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ABSTRACT

The mass transport velocity in shallow-water waves reflected at right angles from an infinite and straight
coast is studied theoretically in a Lagrangian reference frame. The waves are weakly nonlinear and mono-
chromatic, and propagate in a homogenous, viscous, and rotating ocean. Unlike the traditional approach
where the domain is divided into thin boundary layers and a core region, the uniform solution is obtained
here without constraints on the thickness of the bottom wave boundary layer. It is shown that the mass
transport velocity is not only sensitive to topography, but depends heavily on the interplay between the
vertical length scales. Similarities and differences between the cases of a constant depth, a linearly sloping
bottom, and a wavy and linearly sloping bottom are discussed. The mass transport velocity can be divided
into two main categories—that induced by waves with a frequency close to the inertial frequency, and that
induced by waves with a much larger frequency. For waves significantly affected by rotation to first order,
the cross-shore mass transport velocity is very small relative to the alongshore mass transport velocity, and
the direction of the mass transport velocity is reversed relative to that in waves of much higher frequencies.

1. Introduction

The investigation of the mass transport velocity in
reflected water waves has a long history (e.g., Rayleigh
1883; Longuet-Higgins 1953; Ünlüata and Mei 1970;
Dore 1970; Liu and Davies 1977; Lamoure and Mei
1977; Craik 1982). The existence of mean recirculation
cells as those originally found by Rayleigh (1883) and
Longuet-Higgins (1953) has been confirmed both ex-
perimentally and theoretically, and it has been shown
that reflection from a vertical boundary has importance
for the formation of half-wavelength sandbars on the
sea bottom (Herbich et al. 1965; Carter et al. 1973; Yu
and Mei 2000).

The physical mechanism of the recirculation cells in a
nonrotating frame is well known (e.g., Rayleigh 1883;
Longuet-Higgins 1953; Mei 1983). However, the details
of the vertically varying mean particle velocity in a ro-
tating frame is yet not fully clear. Traditionally, the

theoretical investigation of the mean mass transport in
long ocean waves affected by rotation and topography
has been focused on the vertically integrated transport
in tides (e.g., Huthnance 1973, 1981; Zimmerman 1978,
1979; Loder 1980).

Common, simplifying assumptions applied in the
analytic study of the mass transport velocity in ocean
waves are the assumptions of a constant depth and a
thin wave boundary layer. Hunt and Johns (1963) dis-
cussed the vertically varying mass transport velocity
profile in tides and long waves, but only for the top of
a thin bottom wave boundary layer, and for a constant
depth. While retaining the assumptions of a constant
depth and a thin wave boundary layer, Lamoure and
Mei (1977) extended the theory of Hunt and Johns
(1963), and discussed the tidally induced near-bottom
mass transport in the vicinity of small two-dimensional
bodies.

Wright and Loder (1985) studied (weakly nonlinear)
topographic rectification of tidal currents, under the
assumption of no along-isobath variation. Similar to
Huthnance (1973) and Loder (1980), Wright and Loder
found anticyclonic mean circulation around shallow re-
gions in the case of weak friction. However, they did
not consider the mean flow in the wave boundary layer,
and they applied the rigid-lid approximation. This ap-
proximation makes their theory inapplicable for shal-
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low-water waves of a higher frequency, where oscilla-
tions of the free surface are important. It has also been
shown that the effect of free-surface oscillations on the
residual current of the semidiurnal tide can be impor-
tant (e.g., Tee 1985). Dong et al. (2004) extended the
theory of Wright and Loder to study the residual recir-
culation in tidal fronts over a sloping bottom, taking
into account a prescribed density field. Although they
accounted for a free surface, they applied the dynamic
(free shear) boundary condition at a fixed horizontal
level. If the rigid-lid assumption is not used, their theory
requires implicitly the wave boundary layer and bottom
Ekman layer to be thin in comparison with the depth.

For low-frequency waves such as tidal waves, the as-
sumption of a thin wave boundary layer often does not
hold in shallow shelf seas (e.g., Soulsby 1983). Ianniello
(1979) recognized this. However, he studied the tidally
induced residual currents in narrow inlets where the
Kelvin number was small enough for the effect of ro-
tation on the primary wave field to be negligible.

In this paper, I seek to illustrate in what way the mass
transport velocity in Poincaré waves may react to the
Coriolis force as compared with the mass transport ve-
locity in enduring waves of a much higher frequency.
Unlike the latter waves, the former are significantly
affected by the earth’s rotation to first order. The focus
is then different from that of recent papers on wave–
current interaction wherein the effects of topography
and Coriolis force are discussed (e.g., Restrepo 2001;
McWilliams et al. 2004). I aim to study the joint effect
of the Coriolis force, wave damping, friction, and re-
flection, without constraints on the wave boundary
layer thickness. This model is meant to complement
earlier studies, some of which may focus on important
effects not considered here: multiple fluid layers (e.g.,
Dore 1970; Ng 2004), two-dimensional wave propaga-
tion (e.g., Hunt and Johns 1963; Lamoure and Mei
1977; Iskarandi and Liu 1991), propagation of water
wave packets (e.g., Grimshaw 1981), feedback from a
slowly evolving bottom profile (e.g., Yu and Mei 2000;
Restrepo 2001), interaction with currents and/or topog-
raphy (e.g., McWilliams and Restrepo 1999; Restrepo
2001; McWilliams et al. 2004), and transport and resus-
pension of fine particles (e.g., Mei et al. 1998).

The present paper is organized as follows: In section
2 the problem is formulated mathematically using regu-
lar perturbations in Lagrangian coordinates. In section
3, time-periodic, complex Fourier components for the
primary wave field are considered, and a set of equa-
tions for the first-order solution is derived. From the
solution that is found here, the governing equations for
the mass transport velocity to second order, valid for a
wave boundary layer of general thickness and a two-

dimensional, rotating ocean, are derived and solved in
section 4. The solution is discussed for the aforemen-
tioned cases of bottom configuration, in section 5, for
waves with a period of 5 min and, in section 6, for waves
at the semidiurnal tidal frequency. A summary and
some concluding remarks are given in section 7.

2. Mathematical formulation

I consider shallow-water waves that propagate to-
ward the shore at normal incidence. They are forced,
monochromatic, and barotropic. It is assumed that the
water is well mixed, with negligible density variation.
The effect of wind stress, varying surface pressure, and
currents not forced by the wave field will be omitted
from this discussion. The alongshore variation is ne-
glected, that is, the coast and isobaths are assumed to
be both straight and parallel.

The motion is described in a Cartesian coordinate
system with its origin on the seafloor. The z axis points
up the vertical, the y axis is directed along an isobath,
and the x axis points perpendicularly toward the coast
(Fig. 1). In the equilibrium state without the presence
of waves, z � H0 at the surface. When the wave field
is established, the surface is described by z � H0 �
�0(x, y, t). Let a fluid particle be described by its
Lagrangian label coordinates (a, b, c). Its position (x, y,
z) at time t will be a function of t and (a, b, c). The
velocity and acceleration of the particle are (x, y, z)t

and (x, y, z)tt, respectively.
Given the idealized model setting, it suffices to pa-

rameterize turbulent friction with a constant eddy vis-
cosity �0, neglecting lateral friction (e.g., Mei et al.
1998). In fact, Davies et al. (2001) found that a constant
eddy viscosity could reproduce elevations and currents
in tidal waves as accurately as those based on a Prandtl
model. However, it is difficult to find a realistic, repre-
sentative value for the constant eddy viscosity. An eddy
viscosity is chosen with values within typical ranges re-
ported earlier in literature, �0 � 10�5–10�1 m2 s�1,
where the lower bound is more representative for the
interior of the ocean and the upper bound is more typi-
cal for shallow areas with strong tidal mixing; see, for
example, Pond and Pickard (1983). Mei et al. (1998, see
also references therein) suggest that �0 � 2 � 10�2

m 2 s � 1 f o r a s m o o t h m u d b e d a n d
�0 � 5 � 10�2 m2 s�1 for a rippled sandy bed. It is
assumed that if one studies shallow-water waves in the
vicinity of a coast or shore, it is reasonable to pick
values from the mid- or upper range of viscosity values.

By utilizing the fact that all variables (except of y) are
independent of b, the governing equations and bound-
ary conditions at the bottom and the surface can be
written as (see, e.g., Hoydalsvik and Weber 2003),
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Wt � if W � �gJ��, z	 � �0J 
x, J�x, W	�, �2.1	

J�x, z	 � 1, �2.2	

W � 0, z � B�x	, and �2.3	

J�x, W	 � 0, z � � � H0. �2.4	

Here, g is acceleration resulting from gravity, W � xt �
iyt is the Lagrangian complex horizontal particle veloc-
ity, and J(M, N) � MaNc � McNa is the Jacobian de-
terminant; B is the Eulerian coordinate of the bottom
profile with B(0) � 0. Equations (2.1) and (2.2) express
conservation of momentum and mass, respectively.

The boundary condition (2.4) is derived by requiring
the viscous tangential stresses [�(x), �(y)] to vanish at the
free surface (e.g., Davies 1985; Weber 1998; Ng 2004).
It rests on the shallow-water assumption kD K 1, and is

valid to O(kD), where k is the wavenumber and D �
H0 � B is the equilibrium depth. The assumption of a
hydrostatic pressure in Eulerian coordinates in Eq.
(2.4) requires kD K 1 and a large Ursell number, for
example, U � �0k�2D�3 k 1, where �0 is the amplitude
of the surface displacement (see the appendix) to lead-
ing order. Unless the latter requirement is fulfilled,
there is little point in regarding nonlinear effects while
disregarding nonhydrostatic effects; see, for instance,
Blondeaux et al. (2002).

Apart from the shallow-water approximation and the
idealized parameterization of turbulent friction, (2.1)–
(2.4) are exact. I will attempt to find an approximate
solution to the time-averaged mass transport velocity
by following Pierson (1962). The small parameter  �
�0/H0 is defined, and I write

�x, y, z� � �a, b, c� � ��x�1	, y�1	, z�1	� � �2�x�2	, y�2	, z�2	� � · · ·

� � �� �1	 � �2� �2	 � · · ·

W � �W�1	 � �2W �2	 � · · ·
� , �2.5	

where the angle brackets denote vectors. Here, (2.5)
is inserted into (2.1)–(2.4). From (2.5) one has c � H0,
z(1) � � (1), z(2) � � (2), and so on, at the surface. The
slope given by z � B(x) in Eulerian coordinates
corresponds to c � B(a) in Lagrangian coordinates.

This can readily be shown by utilizing (2.5) on the iden-
tity z � B(x), and collecting terms with equal powers
of . In case of a no-slip bottom condition, this is triv-
ial, because the displacement at the bottom must be
zero.

FIG. 1. Sketch of the system. Monochromatic shallow-water waves propagate from deeper
waters toward the coast with normal incidence. At x � 0, the equilibrium depth D is H0, and
at the shore it is H1. The (hypothetical) area of study (0 � x � L) is chosen differently through
the discussion, from the continental shelf (L is chosen to be large, of order 100 km) to the
coastal or nearshore region (L � 1–10 km). In all cases, a finite depth is chosen at the shore,
and perfect reflection is assumed here. The wave amplitude to leading order at the shore is
assumed to be known. The vertical scale is greatly exaggerated. The system is located on the
Northern Hemisphere; i.e., the Coriolis parameter f is nonnegative.
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3. Analysis of the primary wave field

a. Solution by separation of variables

I write the surface displacement of the primary wave
field on the following form:

� �1	 � C�a	ei�t � C*�a	e�i�t �3.1	

(asterisk denotes complex conjugate). By utilizing this
surface component, one gets the following system of
equations to O():

Wt
�1	 � �0Wcc

�1	 � if W�1	 � �g
C��a	ei�t � C�*�a	e�i�t�,

�3.2	

xa
�1	 � zc

�1	 � 0, �3.3	

W�1	 � 0, c � B�a	,

Wc
�1	 � 0, and c � H0. �3.4	

Equation (3.2) suggests that one may split the solution
for the horizontal velocity and displacement into two
parts,


W�1	, x�1	, y�1	� � �W1, x1, y1	C�ei�t

� �W2, x2, y2	C�*e�i�t. �3.5	

Here, the functions with subscripts generally depend on
a and c. By integrating the velocity in time, it is found
that the components of the horizontal displacement can
be written as

x1 �
1

2i�
�W1 � W*2 	, x2 � x*1,

y1 � �
1

2�
�W1 � W*2 	, and y2 � y*1. �3.6	

Associated with the components of the solution, a
range of characteristic parameters are defined, such as
frequencies �1 � � � f and �2 � � � f, bottom bound-
ary layer thicknesses �1 � (2�0/�1)

1/2 and �2 � (2�0/�2)
1/2,

and complex vertical wavenumbers m1 � (1 � i)/�1 and
m2 � (1 � i)/�2. By inserting the form of W(1) given by
(3.5) into (3.2) and (3.4), one finds the components W1

and W2,

Wj �
ig

�j
�1 �

cosh
mj�c � H0	�

cosh�mjD	 �, for j � 1, 2. �3.7	

b. The eigenfunction for the surface elevation

By integrating the incompressibility equation to first
order (3.3) over a water column, and using the fact that
z(1) � � (1) at the surface, one obtains

� �1	 � ��
B

H0

xa
�1	dc � �

�

�a �B

H0

x�1	dc � x�1	Ba|c�B,

�3.8	

where the rightmost term disappears resulting from the
no-slip bottom boundary condition. By utilizing (3.1)
and (3.5)–(3.8), it is found after some algebra that the
eigenfunction C must satisfy

d

da �D�1 �
�2

2�
�1 �

�1

2�
�*2� dC

da�� k0
2H0C � 0.

�3.9	

Here, � j � tanh(mjD)/mjD and k0 is the wavenumber
for inviscid Poincaré waves over horizontal bottom,
k0 � (�2 � f 2)1/2(gH0)�1/2. By taking the leading-order
surface amplitude to be �0 and requiring perfect reflec-
tion at a � L, the boundary conditions for C become

C�L	 � 0.5H0 and C��L	 � 0. �3.10	

When the depth is constant, D � H0, C is readily
found to be a damped trigonometric function,
C � 0.5H0 cos(Kâ), where â � a � L and K � i� �
k � k0[1 � �2�1/(2�) � �1�*2 /(2�)]�1/2. Here, � and k
are the damping factor and the wavenumber, respec-
tively, both of which are positive.

Consider the more physically realistic case of a bot-
tom that slopes linearly upward from a � 0, where the
depth is D � H0, to the shore, where a � L and D � H1.
The bottom slope is � � (H0 � H1)/L. The amplitude
must be small relative to the depth, that is, �0 K H1,
otherwise the assumption of weak nonlinearities may
not hold. In the discussion of Lentz et al. (2001), the
slope on the midcontinental shelf is found to be around
1.3 � 10�4, while the mean slope from the coast and 5
km away can be estimated as 4 � 10�3 (roughly 30
times as large). In such cases, the change of depth close
to the coast is very abrupt for long waves, such as the
semidiurnal tidal component (with typical horizontal
lengths of �106 m). If one concentrates on the midcon-
tinental shelf, it seems reasonable to take the near-
coast region as a vertical wall, while considering the
more moderate slope on the midcontinental shelf itself
(e.g., Das and Middleton 1997).

When ignoring the effect of wave attenuation, C may
be written as
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C �
G�a	

G�L	

G�a	 �
1
2

Y�0�2	�H1

	
�J0�2	��H0

	
� a���

1
2
J �0�2	�H1

	
�Y0�2	��H0

	
� a��� , �3.11	

where � � (�2 � f 2)g�1��1; see Das and Middleton
(1997) who use a similar expression. In (3.11), J0 and Y0

are the first-order Bessel functions of first and second
kind, respectively. Typical values for � and �, when
considering tidal waves on the continental shelf, are � �
10�3 (typical slope of the shelf) and � � 10�6 m�1

(assuming � � 10�4 s�1); see, for instance, Battisti and
Clarke (1982) and Das and Middleton (1997).

For the effect of wave attenuation on wave propaga-
tion to be negligible, one must have a thin boundary
layer; that is, �2 K D. If it is assumed that �2 � O(10 m)
[obtained for an eddy viscosity of �0 � O(10�2 m2 s�1)],
the domain should at least be limited to an area deeper
than 50 m. However, a typical depth for the near-coast
region may be of the order of O(10 m) [20 m in the case
of Lentz et al. (2001)], and the boundary layer may
reach all the way up to the surface in the domain. If this
is the case, or if the bottom configuration is more com-
plex, (3.9) and (3.10) are solved numerically.

4. Analysis of the time-averaged secondary wave
field

I average the system of equations in (2.1)–(2.4) over
a wave period, and find the governing equations and
boundary conditions for the mean drift to O(2). They
become

�0Wcc
�2	 � if W�2	 � F � Q, �4.1	

xat
�2	 � zct

�2	 � 0, �4.2	

W�2	 � 0, c � B�a	,

Wc
�2	 � 0, and c � H0. �4.3	

Equation (4.2) is achieved by time differentiating the
incompressibility condition (2.2) to second order. The
homogenous form of dynamic surface boundary condi-
tion in (4.3) is obtained by taking advantage of the
surface boundary condition to first order (Weber 1998;
Ng 2004). The forcing function F is given as

F � �0
2xc
�1	Wac

�1	 � xcc
�1	Wa

�1	 � 2xa
�1	Wcc

�1	 � xac
�1	Wc

�1	�

� g�aa
�1	x�1	. �4.4	

After some algebra it is found that

F � F12C�C
* � F21C�*C
 � �F�12 � F�21	 |C� |2, �4.5	

where

Fpq � �0�2
�xp

�c

�Wq

�c
�

�2xp

�c2 Wq � 2xq

�2Wp

�c2

�
�xq

�c

�Wp

�c � � gxp �4.6	

and

F�pq � �0�2
�xp

�c

�2Wq

�a�c
�

�2xp

�c2

�Wq

�a
� 2

�xq

�a

�2Wp

�c2

�
�2xq

�a�c

�Wp

�c �. �4.7	

The rightmost terms in (4.4) and (4.6) result from the
second-order Lagrangian pressure components. The
term Q in (4.1) is the mean quasi-Eulerian pressure
gradient to second order,

Q � g���E
�2	

�x �
x�a
� g

d�E
�2	�a	

da
. �4.8	

The form of Lagrangian pressure gradient can either be
derived from a Taylor expansion of the Eulerian sur-
face function after Longuet-Higgins [1953, his (14)],
which yields �(2) � �(1)

a x(1) � �(2)
E , or from differentia-

tion of the second-order part of the hydrostatic pres-
sure p � �g(H0 � � � z) with respect to c, which yields
p(2)

c � �g(�(2)
c � z(2)

c ). From the second-order part of the
hydrostatic pressure equation �p/�z � J(p, z) � ��g,
one also has p(2)

c � �g[x(1)
c �(1)

a � z(2)
c ]. Hence, �(2)

c �
�(1)

a x(1)
c .

It is convenient to divide the solution of (4.1) and
(4.3) into two parts,

W�2	 � WEW � QWe, �4.9	

and it is required that

�0�WEW	cc � if WEW � F and �0�We	cc � if We � 1.

�4.10	

Both parts satisfy the homogenous boundary conditions
of (4.3). First, (4.10) is solved; then Q is determined. By
integrating (4.2) from c � B to c � c, the mean vertical
drift w(2) is obtained. It is given by
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w�2	 � zt
�2	 � ��

B

c

Re
Wa
�2	� dc. �4.11	

Thus, if the mean surface elevation is steady, the total
cross-shore mass transport must be zero (e.g., Longuet-
Higgins 1953; Ünlüata and Mei 1970; Weber 1998),
that is,

Re��
B

H0

W�2	 dc�� Re��
B

H0

WEW � QWe dc�� 0.

�4.12	

Because there can be no alongshore mass accumula-
tion, Q must be real. Equation (4.12) then yields

Q � �

�
B

H

WEW � W*EW dc

�
B

H

We � W*e dc

. �4.13	

By defining ĉ � c � B, the wave-induced part of the
solution may be written on the following form:

WEW �
e�mED sinh�mEĉ	

1 � e�mED sinh�mED	
j�a, D	 � j�a, ĉ	,

�4.14	

where

j�a, ĉ	 �
1
�0
�

0

ĉ �
D

�

emE�2� � � � ĉ	F �a, � � B	 d� d�.

�4.15	

I define mE � (1 � i)/�E, where �E is the thickness of
the bottom Ekman layer, �E � (2�0/f )1/2. Then, the
Ekman part of the solution may be written as

We � if �1�1 �
cosh
mE�ĉ � D	�

cosh�mED	 �. �4.16	

5. Discussion for high-frequency shallow-water
waves

I ignore the effect of rotation by letting f � 0. In this
case, one has �1 � �2 � � and �1 � �2 � � � (2�0/�)1/2.
The depth is taken to be constant, and terms of the
order of �/k, or equivalently, terms of the order of �/H0

are neglected. At a distance of L � � � 2�/k from the
coast/shore, the wave is virtually standing, and mass
transport velocity to second order may approximately
be written as

W ≅ ��0

H�2 C0

8 ��3 � 8e�c� sin�c

� � 3e�2c�

� 9� c

2H
� 1� c

H� sin�2kâ	. �5.1	

In the notation used here, this is the uniform version of
Longuet-Higgins’s (1953) boundary solution [first three
terms on the right-hand side of (5.1)] and his conduc-
tion solution [the parabolic terms1 in (5.1)].

In Fig. 2 the mean drift field components in the x–z
plane, obtained from (4.9), (4.11), and (4.13)–(4.16) are

1 There is a difference of a constant, resulting from the fact that
Longuet-Higgins discussed the conduction (inner core) solution
separately from the boundary layer solution, requiring that the
net mass transport of the former to be zero.

FIG. 2. The cross-shore and vertical mass transport velocity components are represented
as vectors. The vertical scale is greatly exaggerated. Here, the depth is constant and equal to
H0 � 50 m, the eddy viscosity is �0 � 10�2 m2 s�1, and the wave period is T � 5 min. The effect
of rotation is ignored; i.e., f � 0.

2434 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 37



drawn as vectors. An exaggerated vertical scale is used,
both for the geometry and velocity. The eddy viscosity
is taken to be 10�2 m2 s�1, the depth to be 50 m, and the
wave period to be 5 min, and f � 0. The upper recir-
culation cells correspond to the cells of Longuet–
Higgins’s conduction solution. The lower recirculation
cells, corresponding to the cells obtained from his
boundary layer solution, are barely visible on this scale
because of the thin wave boundary layer. The maxi-
mum magnitude of the cross-shore velocity2 is here 1.5
mm s�1.

Consider the same set of parameters as in Fig. 2, but
now letting f � 1.2 � 10�4 s�1. The results are displayed
in Figs. 3a,b. This case is very similar to the nonrotating
case, although the drift is geostrophically adjusted from
the surface and roughly 20 m below. Here, the along-
shore speed and cross-shore speed are comparable,
||� ||� ≅ 1.4 mm s�1 while ||u ||� ≅ 1.2 mm s�1. The wave
boundary layer is thin (�2/H0 � 0.02), and the Ekman
layer is significantly smaller than the depth (�E/H0 �
0.26). The influence of friction on the Ekman part
of the solution We must be small outside the Ekman
layer. When H0 K �E, We approximately becomes the

parabolic conduction solution of Longuet–Higgins. For
H0 k �E, We ≅ if �1(1 � e�mEc); see also Lamoure and
Mei (1977), Weber (1998), and Hoydalsvik and Weber
(2003). When one moves upward from the wave bound-
ary layer, the boundary layer part of the solution WEW

must approach zero, because the forcing F approaches
zero. Hence, the solution in the near-surface region is
principally geostrophic and directed along the isobaths.

Increasing the eddy viscosity to 10�1 m2 s�1 changes
the results in just the ways expected. From Figs. 3c,d we
observe that the damping is stronger, and the lower
recirculation cells have become more pronounced at
the expense of the upper cells. Because of the increased
Ekman number, the alongshore speed is reduced rela-
tive to the cross-shore speed (the maximums are 0.4 and
1.2 mm s�1, respectively). The symmetry about the ver-
tical lines under the antinodes that Longuet-Higgins
(1953) obtained is notably distorted, despite the thin
boundary layer (�2/H0 � 0.06). Seemingly, when mov-
ing away from the shore, the horizontal speeds in the
counterclockwise recirculation cells increase, while
those in the clockwise recirculation cells decrease.

I have repeated the experiments and plotted the vec-
tor field over a few wavelengths for other depths and
eddy viscosity values, and found the same feature (re-
sults not shown). Because of wave attenuation, the
wave field becomes slightly more progressive as one
moves away from the shore, that is, the energy of the

2 As a short form of “mass transport velocity” (mean
Lagrangian velocity to second order), I will use “velocity;” when
referring to magnitude of this velocity, I will hereinafter use
“speed.”

FIG. 3. As in Fig. 2, but now rotation is considered, and the alongshore component (normalized with its maximum value) is
represented with a contour plot in (b) and (d). Here, f � 1.2 � 10�4 s�1; (a), (b) �0 � 10�2 m2 s�1; (c), (d) �0 � 10�1 m2 s�1.

OCTOBER 2007 H O Y D A L S V I K 2435



reflected wave mode becomes smaller, while the energy
of the incident mode becomes larger. Thus, the mass
transport velocity profile must approach the progres-
sive profile away from the shore (in this case directed
toward the shore in the lower parts of the water body
and oppositely directed in the upper parts).

I now let the bottom slope linearly from D � H0 �
150 m at a � 0 to D � H1 � 50 m at a � L � � (Fig.
4). Hereinafter � � 2�k�1 will be used for the wave-
length obtained in case of constant depth D � H0. This
yields � � 8.7 � 10�3. Except for the local wavenumber
and the amplitude that must decrease with increasing
depth, the eigenfunction (4.8) is very similar to the one
obtained for a constant depth (see Fig. 5). This, of
course, does not mean that the effect of topography is
unimportant here; shifts in local wavenumber and en-
ergy density affect the distribution of maximum speed
and the horizontal extent of the recirculation cells.
(This is seen clearly from Figs. 4 and 6.)

FIG. 4. As in Figs. 3c,d, but now with a linearly sloping bottom. At a � 0, the depth is H0

� 150 m. At the shore, where a � L � � � 11.4 km, the depth is H1 � 50 m. The bottom slope
is � � 8.7 � 10�3. (a) The cross-shore and vertical mean drift components. (b) The normalized
alongshore mean drift component.

FIG. 5. The eigenfunction (4.8) obtained for the parameters
used in Fig. 4 (solid line) and the trigonometric eigenfunction for
constant depth D � H0 � 150 m (dashed line) are plotted against
a. The amplitude at the coast is 1 m.

2436 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 37



When �2 becomes comparable to D or larger, the
vertical profile of the first-order solution for the veloc-
ity changes character—from hyperbolic to parabolic.
This leads to a second-order solution that is different in
nature. Using the trigonometric eigenfunction for
waves of 5-min periods, it is found that for sufficiently
small depths and large eddy viscosity values the
Longuet-Higgins boundary solution goes all the way up
to the surface, and the alongshore current changes di-
rection and becomes very small in magnitude (�1:20 of
the cross-shore magnitude). However, the depth
needed for the wave boundary layer to reach the sur-
face is far too small for us to ignore depth variations
over a wavelength, even when using eddy viscosity val-

ues from the upper end of reported values. Hence, one
must resort to a numerically estimated eigenfunction,
taking into account both depth variation and dissipa-
tion. As an example of the combined effect of dissipa-
tion and bottom slope, I now let H0 � 110 m and
H1 � 10 m. The results are displayed in Figs. 7 and 8.
Many of the features seen in these figures may be ex-
pected from the results obtained for a horizontal bot-
tom. Among others, the lower recirculation cells close
to the coast reach far up into the water body, and their
horizontal extension is smaller than before (Fig. 8).
Relatively speaking, there are no upper cells of signifi-
cance. The cell nearest to the coast goes all the way up
to the surface. As anticipated from an Ekman number
that is significant close to the coast (the Ekman layer is
thicker than the depth), the alongshore velocity is
negligible in comparison with the cross-shore velocity.
The increasing energy density with decreasing depth
clearly affects the overall recirculation pattern, making
the two cells adjacent to the shore dominating. Moving
offshore from the coast, the relative importance of the
alongshore velocity in comparison with the cross-shore
velocity becomes similar to that before (cf. Fig. 6 and
Fig. 8).

6. Discussion for low-frequency shallow-water
waves

I consider a hypothetical case of the M2 tidal com-
ponent that is propagating on a continental shelf with
constant depth and is being reflected from an infinitely
long coast at right angles. Let D � H0 � 150 m, T �
12.42 h, and �0 � 10�2 m2 s�1, and take L � 100 km
(Fig. 9). The cross-shore circulation is below the deep-
est half of the water body, and the velocity above is
geostrophically balanced, as expected. Because the Ek-

FIG. 6. Maximum mass transport velocity components over a
water column, Um � ||2u(2) ||� (solid line) and Vm � ||2�(2) ||�
(dashed line), are plotted against a for the case of L � �. The
parameters are as in Figs. 4 and 5.

FIG. 7. As in Fig. 4a, but now H0 � 110 m and H1 � 10 m, yielding a thick boundary layer
close to the coast.
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man layer (about 14 m thick) is embedded in the
boundary layer (about 22 m thick), one can no longer
distinguish the lower and upper (semiclosed) cells (as in
Fig. 3c); they have merged together, and the velocity
closest to the bottom is directed away from the nodes,
unlike the nonrotating case discussed by Longuet-
Higgins (1953). The alongshore velocity here is also
oppositely directed of the alongshore velocity obtained
for shorter waves at shallower waters (cf. Figs. 3b
and 9b).

Experiments with other frequencies have yielded the
same direction of alongshore velocity for frequencies
� � f � f or smaller (results not shown). Furthermore,
the alongshore speed is much larger than the cross-
shore speed. In the preceding example, the ratio is
about 10:1. One could suspect this feature to be related
to the fact that the cross-shore velocity must be zero at
the coast, while L K �; but it is not (see Fig. 10). It is

FIG. 8. As in Fig. 6, but using the same depth configuration as
in Fig. 7.

FIG. 9. The mass transport velocity for the M2 tidal component reflected from an infinite
coast is considered; L � 100 km. At a � L, the wave amplitude is taken to be A0 � 1 m;
D � H0 � 150 m, T � 12.42 h, � � 10�2 m2 s�1, and f � 1.2 � 10�4 s�1. (a) The cross-shore
and vertical mass transport velocity components. (b) The normalized alongshore mass trans-
port velocity.
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concluded that the reversal of directions must be attrib-
uted to a wave frequency that is low enough for the
Coriolis force to affect the primary wave field. Let us
consider the mean drift in the area between the node
adjacent to the coast and the antinode at the coast, that
is, 3/4� � a � �. When H0 k �E k �2, the friction force
dominates over the Coriolis force inside the wave
boundary layer, and WEW behaves like the boundary
layer solution of Longuet-Higgins (1953) here. Its pro-
file is directed toward the node just over the bottom,
away from it on the top of the boundary layer, and
further up until c � �E. In the Ekman layer, WEW is
subject to Ekman veering3 (Kundu 1976) and decays
exponentially upward, because the forcing F is virtually
zero outside the wave boundary layer. The net cross-
shore mass transport by WEW is in this case directed
away from the node, along the positive x axis. Hence,
the mean quasi-Eulerian pressure gradient �Q must be
directed toward the node, so that the pressure-induced
part of the mean flow We may create an Ekman trans-
port that is directed opposite to the net cross-shore
transport by WEW, yielding a zero net cross-shore mass
transport.

For waves with a frequency close to the inertial fre-
quency, the Ekman layer is significantly thinner than
the wave boundary layer. When H0 k �2 k �E, the

forcing F varies very slowly in the vertical, and the
solution for WEW can approximately be written as

WEW � if �1F �1 � e�mEc	. �6.1	

The slow variation of forcing is related to the fact that
�2 is its representative vertical length scale. For low
frequencies and large ratios between �2 and �1, terms
with �1 as the typical vertical length scale become small
because of large ratios between �1 and �2. For high
frequencies, the two length scales become comparable
or approximately equal, so that �2 is still the typical
vertical length scale. The forcing profile in this case is
similar to that obtained for Longuet-Higgins’s solution,
with a strong maximum away from the node close to the
bottom and an oppositely directed, weaker local maxi-
mum further up. (The profiles are not shown here.)
Hence, WEW is directed along the positive y axis on top
of the Ekman layer, which yields a net cross-shore
transport from WEW that is directed toward the node
because of Ekman veering. The quasi-Eulerian mean
surface slope toward the shore must then be negative
(Q � 0), in order for We to create an oppositely di-
rected and equally large Ekman transport. The cross-
shore component for the total solution is small, because
the profile of We roughly mirrors the profile of WEW

inside the Ekman layer. The geostrophically balanced
solution over the boundary layer must be directed
along the negative y axis.

Now the bottom is allowed to slope linearly with
H0 � 150 m and H1 � 50 m, keeping the other param-
eter values used in Fig. 9, which yields � � 10�3. The
mean forcing components Fpq in (4.5) depend only on
the local water depth D, not the bottom slope Da, and
therefore have profiles that correspond to those ob-
tained in case of a constant depth with H0 � D. The
terms marked with “�” in (4.5) depend on Da. The
ratio between the latter and former terms is of the or-
der of


F�pq

Fpq


dC1

da


d2C1

da2

�1

�
D

1
. �6.2	

When the smallest vertical length scale associated with
the primary wave field is of �1 � O(10 m), this ratio
becomes of the order of 10. From this one could expect
the solution to become qualitatively and quantitatively
different from that obtained in the constant-depth case.
However, from Fig. 11, we see that many of the quali-
tative features of the constant-depth case are pre-
served, with an alongshore current directed along the
negative y axis, and a counterclockwise recirculation
cell. The velocity magnitude is also preserved (�0.1
mm s�1). However, when the shore is approached in
case of constant depth, the speed decreases linearly (it

3 Ekman veering is the rotation of the velocity in an Ekman
spiral as one moves through the Ekman layer. When moving up-
ward, the rotation is clockwise in the bottom Ekman layer (North-
ern Hemisphere).

FIG. 10. The maximum magnitude of the horizontal mass trans-
port velocity over a water column, Um � || 2u(2)||� (solid line) and
Vm � || 2�(2)||� (dashed line), is plotted against a for the case of
L � �. The parameters are as in Fig. 9.
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is proportional to sin[2k0(a � L)] � 2k0(a � L) when
�2 K H0 and a � L K k0

�1). Now the speed possesses
a local maximum (its presence is evident from Fig. 11).
As we recall, even in the case of waves with a period of
5 min, one did not uncover any drastic change when
introducing a sloping bottom (Figs. 3 and 4). Further
analysis of the forcing terms associated with a sloping
bottom reveals that when the wave boundary layer is
thin, the net sum of these forcing terms becomes van-
ishingly small. In this case, the functions in (3.7) take
the following form:

cosh
mj�c � H0	�

cosh�mjD	
�

e�mj�c�H0�D	
1 � O�e�2H0�j	�

1 � O�e�2H1�j	

≅ e�mj�c�H0�D	. �6.3	

For instance, if c � �2 � H0/10 and H1 � 2/3H0, the
error of the approximation for j � 2 is of the order of
exp(–40/3) � 10�6. The error of the approximation for
j � 1 is always equal or smaller. Then, to a vanishingly
small order, one has

�Wj

�a
�

�Wj

�c

dD

da
and, �6.4	

F�12 � �0�2
�x1

�c

�2W2

�2c
�

�2x1

�c2

�W2

�c
� 2

�x2

�a

�2W1

�c2

�
�2x2

�2c

�W1

�c � dD

da
� �F�21. �6.5	

The mean forcing function F consists of the same com-
ponents F12 and F21 as those obtained in the constant-
depth case. Because these components have the same
local profile as in the case of constant depth, the mass
transport velocity must also be similar to the constant-
depth velocity, given that the eigenfunctions for the two
cases do not behave too differently. When they do not,
it may be said that the solution is of a Longuet-Higgins
type, in the sense that the local mass transport profile
resembles his solution (modified by rotation). Here, the
eigenfunction is almost identical to that obtained in the

FIG. 11. As in Fig. 9, but now a linearly sloping bottom is considered. Here, H0 � 150 m and
H1 � 50 m. (a) The cross-shore and vertical mass transport velocity components. (b) The
normalized alongshore mass transport velocity component.
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constant-depth case, because L K k0
�1, ��1, and the

eigenfunctions cannot vary much in the domain (results
not shown). The result is almost identical mass trans-
port profiles (Fig. 12).

From Figs. 3–5 and Figs. 9–12, and from Eq. (6.5), it
is concluded that the arguments regarding the direction
of the velocity induced by either gravity waves or gy-
roscopic-gravity waves are also relevant for the case of
sloping bottom, given that the wave boundary layer is
sufficiently thin (as also assumed in the discussion). The
new terms in (4.5) that appear only in case of sloping
bottom may be important when the wave boundary
layer coincides with the whole water layer. When the
boundary layer thickness becomes thinner, the sum F�12

� F�21 decreases exponentially. When the boundary
layer thickness becomes thicker, the magnitude of the
terms decreases linearly in comparison with those that
appear in case of constant depth, according to (6.2).

When the bottom slope is not allowed to vary, the
local wavelength that determines the horizontal exten-
sion of the recirculation pattern is either constant (for
constant depth) or decreases uniformly (for linearly de-
creasing depth). In Figs. 9 and 11 we have seen that the
recirculation induced by the tide becomes semiclosed,
because its wavelength is sufficiently larger than L.
However, if the bottom slope varies sufficiently, its
length scale of variation can become important. As an
example of this effect, a trigonometric function is now

added to the linearly sloping bottom. The results are
shown in Fig. 13 (nonrotating case) and Fig. 14 (rotat-
ing case). The recirculation pattern in the nonrotating
system has a flow along the bottom surface that tends to
go up its slope, not unlike the recirculation pattern of
Kaneko and Honji (1979) for periodic flow over a wavy
wall. By comparing Figs. 13 and 14a, we see that the
upper recirculation cells in deeper waters disappear
when the effect of rotation is included, as is to be ex-
pected from the former discussion. The viscous recir-
culation cannot exist outside the wave boundary layer
and the Ekman layer (see also Figs. 3a,c). Important, as
we observed in the constant-depth case when the bot-
tom Ekman layer was embedded in the wave boundary
layer, the recirculation pattern is reversed relative to
that obtained when �2 K �E, and the cross-shore speed
is small relative to the alongshore speed. Although the
model is two-dimensional, Fig. 14b suggests that the
mean, along-isobath circulation around shallow areas
tends to be anticyclonic, consistent with results re-
ported earlier in literature [see Wright and Loder
(1985) and references within]. The small cross-shore
speed relative to the alongshore speed is also consistent
with the results of Wright and Loder (1985). However,
Fig. 14 also indicates that the velocity is significantly
modified by shoalness and the vicinity of a steep shore.

I have also experimented with high-frequency shal-
low-water waves over sloping/wavy bottom with shorter
bottom wavelengths, and found the same tendency—
the cross-shore current immediately over the bottom,
part of the lower circulation cell, tends to be directed
upslope. The two-cell structure with associated along-
shore velocity is similar to that found for the case of
constant depth, but with the bottom crests and troughs
acting as the nodes and antinodes in the constant-depth
case. The magnitudes of the alongshore and cross-shore
mass transport components are of the same order, just
as found in the constant-depth case.

7. Summary and concluding remarks

Despite the idealized model setting used in this in-
vestigation, I believe that the analysis is a contribution
to the understanding of mass transport velocity induced
by long, barotropic ocean waves as a phenomenon.
Such an understanding is important. On the one hand,
the tide has a great potential ability to transport bottom
sediments, because of its ubiquity and persistence. On
the other hand, the modeling of the wave-induced,
near-bottom mass transport in general ocean circula-
tion models is still at an early stage.

Some of the results presented here were anticipated.
For example, when one approaches the shore (i) the

FIG. 12. The normalized profiles of the horizontal mass trans-
port for a � L /2 � 50 km, obtained using the parameters as in the
former figure, are plotted together with the normalized profiles
obtained for constant depth D � H0 � 100 m. The vertical coor-
dinate is (c � B)/D. Here a � L /2. Case of a sloping bottom:
Cross-shore component (solid line), alongshore component
(dashed line). Case of constant depth: Cross-shore component
(dash-dotted line), alongshore component (dotted line).
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FIG. 13. As in Fig. 11, but now a trigonometric function is superimposed on the linearly
sloping bottom. The bottom coordinate is B � �a � 10 m{1 � cos[8�(a � L)/L]}, which yields
D � 150 m at a � 0 and D � 50 m at a � L as before. Here, the effect of the earth’s rotation
is excluded, i.e., f � 0. The eigenfunction for the primary surface elevation is found numeri-
cally, taking into account the effect of dissipation.

FIG. 14. As in Fig. 13, but now the effect of the earth’s rotation is taken into account. Here,
f � 1.2 � 10�4 s�1. (a) The cross-shore and vertical mass transport velocity components. (b)
The normalized alongshore mass transport velocity component.
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mass transport velocity magnitude tends to increase to
a maximum near the shore, (ii) the horizontal extent of
the recirculation cells becomes smaller, and (iii) the
Coriolis effect becomes less pronounced.

Other results are uncovered only after calculations
and an in-depth analysis of the governing equations for
the mass transport velocity. The mass transport velocity
depends heavily on the different vertical length scales
involved. For sufficiently large depths, it can be divided
into two categories—that induced by frequencies com-
parable to the inertial frequency, and that induced by
waves of much higher frequency.

In the first case, the Ekman layer is significantly
thicker than the wave boundary layer. Then, the effect
of the earth’s rotation on the primary wave field is
small. There is a lower, cross-shore recirculation cell
such that the cross-shore mass transport velocity imme-
diately over the bottom is directed toward the node (or
the bottom crest in case of wavy bottom) (Figs. 3a and
13). Over this recirculation cell, there is an upper, op-
positely directed recirculation cell. The alongshore
mass transport velocity is directed into the paper plane
when the node (or bottom crest) is to the left and an-
tinode (or bottom through) is to the right, and it is
oppositely directed when the node (or bottom crest) is
to the right and the antinode (or bottom through) is to
the left (Fig. 3b).

In the opposite case, the wave boundary layer is sig-
nificantly thicker than the Ekman layer, and the effect
of rotation on the primary wave field is significant. As
compared with what was found for the case of a thin
boundary layer, the upper recirculation cell is absent,
and both the alongshore mass transport velocity and
the near-bottom recirculation cell shift direction (Figs.
9 and 14). Important, it was also found that the cross-
shore component of the mass transport velocity is neg-
ligible in comparison with the alongshore component
(Fig. 10). For this case, the mass transport velocity is
directed primarily along the isobaths.

The two main categories exist because the way mo-
mentum is transferred from the primary wave field to
the mean, secondary wave field depends on the thick-
ness of the wave boundary layer, not the thickness of
the bottom Ekman layer. In contrast, the time-averaged,
second-order response to this transfer depends directly
on the Ekman layer thickness (and/or depth, depending
on the Ekman number), and only indirectly on the
thickness of the wave boundary layer, through the forc-
ing from the primary wave field.
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APPENDIX

Nondimensional Formulation

Consider the cross-shore displacement x � a � �x(a,
c, t) and the vertical displacement z � a � �z(a, c, t).
Nondimensional variables x̂ � kx, �x̂ � k�x, â � ka,
ŷ � ky, b̂ � kb, ẑ � z/H0, �ẑ � �z/H0, t̂ � �t, and c �
c/H0 are introduced. Here, k is a typical inverse length
scale (e.g., wavenumber) and � is a typical inverse time
scale (e.g., wave frequency); H0 is a typical depth.
Wedged symbols without the delta in front are assumed
to be of the order of 1. The cross-shore displacement
must be small relative to the horizontal length scale,
typically the wavelength, and the vertical displacement
must be small relative to the depth, that is, |�x̂| , |�ẑ| K

1. Let the small-amplitude surface elevation be � � �0�̂,
where �0 K H0. One has ẑ � 1 � �0/H0�̂ at the surface,
that is, �ẑ � �̂, where  � �0/H0 K 1. The pressure
term in (2.1) is of order �gJ(�, z) � gkH0[1 � O()].
If it is assumed that the acceleration term has the same
order of magnitude, it is found that velocity can be
written as W � ��1gkH0Ŵ. Casting the incompress-
ibility condition (2.2) into nondimensional form yields

1 � xazc � xcza � x̂âẑĉ � x̂ĉẑâ

� 1 � �x̂â � �ẑĉ � �x̂â�ẑĉ � �x̂ĉ�ẑâ. �A.1	

Hence, �x̂â � ��ẑĉ to leading order, that is, �x̂ �
O(). The equation of motion (2.1) can then be written
on nondimensional form as

Ŵt̂ � i
f

�
Ŵ � ��̂â � �̂â�ẑĉ � �̂ĉ�ẑâ �

f

�
EKŴĉĉ

�
f

�
EK
2�x̂ä̂Ŵĉĉ � �x̂ä̂ĉŴĉĉ � 2�x̂ĉŴä̂ĉ

� �x̂ĉĉŴä̂ � O��2	� �A.2	

where EK is the Ekman number: EK � �0H0
�2f �1. As

stated by Pierson (1962) and Ünlüata and Mei (1970),
the equation to leading order is formally equal to that
obtained by neglecting nonlinear terms in the equation
of motion in Eulerian coordinates. Following Pierson,
one writes
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��x̂, �ŷ, �ẑ� � ��x̂�1	, ŷ�1	, ẑ�1	� � �2�x̂�2	, ŷ�2	, ẑ�2	� � · · ·

�̂ � �̂ �1	 � ��̂ �2	 � · · ·

Ŵ � Ŵ�1	 � �Ŵ�2	 � · · ·
� . �A.3	

To leading order, the solution for the velocity is oscil-
latory. To next order it can be divided into an oscilla-
tory and a time-independent part. The latter part gives
raise to a secular term for the displacement, a compo-
nent that goes like x̂(2) � t̂. Therefore, each particle
cannot be followed over an unlimited amount of time.
Rather, one must have �x̂ � x̂(1) � 2x̂(2) � O(3) be
small,A1 that is, 2t̂ K 1, or t K �2��1 (see also
Longuet-Higgins 1953).
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