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This paper discusses a general theory of wave propagation through a random 
medium whose random inhomogeneities are confined to small deviations from the 
mean. The theory is initially worked out in detail for the propagation of trans- 
verse waves along an infinite stretched string whose density is a random function 
of position. The manner in which the mean wave profile is modified by scattering 
from the density inhomogeneities is discussed in great detail, with particular 
emphasis on physical interpretation. The general theory of wave propagation in 
arbitrary dispersive or non-dispersive media is then discussed, and it is shown how 
the theory may be extended to wave propagation problems involving scattering 
from rough boundaries. 

1. Introduction 
The study of wave propagation through media with inhomogeneous random 

properties is of increasing technological importance, as well as being richly 
endowed with notions of a fundamental and academic nature. Such problems 
arise quite naturally in radiophysics, for example, where atmospheric turbulence 
can manifest itself as atmospheric ‘noise ’, causing fluctuations in the parameters 
of wave propagation through the atmosphere; in other cases the atmospheric 
turbulence behaves like a source of inhomogeneities which produce scattering. 
Reviews of some of the recent work in these fields are to be found in the books of 
Tatarski (1961) and Chernov (1960). The effect of atmospheric turbulence on 
‘sonic bangs’ is perhaps a more topical and, in view of the imminence of large 
supersonic transports, a somewhat more pressing problem. These latter effects 
were first considered in detail by Lighthill (1953) as an example of the Born 
approximation in scattering theory. The same method has recently been applied 
to sonic boom N-waves by Crow (1969). 

It is becoming increasingly clear, however, that there is a general need for a 
reappraisal of many of the equations of mathematical physics. Inhomogeneity is 
a characteristic property of every real medium, and problems where these inhomo- 
geneities are assumed to be known with any degree of precision are tending to  be 
recognized as the exceptions rather than the rule. It must therefore be accepted 
that in reality one deals with stochastic equations of motion whose solutions will 
in general depend on the statistical properties of the medium and of the boundary 
conditions. 

In  the case of wave propagation problems, it is customary to speak of the signal 
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present at  any point in the random medium as consisting of the coherent field, 
i.e. the mean field, this being an ensemble average over all probabilistically 
possible media, together with a fluctuating or random component. Physically 
one expects the statistics of the fluctuations of the wave field to be linked inti- 
mately with those defining the random medium. Since the precise form of the 
medium in any particular experiment is only known in probability, the problem 
of determining the precise solution for waves propagating through that medium 
has no meaning. Indeed, such a solution would be quite useless without some 
knowledge of its realization probability ! 

A notable advance in the method of treatment of these problems was made by 
Keller (1964) and Karal & Keller (1964). They give a concise, if somewhat cumber- 
some, derivation of the equations governing the coherent component of the wave 
field. However, their treatment tends to obscure the physics of the various 
approximations involved. A fuller discussion is needed, which includes all aspects 
of the mean and random components of the wave field, together with a rigorous 
consideration of the approximations and their physical interpretation. 

The present paper presents a coherent theory applicable to wave propagation 
problems in which the random deviations of the medium from the mean are small. 
The theory is initially worked out in detail for the simple case of transverse 
waves propagating along an infinite stretched string whose density is a random 
function of position. The object is to illustrate the methods and implications of 
the more general theory applicable to arbitrary media, in an arbitrary number of 
dimensions, which is discussed later. The motivation of the present work lies in a 
desire to give a consistent treatment of the sonic bang problem mentioned above. 
This work, undertaken in collaboration with Professor J. E. Ffowcs-Williams, has 
now been completed and will appear in a future publication. 

2. Transverse waves on a random string 
Consider the problem of the propagation of transverse waves of amplitude 9, 

say, along a stretched string of randomly variable mass density. More precisely 
let us consider a string of mean mass per unit length po, and let p' be a random 
function of position x on the string which represents the fluctuations of the actual 
density about the mean. By a random string we understand a family of strings 
each with a well-defined value of p ' (x )  a t  each x ,  and each with a well-defined 
probability of being realized in an experiment. 

Since the precise form of the density at any point is only known in probability, 
there is no point in trying to calculate the progress of a wave along the string 
exactly. It is more realistic to inquire into what happens to such a wave on an 
average. A sensible procedure, therefore, would appear to involve a separation of 
the wave field into two distinct parts: $(x ,  t ) ,  the mean wave profile at  a given time 
t ,  say, after the initial generation of the wave; and $'(x,  t ) ,  the fluctuations of the 
field about $. In  other words, we imagine a sequence of identical experiments 
performed on each member of the family of strings comprising the random string. 
Each experiment involves the generation of a given initial wave; at time t after 
the start of each experiment, the wave profile is measured, and the average form 
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$ ( x , t )  taken over all the experiments. The field $ ( x , t )  is thus an ensemble 
average over all probabilistically possible strings, and &(x, t )  represents the 
deviation of the exact field from $(x ,  t )  in any particular experimental realization. 

(2.1) 

where it will generally happen that q5’ < $, but this is in no way a necessary 
prerequisite for the validity of the present theory. Let us now obtain equations 
governing the evolution of $ and $‘. 

The exact linearized equation for transverse vibrations of a stretched string 
has the well-known, simple form, 

- 

Thus, 
4 ( x ,  t )  = $(It, t )  + f ( X ,  t ) ,  

The ‘wave speed’ c is a function of the tension T of the string, and the density 
p of the form 

When p = po + p’, it  is meaningful to speak of a mean square wave speed a2, say, 

c2 = T/p. 12.3) 

(2.4) a2 = CZ = (T/ (po+p’ ) ) ,  

where the overbar denotes the ensemble average discussed above, and then to 
define the random function t ( x ) ,  say, by 

m 
a2(1 + c )  = 1 

PofP”  
This means that 6%) = 0. 

Then equation (2.’2) beoomes 

Take the ensemble average of this to obtain 

(2.6) 

(2.7) 

__ 
since &?$/ax2 = %. a2$/ax2 = 0 .  Equation (2.7) is exact and shows that, since both 

and 4‘ may generally be regarded as first-order quantities, changes in the mean 
field are generally expected to be of the second order in these quantities. This 
was only to be expected, since second-order quantities are the first to exhibit 
non-vanishing mean values. 

To obtain the equation for 4’ we subtract (2.7) from the full equation (2.6): 

This equation describes the continuous generation and modification of the random 
field 4‘ by means of the following interactions: (i) between the density fluctuation 
( (2)  and the mean field $(x, t )  (this creates new $’(x,  t ) ) ;  (ii) between the density 
fluctuation 612) and those component waves of f ( x ,  t )  which are not correlated 
with c ( x ) .  

49-2 
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Equations (2.7) and (2.8) constitute an exact pair of coupled equations govern- 
ing the evolution of the mean field $ and the random fluctuations $’. Given an 
initial wave form, and assuming that initially there is no random field, those 
equations are to be solved as an initial value problem. Before considering such an 
analysis, however, it  is of interest to interpret the right-hand members of both 
equations in somewhat greater detail. 

The first equation, (2.7), describes the modification of the mean field $ re- 
sulting from interactions between correlated components of k(x) and $’@, t ) .  
In other words, only those component waves of $‘(x,t) arriving at  the point x 
which are strongly correlated with [(x) will contribute to this interaction. 
Equation (2.8) shows that such a mean interaction product does exist. The 
interaction (i) generates components of the random field $‘ by direct ‘collision’ 
between the mean field and the density fluctuation represented by (. Hence, 
the main contribution to the mean interaction product on the right of (2.7) will 
be from those wave components of $‘(x, t )  which were initially scattered out of 
the mean field at  points lying within a distance A ,  say, from the point x ,  where 
A is the correlation length for the density fluctuations [(x).  In  this sense, the 
gradual modification of the mean wave profile may be described as a local effect. 

Actually, it is more instructive to think of the interactions as being between 
density fluctuations [(x) lying at different points. The modification of the mean 
field is due entirely to the presence of inhomogeneous fluctuations [ in the density 
of the string. When such fluctuations lie within a correlation length of one another 
they interact in a concertive manner to produce a change in the mean field, The 
interaction is represented by the passage of a secondary wave $‘ between the 
two components of inhomogeneity. Higher-ordor ‘ collisions ’ between density 
fluctuations [ involve the passage of a secondary wave from [(x~), say, to [(x,), 
the generation of a tertiary wave at x,, and its subsequent transmission to 
<(x3). Such multiple scattering effects appear in the interaction term of (2.7) when 
the interactions (ii) are taken into account. However, because (ii) essentially 
represents interactions between non-correlated density fluctuations [(x), it may 
be interpreted as representing interactions between density fluctuations whose 
distance apart exceeds a correlation length A ,  SO that their ultimate effect on the 
mean interaction product of (2.7) might be expected to be small. 

An analogy may perhaps be drawn with Boltzmann’s equation in kinetic 
theory (Chapman & Cowling 1939). Neglect of (ii) is equivalent to adopting the 
binary collision approximation to that equation. 

3. Analysis of the stretched string equations 

stretched string is governed by the pair of equations 
We have seen that the evolution of an initially well-defined wave form on the 
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The scattered field $' is determined as soon as ,$(x) and $(x,t)  are specified. 
Formally, we may suppose these to be known, then the second of equations (3.1) 
may be solved to any degree of accuracy by the method of successive approxi- 
mations. 

The approximation scheme would generate a sequence of solutions $;by means 
of the system of equations: 

Having determined $' in terms of 6 and $, the solution may be substituted into 
the mean wave equation to give an equation for 7 alone. 

We shall illustrate this procedure by taking the ' binary collision ' approxima- 
tion, i.e. the approximation $' = &. Now the particular integral of the equation, 

(3.3) 

( -  co < x < co, -co < t < a), which satisfies the radiation condition is well 
known to have the simple form, 

where H ( x )  is the Heaviside unit function. The required particular integral of the 
second of equations (3.2) is now given by the convolution product of G and 
aZg(x) P$(x, t)/az2; viz. 

In  other words, 
4; = a2G*tp$/az2. 

co az? 
--m 0 ax; 4; = a 2 / j  G(z  - xo, t - to),$(x ) - (x,,, t,,)dx,dt,,. (3.5) 

This result becomes useful as soon as the form for 7 is known, for then one can 
determine the statistics of $1 in terms of those of [(x). For example, by squaring 
(3.5) and taking the ensemble average, an expression for 

To determine $ under the present approximation, we now substitute for q5' in 
the first of equations (3.1) from (3.5). This gives 

___ 
is obtained. 

At this stage, to proceed further we require a knowledge of the statistical proper- 
ties of E(x). We shall assume for simplicity of exposition that ,$(.) is a stationary 
random function of z, in consequence of which the correlation product c(x),$(xo) 
is an even function of 5 - zo alone. Let us define, in fact, 

(3.7) R(z - xll) = $(4,$(%), 
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with R(0) = f12 = constant; then (3.6) may be expressed in the form, 

But (3.9) 

where S(y) is the Dirac &function, SO that the final form of the eqna,tioii for 3 is 

or, since R(0) = p, 

This is the required integro-differential equation for the mean field 3. 

4. Simplified forms of the mean field equation. The dispersion relation 
To discuss the implications of (3 .10 ) )  let us first consider the case in which the 

correlation length A of the density fluctuations is small compared to a typical 
wavelength of $. Mathematically, this means that the operators, 

a h a  
A- and -- 

ax u at' 

are small when applied to 3. Now, if we introduce a new variable of integration 
into (3.10) by 

we shall obtain 
2 = VIA,  

R(z) is a function of the dimensionless variable z alone, and in terms of this 
variable the correlation length is equal to unity. Hence, if a3$/atax2(x-hx, 
t -hlzl/a) is expanded in a Taylor series about ( x ,  t ) ,  the integration in (4 .2)  may 
then be performed, and the result will be a power series expansion in terms of the 
operators (4 .1 ) .  If only the first-order terms in such an expansion are retained, 
then, since R(z) is an even function of z, we obtain 

where 

(4.3) 

are both independent of A. 
Equation (4.3) illustrates several important points of theory. The first is that 

the wave speed of the mean wave, viz. a( 1 - F)& is less than the wave speed in a 
uniform string; and, secondly, that the terms on the right of (4 .3 )  vanish when 
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the random fluctuations on the string have zero correlation length. Now, i t  is 
precisely these terms which are responsible for the change in form of the mean 
wave profile due to scattering. A vanishing correlation length really means that 
on an average the effects of scattering of the mean field by different elements 6 
cancel each other. 

A detailed analysis of the terms on the right of (4.3) reveals that the first term 
behaves as a sink of mean field energy, which is fed into the random field q5‘. The 
remaining term, however, merely serves to disperse the harmonic components of 
the mean wave field without loss of energy. Further, the coefficients b, and b, can 
in principle vanish independently, even when h $: 0. Hence, we see that the size 
of the integral scale of the density fluctuations, bo, determines the degree of 
‘scrambling’ of the mean field due to differential energy losses of its harmonic 
components to the random field, whereas the first integral moment, b,, 
determines the degree of scrambling due to the dispersion of these harmonic 
components. 

In  order to be able to make rather more precise statements about the propaga- 
tion of the mean field we shall assume that the correlation function R has a 
Gaussian form : 

It is now readily shown that 

R(q) = kexp ( - q2/h2). (4.4) 

(4.5) 

but we shall not dwell on this approach. Indeed, it is more instructive to determine 
the dispersion relation of (3.10) governing the propagation of elementary wave 
packets. Having done this, further approximate forms of the mean wave equation 
are easily obtained. 

First, however, let us define the Fourier transform F ( k , o )  of a function 
F(s ,  t )  by means of the reciprocal relations 

Next, take the Fourier transform of (3.10) and then divide through by $(k, w ) :  

Hence, when R(7) has the Gaussian form (4.4), we obtain for the general binary 
collision dispersion relation 

.2( 1 -2, k2 - w2 = ‘ 3 o k 2  4 
(2[ (a’ + k)] + [ (: - k ) ] ]  , (4.8) 

where Z(5) is the so-called plasma dispersion function, which has been discussed 
and extensively tabulated by Fried & Conte (1961). It is defined by 
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Alternatively, we have the power series expansion, 

(4.10) 

(4.1 1) 

where IT = 0, 1 ,  2 according as Im(g) is greater than, equal to, or less than zero, 
respectively. 

These expansions may be used to obtain limiting forms for (4.8) when the 
wavelength becomes large or small compared with the correlation length A. 
First let us consider the long wavelength limit. 

(i) The long wavelength limit 
This means that we are considering the case 

hk < 1, hula < 1. (4.12) 

Hence, the arguments of the dispersion functions in (4.8) are both small, and we 
may therefore use the power series (4.10) to obtain the long wave approximation, 

(4.13) 

But this is simply the dispersion relation of the long wavelength approximation 
to the mean field equation, (4.3)’ already derived. It may be used to derive the 
frequency correction due to the presence of the random inhomogeneities. The 
unperturbed frequency wo is given by 

wo = &ah, (4.14) 

The first correction is O@), and is obtained by substituting w = 5 ak in the right- 
hand side of (4.13). The solution of the resulting quadratic in w may then be 
expanded in a power series in p t o  yield the first correction, viz. 

(4.15) 

This result illustrates the reduction in the wave speed and the dispersive effect of 
a finite correlation length due to the presence of inhomogeneities. The negative 
complex part of w represents the damping of the mean field (cf. the definition 
(4.6)), i.e. the generation of random waves a t  the expense of mean field energy. 

The long wavelength limit considered above is likely to be of some practical 
interest. For completeness of illustration, however, we sha,ll now consider the 
perhaps less important short wavelength limit. 

(ii) Short wavelength limit 

hk S 1,  Awla B 1. (4.16) 
This case requires 

Carrying through the procedure which led to (4.15) we obtain (using the asymp- 
totic expansion (4.11)) the following correction to the frequency: 

(4 .17)  
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We may extend this result somewhat by recognizing that, correct to terms of 
O@), these frequencies are the roots of the dispersion equation, 

iJ7r - 
w2 + - ah&ok2 - 

4 
(4.18) 

which leads to the following short wavelength approximation to the mean field 
equation: 

(4.19) 

Thus, we have seen that in the case of long and short waves limiting forms of 
the dispersion equation (4.8) may be obtained. These enable us to formulate 
approximate equations governing the mean field in their respective limits. 
Further, they illustrate the damping of the mean field due to scattering by 
inhomogeneities, the damping rate for long waves being precisely twice that for 
short waves. 

Physically, we anticipate a gradual transition between these two extremes, and 
that in all the intermediate cases the roots of the dispersion equation (4.8) will 
have negative imaginary parts. To show that this is indeed the case, we shall 
conclude this discussion of the stretched string by proving that all the roots of the 
more general dispersion relation (4.7) must lie in the lower half of the complex 
w-plane. 

To do this, consider, for each fixed real wave-number k, the analytic function of 
w defined by 

The eigenfrequencies of the dispersion relation (4.7) are given by the roots of 

x(w) = 0. (4.21) 

The function z(w) is regular in the upper complex w-plane, and, for large w, is 

(4.22) 
given by 

When w is real, remembering that R(r) is an even function of 7, it follows that 

Z ( W )  = w ~ - c x ~ ~ ~ + O ( ~ / ~ ) .  

nawk2( @ (; - - k  ) + @  (; -+k 1) , 
Im(z) = __ 

2 (4.23) 

where (D is the Fourier transform of the correlation function R(r) ,  and is therefore 
non-negative. Hence, Im(z) is an odd function of real w. Also, for real w ,  

Re(z) = w2-a2k2(1  -p) -a2wk2/omR(y) coskysin ( q / a ) d r  (4.24) 

is an euen function of w. 
Now, consider a closed contour in the complex w-plane (figure l) ,  consisting of 

the real interval ( - L, L)  and the semicircle C of radius L in the upper half-plane. 
Since x(w) is regular in the upper half plane, it also has no zeros there if, for arbi- 
trary large L, arg x(w) returns to its initial value when w moves once around the 
contour (Titchmarsh 1960, p. 116). 
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To prove that argz is single-valued on the contour, we construct the image 
contour in the complex z-plane. (The ‘Nyquist diagram’, figure 2.) 

(a)  Provided L is sufficiently large the semicircle C is mapped onto a circle 
a in the z-plane, traversed once in the anti-clockwise sense as w ,  moves from 
+ L to  - L along C. 

(b )  The interval 0 < w < L is mapped onto a curve b above the real axis, 
since (4.23) is positive, traversed in the direction indicated in figure 2 .  

FIGURE 1. The contour described by w in the complex w-plane. 

z-plane t 

FIGURE 2. The image contour in the complex z-plane. 
(The ‘Nyquist diagram’.) 
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(c) The interval - L < w < 0 is mapped below the real axis onto c.  
(d )  The point w = 0 is mapped onto the negative real axis. 
It now follows that the image contour does not enclose the origin 0 of the z- 

plane, so that arg z is single-valued on the contour. This completes the proof. 

5. Wave propagation in an arbitrary random dispersive or non- 
dispersive medium 

We now consider the general theory of wave propagation through a medium 
whose random inhomogeneities are confined to small deviations from the mean. 
Let L be a linear wave operator such that, in the absence of inhomogeneities, the 
waves q5 satisfy the equation, 

When random inhomogeneities are present in the medium, let equation (5.1) take 
the modified form, 

(5-1) Lq5 = 0. 

Lq5 = G'4, (5.2) 

where G' is a random linear operator. 
Normal methods of treating the scattering problem defined by (5.2) involve a 

decomposition of the wave field into an incident field together with a scattered 
q5s. In  practice, one has then to make an assumption regarding the relative 
magnitudes of these fields, which, under favourable circumstances, enables one 
to adopt the Born approximation. Here the scattered field is given by the parti- 
cular integral of the equation, 

This is the approximation used by Lighthill (1953) in his treatment of the 
scattering of sound by turbulence, and more recently by Crow (1969), who 
considered the problem of sonic boom 'spikes'. Having determined &from (5.3) 
one can then go on to compute the rate of decay of the incident field, due to the 
scattering. 

The validity of the Born approximation, when the scattering takes place over 
a large region of space, may be criticized for a t  least two reasons. The first is that, 
in using it to calculate the rate of decay of the incident wave, we are in fact trying 
to calculate the decay rate of the coherent part of the wave field. However, because 
of the random 'buffeting' experienced during its passage through the medium, 
it is not normally valid to assume that this wave propagates at the velocity it 
would have if it were moving in the homogeneous, non-random medium (cf. 
(4.15), (4.17)). Secondly, and more significantly, the assumption that all the 
energy scattered out of the coherent field according to (5.3) constitutes a loss of 
coherent field energy is a poor approximation to the actual state of affairs. 

To discuss these points in rather more detail, we adopt the notation of 5 2, which 
represents the wave field in the random medium by 

Lq5s = G ' h -  (5.3) 

# =?+$', (5.4) 

where 7 denotes the mean, or coherent, component of the field, in the sense of an 
ensemble average. Then 4' represents the fluctuations of the actual field about 
this mean in any particular realization. 



7 8 0  M .  8. Howe 

To obtain the equation governing the evolution of the mean field, as in 5 2 ,  
we take the ensemble average (denoted by an over-bar) of ( 5 . 2 ) .  Note, however, 
that 

G = a + G ' ,  with = 0. 

Hence, = F$ + w, and the equation for the mean field becomes 

9$ = ?qL?, ( 5 . 5 )  

where 2 = L-a. (5 .6 )  

Next, the equation for I$' is obtained by subtracting ( 5 . 5 )  from the full equation 
( 5 . 2 ) :  

( 5 . 7 )  

Tlie second term on the right-hand side of (5.7) may be written in the compact 

{G' - G"> #', form, 

where the operator is now defined by 

F.4' = G T .  

Now, assume that it is permissible to solve ( 5 . 7 )  by iteration, the first approxi- 
mation to the scattered field being given by 

$1 = , p V y $ ,  15.8) 

where 2-l is the Green's function operator inverse to 64. Compare this with 
( 3 . 5 ) ,  where 2-l is the retarded potential integral. Then, formally, we have 

~' = 2-1G'q + {g-lG' - y-la} y-lG'$ + {P-lG' - 9-G'}2 9-lQ'$ + . . . 

(5.9) 

This represents a multiple scattering solution for $'. 
To interpret this in more detail, in the manner of 3 2,  consider the random wave 

scattered from the point P in figure 3. In  that figure wavy directed lines repre- 
sent scattered random wave packets of zero mean, whereas full directed lines 
represent wave packet components of the mean field. 

The zeroth-order term on the right of (5.9), viz. 64-lG'$, represents the con- 
tribution to the random field scattered at  points P directly out of the mean field, 
which is represented by the full line entering the vertex at  P. Such scattering 
occurs at all points of the random medium. That random wave which is scattered 
from the point Q, say, may be supposed to experience second scattering at P, 
as illustrated. This is represented by the binary collision term on the right of 
(5.9) corresponding to n = 1, viz. 

(9 - lGf  - z-1G7} Z-lGf$ {9-1G'g-l@ -z-1G'2-1Gg} 6, (5.10) 

which clearly has zero mean. Now 2-1G'64-1G' involves the random operator 
G twice, evaluated at the different points P and Q, and so is dependent on the 
correlation function of the fluctuations in the random medium. Thus, the binary 
collision expression (5.10) may be interpreted as the difference between the 
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total second scattered field from P and the second scattered field of those waves 
which were initially scattered directly out of the mean field at points lying within 
a correlation length A, say, of P. Hence, in effect, the second scattering term 
(5.10) would tend to involve points Q,  whose distance from P exceeds this 
correlation length, and may in certain circumstances be regarded as a weak 
interaction. Similar arguments may be applied to discuss the higher-order random 
collision terms in (5.9), the total random scattered field from P being obtained 
by summation over all these contributions. 

-\, 
\ 

I 

A / 

FIGURE 3. Binary interactions. Wavy lines represent random scattered wave packets of 
zero mean; full lines represent wave-packet components of the coherent fieId. 

Evidently, the random wave packet scattered from P will eventually be re- 
scattered at  a point R, say. Such a collision will produce a scattered random field 
represented by the wavy line leaving the vertex R in figure 3, and is obtained 
from (5.9) by an application of the operator {2-1G'-2--1Fj,  together with a 
mean field component. The latter represents the energy scattered back into the 
coherent wave field, and will be significant, provided that the fluctuations of 
medium at P and R are well correlated. In  other words, provided that the dis- 
tance between P and R is less than the correlation length A. It is apparent, there- 
fore, that modification of the mean field is an essentially ZocaZ phenomenon. The 
effect a t  R is dependent only upon interactions with points P which lie within a 
correlation sphere centred on R. 

Finally, the equation which describes this modification of the coherent field is 
obtained by formal substitution of (5.9) into the mean field equation ( 5 . 5 ) :  

m 

n=O 
2 3  = @ c { ~ - ~ G ~ - ~ - I @ } ~ ~ - I G ' $ .  (5.11) 

This equation is to be solved subject to boundary conditions which specify the 
initial form of the coherent wave $. The solution is then substituted into (5.9), 
from which the statistical properties of the random field may be computed. In  
practice, however, (5.11) is too complicated to be treated in its full generality. In  
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the case of the stretched string equation considered above, only the zeroth-order 
term on the right, G'9-1G'$, was retained to give the binary collision approxima- 
tion (3.6). 

Detailed properties of the mean wave field may be derived from (5.11) by taking 
Fourier transforms (cf. $4). This leads to the dispersion relation governing the 
propagation of elementary wave packets. When the operator 2' is wave bearing 
without dissipation, the effect of scattering by inhomogeneities will manifest 
itself by the appearance of a negative imaginary part in the frequency w (using 
the definition (4.6)). Damping which is already present in the operator 2 will 
otherwise be enhanced. For example, sound waves propagating through turbu- 
lence will tend to lose energy not only because of the effects of ordinary viscous 
dissipation, but also because of the appearance of an eddy viscosity term in the 
mean wave equation. 

6. The effect of rough boundaries 
It is convenient to conclude this discussion of wave propagation in random 

media by illustrating how the above theory may be extended to cover the case in 
which the random fluctuations occur in the boundary conditions, Surface waves 
propagating over a stretch of water with a rough, or 'pebbly', bottom afford an 
interesting application of the theory. The presence of the pebbly bottom serves 
to scatter energy out of the mean wave field, and therefore, from a macroscopic 
viewpoint, tends to behave as a damping agent. This type of 'cascade' damping 
might be an importank feature in the problem of the tidal bore (Lighthill 1957), 
where it has long been recognized that there is a need for a damping mechanism 
additional to turbulent dissipation. 

Let us consider the case in which the propagation of disturbances is governed 
by a non-random equation of the form, 

.2# = 0, (6.1) 

in a region D, say. This means that both the mean field $ and the random fluctua- 
tions 4' satisfy the same propagation equation. However, 9' is generated by the 
interaction between the mean field and the rough boundary. Let us suppose that 
this coupling is described by a boundary condition of the form, 

9q5 = 0 )  ( 6 . 2 )  

on part of the boundary, aD say, of D. In (6.2) 9 is a random linear operator. For 
example, in the water wave case mentioned above, if the bottom be represented by 

2 = 6(x,y), (6.3) 

where {(x, y )  is a random function of its arguments, and if # denotes the velocity 
potential, then the boundary condition (6.2) would have the form: 

on the bottom. 

(6.4) 
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First, take the ensemble average of (6.2): 

Subtract this from (6.2) to obtain, 

The method of solution is as follows. Assume that $ is known. Then determine $' 
by the method of successive approximations by means of the approximating 
sequence 4; satisfying 

Yqj; = 0 in D, 
and 

on aD. 
Having determined $' to the desired degree of approximation, the solution is 

substituted into condition (6.5) to give the mean field boundary condition, in 
terms of 

(6.7) 
- I (6.8) 
9qj; = - 9'$ - [slqj;-, - @7&;-,1 
@qj; = -9'$, 

(n > l),  

alone, on a l l .  This may be used in conjunction with 

Y $ = 0  (6.9) 

to derive the properties of the mean field. 
In  the case of water waves, one also has to satisfy certain non-random boundary 

conditions on the free surface. By using these in conjunction with (6.5) and 
(6.9) one may derive the dispersion equation governing the propagation of mean 
field wave packets. This calculation is currently being undertaken and will appear 
in a future publication. 
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