = −ε4 αb AA∗

2 sinh2(kh)

∫ Zδ

ZB

Im(K) dz − ε4kh

4 sinh2(kh)

∂AA∗

∂x2

− αbε
4AA∗ ∂2S̄c

∂z2

sinh(2kh) − 2kh

4 sinh2(kh)
+ O(ε5). (9.10)

The shear stress at the mean sea level then follows by combining (9.4) and (9.10) with
(9.2)

[τ̄ ′
xz]0 = − αbAA∗

2 sinh2(kh)

∫ Zδ

ZB

Im(K) dz −
(

coth(kh)

4
+

kh

4 sinh2(kh)

)
∂AA∗

∂x2

− αcAA∗ ∂2S̄c

∂z2

sinh(2kh) − 2kh

4 sinh2(kh)
. (9.11)

This boundary value completes the perturbed turbulent stress (6.31) in the core,
and is a key result of this work. Physically, despite the absence of wind, the perturbed
Reynolds stress is not zero on z = 0, owing to the combined effects of the wave-
induced Reynolds stress at the bottom, wave damping and the curvature of the eddy
viscosity. There is a simpler result in the theory for deep-water waves, where molecular
viscosity gives rise to a finite shear stress on the mean surface due to wave damping
(Phillips 1977).

10. Final solution for the core
10.1. Formulae for mean turbulent stress and current velocity

With the surface boundary condition (9.11), the perturbed turbulent stress follows
from (6.30), which can be rearranged as

S̄c

∂ū′
c

∂z
= − AA∗Ŝc

sinh(kh + z)

sinh(kh)︸ ︷︷ ︸
τ
Ŝ

± (αc − α0)

κ2

(
−z

kh

)
︸ ︷︷ ︸

ταc

+
βAA∗

αc

(z + kh) (2kh + sinh(2kh))

8kh sinh2(kh)︸ ︷︷ ︸
τβ

− αb

αc

AA∗(kh + z)

2kh sinh2(kh)

∫ Zδ

ZB

Im(K)dz︸ ︷︷ ︸
τB

− AA∗ ∂2S̄c

∂z2

sinh(2(kh + z)) − 2(kh + z)

4 sinh2(kh)︸ ︷︷ ︸
τS̄”

,

(10.1)

where (8.4) for the wave damping rate has been used.
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As labelled above, the perturbed turbulent stress S̄c(∂ū′
c/∂z) is the sum of the

following parts:
τŜ: Surface distortion of the eddy viscosity, which is always negative and greatest

on z = 0.
ταc

: Wave-induced change of friction velocity, where the upper (lower) sign
corresponds to wave-following (-opposing) current.

τβ: Wave damping, which is always positive.
τB: Wave-induced Reynolds stress from the bottom boundary layer, which is always

negative.
τS̄”: Curvature of the eddy viscosity, which originates from the vortex force (cf.

(6.22)) and is always positive.
A negative stress should lead to reduction (increase) of surface current velocity if

waves and current are in the same (opposite) direction. The opposite, of course, holds
for a positive stress. The magnitude of each term will be examined later to find the
net consequence. Upon integration from the outer edge of the wave boundary layer,
we obtain the wave-perturbed current velocity ū′

c

ū′
c(z) = [ū′

c]+ − AA∗
∫ z

−kh+δ

sinh(kh + z′)

(−z′) sinh(kh)
dz′ ± αc − α0

κ2
ln

(
kh + z

δ

)
− βAA∗

αc

(
(2kh + sinh(2kh))

8 sinh2(kh)

)
ln

( −z

kh − δ

)
+

(
αb

αc

AA∗

2 sinh2(kh)

∫ Zδ

ZB

Im(K(Z)) dz

)
ln

(
−z

kh − δ

)
− AA∗ ∂2S̄c

∂z2

∫ z

−kh+δ

(
sinh(2(kh + z′) − 2(kh + z′)

4S̄c sinh2(kh)

)
dz′, (10.2)

where [ū′
c]+ is given by (7.15). The final current velocity in the core is ū = εū0 + ε2ū′

c

by summing (2.13) and (10.2). Note that ū′
c depends on two parameters αc and αb,

which remain to be determined. For a smooth bed (case A), we simply set αc = αb.

10.2. Friction velocities

For a smooth bed (case A), the friction velocity uf c or its dimensionless equivalent
αc is determined by requiring the constancy of discharge (6.3).

For a rough bed (case B), αb �= αc; we must further invoke the scheme of Grant &
Madsen. To facilitate comparison, we begin with the dimensional form of the friction
velocity inside the bottom boundary layer. The total friction velocity uf b is defined
by the magnitude of the total bottom shear stress

ρu2
f b = max([τ ∗

xz]B), (10.3)

where [ ]B represents a quantity evaluated at the bottom z∗ = −h + zB in physical
coordinates, or z = −kh + kzB in dimensionless coordinates.

By requiring that waves and current assume the same eddy viscosity νb, (2.10), the
Reynolds stress [τ ∗

xz]B can be written as

[τ ∗
xz]B = ρκ uf b

[
(h + z∗)

∂ū∗

∂z∗ + (h + z∗)
∂ũ∗

∂z∗

]
B

, (10.4)
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where terms smaller than that retained by a factor of kδ have been ignored. In view
of the definition of uf b, (10.3), it follows from (10.4) that

uf b = κ max

[
(h + z∗)

∂ū∗

∂z∗ + (h + z∗)
∂ũ∗

∂z∗

]
B

. (10.5)

After normalizing uf b by Cε2, and substituting (6.1) and (7.3) in (10.5), we obtain

αb = κ2 max

[
kh + z

ε

(
∂ū0

∂z

)
+ Z

(
∂ū′

b

∂Z

)
+

Z

ε

∂ũb

∂Z

]
B

+ O(ε). (10.6)

In accordance with (4.4), the first term in the brackets in (10.6) is just ±α0/κ
2. From

the governing equation of the mean current inside the bed boundary layer, (7.13), the
second term in the brackets of (10.6) is[

Z
∂ū′

b

∂Z

]
B

= −
(

± α0αb − α2
c

αbκ2
+

[ũbw̃b]+
αb

)
+ O(ε), (10.7)

where [ũbw̃b]+ is given by (7.20). Use has been made of the fact that the wave-
induced Reynolds stress vanishes on the seabed. Lastly, the wave solution inside the
bed boundary layer, (7.17), gives the third term[

−A

2 sinh(kh)

(
Z

∂K

∂Z
eiθ + c.c.

)]
B

. (10.8)

For small ZB , as in many field cases, we can approximate the Kelvin function
(Abramowitz & Stegun 1972) to obtain[

Z
∂K

∂Z

]
B

=
1

2 ln
(

1−i√
2

)
+ ln(ZB) + 2γ

+ O(ZB), (10.9)

where γ = 0.57722. Therefore, for sufficiently small ZB , (10.8) is practically of order
O(ε) and all terms on the right-hand side of (10.6) are of order unity.

For any complex number a = |a|eiΘ , where Θ is the phase of a, the following is an
identity,

max[aeiθ + c.c.] = max
[
|a|ei(θ+Θ) + c.c.

]
= 2 |a| . (10.10)

With this, (10.6) can be reduced to

αb = κ2

∣∣∣∣ ±α0

κ2
−

(
± α0αb − α2

c

αbκ2
+

[ũbw̃b]+
αb

)∣∣∣∣ +
κ2

ε

∣∣∣∣ A

sinh(kh)

(
Z

∂K

∂Z

)∣∣∣∣
B

= κ2

∣∣∣∣ ±α2
c

αbκ2
+

[ũbw̃b]+
αb

∣∣∣∣ +
κ2

ε

∣∣∣∣ A

sinh(kh)

(
Z

∂K

∂Z

)∣∣∣∣
B

. (10.11)

This implicit relation between αb and αc reduces to that of Grant & Madsen only
if we disregard the wave-induced Reynolds stress [ũbw̃b]+ which is important here.

10.3. Numerical procedure

In water of given depth h, we suppose that the basic current and the wave parameters
are known in advance.

For a steady current, the bottom roughness zB is usually determined by fitting
the logarithmic profile with the measured profile of the pure current. Based on
experiments Mathisen& Madsen (1996a, b) have shown that the same value can be
taken if waves are also present.
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Bed
Authors Roughness Λk ∆k Rew(104) ab/kN conditions

Bakker & Doorn (1978) Rectangular 15 2 1.9 ∼ 2.8 3.35 ∼ 4.11 C
Kemp & Simons (1982) Smooth bed 0 0 0.07 ∼ 0.36 ∞ A
Kemp & Simons (1982) Triangular 18 5 0.07 ∼ 0.36 0.94 ∼ 1.76 C
Kemp & Simons (1983) Triangular 18 5 0.07 ∼ 036 0.94 ∼ 1.76 C
Mathisen & Madsen (1996a) Triangular 100 15 0.5 ∼ 1.6 0.2 ∼ 0.44 C
Mathisen & Madsen (1996b) Triangular 200 15 0.5 ∼ 1.8 1.14 ∼ 1.74 C
Klopman (1994) Sand 2 2 1.1 4.25 C

Table 1. Wave and bed conditions of available experiments: ∆k (mm) = roughness height
and Λk (mm) = distance between the roughness elements.

The numerical procedure of predicting the friction velocity uf b (hence αb) is
iterative:

(i) Calculate from the basic current fc according to (2.15) for z∗
B given by fitting

empirical data, and then compute the friction velocity uf c = 〈ū∗
0〉

√
fc/2, which gives

the dimensionless friction velocity α0.
(ii) Starting from αc = α0, we compute αb from (10.11) by iteration. The value of

Zδ defined by (7.18) is found during the iteration.
(iii) Solve for ū′

c according to (10.2).
(iv) Check if the discharge condition (6.4) is satisfied within the allowed error. If

not, Step (ii) is repeated with a new trial αc. The iteration procedure is continued
until the discharge condition is satisfied. The solution of ū′

c is then found.
(v) Compute the total mean velocity in the core from ū = εū0 + ε2ū′

c.
In the next sections, we shall compare the predicted current profile at one station

with available experiments, and predict further the velocity profiles at different stations
in the direction of wave propagation.

11. Comparison with experiments
11.1. Past experiments

Laboratory studies in long flumes on wave-following currents have been reported
by Bakker & Doorn (1978), Brevik & Aas (1980), Myrhaug, Reed & Fyfe (1987)
and Mathisen & Madsen (1996a, b), only for the region near a rough bottom.
Myrhaug et al. (1987) also reported results for the region near the smooth bottom.
Measurements of the current velocity profile for the entire depth are more limited. We
are aware of only two experiments by Kemp & Simons (1982, 1983) and by Klopman
(1994, 1997) for rough beds. These experiments are classified in table 1, according to
the empirical criteria of Kamphuis (1975). It is evident that only Kemp & Simons
(1982) with smooth bed falls clearly in case A. Further discussions will be limited to
the works of Kemp & Simons and Klopman.

Kemp & Simons have reported the current profiles for wave-following currents
over smooth and rough beds (1982), and wave-opposing currents (1983) over a rough
bed only, in a small wave tank of 14.5 m length, 0.457 m width and 0.69 m height.
Roughness was created with 5 mm triangular strips separated at 18 mm intervals
along the channel. The still water depth was 0.2 m. Along the centreline, the depth-
averaged mean current velocity was 18.5 cm s−1 (1982) and −11 cm s−1 (1983). The
corresponding steady discharge rates were Q = 0.037 m2 s−1 and −0.022 m2 s−1
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Parameter WCA1 WCA3 WCA4 WCA5

From data ε 0.054 0.078 0.10 0.13
α0 1.009 0.49 0.29 0.21
R 0.103 0.099 0.086 0.086

∆flux 2.048 0.745 0.715 0.013
[ū]+ 2.00 1.35 1.07 0.86

Calculated [ū]+ 2.03 1.42 1.13 0.87
Zδ 8.54 8.65 8.81 9.00

kδ × 102 2.37 2.26 2.11 1.9
αc 0.954 0.43 0.24 0.15

Table 2. Parameters of Kemp & Simons (1982) for wave-following current over a smooth bed.
Wavelength L = 1.23m, k = 5.14 m−1, C = 1.23 m s−1 and kh = 1.03. The four tests WCA1 to
WCA5 are ordered by the wave steepness ε. WCA2 was not reported.

respectively. Waves with period T = 1.006 s were added to the turbulent current.
The wave amplitudes a ranged from 11.35 to 23.3 mm for the wave-following current
of 1982, and 13.95 to 29.55 mm for the wave-opposing current of 1983. All full-depth
profiles of currents were measured on top of a strip at a station 8.07 m away from
the wavemaker. As shown in Ridler & Sleath (2000), for pure waves of similarly
roughened bed, current profiles measured at different stations between two strips
can be vastly different. Wave-affected current profiles may vary with the horizontal
station. Such data is unfortunately unavailable for the full depth.

Klopman (1994) performed similar experiments in a larger wave flume 45 m long
and 1 m wide. The still water depth was 0.5 m. The bed was roughened by coarse
sand of 2 mm mean diameter. The test section was located at 22.5 m away from the
wavemaker. The discharge was Q = 0.08 m2 s−1. In the absence of waves, the mean
velocity profile of the turbulent current was essentially logarithmic. A monochromatic
wavetrain of period T = 1.44 s and amplitude a = 0.06 m was then superposed on
the current which either followed or opposed the current. No tests with waves of
other amplitude or frequency were reported. Later Klopman (1997) repeated the
experiments under identical conditions, and also measured the transverse velocity
with a view to examining Langmuir circulation due to the finite tank width. The
mean velocity profile along the centreline was measured at the same station, but
at only five different depths. The current velocities at all five measuring depths
were, however, greater than the 1994 data by 0.0128 m s−1. We shall only use the
more comprehensive measurements of Klopman (1994) for discussion. It is worth
pointing out, however, that corresponding to the ratio ab/kN given in table 1, the
ratio δ/kN ∼ 1.4 is not large. Thus, the sand grains are not deeply immersed in the
boundary layer.

Being the only full-depth observations available, the measurements by Kemp &
Simons (1982, 1983) and Klopman (1994) are compared with our theory in the next
section, despite the differences in seabed conditions.

11.2. Wave-following current over a smooth bed by Kemp & Simons

In table 2, the experimental parameters are summarized. Also included is the reflection
coefficient R, which is O(ε) in all four cases. It is known (Mei 1989) that reflection
of this intensity does not affect the induced streaming except at O(ε2R) which is
negligible here. We also display the flux discrepancy ∆flux which is a measure of the
difference between the measured discharge and the theoretical current discharge, and
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Figure 1. Various contributions to the mean stress for wave-opposing current over a smooth
bed (Kemp & Simons 1982), run WCA5. —, total mean shear stress due to waves. The
contributing factors are: τŜ , surface distortion of eddy viscosity; ταc′ , change of friction
velocity; τβ , wave damping; τB , wave-induced Reynolds stress from BWBL; τS̄′′, curvature of
eddy viscosity due to vortex force.

is implied by (6.4) with AA∗ = 1.

∆flux =

2

∫ 0

−kh+kδ

ū′
cdz

coth(kh)
+ 1. (11.1)

When the measured value of ūc
′ is used in the preceding formula, departure from zero

suggests difficulty in the velocity measurements. We also compare the values of [ū]+
obtained from both theory and experiments to show that (7.15) can indeed provide
good lower boundary value for the core current over a smooth bed.

To help understand the physics, let us first examine a typical stress distribution for
the perturbed current, as defined in (10.1). Figure 1 shows the wave-induced mean
stress for run WCA5. Both wave damping τβ and curvature of the eddy viscosity
τS̄′′ are positive and increase from zero at the bed to their maximum at the water
surface. Negative stresses, which tend to retard the current, are contributed by ταc

, τB

and τŜ . Because of the surface distortion of eddy viscosity, τŜ contributes the most
to slow down the current near the water surface, while ταc

(also negative) in this case
contributes little.

In figure 2, the velocity profiles of all reported runs by Kemp & Simons are
compared with the predictions. The agreement between theory and experiments is
quite good. In particular, the reduction of the current velocity near the free surface is
predicted well. This suggests that not only the shear stress, but also the edge velocity,
are described well, by (10.1) and (7.15), respectively. For run WCA1, the relative error
in the total discharge ∆flux is the largest, the agreement is poorer, probably owing to
the smaller wave steepness and the smaller effects on the current.

No wave-opposing current profiles over a smooth bed have been reported by
Kemp & Simons.

11.3. Wave-following current over a rough bed by Kemp & Simons

From Kemp & Simons (1982) a summary of experimental parameters is shown in
table 3. The roughness height zB is computed by fitting the measured velocity of pure
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Figure 2. Comparisons with (a) WCA1, (b) WCA3, (c) WCA4 and (d) WCA5 of Kemp &
Simons (1982) for wave-following current over a smooth bed. —, predicted current with waves;
– – –, predicted pure current; �, measured current with waves; ×, measured pure current.

Parameter WCR1 WCR3 WCR4 WCR5

From data ε 0.06 0.08 0.10 0.13
α0 2.12 1.08 0.59 0.42
R 0.088 0.078 0.074 0.072

∆flux 8.102 4.268 1.312 0.205
kzr 0.13 0.15 0.13 0.15
ūr 2.13 1.7 1.21 0.92

[ū]+ 1.70 1.33 1.03 0.77

Calculated [ū]+ 0.47 0.14 0.13 0.19
Zδ 7.48 7.1 6.5 6.13

kδ × 10 0.9 0.9 0.86 1.12
αc 1.50 0.46 0.29 0.29
αb 3.42 1.98 1.32 1.08

Table 3. Parameters of Kemp & Simons (1982) for wave-following current over a rough bed.
Wavelength L = 1.23 m, k = 5.14 m−1, C = 1.23 m s−1, and kh = 1.03. Hydraulic roughness
zB = 0.208 cm (kzB = 0.0105). The four tests WCR1 to WCR5 are ordered by the wave
steepness ε. WCR2 was not reported.

current with the logarithmic profile, with the tank bottom (the base of the strips)
defined as z = −kh. Note that for the weaker waves: WCR1, WCR3 and WCR4, the
flux discrepancy is very large, suggesting possible difficulty in measuring small velocity
variations and boundary-layer effects near the sidewalls. Comparisons are only shown
for runs WCR4 and WCR5. It also turns out that the lower boundary value [ū′

c]+
given by (7.15) differs markedly from the data, see table 3. By using the measured
velocity ūr at a reference height zr , shown in the same table, a fair agreement between
predicted and measured velocities is achieved, as shown in figure 3. The need for this
empirical fitting is not surprising since the profiles were all measured at the station
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Figure 3. Profiles of wave-following current over a rough bed by Kemp & Simons (1982),
runs (a) WCR4 and (b) WCR5. —, theoretical profile with waves; - - -, theoretical profile of
pure current; �, measured profile with waves; ×, height (kzr ) where empirical fitting with (ūr )
is made.
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Figure 4. Predicted contributions to the mean stress for run WCR5 of Kemp & Simons (1982).
—, total mean shear stress due to waves. Various contributing parts are: τŜ , surface distortion of
eddy viscosity; ταc

, change of friction velocity; τβ , wave damping; τB , wave-induced Reynolds
stress from the bottom wave boundary-layer; τS̄ ′′ , curvature of the eddy viscosity due to vortex
force.

where a strip is located, and are most probably different from the profiles at other
stations between the strips. With similar fitting, the agreement is, of course, worse,
for run WCR4 than for run WCR5 in view of the very large discharge error ∆flux for
the former.

To help understand the physics, we plot in figure 4 various wave-induced stress
components as defined in (10.1), for case WCR5. Note that τβ and τS̄ ′′ are again
both positive and the greatest near the free surface. All these tend to increase the
current speed near the free surface. τB is negative, but is almost cancelled by τβ .
Owing to waves, the dimensionless core friction velocity α0 is smaller than α0 of the
pure current (αc −α0 = 0.29−0.42 = −0.13). Thus, ταc

attains the negative maximum
at the bottom. Most importantly, the shear stress τŜ due to the distortion of eddy
viscosity is negative and large and is the dominating factor for reducing the current
velocity near the free surface. The combined effect is much stronger than the case
over a smooth bed.
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Figure 5. Wave height attenuation for case WCR5: �, Measured wave height; —, predicted
wave height.

Parameter WDR1 WDR2 WDR3 WDR4 WDR5

From data ε 0.07 0.09 0.10 0.13 0.15
α0 0.84 0.55 0.43 0.26 0.19
R 0.025 0.03 0.023 0.026 0.02

∆flux 1.610 0.520 −0.309 −0.222 0.104
kzr 0.13 0.18 0.15 0.18 0.15
ūr −0.59 −0.67 −0.55 −0.45 −0.32

[ūc]+ −0.500 −0.471 −0.469 −0.357 −0.285

Calculated [ūc]+ −0.550 −0.390 −0.284 −0.269 −0.242
Zδ 6.8 6.62 6.45 6.00 5.62

kδ × 10 0.92 1.08 1.07 1.20 1.22
αc 1.32 0.86 0.64 0.47 0.36
αb 2.75 2.02 1.67 1.22 0.97

Table 4. Parameters of Kemp & Simons (1983) for wave-opposing current over rough bottom.
Wavelength L = 1.23 m, k = 5.14 m−1, C = 1.23 m s−1, and kh = 1.03. Hydraulic roughness
zB = 0.203 cm (kzB = 0.0104). The five tests WDR1 to WDR5 are ordered by the wave
steepness ε.

Although the current profiles were measured only at a single station, records are
available for the wave height along the channel, for run WCR5 only. In terms
of the normalized slow coordinate x2, the length of the tank is only ∆x2 = 0.69.
Hence, we use the damping coefficient β computed for the starting station x2 = 0 for
calculating the wave attenuation. The predicted and measured wave heights are shown
in figure 5. The reasonable agreement gives partial confirmation of the boundary-layer
model which predicts comparable importance of dissipation in the bottom boundary
layer and in the core.

11.4. Wave-opposing current over a rough bed by Kemp & Simons

A summary of dimensionless parameters for all the wave-opposing current tests, both
given and predicted, is given in table 4.
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Figure 6. Various contributions to the mean stress for wave-opposing current over rough
bottom of Kemp & Simons (1983), case WDR5. —, the total mean shear stress due to waves.
The contributing factors are: τŜ , surface distortion on the eddy viscosity; ταc

, change of the
friction velocity in the core region; τβ , wave damping; τB , wave-induced Reynolds stress from
the BWBL; τS̄′′, curvature of the eddy viscosity.

Note that the discharge discrepancy is relatively small in all cases. Using input
parameters computed from data as listed in table 2, numerical results are obtained
for the various components of the shear stresses and the current velocity profile. The
predicted parameters αc and αb are also recorded in table 4. Also, in these runs, the
predicted [ū]+ nearly equals the measured value at the same station with a strip. This
coincidence can only be accidental in view of the separation of strips.

Let us first examine, for the representative run WDR5, the stress distribution for the
perturbed current, as defined in (10.1). Again both wave damping τβ and curvature
of the eddy viscosity τS̄ ′′ are positive, but they now tend to slow down the current.
They both attain their maximum at the water surface and vanish at the bottom.

Negative stresses, which tend to speed up the current, are contributed by ταc
, τB

and τŜ . Again, τB due to the wave-induced Reynolds stress at the outer edge of the
BWBL, nearly cancels the opposite effect of τβ (figure 6). The negative stress due
to the surface distortion of eddy viscosity τŜ contributes the most to speed up the
current near the water surface. Now since αc − α0 = 0.36 − 0.19 = 0.17, ταc

attains
a very large negative maximum at the bottom, contributing to the flattening of the
velocity profile near the bed, in comparison with the pure current. The net shear
stress shown by a solid line is negative throughout the entire depth, but more so
than the wave-following case of WCR5. Now the negative shear stress near the free
surface also causes the surface current to be stronger than that of a pure current.
Figure 7 compares the predicted current profile ū0 + εū′

c, with the measured data by
Kemp & Simons for case (WDR5). The velocity profile of a pure current (logarithmic,
dotted) is also included for reference. The overall agreement between the theory and
experiments is very good. Reduction near the bottom and increase near the surface
of the mean velocity are correctly predicted. Note in table 2, that there is an increase
in friction velocity due to waves, i.e. αb > αc, which is responsible for the reduction
of the mean current velocity near the bed, consistent with most past observations,
contributing to an increase of the apparent bottom roughness (Grant & Madsen
1986).
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Figure 7. Current profile of WDR5 by Kemp & Simons (1983) for wave-opposing current
over a rough bed. —, theoretical profile; - - -, theoretical profile of pure current; �, measured
profile; ×, height (kzr ) where empirical fitting with (ūr ) is made.
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Figure 8. Current profiles for wave-opposing current over a rough bed. —, predicted profile
with waves; - - -, predicted profile of pure current; �, measured profile with waves; ×, height
(kzr ) where empirical fitting with (ūr ) is made. (a) WDR1; (b) WDR2; (c) WDR3; (d) WDR4.

Additional comparisons for all other runs WDR1–WDR4 are presented in figure 8,
with satisfactory agreement. The stress distributions resemble those shown in figure 6
and are omitted.

For run WDR4, the attenuation of wave height H = 2a with distance has been
reported by Kemp & Simons (1983) . In terms of the normalized slow variable x2,
the length of the tank is ∆x2 = 0.93. Using the damping coefficient β at x2 = 0
(the current-measuring station at mid tank), we compare in figure 9 the computed
H and those measured against the distance from the wavemaker. The agreement
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Figure 9. Wave height attenuation of WDR4. —, theoretical wave height; �, measured
wave height.

Parameter Wave-following current Wave-opposing current

From data ε 0.14 0.14
α0 0.119 0.119
R <0.02 <0.02

∆flux 0.021 0.066
kzr 0.14 0.10
ūr 0.56 −0.40

[ūc]+ 0.4 −0.2

Calculated [ūc]+ 0.06 −0.24
Zδ 4.06 4.24

kδ × 102 3.74 3.86
αc 0.06 0.24
αb 0.47 0.56

Table 5. Parameters of Klopman (1994) for wave-following and wave-opposing currents over
a rough bed. Dimensionless hydraulic roughness kzB = 9.2 × 10−4.

between prediction and data is good, confirming again the comparable importance of
dissipation within the boundary layer and in the core above.

For WDR4, the eddy viscosity near the bottom was reported by Kemp & Simons
(1983). The scatter of data was so large that no meaningful comparison with theory
can be made.

11.5. Wave-following/opposing currents over a rough bed by Klopman

In Klopman (1994), the wavenumber is k = 2.34m−1 according to the linear wave
theory. The bottom is roughened by sand of diameter 2 mm. Other experimental and
calculated parameters are summarized in table 5. From table 5, we find δ/kN ∼ 1.4
for both wave-following and opposing currents. Therefore, wave-induced turbulence
is probably three dimensional. Nevertheless after fitting the velocity at one height, zr ,
the predicted mean velocity profile compares with Klopman’s data very well for both
wave-following and wave-opposing currents, as shown in figure 10.
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Figure 10. Comparisons with Klopman (1994) for wave-following and wave-opposing
currents. In this figure the basic current is from left to right. A, waves are from left to
right; B, waves are from right to left; —, theoretical profile with waves; - - -, theoretical profile
of pure current; �, experimental data for currents with waves; ×, heights (kzr ) where empirical
fitting with (ūr ) are made.

12. Longitudinal variation of current
In all the existing experiments cited here, current measurements for the full depth

were made only at a single station. In view of the empirical assumptions required
in the theory, it would be desirable to have new measurements at many stations in
order to provide firmer checks. For this purpose, we have extended our calculations
to include the change of the current profiles along the channel, provided that the
wave and current conditions are specified at one station. Predictions are shown only
for a smooth bed.

Recalling the definition of x2 = k3a2x∗, we start from station x2 = 0 where A(0) = 1
and advance to larger x2 > 0 in the direction of wave propagation. For a smooth bed,
the discharge of the pure current, or the depth-averaged velocity ū∗

0, can be specified
so that α0 can be easily computed. Afterwards, the numerical algorithm to compute
ū(x2) is straightforward. Let the wave and current conditions be known at x2 = Xk−1.
To predict the current velocity at x2 = Xk = Xk−1 + ∆x2, we first compute the wave
amplitude A(Xk) = A(Xk−1) − β(Xk−1)∆x2/2, where β(Xk−1) is the energy dissipation
rate at x2 = Xk−1. Then αc(Xk) and αb(Xk) are calculated by the procedures described
in § 10.3.

Two examples are presented in figure 11 for a smooth bed. One is for the wave-
following current and the other for the wave-opposing current. The wave and current
conditions at the start (x2 = 0) are the same as those in run WCA5 of Kemp &
Simons (1982). In both cases, as the distance from x2 = 0 increases, the current profile
approaches the limit of a pure current without waves. Reduction or increase of the
current velocity near the bottom becomes smaller and smaller. When the waves are
eventually damped out, the current profile becomes logarithmic in depth. Note that
the total Eulerian flux decreases (increases) with distance when waves and current
have the opposite (same) direction, as expected by mass conservation (6.4).

Similar predictions have been made for a rough bed and with very large ab/kN , for
possible comparisons with future experiments in a large flume or in the field. Results
resemble those in figure 11 and are not presented.
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Figure 11. Changes along the tank. The damping scale x2 is defined by x = ε2x2 and the
spatial grid step is ∆x2 = 2.

13. Concluding remarks
In this paper, an analytical boundary-layer theory for predicting the wave effects

on a turbulent current over a smooth or rough bed has been presented. The current
is assumed to be as strong as the orbital velocity of waves and renders the flow
turbulent throughout the depth. For a smooth bed, a model of continuous eddy
viscosity parabolic in depth is used. For a rough bed, a discontinuous eddy viscosity
is used instead to account for the combined effects of waves and current in the bed
wave-boundary layer. At the leading order, turbulence in both the bed boundary layer
and the core results in wave attenuation over a long distance of many wavelengths.
At the second order, waves modify the mean flow through wave-induced Reynolds
stresses due to oscillations in all regions of the flow. In particular, the perturbed
mean turbulent stress is not zero on the still water surface despite the absence of
wind, and is not constant in depth above the bottom boundary layer. It is of special
importance that this mean shear stress on the free surface is opposite in direction to
the waves. As a consequence, a wave-following current must experience a reduction,
while a wave-opposing current experiences an increase, in speed. This phenomenon
is due largely to the distortion of eddy viscosity at the free surface.

Comparison with existing experiments for a smooth bed is successful. For a rough
bed, the roughness elements in existing experiments are either relatively large or well
separated, making a boundary-layer analysis difficult. Nevertheless, the present theory
still gives a good prediction of current for the entire depth, if empirical matching is
made at one depth just above the bed boundary layer (as in Grant & Madsen). For
beds roughened by well separated strips, this theory appears adequate for predicting
quantities that vary slowly in the horizontal direction, such as the attenuation rate, and
may give a good prediction of the horizontally averaged velocities profiles, without
empirical fitting. To check this speculation, additional measurements either for deeply
submerged roughness, or of current profiles at several closely spaced stations between
strips and over a long fetch, would be worthwhile.

Extension of this study to the three-dimensional problem of Langmuir circulation
in shallow water is of value to the transport of fine sediments in lakes and coastal
waters, and is underway.
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Appendix A. Mechanical energy in waves
We sketch here the derivation of the mechanical energy equation (5.5). For brevity,

let us use the index notation for the dimensionless coordinates and the total fluid
velocties x1 ≡ x, x3 ≡ z; q1 ≡ u, q3 ≡ w and rewrite the exact continuity and
momentum equations (3.2), (3.3) and (3.4). Following the standard procedure (see e.g.
Mei 1989), it can be shown that the depth-integrated total energy budget reads

∂

∂t

∫ η

z+

(
q2

i

2
+

gk

ω2

η2

2

)
dz = −ε2

2

∫ η

z+

αS

(
∂qi

∂xj

+
∂qj

∂xi

)2

dz +
∂

∂x

∫ η

z+

(
qiσi1 − q1

q2
i

2

)
dz,

(A 1)

where z+ = zb − kh denotes the bed and σij = −pδij + τij the total stress tensor.
Invoking periodicity, and using continuity, the period-averaged energy budget is,
exactly,

ε2

2

∫ η

z+

αS

(
∂qi
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+
∂qj
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dz
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∂
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(
∂q1qi
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+
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i /2
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)
− q1

q2
i

2

)
dz. (A 2)

Thus, on average, dissipation by turbulence in a fluid column of small width is
balanced by the net total stress working and energy flux on both sides.

We first substitute in (A 2) qi = q̄i , η = η̄ and p = p̄ to obtain the energy budget
for the steady current, noting that q̄1 = ū(z), q̄3 = w̄ = 0 and ∂p̄/∂x �= 0. We then
substitute in (A 2) qi = q̄i + q̃i , η = η̄ + η̃ and p = p̄ + p̃ for the energy budget of
the total flow. The difference of the two results is the energy budget of the waves.
Making use of the following identity∫ η̄+η̃

z+

f dz =

∫ 0

z+

f dz +

∫ η̄+η̃

0

f dz (A 3)

and the order estimates,

q̃i , q̄i , η̃ = O(ε), η̄ = O(ε2), S̃ = O(ε),
∂f̄

∂x
= O(ε2), (A 4)

we obtain the time-averaged wave energy budget

ε2

2

∫ 0
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(
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+
∂q̃j

∂xi

)2

dz = − ∂

∂x

∫ 0

z+

ũp̃ dz + O(ε5) (A 5)

which is (5.5).

Appendix B. Unimportance of surface wave boundary layer
We first list the exact dimensionless boundary conditions, normalized by core scales

(cf. (2.4), (2.5) and (2.6)). Dynamically, the tangential and normal stresses must vanish
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on the moving wind-free surface,

− [−P + τxx]
∂η

∂x
+ τxz = 0, z = η, (B 1)

[−P + τzz] − τxz

∂η

∂x
= 0, z = η, (B 2)

where P is the total pressure (static and dynamic). In addition, the kinematic surface
boundary condition requires

∂η

∂t
+ u

∂η

∂x
− w = 0, z = η. (B 3)

Let us denote the boundary-layer corrections of the flow field by (U ′, W ′, P ′), i.e.

u = uc + U ′, w = wc + W ′, p = pc + P ′, (B 4)

where (uc, wc, pc) are the values of (u, w, p) evaluated at the outer edge of the surface
boundary layer, where all correction terms should vanish.

First, the oscillatory shear stress must vanish on the free surface, hence,

∂ũc

∂z
= O

(
∂Ũ ′

∂z

)
. (B 5)

In view of the smallness of the eddy viscosity, O(ε2kδ), where the dimensionless
boundary-layer thickness near the free surface is also of the order kδ = O(ε2), we
have, within the surface wave boundary layer

Ũ ′ = O(ε2ũc) = O(ε3). (B 6)

Now the mean current. The boundary-layer correction to the perturbed core current is
the result of nonlinear interaction between the irrotational waves and the boundary-
layer corrections, hence

Ū ′ = O(εŨ ′) = O(ε4). (B 7)

The continuity equations for the surface layer corrections to the oscillatory and the
mean motions are, respectively,

∂Ũ ′

∂x
+

∂W̃ ′

∂z
= 0,

∂Ū ′

∂x
+

∂W̄ ′

∂z
= 0. (B 8)

From these we find

W̃ ′ = O(ε2Ũ ′) = O(ε5), W̄ ′ � O(ε2Ū ′) � O(ε6). (B 9)

From the vertical momentum equation for the surface-layer corrections, the
following order of magnitude estimate is obtained

W̃ ′ ∼ ∂P̃ ′

∂z
. (B 10)

Since ∆z = O(ε2), it follows that

P̃ ′ = O(ε2W̃ ′) = O(ε7). (B 11)

We further estimate that P̄ ′ = O(εP̃ ′) = O(ε8) because the perturbed mean boundary
layer correction is due to the nonlinear interaction between the irrotational waves
and the perturbed wave boundary-layer corrections.
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In view of the smallness of the correction terms, only the outer solution suffices
near the free surface up to the desired accuracy.
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