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A model is presented for concentrated sediment transport that is driven by strong,
fully developed turbulent shear flows over a mobile bed. Balance equations for
the average mass, momentum and energy for the two phases are phrased in terms
of concentration-weighted (Favre averaged) velocities. Closures for the correlations
between fluctuations in concentration and particle velocities are based on those for
collisional grain flow. This is appropriate for particles that are so massive that their
fall velocity exceeds the friction velocity of the turbulent fluid flow. Particular atten-
tion is given to the slow flow in the region of high concentration above the stationary
bed. A failure criterion is introduced to determine the location of the stationary
bed. The proposed model is solved numerically with a finite-difference algorithm in
both steady and unsteady conditions. The predictions of sediment concentration and
velocity are tested against experimental measurements that involve massive parti-
cles. The model is further employed to study several global features of sheet flow
such as the total sediment transport rate in steady and unsteady conditions.

Keywords: sediment transport; sheet flow; particle collisions;
turbulent suspension; two-phase flow

1. Introduction

Sheet flows occur when the shear stress of a turbulent fluid flow is large enough
that bed ripples disappear and a significant amount of highly concentrated sediment
is suspended and transported. Within the sheet, particles interact with each other,
with the bed and with the turbulent shear flow. Sheet flows are important because a
relatively large amount of sediment can be transported within them. Also, it is likely
that they exhibit, in expanded form, the structure of thinner regions of bedload in
milder conditions. That is, high concentration and collisional suspension near the
bed, with turbulent suspension becoming increasingly important as the strength of
the turbulence increases with distance from the bed and the concentration decreases.

† Present address: Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic
Institution, Woods Hole, MA 02543, USA.

Proc. R. Soc. Lond. A (2004) 460, 2223–2250
2223

c© 2004 The Royal Society



2224 T.-J. Hsu, J. T. Jenkins and P. L.-F. Liu

The most important elements in the modelling of sheet flows are the implemen-
tation of the appropriate governing equations for the sediment dynamics, including
closures for the intergranular stresses, and an accurate description of the influence
of particles on fluid turbulence. In the simplest models of sheet flow (see, for exam-
ple, Hanes & Bowen 1985; Wilson 1987), the sediment concentration profile is not
a solution of the governing equations and is specified in advance; also, Bagnold’s
(1954) quadratic stress relations are employed for the closure of particle stress. More
complicated models of sheet flow employ two-phase mass and momentum equations
in which the sediment concentration and velocity are described by an independent
set of balance equations (see, for example, Kobayashi & Seo 1985; Asano 1990; Dong
& Zhang 1999; Greimann & Holly 2001). In this event, the sediment concentration
profile is a part of the solution of the two-phase equations. However, the closure of
particle stress in most of these models is still based on Bagnold’s stress relations,
obtained in a simple shear flow. In sediment transport, the flow is inevitably inho-
mogeneous and such simple relations are not necessarily valid.

Jenkins & Hanes (1998) also studied sheet-flow based on two-phase equations.
To close the particle stress, they introduced the granular temperature, a measure
of the strength of the particle velocity fluctuations. For particles whose inertia is
large compared with the viscous resistance of the fluid (Bagnold 1954), transport
processes are dominated by collisions between particles. The granular temperature
and the particle stresses may be calculated using a modification of the kinetic theory
appropriate for dense, inelastic spheres (Jenkins & Savage 1983). That is, the granular
temperature may be calculated from a balance equation, and the particle pressure
and the particle viscosity are given in terms of granular temperature by the kinetic
theory.

In the upper portion of a sheet, the suspension of sediment is mainly due to the
velocity fluctuations of the fluid. In Jenkins & Hanes (1998), turbulent suspension
is ignored in the momentum balance. Recently, Hsu et al . (2003) examined both
the importance of turbulent suspension in sediment transport and the impact of
sediment on fluid turbulence. They carry out a second average, phrased in terms
of concentration-weighted (Favre averaged) velocities, on the two-phase equations
of Drew (1983) and introduce turbulence closures for the resulting correlations. In
dilute flows, they ignore the stresses in the sediment phase and test the model against
experiments on sediment transport in open channel flow.

Within the stationary sediment bed, it is likely that sediment particles are random
close packed. In this region, both the mean and fluctuating motions of particles
vanish, but the fluid can still flow thorough pores. Near the top of the stationary
bed, the bed begins to fail and is fluidized by the flow. In the region where the
concentration is between random close packing and random loose packing (see, for
example, Onoda & Liniger 1990), the particles are in a transitional condition between
the solid-like and fluid-like behaviour (see, for example, Zhang & Campbell 1992). In
this region, the mean motion of the sediment is almost negligible, but the fluctuations
of the particles can still be important. Moreover, due to the high concentration, part
of the particle stress in this region is supported by enduring contact, rather than
collisions. Jenkins & Hanes (1998) avoid solving for the sediment motion in this
region by defining their ‘bottom boundary’ to be at a specified concentration, where
the fluid and sediment velocity are assumed to be zero. They prescribe the flux of
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the granular temperature at this boundary using the results of a theoretical study
by Jenkins & Askari (1991).

In this paper, we continue the work of Jenkins & Hanes (1998) and Hsu et al .
(2003). The two-phase equations of Hsu et al . (2003) are first summarized. A closure
model for particle stresses, based on the fluctuation energy of the sediment-phase,
similar to that of Jenkins & Hanes (1998), is then introduced. However, an attempt is
also made to model the sediment transport in the transitional region above the porous
stationary bed. This is done by modifying the closure of Jenkins & Hanes (1998) for
the shear stress using a viscosity appropriate to a glassy solid (Bocquet et al . 2001)
and by introducing a closure for particle pressure due to enduring contact (Jenkins
et al . 1989). The Coulomb failure criterion is employed in order to determine the
location of the stationary bed. The resulting system of partial differential equations
and boundary conditions is solved numerically using a finite-difference scheme. The
predictions are tested against the results of sheet flow experiments using relatively
massive particles carried out on steady, fully developed flows by Sumer et al . (1996)
and on oscillatory flows by Asano (1995). Further results based on the present model
on several global features of sheet flow are also presented.

2. Model formulation

(a) Two-phase equations for sediment transport

Sediment transport involves a fluid phase and a particle phase. The fluid phase is
water with mass density ρf and the particle phase is taken to be identical spheres
of diameter d and mass density ρs. Assuming that the mixture can be treated as a
continuum, the ensemble averaged two-phase equations of mass and momentum can
be derived readily (Drew 1983). In this averaging process, the definition of sediment
concentration c is introduced. Because of the flow turbulence, this sediment concen-
tration fluctuates on a scale much larger than the grain size. Therefore, a second
averaging process needs to be carried out in order to calculate the large scale tur-
bulence. Because of the presence of the particle concentration, the two continuum
phases are, essentially, compressible. For this reason, we implement Favre averaging
(Favre 1965). In this paper, only the final equations obtained after the Favre averag-
ing are presented. The details of the derivations of the equations are given by Drew
(1983) and Hsu et al . (2003).

We consider the closure of these equations for sheet flow in uniform conditions,
either steady or oscillatory. The steady flow is that driven by gravity in a channel
with small inclination angle ξ and uniform water depth h. The oscillatory flow is
that in a U-tube.

When the flow is uniform in the x-direction, the fluid and sediment phase conti-
nuity equations are (Hsu et al . 2003)

∂ρf(1 − c̄)
∂t

+
∂ρf(1 − c̄)w̃f

∂z
= 0 (2.1)

and
∂ρsc̄

∂t
+

∂ρsc̄w̃s

∂z
= 0, (2.2)

where z is normal to the channel bottom and w̃f and w̃s are, respectively, the z-
components of the fluid and particle average velocity.
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The x- and z-components of the fluid-phase momentum equations for the uniform
flow can be expressed as

∂ρf(1 − c̄)ũf

∂t
= −∂ρf(1 − c̄)ũfw̃f

∂z
− (1 − c̄)

∂P̄ f

∂x

+
∂τ f

xz

∂z
− ρf(1 − c̄)Sg − βc̄(ũf − ũs) (2.3)

and

∂ρf(1 − c̄)w̃f

∂t
= −∂ρf(1 − c̄)w̃fw̃f

∂z
− (1 − c̄)

∂P̄ f

∂z

+
∂τ f

zz

∂z
+ ρf(1 − c̄)g − βc̄(w̃f − w̃s) + βνft

∂c̄

∂z
, (2.4)

where ũf and ũs are, respectively, the x-components of the fluid and particle average
velocity, P̄ f is the average fluid pressure, S ≡ sin ξ

.= ξ for channel flows, τ f
xz and

τ f
zz are fluid phase stresses, including the fluid viscous stress and both the small-

scale and large-scale fluid Reynolds stresses, and g = −9.8 m s−2 is the gravitational
acceleration. The last two terms in equation (2.4) are the Favre averaged drag force,
with the drag coefficient β defined as

β =
ρfUr

d

(
18.0
Rep

+ 0.3
)

1
(1 − c̄)n

, (2.5)

in which
Ur =

√
(ũf − ũs)2 + (w̃f − w̃s)2 (2.6)

is the magnitude of the relative velocity between the fluid and sediment phase. Hence,
the particle Reynolds number Rep is defined as

Rep =
ρfUrd

µf
, (2.7)

with µf the fluid viscosity. The concentration dependence in equation (2.5) is taken
from the experimental results of Richardson & Zaki (1954), with n a coefficient
depending on the particle Reynolds number,

n = 4.45Re−1
p , 1 � Rep < 500.

The drag force contributes two terms in (2.4). The first is the averaged drag force
due to the relative mean velocity between two phases. The second, called fluid tur-
bulent suspension, is obtained in the Favre averaging and is the correlation c∆uf

i
between the concentration and the large-scale fluid velocity fluctuations. It is mod-
elled here as a gradient transport (see, for example, McTigue 1981).

The corresponding sediment-phase momentum equations are

∂ρsc̄ũs

∂t
= −∂ρsc̄ũsw̃s

∂z
− c̄

∂P̄ f

∂x
+

∂τ s
xz

∂z
− ρsc̄Sg + βc̄(ũf − ũs) (2.8)

and

∂ρsc̄w̃s

∂t
= −∂ρsc̄w̃sw̃s

∂z
− c̄

∂P̄ f

∂z
+

∂τ s
zz

∂z
+ ρsc̄g + βc̄(w̃f − w̃s) − βνft

∂c̄

∂z
, (2.9)
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where τ s
xz and τ s

zz are the stresses of the sediment phase, including the small-scale
particle (intergranular) stresses and the Reynolds stresses of the Favre averaged
particle velocities. Closures for fluid turbulence and sediment stresses are major foci
of sheet flow modelling and are detailed in the next few sections.

(b) Closures of fluid stresses

The total stress of the fluid-phase in equations (2.3) and (2.4) can be written as

τ f
xz = τ f0

xz + Rf
xz and τ f

zz = τ f0
zz + Rf

zz, (2.10)

where τ f0
xz and τ f0

zz are the averaged small-scale stresses consisting of the viscous stress
and the small-scale Reynolds stress of the turbulence generated in the fluid between
the sediment particles or induced by fluctuations of the particles. The large-scale
fluid Reynolds stresses, defined as the correlations between the concentration and
fluid velocity fluctuations ∆uf and ∆wf,

Rf
xz = −ρf (1 − c)∆uf∆wf and Rf

zz = −ρf (1 − c)∆wf∆wf, (2.11)

result from the Favre averaging process. They represent the transfer of momentum
that occurs on the scale at which the concentration fluctuates.

The turbulent eddy viscosity hypothesis is used here to model the large-scale fluid
Reynolds stresses:

τ f
xz = ρf(νft + νf)

∂ũf

∂z
(2.12)

and

τ f
zz = −2

3ρf(1 − c̄)kf + 4
3ρf(νft + νf)

∂w̃f

∂z
, (2.13)

where νf is the kinematic viscosity of the fluid and kf is the fluid-phase turbulent
kinetic energy, defined as

kf ≡ 1
2(1 − c̄)

(1 − c)∆uf
i∆uf

i. (2.14)

The second term on the right-hand side of equation (2.13) appears because the
divergence of the fluid-phase velocity is not zero. We assume that the fluid phase
eddy viscosity νft is given by

νft = Cµ
k2
f (1 − c̄)

εf
, (2.15)

where Cµ is an empirical coefficient and

εf ≡ 1
ρf(1 − c̄)

(1 − c)τ f
ij

∂∆uf
i

∂xj
(2.16)

is the fluid-phase turbulent dissipation rate. Because kf and εf appear in the eddy
viscosity, we need to introduce balance equations for both.
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Table 1. Summary of all numerical coefficients adopted by the model

Cµ Cε1 Cε2 Cε3 σk σε Cs σs

0.09 1.44 1.92 1.2 1.0 1.3 0.55 1.0

Following Hsu et al . (2003), the fluid phase turbulent kinetic energy equation in
the uniform flow can be written as

∂ρf(1 − c̄)kf

∂t
+

∂ρf(1 − c̄)kfw̃
f

∂z

= τft
xz

∂ũf

∂z
+ τft

zz

∂w̃f

∂z
+

∂

∂z

[(
ν +

νft

σk

)
∂ρf(1 − c̄)kf

∂z

]
− ρf(1 − c̄)εf

+ βνft
∂c̄

∂z
(w̃f − w̃s) − 2ρsc̄βkf(1 − α). (2.17)

The last term in (2.17), which originally involve correlations between fluctuations of
fluid and sediment velocities, represents a dissipation mechanism for the turbulent
energy, where α is a parameter that measures the degree of correlation between the
fluid and sediment velocity fluctuations. It is determined by the relative magnitudes
of a particle response time tp, the time between collisions tc, and the fluid turbulence
time-scale tL:

α ≡
(

1 +
tp

min(tL, tc)

)−1

. (2.18)

The particle response time is defined as

tp ≡ ρs

β
; (2.19)

it is a measure of the time to accelerate a single particle from rest to the velocity
of surrounding fluid (Drew 1976). The time between collisions is estimated based on
the mean free path lc of colliding particles and the strength k

1/2
s of sediment velocity

fluctuations:

tc =
lc

k
1/2
s

, (2.20)

where

lc =
√

πd

24c̄g0(c̄)
(2.21)

and g0(c̄) is the contact value of the radial distribution function (see, for example,
Chapman & Cowling 1970). The quantities ks and g0(c̄) will be defined in the next
section. The fluid turbulence time-scale is defined as (Elghobashi & Abou-Arab 1983)

tL ≡ 0.165
kf

εf
. (2.22)
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The rate of turbulent energy dissipation εf is assumed to be governed by an equa-
tion similar to that for a clear fluid (Elghobashi & Abou-Arab 1983):

∂ρf(1 − c̄)εf
∂t

+
∂ρf(1 − c̄)εfw̃f

∂z

= Cε1
εf
kf

(
τft
xz

∂ũf

∂z
+ τft

zz

∂w̃f

∂z

)

+
∂

∂z

[(
ν +

νft

σε

)
∂ρf(1 − c̄)εf

∂z

]
− Cε2

εf
kf

ρf(1 − c̄)εf

− Cε3

εf
kf

[2ρsc̄kfβ(1 − α)] + Cε3

εf
kf

[
βνft

∂c̄

∂z
(w̃f − w̃s)

]
. (2.23)

Due to the lack of information regarding the appropriate values of numerical coef-
ficients in the present kf − εf model, we employ the same coefficients as those imple-
mented in the standard k − ε model for a clear fluid flow (Rodi 1984). We adopt a
numerical value of Cε3 suggested by Elghobashi & Abou-Arab (1983) based on their
research on sediment-laden jets. However, we find that Cε3 is quite sensitive to the
calculated flow velocities of the present model based on numerical experiments. A
list of the numerical coefficients adopted by the present model is shown in table 1.

The small-scale fluid turbulence can be important for relatively large particles (see,
for example, Gore & Crowe 1989). Although it does not directly contribute to the
transport of sediment, it dissipates mean flow energy and thus influences the flow
rate. Due to the lack of appropriate closures for the small-scale fluid turbulence in
concentrated collisional flow, it is neglected here.

(c) Closure of the sediment stress

In the sediment momentum equations, the two-scale averaging process results in
a sediment stress, which can be written as

τ s
xz = τ s0

xz + Rs
xz and τ s

zz = τ s0
zz + Rs

zz, (2.24)

where τ s0
xz and τ s0

zz are the mean particle shear and normal stress due to small scale
interactions, while Rs

xz and Rs
zz are components of the large-scale sediment Reynolds

stress,
Rs

xz = −ρs c∆us∆ws and Rs
zz = −ρs c∆ws∆ws, (2.25)

given in terms of ∆us and ∆ws, the large-scale sediment velocity fluctuations.

(i) Sediment fluctuation energy equation

In the closure of the small-scale particle stress, a measure of the strength of the
small-scale particle velocity fluctuation, the granular temperature Ts, is usually intro-
duced (Nott & Brady 1994; Jenkins & Hanes 1998):

Ts = 1
3〈us′′

i us′′
i 〉, (2.26)

where ‘〈·〉’ denotes the small-scale ensemble averaging operator and us′′
i the small-

scale particle velocity fluctuations.
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Similarly, we propose closures for the large-scale sediment stresses by introducing a
measure of the strength of the large-scale sediment velocity fluctuations, represented
by

ks ≡ 1
2c̄

c∆us
i∆us

i. (2.27)

To solve for Ts and ks, their corresponding transport equations are needed. The
transport equation of the small-scale granular temperature Ts in a two-phase fluid–
particle system has been derived by, for example, Hwang & Shen (1993). Like-
wise, the transport equation of the large-scale sediment fluctuation energy ks can
be derived from the sediment momentum equation (see, for example, Hsu 2002).
Since both transport equations for Ts and ks have similar terms (i.e. terms that rep-
resent unsteadiness, convection, diffusion, dissipation and interphase interactions)
and require further closure assumptions, we adopt a single fluctuation energy, Ks to
model both the small-scale and large-scale processes. The transport equation for Ks
is taken to be (Hsu 2002)

ρs
(

∂c̄Ks

∂t
+

∂c̄Ksw̃
s

∂z

)
= τ s

xz

∂ũs

∂z
+ τ s

zz

∂w̃s

∂z
− ∂Q

∂z
− γ + 2βc̄(αkf − Ks), (2.28)

with Q the flux of the fluctuation energy and γ the dissipation. The last term in the
above equation describes the interaction between the phases. Therefore, there is an
additional source term, 2βc̄αkf, due to the fluid turbulent kinetic energy. This term
models the influence of fluid turbulent eddies on the random motions of sediment
particles and permits turbulent eddies to enhance the sediment fluctuation energy.
Moreover, an additional dissipation mechanism, 2βc̄Ks, also appears due to the drag
of the interstitial fluid.

In order to solve equation (2.28), further closure assumptions are needed for sed-
iment stresses, flux of fluctuation energy and dissipation. We shall propose closures
based on summation of processes resulted from both the small-scale and large-scale.
This is somewhat justified because the small-scale and large-scale processes are
assumed to be uncorrelated due to their difference in scale. Although our treatment
of the sediment fluctuation energy and its transport equation is somewhat heuristic,
it does include the known mechanisms of fluid–particle and particle–particle inter-
actions in a plausible way and simplifies the model substantially.

The averaged small-scale stresses τ s0
xz and τ s0

zz are mainly due to intergranular
interactions resulting from particle collisions or interstitial fluid effects. Here, we
adopt the kinetic theory for collisional granular flow (Jenkins & Hanes 1998) for their
closure. We anticipate that such an approach is appropriate for the flow of massive
particles, where particle collision is indeed the major mechanism of intergranular
interactions.

The large-scale sediment Reynolds stresses Rs
xz and Rs

zz result from the velocity
and concentration fluctuations on a scale much larger than the grain size. Such large-
scale fluctuations would not exist if the sediment was not in the turbulent flow of
the fluid. Therefore, we shall propose a simple closure for the large-scale sediment
Reynolds stress similar to the one-equation closure for the turbulent flow.

In the same way as the stresses, the flux of sediment fluctuation energy Q is taken
to be the sum of small-scale Q0- and large-scale Q1-components:

Q = Q0 + Q1. (2.29)
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Finally, we take the rate of dissipation γ in equation (2.28) to be the collisional
dissipation associated with the inelasticity of the particles.

Details of the modelling outlined above are provided in the following sections.

(ii) Collisional granular flow theory

The fundamental assumption of the present closure is that the particle normal
stress τ s

zz and the transport coefficients (e.g. the viscosity associated with the shear
stress) are functions of sediment concentration c̄, sediment properties, and sediment
fluctuation energy Ks. Following Jenkins & Hanes (1998) for collisional granular
flows, the transport coefficients in the constitutive relations for τ s0

xz, τ s0
zz, Q0 and γ

are obtained from the kinetic theory of dense gases (Chapman & Cowling 1970). The
particle normal stress due to collision are taken to be

τ s0
zz = −2

3ρsc̄(1 + 4G)Ks + AE
∂w̃s

∂z
, (2.30)

where G ≡ c̄g0(c̄), with g0(c̄) the radial distribution function at contact for identical
spheres. Torquato (1995) provides an accurate expression for this radial distribution
function that is good for concentrations between 0.49, at which a phase transition
between random and hexagonal packing is first possible, and the random close-packed
concentration, c∗ = 0.635, at which the mean distance between the edges’ nearest
neighbours is zero:

g0(c̄) =

⎧⎪⎪⎨
⎪⎪⎩

2 − c̄

2(1 − c̄)3
, c̄ < 0.49,

2 − 0.49
2(1 − 0.49)3

0.64 − 0.49
(0.64 − c̄)p

, 0.49 � c̄ < 0.635,

(2.31)

where p = 1. The product AE in equation (2.30) is the sediment viscosity due to
collisions. The particle collisional shear stress τ s0

xz is taken to be

τ s0
xz = AE

∂ũs

∂z
. (2.32)

Based on the kinetic theory for collisional granular flow (Jenkins & Hanes 1998), we
have

A =
8dρsc̄G(2

3Ks)1/2

5π1/2 and E = 1 +
π

12

(
1 +

5
8G

)2

. (2.33)

In a similar way, the flux of energy due to collision is taken to be

Q0 = −5
3AM

∂Ks

∂z
, M = 1 +

9π

32

(
1 +

5π

12G

)2

. (2.34)

Finally, based on the analysis of Jenkins & Savage (1983), the dissipation rate due
to inelastic collision is

γ =
(

10A

d2 − 4ρsc̄G
∂w̃s

∂z

)
(1 − e)Ks, (2.35)

where e is the coefficient of restitution, taken here to be 0.8.
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(iii) Large-scale sediment stress

We model the large-scale sediment Reynolds stresses Rs
xz and Rs

zz using an eddy
viscosity. The shear stress is written as

Rs
xz = ρsνst

∂ũs

∂z
, (2.36)

and the normal stress as

Rs
zz = −2

3ρsc̄Ks + 4
3ρsνst

∂w̃s

∂z
. (2.37)

The sediment viscosity νst is related to the sediment fluctuation energy through a
sediment mixing length ls,

νst = Csc̄ls
√

Ks, (2.38)

in which Cs is a numerical coefficient, taken to be 0.55 based on the value used
in the one-equation turbulence model for clear fluid. The sediment mixing length
needs to be specified. In sheet flow, the large-scale fluctuations in sediment velocity
and concentration are primarily caused by the fluid flow turbulence. Therefore, we
assume that the sediment mixing length can be related to turbulent fluid flow mixing
length lf through α,

ls = αlf, (2.39)

where the fluid turbulent mixing length is calculated from the fluid turbulent kinetic
energy and its dissipation rate:

lf = 0.165
k

3/2
f

εf
. (2.40)

For massive particles with a long particle response time, α ≈ 0, the fluid turbulent
eddies can not induce any sediment velocity fluctuations, and ls ≈ 0. For fine particles
with small particle response time, α ≈ 1.0, the fine particles follow the fluid turbulent
eddies, and ls ≈ lf.

Finally, the flux of energy due to large-scale sediment fluctuations is calculated as

Q1 = −ρs νst

σs

∂Ks

∂z
. (2.41)

For simplicity, the numerical coefficient σs is taken to be 1.0.

(iv) Modification at low concentration

One of the fundamental assumptions of the kinetic theory of dense gases is that
there are a significant number of collisions. Therefore, when the sediment concen-
tration becomes very dilute, the validity of the collisional grain flow theory becomes
questionable. In the upper portion of the sheet, away from the bed where the con-
centration becomes small, fluid turbulence becomes the major mechanism of sedi-
ment suspension. In addition, the fluid turbulence induces the transport of sediment
momentum through the large-scale sediment Reynolds stress. Therefore, we antici-
pate that the lack of applicability of the collisional granular flow theory in very dilute
conditions is of no great concern, provided that the small-scale stresses (τ s0

xz and τ s0
zz)
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of the collisional theory can be made to decay appropriately. Therefore, we introduce
a damping parameter δ for the small-scale sediment stress defined in terms of the
mean free path lc of the sediment particles and the fluid turbulent mixing length lf,

δ ≡ lf
lf + lc

. (2.42)

When the mean free path of collision becomes much larger than the fluid turbulent
mixing length, the small-scale collisional transport is reduced through a diminishing
δ.

In summary, based on (2.24), (2.32), (2.36) and (2.42), we rewrite the total sedi-
ment shear stress as

τ s
xz = δτ s0

xz + Rs
xz = (δAE + ρsνst)

∂ũs

∂z
, (2.43)

and the total sediment normal stress as

τ s
zz = δτ s0

zz + Rs
zz = −2

3ρsc̄[(1 + 4G)δ + 1]Ks + (δAE + 4
3ρsνst)

∂w̃s

∂z
. (2.44)

Similarly, the flux of sediment fluctuation energy is rewritten as

Q = Q0 + Q1 = −
(

5
3AMδ + ρs νst

σs

)
∂Ks

∂z
. (2.45)

(v) The region of enduring contact

The constitutive relations for particle collisions based on the kinetic theory of dense
molecular gases have been successfully implemented to study problems of rapid gran-
ular flow at concentrations smaller than the random loose packing c∗. The primary
reason for the close similarity between particle and molecular collisions is that they
are of relatively short duration, compared with the time between collisions. However,
for granular shearing flows at concentrations greater than c∗, particles are in endur-
ing contact. Therefore, the analogy between the particles and molecules is no longer
valid.

Here, we model the sediment transport above the stationary bed, where the con-
centration is near random close packing. Therefore, modifications to the collisional
grain flow theory for the closure of particle stress are needed. The discrete particle
simulations of Zhang & Campbell (1992) indicate that between the random close-
packed concentration c∗ and the random loose-packed concentration c∗, the granular
material is in a transitional state between solid-like and fluid-like behaviour. Bocquet
et al . (2001) carried out experiments on the Couette flow of grains in this regime
and observed that the viscosity of the particle shear stress increased dramatically as
the concentration approached c∗. They suggested that in the viscosity, the power p
in equation (2.31) should be changed from 1.00 to 1.75. That is, in our numerical
implementation, p is taken to be 1.00 when c̄ < c∗ and 1.75 when c̄ � c∗. Therefore,
as far as the particle shear stress is concerned, the region involving enduring contacts
is modelled by taking the granular material to be an extremely viscous fluid.

As the concentration increases above c∗, the collisional contribution to the particle
normal stress diminishes, because the shearing of the particle phase that is the source
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of the collisional fluctuations becomes very small. However, in this range of concen-
tration, the contribution to particle normal stress due to enduring contacts becomes
important. Therefore, we further assume that the small-scale particle normal stress
τ s0
zz is the sum of the collisional normal stress τ sc

zz and the normal stress τ se
zz due to

enduring contact:
τ s
zz = τ sc

zz + τ se
zz. (2.46)

We model the collisional stress using equation (2.30), while for the normal stress due
to enduring contact we adopt a Hertz contact relation. For a homogeneously packed,
dry granular material consisting of identical spheres in Hertzian contact, the normal
stress is (Jenkins et al . 1989)

τ se
zz =

m

πd2 Kc̄

(
∆

d

)3/2

, (2.47)

where ∆ is the average compressive volume strain, m is given in terms of the shear
modulus µe and Poisson’s ratio υ of the material of the particles

m =
2

9
√

3
µed

2

1 − υ
, (2.48)

and K is the average number of contacts per particle or coordination number. We
do not solve for ∆, but assume that ∆/d can be related to the difference between
the local average concentration and that of random loose-packing c∗ by

∆

d
= (c̄ − c∗)2χ/3, (2.49)

in which χ is a coefficient. The numerical value of χ will be discussed in the following
section. Then

τ se
zz =

⎧⎨
⎩

0, c̄ < c∗,

m

πd2 K(c̄)c̄(c̄ − c∗)χ, c∗ � c̄ � c∗,
(2.50)

where the coordination number K is taken to be a function of concentration,

K(c̄) = 3 + 3 sin
[
π

2

(
2

c̄ − c∗
c∗ − c∗

− 1
)]

, c∗ � c̄ � c∗, (2.51)

based on the best fit of the results from a discrete particle simulation (Duan Zhang
2001, personal communication). We note that, based on equation (2.50), the normal
stress of enduring contact vanishes when the concentration is below c∗, where the
average distance between particles is greater than zero. Moreover, unlike the relation
provided by Johnson et al . (1990), the contact stress in the present model has a finite
value at random close-packing.

(d) Boundary conditions

(i) Boundary conditions at the stationary bed

The bottom boundary condition of the sediment phase is applied at the interface
between the porous stationary bed and the region of slow flow that involves endur-
ing contacts. Within the porous stationary bed, the horizontal velocity, the vertical
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velocity, and the velocity fluctuations of the sediment vanish. Therefore we specify
ũs = 0, w̃s = 0 and Ks = 0 at the stationary bed.

As the external shear stress changes, sediment particles can either be eroded from
the bed and suspended in the flow or settle from the flow and accumulate on the bed.
Therefore, the location of the bed changes as the external flow conditions change,
and needs to be determined as a part of the solution. In order to shear or fluidize a
granular material, the concentration must be at some value smaller than the random-
close-packed concentration. We denote the concentration at which the bed fails by ĉ.
In the present model, the failure concentration ĉ is determined through the Coulomb
failure criterion,

τ s
xz = τ s

zz tanφ, (2.52)

where φ is the friction angle of the sediment. Upon substituting equations (2.46) and
(2.50) into (2.52), we obtain

Kc̄(c̄ − c∗)χ =
πd2

m

(
τ s
xz

tanφ
− τ sc

zz

)
. (2.53)

Because τ s
xz and τ sc

zz can be obtained independently from their proposed closures,
the failure concentration ĉ can be determined from the above nonlinear algebraic
equation. Immediately above the stationary bed, the sediment particles are mobile
and the sediment concentration there must equal ĉ. Hence, the bed location can also
be determined. Because the magnitude of τ s

xz varies with the external flow conditions,
both the failure concentration and the bed location change with the external flow.
Notice that, since the value of the calculated failure concentration ĉ must be close
to the random close-packed concentration c∗, this provides a way to determine a
reasonable numerical value for χ. Based on numerical experiments for plastic particles
implemented by Sumer et al . (1996), χ = 5.5 gives a failure concentration of ca. 62%.
Therefore, this value is adopted.

(ii) Top boundary conditions

In all of the laboratory experiments on sediment transport that we test the model
against, the top boundary is any hydraulically smooth, rigid lid. Therefore, the
boundary conditions for fluid velocity, kf and εf are specified based on the log law of
the wall (Rodi 1984), as commonly implemented for clear fluid flow.

Because the Neumann boundary conditions for the fluid pressure are specified on
the lateral and lower boundary of the computational domain (see the next subsection
for details), P̄ f = 0 is specified at the top boundary as the reference pressure for the
flow.

In the present model, the top boundary of the sediment phase is considered to be
at the point where the sediment concentration becomes smaller than a prescribed
minimum concentration cmin. Above this point, the sediment phase is considered to
be negligible and is not calculated. The calculated results are insensitive to cmin, as
long as it is small enough. The value cmin = 5 × 10−4 has been used in the present
study.

At the top boundary of the sediment phase, the flow is dilute and the free-slip
boundary conditions of sediment horizontal velocity ũs and fluctuation energy Ks
are adopted. As the magnitude of the external flow changes, the point at which the
calculated concentration equals to cmin also changes.
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(iii) Lateral boundary conditions: fluid pressure

In the numerical solutions, the flow is driven by a horizontal pressure gradient. This
is consistent with most of the laboratory U-tube experiments on sediment transport.
However, in laboratory experiments that involve steady flows in a channel, the flow
is driven by gravity. In this case, the gravity force in the fluid momentum equation
is converted to an equivalent horizontal pressure gradient. Therefore, for a steady,
gravity-driven flow with a given slope S or frictional velocity u∗ and hydraulic radius
rb, the horizontal pressure gradient is prescribed as

1
ρf

∂P̄ f

∂x
= gS = −u2

∗
rb

. (2.54)

On the other hand, for the uniform oscillatory flow in which the free stream velocity
u0(t) oscillates as

u0(t) = U0 sin
(

2π

T
t

)
, (2.55)

where U0 is the amplitude and T is the period of oscillation, the horizontal pressure
gradient is prescribed as the acceleration of the free stream velocity:

1
ρf

∂P̄ f

∂x
= −du0(t)

dt
= −U0

2π

T
cos

(
2π

T
t

)
.

(iv) A remark on the initial condition

We do not attempt to describe the initiation of the sediment motion. Instead, we
specify an artificial amount of sediment above the stationary bed with a given profile
c̄ini(z), as the initial condition. We adopt a profile with maximum concentration c∗

at the bed that decreases linearly to a concentration of 0.20 at about half the water
depth. The fluid and sediment velocities are initially taken to be zero and, to speed
the computation, the flow is calculated in an initial period 0 to T0 with the vertical
sediment velocity set equal to zero. The value of T0 in each case is taken to be 10 times
the turnover time tL0 = h/u∗ of the largest eddy in the channel. In doing this,
both the fluid and sediment phase horizontal velocity and fluctuation energy profiles
become established. After t = T0, the vertical motion of sediment is calculated based
on the vertical sediment momentum equation. If this procedure is not implemented, it
takes a very long time to reach the steady state, because the sediment settles quickly
and need to be re-suspended as the fluid and sediment velocity and fluctuation energy
profiles are established. In general, we need to calculate about 50 to 100 times the
turnover time to obtain the steady-state solution.

3. Numerical implementation

The proposed two-phase equations (2.1)–(2.9), together with the sediment-phase fluc-
tuation energy equation (2.28) and the fluid-phase energy and dissipation equations
(2.17) and (2.23) are solved numerically with a finite-difference scheme. A staggered
grid system is employed. That is, except for the vertical velocities of the fluid-phase
w̃f and sediment-phase w̃s that are defined at the top-face of the grid, the rest of the
variables are defined at the grid centre.
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Because the flow is considered to be uniform in the x-direction, only the variations
of the physical variables in the z-direction are of interest and solved for. The compu-
tational domain is discretized into N +2 grids with single ghost grids at the top and
the bottom of the domain. In the present model, the flow is driven by the horizon-
tal pressure gradient ∂P̄ f/∂x. Therefore, two additional columns of ghost grids are
implemented, in which the appropriate pressures are specified to achieve the desired
pressure gradient.

A modified form of the two-step projection method (see, for example, Lin & Liu
1998) is implemented to solve the two-phase equations. At the beginning the com-
putational cycle, we integrate the sediment phase mass and momentum equations
in time using a predictor-corrector scheme. After obtaining all the sediment phase
variables, c̄, ũs, w̃s and Ks at a new time-step, the fluid phase mass and momentum
equations are solved using a similar two-step projection method. At the end of the
computational cycle, the fluid phase energy and dissipation equations are updated.

The time-step size ∆t in the numerical model is adjusted dynamically at every
time-step, based on several stability conditions. Because of the convection terms in
both the fluid and sediment phase–momentum equations, the Courant condition

∆t � η1∆z

max(|w̃f|, |w̃s|) (3.1)

for the time-step size must be satisfied, where η1 is a numerical coefficient, taken to
be 0.3. The numerical stability of the diffusion term in the fluid and sediment phase
momentum equations is guaranteed by the constraint

∆t � (∆z)2
(

max
[
νft,

(
δAE

ρs + νst

)])−1

, (3.2)

where (δAE/ρs + νst) is the diffusion coefficient of the sediment momentum defined
in (2.43).

Because of the interaction term in the momentum equations, additional constraints
for the numerical stability of a two-phase system must be considered. Since the
interaction term is a drag force, intuitively, the additional time-step constraint must
be proportional to the particle response time tp. A stability analysis of the momentum
equation reveals that the size of the time-step for the drag force term is restricted
by tp divided by the specific gravity s. This restriction is taken to be

∆t � η2
tp
s

, (3.3)

with η2 = 0.1 being a conservative estimate. In every cycle, the time step ∆t is
determined by the minimum value of equations (3.1)–(3.3).

Further details of the numerical implementation and spatial discretizations are
given by Hsu (2002).

4. Results

(a) Steady flow

The proposed sheet flow model is used to study the laboratory experiments of Sumer
et al . (1996) for their sediment II (plastic particle, diameter d = 2.6 mm and specific
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gravity s = 1.14). The strength of the turbulent shear flow is characterized by the
Shield parameter θ, defined in terms of the friction velocity u∗ and the buoyant
weight of a layer of grain material,

θ ≡ ρfu2
∗

(ρs − ρf)gd
.

The concentration profiles and sediment velocity profiles are not measured for all
cases of sediment II. However, the fluid velocity profiles for five cases of sediment II
are reported. Therefore, we will first present the calculated results and describe the
important physics of sheet flows for massive particles. We then present the compar-
isons of the fluid velocity with the available experimental data. Finally, we calculate
some global parameters that are often employed for modelling large-scale river and
coastal sediment transport.

We define a new vertical coordinate system zb with its origin (zb = 0) at the
initial undisturbed bed level of each case. Because an artificial sediment concentration
profile c̄ini is prescribed as the initial condition, the initial bed level z = z0 relative
to the zero of the numerical computational domain can be calculated based on mass
conservation:

z0 =
1
c∗

∫ h

0
c̄ini dz. (4.1)

Therefore, the relation between the new vertical coordinate zb and the original ver-
tical coordinate z is zb = z − z0.

Figure 1 presents calculated values of the concentration, the fluid and sediment
velocity, the fluid turbulence and sediment fluctuation intensity, the shear stresses
and the normal stresses for run 91 of Sumer et al . (sediment II, θ = 1.65), in which the
vertical coordinate is normalized by the grain diameter. The lowest vertical location
shown in these plots is near the interface on which sediment particles first become
mobile (the stationary bed). In the lowest portion of the sheet, within ca. 3 grain
diameters (ĉ > c̄ > c∗), a highly concentrated, slow flow region with enduring contact
appears with concentration slowly decreasing in the vertical direction. In the same
region, both the fluid and sediment velocity are relatively weak. Such features are due
to the contact stress and the high viscosity implemented in the model for the region
of enduring contacts. We also observe that the fluid turbulence intensity almost
vanishes in the region of enduring contact, due to slow flow and significant damping
from the sediment.

Above the region of enduring contacts (c̄ < c∗), sediment concentration decreases
much faster with zb/d. However, there is clearly a region of ca. 6 grain diameters
in thickness (−3 < zb/d < 3) that has a relatively uniform concentration of about
0.35. This ‘shoulder’ is consistent with the existence of a sheet. It also suggests
that strong suspension mechanisms exist in this region. Referring to figure 1c, the
shoulder also corresponds to a region of large sediment fluctuation energy. Above
zb ≈ 5d, sediment concentration decreases dramatically into a dilute region in which
the fluid turbulent kinetic energy is greater than the sediment fluctuation energy.
Notice that there are two peaks of the calculated intensity of sediment fluctuation
energy in figure 1c. The peak located around zb/d = −3 corresponds to the region of
high concentration, indicating strong particle collisions. On the other hand, a second
weaker peak located around zb/d = 10 is due to strong fluid turbulent kinetic energy
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Figure 1. Results from the present model for run 91 of Sumer et al . (1996): (a) sediment
concentration (%), with the failure concentration ĉ = 62.1%; (b) , fluid velocity ũf;

, sediment velocity ũf; (c) , fluid turbulence intensity
√

2kf; , intensity
of sediment fluctuation energy

√
2Ks; (d) , fluid shear stress τ f

xz; , sediment
shear stress τ s

xz; · · · , total shear stress τ f
xz + τ s

xz; (e) , sediment contact normal stress
τ se

zz; , sediment collisional normal stress τ sc
zz; · · · , total sediment normal stress τ se

zz + τ sc
zz.

The ‘◦’ denotes the location corresponding to c∗ = 57%.

in the dilute region through the additional source term in the sediment fluctuation
energy equation.

In figure 1d, due to the high sediment concentration within ca. 5 grain diameters
above the stationary bed, the shear stress results mainly from the sediment phase.
Above zb ≈ 0d, the fluid (turbulent) shear stress becomes more significant than the
sediment shear stress. The sum of the sediment and fluid stresses gives the expected
linear distribution of the total shear stress in a fully developed flow. In figure 1e,
the calculated sediment normal stresses due to enduring contact and collisions are
shown. In the lower portion of the highly concentrated region of enduring contacts
(zb/d < −8.5), the normal stress due to enduring contact is larger than the colli-
sional stress. Notice that the gradient of the sediment normal stress is an important
suspension mechanisms in the sediment vertical momentum equation.

Bagnold (1954) reported that the ratio between the particle shear stress and nor-
mal stress in the collisional region is about 0.32. The present model is used to test
such a simple relation in inhomogeneous conditions. In figure 2b, the ratio between
the calculated sediment shear stress τ s

xz and normal stress τ s
zz across the sheet of

run 91 is presented. Overall, the ratio is not a constant. It varies from about 0.3 in
the region of enduring contact to 0.5 in the region of intense collisions and decreases
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Figure 2. Results from the present model for run 91 of Sumer et al . (1996): (a) sediment concen-
tration (%); (b) ratio between the sediment shear and normal stress τ s

xz/τ s
zz; (c) , pro-

duction term, 1/ρs(τ s
xz(∂ũs/∂z)+τ s

zz(∂w̃s/∂z)); , diffusion term, −1/ρs(∂Q/∂z), of the
Ks equation. The ‘◦’ denotes the location corresponding to c∗ = 57%.

to about 0.35 in the less-concentrated region. Additional insight can be obtained by
examining the production and diffusion terms in the equation of the sediment fluc-
tuation energy. In figure 2c, the production of Ks has its largest magnitude in the
region around zb/d = −4, where intensive collisions occur. Moreover, this is also the
region of large transport. Because Bagnold’s relation is based on homogeneous flow,
one expects that his relation must become less accurate in a region of large trans-
port. Indeed, at around zb/d = −4, the ratio of shear to normal stress increases to
about 0.5. In the less-concentrated region above zb/d = 0, the magnitude of diffusion
becomes much smaller and the shear-to-normal-stress ratio gradually approaches 0.3.
Notice that, in the dilute region, the large-scale sediment Reynolds stress due to
fluid turbulence becomes the major source of sediment stresses and the stress ratio
increases again.

Sumer et al . (1996) reported five cases of measured fluid velocity profiles for sedi-
ment II. Although all of them have been used to test the present model, only three
cases are shown here to illustrate important features. More comprehensive com-
parisons can be found in Hsu (2002). Figure 3 presents three comparisons of the
calculated fluid velocity profiles with those measured by Sumer et al . (1996). In each
case, the fluid velocity shown in the figures is normalized by the corresponding fric-
tion velocity u∗ =

√
grbS, obtained from the measured energy slope S and hydraulic

radius rb. The corresponding calculated concentration profiles are shown in the left
panel for reference. We remark here that because the experiment and the model
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Figure 3. Comparison of the normalized fluid velocity profile, ũf/u∗ (right panel), between the
present model and the measurements of Sumer et al . (1996). The corresponding concentration
profiles are shown in the left panel. (a) Run 82, θ = 1.37 with the failure concentration ĉ = 62.0%;
(b) run 91, θ = 1.65 with ĉ = 62.1%; (c) run 99, θ = 2.30 with ĉ = 62.3%. ∗, measured data;

, calculated results. The ‘◦’ denotes the location corresponding to c∗ = 57%.

begin with different initial amounts of total sediment, the location of the stationary
bed in the final steady state for each case must be different. In the data reported by
Sumer et al ., the origin of the vertical coordinate is defined at the stationary bed,
which is obtained from visual observation or extrapolation of the measured fluid
velocity profile. Moreover, because the measurement of the corresponding concentra-
tion profiles were not reported, it is difficult to perform a fair comparison between
the calculated and the measured fluid velocity. In the present comparison, the sta-
tionary bed is located where the concentration is equal to the random loose-packed
concentration, calculated from the model. Overall, the model tends to under-predict
the fluid velocity for low Shields parameters and over-predict the fluid velocity for
high Shields parameters.

The magnitude of the fluid velocity is closely related to the resistance of the bed
and is usually represented by the roughness κs. As was suggested by Sumer et al .
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Figure 4. Comparison of roughness κs between ×, measured data,
and ◦, results from the present model.

(1996), the roughness can be calculated based on the measured depth-averaged mean
fluid velocity U by adopting Nikuradse’s relation:

U

u∗
= 2.46 ln

14.8rb

κs
. (4.2)

To further illustrate the predictions of the mean fluid velocity, figure 4 presents
the comparison of roughness κs, calculated from equation (4.2), using the measured
data and the results of the present model over a wide range of Shields parameters.
Consistent with the under-prediction of fluid velocity in figure 3a, the present model
significantly over-predicts the roughness at low Shields parameters. At high Shields
parameters, although the model still under-predicts the magnitude of roughness, the
increasing roughness with increasing Shields parameter of the measured data has
been captured.

The reason that the model fails to predict an accurate fluid velocity at low Shields
parameters may be related to the closure of fluid turbulence. That is, we anticipate
that an under-prediction of mean fluid velocity may be due to an over-prediction of
fluid turbulence. The closure of the additional dissipation mechanism in the energy
equation (the last term in equation (2.17)) and the corresponding numerical coef-
ficient C3ε in the dissipation equation may not be appropriate for weak turbulence
that involves high sediment concentration. Based on a direct numerical simulation
of isotropic particle-laden turbulent flow, Squires & Eaton (1994) suggest that the
value of C3ε needs to be reduced as the concentration increases or the fluid turbu-
lence decreases. A reduction of C3ε increases the dissipation and, thus, reduces the
energy and increases the mean flow velocity.

In modelling large-scale sediment transport, the sheet flow is usually not resolved
and the hydraulic roughness becomes an important parameter that needs to be spec-
ified. For example, Grant & Madsen (1982) considered flow above a movable bed and
found that the roughness was on the order of the thickness of the sheet flow layer.
Therefore, the prediction of the sheet flow layer thickness δs is an important step
towards better modelling of large-scale sediment transport.

However, the top of the sheet flow has not been well defined in the literature. In
Sumer et al . (1996), the top of the sheet flow for large particles is obtained by visual
observation, because direct measurements of the sediment concentration were not
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Figure 5. Comparison of sheet layer thickness δs. ◦, results from
the present model; ×, visual observations by Sumer et al .
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Figure 6. Non-dimensional total sediment transport rate Ψ = qs/(d
√

(s − 1)gd) with respect to
the Shields parameter. ◦, Results from the present model; , Ψ = 20.0(θ − 0.05)1.8.

made. It is reasonable to define the top of the sheet as the place where the concen-
tration becomes small enough that the intergranular interactions are negligible. In
this paper, we define the top of the sheet flow as the concentration of c̄ = 0.08, where
the average distance between particles is one grain diameter (Torquato 1995). Then
the sheet layer thickness δsc∗ is defined as the distance from the random loose-packed
concentration c∗ = 0.57 to a concentration of 0.08. The calculated sheet layer thick-
ness δs, normalized by the grain diameter are presented in figure 5 as a function of
Shields parameter. The measured data of Sumer et al ., based on visual observations,
are also shown in the figure. The calculated sheet layer thickness is quite consistent
with the data of Sumer et al .

Finally, we examine the calculated total sediment transport rate as a function of the
Shields parameter. The total sediment transport rate qs is calculated by integrating
the horizontal sediment flux c̄ũs across the depth,

qs =
∫ h

0
c̄ũs dz, (4.3)

and is further non-dimensionalized by
√

(s − 1)gd3 and denoted by Ψ . Figure 6
presents calculated values of Ψ at various values of Shields parameter for sediment II.
Notice that the total sediment transport rate considered here incorporates sediment
transported throughout the water column. Hence, Ψ depends on the total water
depth. For the data points shown in figure 6, the water depth is taken to be 20.0 cm,
and significant sediment transport occurs only with the lower half of the depth. Using
only the data points for Shields parameters greater than 1.5 (because the model tends
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to under-predicts the mean flow velocity and may not be accurate at low Shields
parameters), we fit the calculated non-dimensional total sediment transport to

Ψ = C0(θ − θc)σ, (4.4)

with the critical Shields parameter θc taken to be 0.05, and obtained σ = 1.8 and
C0 = 20.0. Since such global relations should also depend, at least, upon the ratio
of the fall velocity to the friction velocity (Sumer et al . 1996), our results are not
inconsistent with that reported by Ribberink (1998) in a review of laboratory and
field experiments on steady sediment flows. Moreover, C0 is expected to depend on
the coefficient of restitution e, taken here to be 0.8.

(b) Oscillatory flow

To test the present model in the unsteady conditions, we study the U-tube exper-
iments by Asano (1995) for uniform oscillatory flows. In order to be able to measure
the sediment concentration and velocity using a high-speed video camera, Asano used
relatively large plastic particles with a diameter d = 4.17 mm and specific gravity
s = 1.24. Asano (1995) reports sediment concentrations and velocity profiles for his
cases C-1, C-2 and C-4. Here, only a comparison with C-2 is shown. Comparisons
with C-1 and C-4 can be found in Hsu (2002).

Figure 7 presents comparisons of concentration profiles at six different phases
for case C-2 (oscillatory velocity amplitude U0 = 85.0 cm s−1, oscillatory period
T = 4.64 s), while in figure 8 the corresponding comparisons of the sediment velocity
profile at five different phases are shown. The calculated fluid velocity profiles are also
shown in figure 8 for completeness. We note again that because the total amount
of sediment in the experiment is not specified, the numerical model might have
started with a different initial amount of sediment than the experiment, and we
must shift the measured concentration profile in order to compare with the calculated
results. Once we have determined the amount of shifting at the phase 0π for each
test case, the same shift is used for the rest of the comparisons. There are larger
discrepancies in the sediment velocity at the phase of 2

3π. Notice also that there is
significant scatter in the measured data, especially in the region of high concentration,
suggesting uncertainties in the accuracy of the measurements due, for example, to
the side-walls.

Figure 9 presents the sediment concentration time history at several elevations
relative to the initial bed level for the case C-2. The corresponding time history of the
free stream velocity is also shown. First, depending on the vertical locations relative
to the initial bed, different behaviours of concentration time history can be observed.
Below the initial bed level, the sediment concentration decreases as the free stream
velocity increases. This is the pick-up layer (Ribberink & Al-Salem 1995). The pick-
up layer is located below the initial bed level and extends to the stationary bed. When
the free stream velocity increases, the concentration in the pick-up layer decreases
as sediment is suspended. On the other hand, as the suspended sediment moves
upward, the sediment concentration must increase in the region above the initial bed
level. This region is called the upper-sheet flow layer (Ribberink & Al-Salem 1995).
During the phase in which the free stream velocity decreases, sediment settles to the
bed due to the excess of the gravity force over the suspension force. The sediment
concentration in the upper-sheet flow layer decreases, while the concentration in the
pick-up layer increases.
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Figure 7. Comparison of concentration profiles between the results from the present model and
the measured data for C-2 of Asano (1995) at six different phases. , present model
results; ◦, measurements.

Using the present model, we calculate the time-averaged sediment transport rate
over half a wave cycle

〈qs〉w =
2
T

∫ T/2

0
qs dt,

where ‘〈·〉w’ is the half-wave averaging operator, for uniform oscillatory flow under
various amplitude of free stream velocity. Figure 10a presents the calculated 〈qs〉w
versus the third moment of the free stream velocity for half-wave 〈u3

0〉w The calculated
values 〈qs〉w and 〈u3

0〉w fit a linear relation reasonably. A similar trend has also been
reported in experimental measurements (e.g. Asano 1995; Ribberink 1998). Moreover,
in figure 10b, since the total bed shear stress can be calculated from the present model,
we found that the best linear relation can be obtained by plotting 〈qs〉w, normalized
by

√
(s − 1)gd3 and represented by Ψw, against the time-averaged 1.6th power of the

Shields parameter. Notice that the predicted 1.6th power for the oscillatory flow is
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Figure 8. Comparison of sediment velocity profiles between the results from the present model
and the measured data for C-2 of Asano (1995) at five different phases. , sediment
velocity ũs from the present model; ◦, measured sediment velocity; , fluid velocity ũf

from the present model.

smaller than that predicted for the steady flow. We believe that this is because the
sheet does not have enough time to become fully developed in the unsteady flow.

Although figure 10a implies the possibility of using the free stream velocity to
estimate the sediment transport rate, we expect that such a method is not universal,
especially for the highly unsteady flows (e.g. Drake & Calantoni 2001; Elgar et al .
2001) usually encountered in the near-shore environment. For most of the large-scale
near-shore sediment transport models, the bed shear stress needs to be estimated,
while, in a controlled experimental facility, a direct measurement of the bed shear
stress is still not possible. The present computational model provides a new tool to
obtain the information on free-stream velocity, bed shear stress and the corresponding
sediment transport process simultaneously, in order to study their relationship.
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Figure 9. Time history of sediment concentration obtained from the present model at different
locations relative to the initial bed for C-2 of Asano (1995). The top panel shows the corre-
sponding time history of the free-stream velocity.

5. Concluding remarks

The two-phase model for sediment and fluid flow that we have introduced improves
upon existing models in several ways. It incorporates turbulent suspension in the
vertical momentum equation and includes dissipation and production due to particle–
fluid interactions in the energy equations for the velocity fluctuations of both the
turbulent fluid and the sediment. Comparisons with the experimental results on
massive particles indicate that the predictions are generally good. However, future
study on modelling the dissipation of the turbulent fluid energy in regions of high
particle concentration is required to further improve the agreement between the
experiments and theory.

We have attempted to provide a detailed model that is based upon plausible physics
for the slow flow and failure of the bed. At least, the bed model permits us to describe
erosion and deposition that occurs as the strength of the turbulent fluid flow changes
with time. We anticipate that the bed model will be improved as more is learned
about slow, concentrated flows of granular materials.

We have calculated several global quantities associated with the sheet flow that are
of interest when modelling near-shore sediment transport processes. One of our goals
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Figure 10. Time-averaged sediment transport rate over one half-wave cycle, 〈qs〉w, for vari-
ous amplitude of free stream velocity. The oscillatory period is T = 4.64 s. Plastic particles
have diameter d = 4.17 mm and specific gravity s = 1.24. (a) 〈qs〉w versus the third power of
free-stream velocity amplitude. (b) Normalized 〈qs〉w versus the time-averaged 1.6th power of
Shields parameter.

is to provide near-bed information to large-scale models that involve dilute sediment
suspension and morphological changes occurring over widely different length and
time-scales. For this, we must consider sand in water. The extension of the model to
sand in water presents a challenge. In this case, the interaction between the particles
is likely to be dominated, or at least strongly influenced, by the presence of the fluid,
except, perhaps, in a region of high shear at concentrations slightly above random
loose packed.

This research has been supported by NSF grants CTS-0000675 and OCE-0095834 and NASA
grant NAG3-2353 to Cornell University.
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