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A numerical model is developed to investigate the Bragg scattering of water waves by mul-
tiply composite artificial bars. Zhang et al.’s hyperbolic equation (1999) is recast into an
Evolution Equation for the Mild-Slope Equation (EEMSE). It has the advantage to econo-
mize computing time for practical application to a large coastal area. The characteristics of
both normal and oblique incident waves on the Bragg scattering are investigated. Numer-
ical computations are compared fairly with laboratory experiments. Numerical examples
indicate that the performance of the Bragg resonance for multiply composite artificial bars
can be greatly improved by increasing both the relative bar height and the number of bars
with different intervals. The resulting higher-order harmonic components of the Bragg res-
onance are shown to be significant, and increase the bandwidth of high performance. The
present results can provide an appropriate selection of a multiply composite artificial bar
field to a practical design.
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1. Introduction

In the past decade, many researchers have studied surface wave scattering caused by
the patches of bottom undulations. These studies contain theoretical, experimental,
and numerical researches. Their results indicate that the mechanism of a resonant
Bragg reflection occurs when the wavelength of the bottom undulation is one half
the wavelength of the surface wave (Davies and Heathershaw, 1984; Mei, 1985).
Further studies on the comparison between the numerical computations and the
laboratory experiments have been made by Dalrymple and Kirby (1986), Kirby
(1986), Benjamin et al. (1987), and Hara and Mei (1987).

For a single sinusoidal bed, it is noted that not only the primary resonance
at 2k/K = 1 but also the second-harmonic at 2k/K = 2 can be found (Davies
et al., 1989; O’Hare and Davies, 1993), where k = 2x/L and K = 27 /{ are free-
surface wavenumber and bottom wavenumber, respectively, and L and ¢ are free-
surface wavelength and bottom wavelength. In the case of the bottom consisting of
the superposition of two sinusoids having two different wavenumbers, K7 and K>
(K2 > Kj), the higher-order harmonic of Bragg resonances were revealed. Reso-
‘nances corresponding to £k = (K3 — K))/2, which occur at low frequency, are re-
ferred to as sub-harmonic resonance, and those associated with k = K, k = K>, and
k = (K2 + Ki)/2, which occur at large frequency, are referred to as high-harmonic
resonances by Belzons et al. (1991) and Guazzelli et al. (1992). On the other hand,
the experiments addressed when the relative bed amplitude b/h is increased, the
center of the bands for the Bragg reflection is slightly shifted toward lower values of
2k/K, where b is the amplitude of the bottom undulation and h is the mean water
" depth of a horizontal bed. By dividing the bottom into a series of small shelves,
a step approximation model (Guazzelli et al., 1992) and a successive application
matrix (O’Hare and Davies, 1993) have been used to reproduce this phenomenon.
They proved the accuracy and validity of the method with the theoretical solutions
calculated by the eigenfunction expansion method (Kirby and Dalrymple, 1983; Liu,
1983). However, the effects of evanescent modes are not included in the model, as
their numerical results under predicted the sub-harmonic resonance. More recently,
Cho and Lee (2000) applied a theoretical model based on the eigenfunction expan-
sion method to study the Bragg scattering of monochromatic waves over an arbitrary
topography. The evanescent modes as well as the propagating modes, are considered
in the model. The influence of normal and inclined incidence of surface waves on
the Bragg reflection is also examined. In their calculation, the representation of the
bottom topography by a large finite number of small steps requires a large amount
of computing time. This treatment renders the model inefficient on the application
to a large coastal area.

Alternative numerical models representing extensions of the Mild-Slope
Equation (MSE), derived by Berkhoff (1972), have also been developed. Cham-
berlain and Porter (1995) improved the MSE to propose a Modified Mild-Slope
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Equation (MMSE), which includes the higher-order bottom effect terms. Suh et al.
(1997) developed a Hyperbolic Mild-Slope Equation (HMSE) for wave propagation
over rapidly varying topography. Lee et al. (1998) recast the HMSE into the form of
a pair of first-order equations. Their results showed that HMSE has the same accu-
racy as those using MMSE. Following Li (1994), Hsu and Wen (2001) extended the
Lee et al.’s (1998) equation to a Parabolic Mild-Slope Equation (PMSE) to account
for rapidly varying topography. Kirby (1986) extended the MSE to include small-
amplitude deviations from the slowly varying water depth. This Extended Mild-
Slope Equation (EMSE) is limited in predicting sub-harmonic resonances caused by
steep doubly-sinusoidal bars as reported by O’Hare and Davies (1993). This is be-
cause the EMSE neglects the higher-order terms, which are particularly important
for steep undulations or rapidly varying topography. Zhang et al. (1999) developed
a Hybrid Model (HM) by extending the EMSE to the case of monochromatic waves
over a steep undulating bottom. The higher-order terms neglected in the EMSE
are retained, which enhance the overall prediction capability for steep ripple beds.
However, the HM is a hyperbolic equation marching in the time domain, in which
the integration over a large number of wave periods with small time step is required.
Many computational efforts are created using this procedure. Moreover, the HM is
only applied to normally incident waves over the sinusoidal bottom. The effects of
the oblique waves are not considered, which therefore limit the model application
for practical engineering problems.

The studies mentioned above only concerns the Bragg scattering of surface waves
over sinusoidal bars, which are naturally formed off beaches by partially or fully
standing waves. A practical design using the patches of sinusoidal configurations is
not feasible in a coastal engineering technique. For this problem, Mei et al. (1988)
proposed the concept of the Bragg breakwaters to protect the drilling platform from
wave attack on the oil fields in the Ekofisk of the North Sea. Based on their studies,
the potential effectiveness against waves appears to be reasonable. Kirby and Anton
(1990) and Bailard et al. (1992) also have investigated similar idea. Kirby and Anton
presented a theory based on Miles (1981) and EMSE to the study of periodically
spaced artificial bars with rectified sine geometry. The solutions of both resonant
reflection and nonresonant reflection are obtained through theoretical analysis and
numerical calculation. Bailard et al.’s (1992) numerical results indicated that a stag-
gered nine-element bar field can provide a 25% reduction in storm erosion volume
along the beaches on the US Gulf Coast and the Atlantic Coast. The bandwidths
of primary and higher-order harmonic resonances are narrow in their numerical ex-
amples, and thus, Bailard et al. (1992) concluded that the application of a Bragg
breakwater might be limited in practice for most US beaches. According to Zhang
et al. (1999), this limitation can be improved by using multiply superposed bottom
undulations to produce both primary and higher-order harmonic resonances. They
showed that both magnitude and bandwidth of the Bragg resonance peaks increase,
by increasing the number of sinusoidal components and the amplitude of ripple beds.



238 T.-W. Hsu, L.-H. Tsai and Y.-T. Huang

As an extension of the PMSE of Hsu and Wen (2001), we present an Evolution
Equation of Mild-Slope Equation (EEMSE) based on Zhang et al.’s (1999) HM to
investigate the Bragg scattering over multiply composite artificial bars with rectan-
gular geometry. The higher-order terms, neglected in PMSE for steep undulations
of artificial bars, are retained in the present model. Comparisons of numerical re-
sults and laboratory experiments are made to examine the prediction capability of
EEMSE. Numerical examples of the Bragg scattering of planary waves by multiply
composite artificial bars are performed. Several multiply combined artificial bars
are designed in the numerical examples. In each combination, key parameters, such
as the number of bars, relative bar height, relative bar spacing and incident wave
angle, are varied to investigate the performance of the Bragg resonance. Finally, a
concept to enhance the magnitude and bandwidth of the Bragg resonance peaks for
artificial bars is proposed.

2. Numerical Model
2.1. Model equation

For model formulation, a Cartesin coordinate (z,y, z) with z = onshore direction,
y = alongshore direction, and z = upward direction is used. The depth-averaged
wave equation for monochromatic, linear waves propagating over the arbitrary vary-
ing bottom topography may be formulated following the Green’s second-identity
method of Smith and Sprinks (1975) or Liu (1983). A bottom function, h'(z,y),
consisting of a slowly varying component and a rapidly varying component, is ex-
pressed as

h’,(m:y) = h((l:,y) - 5(:E,y) (1)

where (z, y) represents a rapidly varying component over a relatively slowly varying
component h{z,y). The Laplace equation, subject to linearized free-surface bound-
ary conditions and bottom boundary condition are written, respectively, as

Vid+®,,=0, at —h(z,y)<z<0 (2)
by +9gP, =0, atz=0 (3)
P, =—-Vph- V@ +Vpd-Vp®, atz= —hl(:l:,y) (4)

in which ®(z,y,z,t) is the velocity potential; V;, = (8/8x,8/8y) the horizontal
gradient operator; t the time; and ¢ the gravitational acceleration. Following Kirby
(1986), the solution of Eq. (2) may be expressed as

®(z,y,2,t) = f(z,y,2)d(z,y,t) + Z non-propagating models + O(kd)  (5)
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Using Green’s second-identity to neglect non-propagating modes, Eq. (2) is inte-
grated with respect to z from the bottom to the surface:

0 0
/ fq)zzdz - f q)fzzdz = [f‘I)z - (I)fz](_)_h (6)
—h —h
where
_coshk(z+h)
- cosh kh (M)

is a slowly varying function in the z, y plane. The integrals of Eq. (6) are manipulated
to obtain the following equation (Zhang et al., 1999):

it — Vi - (CCVid) + (w? — K2CCY)d + g(1 — A2)V4 - (§V4)
—g(2F1 - 6Vrd + F1 - Vi + F2¢) =0 (8)
where

F1=M1- %) (kVhh + hV,k) - (9)

Fy = a1(Vph)’k + aaVih 4+ azVipk - Vih/k + 04 Vik/k? + as(Vrk)2 /3 (10)

C and C, are the wave celerity and the group velocity, respectively, A\ = tanh kh.
The parameters a;(i = 1,5) are

a1 = =A(1—=A%)(1 = Ag) — 2(1 — A})\%ks (11)

ag = ~Ag(l — A2)/2 + (1 — A2)Aké (12)

a3 = q(1 — A?)(2¢0% — 5A/2 — ¢/2) — 2(1 — A?)(2A%q — A — q)ké (13)
as = q(1 = A)(1 - 2Aqg)/4 = N4+ (1 - AP)Agkd (14)

as = g(1 — A2) (4% — 4¢%/3 — 20q — 1)/4 + A/4 + (1 — AB)g?(1 — 2AD)ks (15)

where the notation ¢ = kh is used for convenience. The detailed derivation can
be found in the paper of Zhang et al. (1999). The rapidly-varying terms, V,h and
V2h, neglected in the EMSE (Kirby, 1986), are retained to increase the prediction
capability for steep bottom undulations. In Eq. (8), Kirby’s (1986) equation can be
recovered if F; = Fy = 0, and Chamberlain and Porter’s (1995) equation can be
attained if 6 = 0.

To the leading order, the linear dispersion equation can be obtained from Egs. (3)
and (5):

w® = gktanhkh (16)
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where w is the angular frequency Writing the velocity potential as ¢ = Ae*® and
using the relationship k¥ = VS, & = —85/6t, Eq. (8) can be split into the real
and the imaginary parts, where A is the wave amplitude, S = [ k - dZ — @t the
phase functlon k = kcosbi + ksin 0j the wavenumber vector, 6 the wave angle,
Z =27 +yJ the position vector, @ the total angular frequency, and i = /=1 the
unit complex variable. It has been shown by Zhang et al. (1999) that the real part
represents the total dispersion relation combining with the linear dispersion relation
and the dispersion relation due to bottom undulation. The total dispersion relation
is given by

Ay ViA - VA
0 =w? - CCk* + == — gFy — gFy~2— _gF,. AT gF3k? (17)
A A A
where
=YY% _ (1 -3 (18)
g
Fa= _V;,(C_Cg) — (1 = MN)V,é + 20F (19)

From Eq. (17), it is noted that the total dispersion relation departs from the linear
dispersion relation, while the phase function changes from S = i k- dT — wt, to a
new phase function, S = J % - dT — &t. The wave celerity C and group velocity Cy
thus depend on bottom variations. Due to this dispersion behavior, the peak of the
Bragg resonance will shift slightly toward the lower values of 2k/K, as observed in
the laboratory. Equations (8) and (17) also indicate that the higher-order harmonic
resonances are affected by higher-order terms including the bed undulation V4, the
bottom slope Vjh, and curvature V2h.

2.2. EEMSE model

The HM is based on a time-dependent hyperbolic equation, which consumes a large
amount of computing time to achieve the convergence of the program for a large
coastal area (Hsu and Wen, 2001). Furthermore, the model is usually unable to
perform calculations for the case of wide-angle wave incidence (Maa et al., 2000).
In this paper, we developed an EEMSE model on the basis of PMSE proposed by
Hsu and Wen (2001) to study the interaction between surface waves and artificial
bars with steep variations.

Following the procedure outlined by Hsu and Wen (2001), we introduce
a slow coordinate for the time variable, { = et, and assume ¢(z,y,t,%)
¢(z,y,0)e™™t/\/[CCy — g(1 — X2)§] (¢ = a perturbation parameter of order
O(Vih/kh)) to obtain an .evolution equation for the mild-slope equation from
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Eq. (8):
—2wi 89 )
CC,—g(1—A9)5| \ B¢
= Vi + k2 + J F1-6V ¢
R G et | Y JEG, = g
6 ¢
+ Vilg(l — A%)]-V 20
VCCy —g(1-22)s wlot o [\/CCQ —g(1 - )\2)5} (20)
where
w2 _ |9F1- Vb + gFy + K2CC, | _ V3./CC, —g(1 - X%)8 o
‘ CCy—g(1 - A%)s VCCy — g(1 — XN9)é

is a pseudo wave number. As reported by Hsu and Wen (2001), the EEMSE has the
benefit of saving the storage and computing time for a large computational domain
when compared with the hyperbolic equation of HM.

2.3. Boundary conditions and numerical procedure

The radiation boundary conditions are specified to ensure that waves must go out
radially from a computed area with decreasing amplitude. There are two types
of boundary conditions — a partial reflection boundary condition, and a given
boundary condition. These boundary conditions reduce the reflected waves from
the boarder to the computational domain. According to Hsu and Wen (2001), the
boundary conditions are given as follows.

%:

B +(—~1)"iak cos 8¢ + 2ikcosf¢;, on Lz (22a)
8 . o o
By +(—1)"iaksin 8¢ + 2tksinf¢;, on +y (22b)

where a = (1 — R)/(1 — R) is an absorption coefficient, R, the reflection coefficient,
and the subscript, “4”, denotes a quantity of the incident wave. For the partial re-
flection boundary, ¢; = 0, m = 0, and 0 < a < 1. For the given boundary condition,
m=1,a=1, and ¢; = (Ag/w)e® is given, where Sy = kzcos@; + kysinb; — wt,
8i, the incident wave angle. The finite difference method and Alternating Direction
Implicit (ADI) scheme are employed for the solution of Eq. (20), subject to the
boundary conditions of Eq. (22). For details of the numerical scheme, see Hsu and
Wen (2001).

For inclined wave incidence, the approaching wave angles are unknown. For a
given initial guess 6;, the wave number %k can be found from E = VS, and the phase
function S can be solved from S = tan=![Im(#)/Re(¢)] (Re and Im are the real and
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imaginary part of a complex variable, respectively). Finally, the approaching wave
angle is obtained by an iterative procedure from the equation (Hsu and Wen, 2000):

_, 88/0y

g = tan 838y

(23)

Hsu and Wen’s (2000) numerical examples showed that this method provided a
reasonable improvement on the radiation boundary conditions for large wave angle
incidence. During the calculation, the iterative procedure is repeated until a residual
value is smaller than a tolerance value E. According to Hsu and Wen (2000, 2001),
the value of E is smaller than 10~ when the convergence is achieved.

3. Experiments and Model Verification
3.1. Ezxperimental setup

To examine the performance of EEMSE, experiments of the Bragg reflections over
multiply composite artificial bars are conducted in the ilydraulic laboratory at the
Center of Harbor and Marine Technology, Taiwan. The wave flume has a dimension
of 100 m in length, 1.5 m in width and 2.0 m in height. It is equipped with a piston-
type wave generator to make the sinusoidal waves in one end-side, while the other
end-side is placed with the absorbing material to dissipate the reflected wave energy.
Artificial bars with rectangular geometry are placed discretely on a flat bottom, in
the middle region of the wave flume. These undulating beds are varied only in the
z-direction along the wave flume, thus the motion of waves are horizontally one-
dimensional. The schematic diagram of the wave flume system and experimental
setup is given in Fig. 1. In total, eight wave gauges of capacity-type are placed for
water surface elevation measurements in this study. One wave gauge in region A is
used to measure and to calibrate the incident wave conditions, six wave gauges are
installed at region B to estimate the reflected waves using the least squares method
developed by Mansard and Funke (1980), and the other one wave gauge is placed
at region C' to estimate the transmitted waves. The reflected waves by the end-side
of the wave flume are negligible because of the long traveling distance and energy

B &£ A
7}
[l

{
4

100 m >

Fig. 1. Waye flume system and experimental setup.
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Fig. 2. Schematic diagram and definition of all parameters in a multiply composite artificial bar.

dissipation by the end-side of the flume. Data sampling frequency is 30 Hz to acquire
an accurate resolution in the range of the designed wave period.

The incident wave height and period are designed respectively as H; = 4 cm
and 1.03 s < T < 4.03 s to maintain a close assumption of linear wave theory
(0.013 < kA < 0.077, 0.006 < § < 0.212, where § = A/(k%h®) is the Stokes
parameter). The bar footprint is adopted as B = 60 cm and water depth is taken
to be h = 60 cm for all experiments. The schematic diagram and definition of all
parameters in multiply composite artificial bars are shown in Fig. 2.

In Fig. 2, two different combinations of multiply composite beds are considered
with varying key parameters N;, D;/h, Si+1/S;, and B/S;, where Nj is the number
of bars, D; is the bar height, and S; is the bar spacing. The subscript “:”, denotes
the ith combination of the equal-interval bar spacing, and S; represents the interval
of the adjacent different combination in the ith composite bed. In this study, we use
the fixed conditions of § = S3, Ny = Ny, and N = N; + Ny = 2N; = 2N,, where
N is the total number of artificial bars. The effects of each key parameter on the
Bragg scattering due to the multiply composite artificial bars are discussed.

3.2. Model verification

Five cases are performed in the experiments. For the composite artificial bars, the
bar spacing of S§; = 240 cm and Sy = 180 cm; 240 cm; 300 cm is employed. Numbers
of bars used in the experiments are N = 4 (N, = Ny = 2) and 8 (N} = Ny = 4).
The values of the relative bar height adopted in the experiments are D /h = 0.2 and
0.4. The designed key parameters in the experiments are presented in Table 1.
The influence of higher-order terms including the bottom undulation V4, bot-
tom slope |Vh|, and curvature V2h on the Bragg resonance is first examined from
theoretical formulation. From Eq. (17), it is noted that the total dispersion relation

Table 1. Key parameters of the experiments.

Case N;y N2 N Si(cm) Sz (cm) D(em) B (cm) h (cm)

1 4 4 8 240 180 24 60 60
2 4 4 8 240 180 12 60 60
3 2 2 4 240 180 24 60 60
4 4 4 8 240 240 24 60 60
5 4 4 8 240 300 24 60 60
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departs from the linear dispersion relation due to the interaction between the sur-
face wave and undulating bottom. This total dispersion relation indicates that the
higher-order Bragg scattering depends on the rapidly-varying oscillation compo-
nent §(z,y). For a large value of bottom undulation, a more accurate approximate
solution can be obtained by expanding the steep component with respect to the
slowly-varying basic component. In this sense, the present model is different from
the PMSE proposed by Hsu and Wen (2001) in which the rapidly-varying component
has been neglected.

The numerical results of PMSE (é(z,y) = 0) and EEMSE (é(z,y) # 0) are
presented in Figs. 3-7 with the experimental data for the cases 1-5. We can see
that the numerical results of the present EEMSE are in good agreement with the
experimental data, while the PMSE results overestimate the primary peaks and
bandwidths of the Bragg resonances. The larger the relative bar height is (Figs. 3,
5, 6, and 7), the more the PMSE appears to overestimate the peak value of the
Bragg reflection. This result implies that the PMSE neglecting higher-order terms
of the bottom undulation is restrictive for bottom undulation scattering problems.

In order to examine the effects of bottom slope and curvature on the performance
of the Bragg scattering, a numerical example is performed with sinusoidal bars over
a sloping bed. The designed slope is shown in Fig. 8, with each end connecting to
a constant-depth region (h; = 180 c¢m, hy = 20 cm). The sinusoidal bars have the
bottom wavelength ¢ = 50 cm, amplitude of bottom undulation b = 10 cm, and

1.0
R [ ] Experiments
---------- PMSE (Hsu & Wen, 2001)
0.8 I~ Presentmodel (EEMSE)

0.6

0.4

0.2

0.0

00 05 10 1S 20 25 3.0
28,1 L

Fig. 3. Results of the reflection coefficient for N = 8, D/h = 0.4, S2/S; = 0.75, and B/S; = 0.25.
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---------- PMSE (Hsu & Wen, 2001)
0.8 F Present model (EEM SE)
0.6 —
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0.2
0.0

00 05 10 15 20 25 3.0
28,/L

Fig. 4. Results of the reflection coefficient for N =8, D/h = 0.2, S2/5; = 0.75, and B/S; = 0.25.
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---------- PMSE (Hsu & Wen, 200!)
0.8 Present model (EEMSE)
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04
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0.0 v [ U T N R “'i-"': ]

00 05 1.0 15 20 25 3.0

28,/ L

Fig. 5. Results of the reﬂect_ion coefficient for N =4, D/h =04, S3/S; = 0/75, and B/S; = 0.25.
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1.0
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R PMSE (Hsu & Wen, 2001)
0.8 +— Present model (EEMSE)
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Fig. 6. Results of the reflection coefficient for N = 8, D/h = 0.4, S5/5; = 1.25, and B/S; = 0.25.
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Fig. 7. Results of the reflection coefficient for N = 8, D/h =04, S3/S1 = 1.00, and B/S; = 0.25.
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Fig. 8. Sinusoidal bars on a sloping beach.
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L,1¢

Fig. 9. Comparison of reflection due to sinusoidal bars over sloping beach calculated using various
wave models.

total length 0 < L, < 300 cm. The incident wave is chosen to have a wavelength
just twice that of the bottom wavelength, i.e. 2k/K = 1. The slope is varied to
calculate the Bragg reflection coefficient and then compare the results with EMSE
proposed by Kirby (1986) in which the bottom slope and curvature are neglected, i.e.
|Vhh| = V%h = 0. Figure 9 compares the present model EEMSE and EMSE results
with respect to three different slopes (]V,h| = 0.1, 0.2, and 0.5). The result demon-
strates that the EMSE results deviate EEMSE as the bottom slope increases. The
importance of bottom slope on the Bragg scattering is identified for this numerical
example.
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4. Results and Discussion
4.1. The number of bars

Guazzelli et al’s (1992) experimental results pointed out that the peak amplitude
of the Bragg reflection increased and bandwidth decreased for increasing undulated
number of the sinusoidal bed. The results of the multiply sinusoidal bed by numer-
ical simulations (Zhang et al., 1999) also showed that the number of the sinusoidal
bars would affect the production of higher-order harmonic resonances. A larger num-
ber of the sinusoids may result in more possible higher-order harmonic resonances.
Therefore, it is possible to enhance the higher-order harmonic resonances by adding
the number of artificial bars. The composite beds consisting of three different com-
binations of artificial bars N = 4 (N = N; = 2), N =6 (N; = Ny = 3), and
N = 8 (N} = Nj = 4) under the same conditions of D/h = 0.4, S3/S; = 0.75, and
B/S; = 0.25 are investigated. In Fig. 10, the results indicate that larger primary
and higher-order harmonic Bragg resonances can be found as the number of bars in-
creases. The bandwidth of the primary harmonic resonances at the high performance
region also increases while increasing the number of bars. This phenomenon is quite
different from the results of the theoretical model obtained by Belzons et al. (1991)
and Guazzelli et al. (1992) on doubly-sinusoidally beds. This is because the posi-
tions of two primary resonances caused by two combinations of equal-interval bars

1.0

0.8

0.6

0.4

0.2

0.0

00 05 10 15 20 25 30
28,1L

Fig. 10. Reflection coefficients over multiply composite artificial bars with different number of bars
(D/h =04, S2/51 =0.75, and B/S; = 0.25).
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- are very close to producing a larger bandwidth of the primary harmonic resonance
at the high performance region.

4.2. The relative bar height

Both theories (Guazzelli et al., 1992; Zhang et al., 1999) and experiments (Gazzelli
et al., 1992) revealed that a larger bed amplitude, or larger slope for sinusoidal
bottom undulations, could increase the peak amplitude and bandwidth of the Bragg
reflection. Furthermore, the peaks are shifted toward lower frequencies and yield the
higher-order harmonics of the Bragg resonance. To examine the effects on the relative
bar heights of multiply composite artificial bars, three kinds of relative bar heights
D/h=0.2, D/h = 0.3, and D/h = 4 under the same conditions N = 8 (N} = Ny =
4), S2/S1 = 0.75, and B/S; = 0.25 are considered in the numerical calculation.
Figure 11 shows that both peaks and bandwidths of the primary and higher-order
“harmonic resonances increase, while increasing the relative bar height. The peaks of
the Bragg resonance are slightly shifted toward a lower value of 25, /L as the relative
bar height increases. This shift results from the total dispersion behavior by the
interaction between the surface wave and undulating bottom. The phenomenon can
also be observed in Guazzelli et al.’s (1992) experiments. Comparing with Figs. 10
and 11, it is noted that the reflection caused by the relative bar height increases
more significantly than the case caused by the number of bars. This is due to the
fact that the relative bar height could enhance the overall wave-blocking efficiency.
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Fig. 11. Reflection coefficients over multiply composite artificial bars with different relative bar
heights (N =8, §5/S; = 0.75, and B/S; = 0.25).
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Fig. 12. Reflection coefficients over multiply composite artificial bars with different relative bar
spacings (N =8, D/h = 0.4, and S3/S) = 0.75).
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Fig. 13. Reflection coefficients over multiply artificial bars with different ratio of bar spacings
(N =8, D/h =04, and B/S, = 0.25).
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4.3. The bar spacing

Kirby and Anton (1990) showed that the peak value of higher-order harmonic res-
onance in the reflection coefficient can be adjusted by changing the bar spacing.
The importance of higher-order harmonic resonances decreases with a closer bar
spacing. Three computed cases of B/S; = 0.25, B/S; = 0.33, and B/S; = 0.5
under the same conditions of N = 8, D/h = 0.4, and S/S; = 0.75 are presented
in Fig. 12. The result indicates that the decrease of the relative bar spacing B/S;
could increase the amplitude of both primary and higher-order harmonic resonances.
However, it is interesting to note that the higher-order harmonics disappear in the
case of B/S; = 0.5. It is concluded that pushing bars closer together could reduce
the importance of the higher-order harmonic resonances for the same footprint of
bars.

Figure 13 shows the reflection coefficients by multiply composite artificial bars
with different spacing ratios of S3/S; = 0.75, 1, and 1.25 under the same condition
of N =8, D/h = 0.4, and B/S; = 0.25. The EEMSE results are also compared
fairly with experimental data. This result illustrates that the bandwidths of both
primary and higher-order harmonic resonances become larger under the multiply
composite artificial bars conditions (S2/S; = 0.75 and 1.25) when comparing with
an equal bar spacing (S2/5; = 1). Different bar spacing could produce distributive
positions of the Bragg reflection. Accordingly, we can achieve the expectable effect
on having the appropriate spacing of multiply composite artificial bars to protect
the beach-face from the full impact of the waves.
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Fig. 14. Reflection coefficients over multiply artificial bars with different incident wave angles (N =
8, D/h =04, S3/5; = 0.75,, and B/S; = 0.25).
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4.4. The incident wave angle

The model is also used to calculate the reflection coefficients for obliquely incident
waves which are not considered in Zhang et al.’s (1999) HM. As shown in Fig. 14,
the present numerical results depict the reflection coefficients by multiply composite
artificial bars with different incident wave angles 8 = 0°, 30°, and 45°, with the
same parameters of Fig. 3. It is noted that the strong shift of the reflection peaks
toward higher values of 25;/L and the magnitude of reflection coefficients becomes
smaller while increasing the incident wave angle. This result agrees with predictions
by Dalrymple and Kirby (1986) using EMSE and Cho and Lee (2000) using the
eigenfunction expansion method.

8. Conclusions

A numerical model based on the Evolution Equation of Mild-Slope Equation
(EEMSE) is developed to study the interaction between surface waves and mul-
tiply composite artificial bars. As an extension of HM developed by Zhang et al.
(1999), the present model is applied to the characteristics of the Bragg scattering
over multiply composite artificial bars due to the oblique incident wave, which was
not considered in the HM. By comparing the experimental measurements with the
numerical results of the present model, Kirby’s (1986) EMSE (Extended Mild-Slope
Equation) and Hsu and Wen'’s (2001) PMSE (Parabolic Mild-Slope Equation), it
shows that the present model is capable of producing accurate results of the primary
and higher-order harmonic Bragg resonances over composite artificial bar field.

Using the developed computer programs, the performance of different composite
artificial beds under various combinations of the bar number, relative bar height,
relative bar spacing, and incident wave angle could be evaluated. When multiply
composite artificial bars are used, in addition to the primary peaks, the resulting
higher-order harmonic of the Bragg resonances are also found to be significant and
greatly increase the bandwidth at the high performance region. Numerical compu-
tations show that both the amplitude and bandwidth of each resonant component
increase with the increase of the relative bar height, the number of bars, and bar
spacing. By putting bars further apart in a composite artificial bed, it could in-
crease the importance of the higher-order harmonic resonant effect. The magnitude
of primary Bragg reflection decreases with the increase of incident wave angles. It is
concluded that a multiply composite artificial bar field with an appropriate selection
of key parameters may lead to the optimal and practically viable Bragg breakwaters
for real sea conditions.
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