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On the Influence of Viscosity on Waves and Currents. By S. S.
HOUGH, M.A., Isaac Newton Student in the University of
Cambridge. Received December 9th, 1896. Bead Decem-
ber 10th, 1896.

In the following paper my aim has been to present the solution of
certain problems illustrative of the effects of viscosity on the motions
of the sea. With this end in view, I have therefore had no hesitation
iji introducing1 such approximations as would be applicable in the
case presented by nature. The loss of generality resulting from
these approximations will be compensated for by corresponding
simplicity of the analysis, while the results are more readily in-
telligible, in that they admit of being expressed in a form which may
be at once converted into numbers.

The motions dealt with may be divided into the following classes :
(1) large-scale currents, of which the most familiar illustration is to
be found in the circulatory system of the North Atlantic Ocean;
(2) tidal oscillations, either of the nature of stationary vibrations or
consisting of progressive wave-motions with a wave-length large in
comparison with the depth; and (3) deep-sea waves, in which the
wave-length is very short compared with the depth. Each of these
motions, if once started and then left free from external maintaining
cause, would slowly subside under the influence of dissipative forces,
and my object has been to evaluate for the various types of motion
the modulus of decay, that is, the period in which the velocities in
the current motions and the amplitudes of vibration in the periodic
motions would be reduced in the ratio 1 : c, due to the combined
siction of internal viscosity and friction at the ocean bed. It might
be anticipated a priori, and it is established in the present paper, that
in the two former classes of motion the friction of the ocean bed is
by far the more important influence in destroying the motion, whereas
in the case of short waves at the surface of deep water the friction
of the ocean bed is of no moment in comparison with internal
viscosity.

To deal with bottom-friction, it has been necessary to introduce
some hypothesis as to the nature of the action between the water
and the solid bed with which it is in contact. The most probable
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hypothesis, and that which I have adopted, is that no slipping at all
is possible; but, if this be not the true law, the effects stated may at
least be regarded as the maximum results which could be produced
with the assigned degree of internal viscosity, and the moduli of
decay obtained may be treated as inferior limits to the moduli of
decay which would appear from a more general supposition as to the
action in question. As it is the large order of magnitude of these
moduli, rather than their actual numerical values, on which tho
physical application of the results turns, the practical value of these
results is therefore by no means diminished.

I hope to enter more fully into the physical bearings of the pro-
blems solved in a later paper; but it Avill not be out of place to make
the following remarks as illustrative of my purpose. The existence

•of ocean currents has been variously attributed to the tendency of
the winds in certain regions (e.g., the trade-wind regions) to set in
particular directions, and to differences of density arising from differ-
ences of temperature, salinity, <fec. The opponents of each theory
have urged that the energy derivable from these sources is totally
inadequate to generate the large motions known to exist in the ocean.
Were the ocean free from viscosity, however, and initially at rest, it
follows that currents arising from tho sources in question must
inevitably be set up, and, the causes being continuous in their action,
it only requires lapse of time for the motions to become sensible or

•even very large. The same will be true when there is a small
amount of viscosity ; but in the latter case a limit will ultimately be
attained when the rate at which currents are generated by the causes
in question is on the average equal to that at which they are
•destroyed by friction. After this state has been attained the motion
will remain steady, but we see that no estimate of the amounts of

• currents that could be set up can be obtained from considerations of
the amounts of energy involved in the sources apart from considera-
tions of the rate at which energy is dissipated by friction. Tho
extremely largo values we have obtained for the moduli of decay of
the current-motions imply that energy is dissipated very slowly, and
thus, though no doubt an extremely long time would be necessary for
the cui*rents, starting from rest, to acquire their present magnitude,
there appears no difficulty in supposing that the causes suggested are

• quite adequate to maintain these motions when once set up.
As regards the tidal oscillations it appears that in a system com-

parable with the actual Earth the moduli of decay of the principal
free oscillations will be very large compared with the periods of the
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disturbing forces due to the Sun and Moon. Hence it follows that
the tidal forces will produce their full dynamical effect, and that the-
conclusions derived from an equilibrium theory, except in so far as
they coincide with those dorived from a dynamical theory, are with-
out foundation. In the case of the long-period tides, which have
usually been supposed to follow the equilibrium law in consequence
of viscosity, it is known that the equilibrium theory and the
dynamical theory lead to different results,* and therefore it follow*
that an equilibrium theory must be at fault even for such tides aa
the solar semi-annual tide.

1. On the Hate of Decay of Current-Motions.

The equation of motion of a viscous liquid moving everywhere
parallel to the axis of x with velocity w, and subject to uniform
gravity parallel to the axis of s, is

dn (Pn ,. v
(it ()zl

where v is the kinematic coefficient of viscosity.

If we suppose n oc e"*', and put &" = a/V, this equation becomes

from which we determine u as a function of z in the form

ii = A cos Jcz -f- B sin kz,

where /I., B are functions of the time alone.
Expressing the time factor e""', we obtain as the general solution,

of (1) of the assumed typo

u = (A cos Jcz + Ii sin kz) e~at, (2)

where A, B are now arbitrary constants to be determined from the-
boundary-conditions.

Let z = 0, z = h be the equations to the ocean bed and to the free-
surface respectively.

At the former we suppose that no slipping is possible, so that
n = 0 when z = 0; this leads to

4 = 0. (3)

Lamb, Hydrodynamics, { 210.
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At the free surface the condition toJ be satisfied is that the tan-

gential stress must vanish; or that J^- — 0 when z — h. Therefore
OZ •

kBcoakh = 0. (4)

If h or B vanish, u will be everywhere zero, and no motion will be
involved. Hence the admissible values of k, which determine the
various types of free " laminar" motion of which the system is
capable, are the roots of the equation

cos kh = O\

the roots of this equation are of the form (2»+l ) ir/2h, where n is
integral, and therefore the appropriate values of o are found bv
giving n integral values in the formula

A particular solution of (1) satisfying the assigned boundary-
conditions is therefore

u — Be «»• sinv —^—, (5>

where B is an arbitrary constant.

To determine the motion resulting from assigned initial circum-
stances we may express the initial velocity u0 by means of a Fourier's..
series in the form

u0 = 2 An sm i—•£—'— . (6).-
n-0 Zfl

The subsequent motion will then be given by

u = 2 AHe «*• sin ^ ? — (7V
n .o 2/i

For example, if the velocity is initially constant and equal to «0).
the series (6) becomes

and the motion at time t is given by

T i e s i n
n-0 2?l + l 2/i

Of. Helmholtz, Werke, Vol. ra., p. 289.
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After a sufficiently long interval all the types of motion except that
'Corresponding to n = 0 may be supposed to have subsided, and the
ultimate state of motion will be expressed by

u = —* e w sin —.
7T 2k

The moduli of decay of the various types of free motion are

For water the value of v referred to C.Gr.S. units is about '0178,
and, if the depth be taken as 1 metre, we find that the modulus of
decay for that type of motion which subsides least rapidly is about
(53 hours.

For depths at all comparable with the depth of the ocean, the
moduli of decay will be extremely large. Thus, if we take the depth
as 4,000 metres, which is probably less than the true mean depth, we
find a modulus of decay for the type • n — 0 slightly exceeding
100,000 years, while, even for the type n = 100, the modulus will be
nearly 3 years.

2. Dynamical Equations for Wave-Motions in Two Dimensions.

The equations of motion of a viscous liquid oscillating in two
dimensions, under uniform gravity parallel to the axis of z, can be
expressed in the form

du d\j/
dt dx

dt~ dz ' r ( 8 )

du , dw _
dx dz'

where u, to denote the velocity-components parallel to the axes of
x, z respectively ; v is the kinematic coefficient of viscosity, and

tp = const. — gz—p/'p, (9)

:g denoting the acceleration due to gravity, p the pressure, and p the
"density.
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To obtain solutions of these equations, suppose that u, w, <//• are
each proportional to e

im(x"rt)] they then become

&

9^ n
7T- = 0 ;
oz

(10),

-whence, if we eliminate u, w, we obtain

The solution of (11) is

where A, B are functions of x and £.

Introducing this value of if/ into the right-hand members of (10),
we find at once the particular integrals

{Aem3-Be-""}.

To these must be added complementary functions which satisfy the-
equations

•(£-*)•-•*"

£,-*)a=o-
7T— = U,

where A;1 = w8—imV/v.

From the second of equations (13), we have

(14)

(15)
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and therefore, by means of the third,

l^De'ki. (16)
in

Combining these complementary functions with the particular
•integrals (12), and expressing the factor e

im^-n\ We obtain as the
. general solution of the equations of motion of the assumed type

V

w = f^r (Ae""-Bc~m:) + (Oekt + De'*')j eim("n\

(17)

where -4, B, G, D ave arbitrary constants, to be determined by the
boundary-conditions.

If F, H denote the components of traction parallel to the axes of
a;, z across any plane z = const., we have

x ox az' oz

and, therefore,

F/P = v f- ~(Ae"«-Be-Mt) + t'(fc> + m>) (Cfelx+De-*:)"| eiui<x'r'\(18)
L V m J

H/p =

the latter of which, on introducing the value of ^ from (17) becomes

H/p - const. + [ ( l + ~ ^ ) (Aen"+Be~"") + lev ((V-De'ki)l e
im{'~rtK

(19)

3. The Boiindary'Conditiom.

Let £ denote the height of the free surface above the plane z = h>
and suppose that <T is expressible in the form
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Then at the surface z — h we must satisfy the kinematical condition

which requires ^(Ae'"h-Be-mh) + Cekh + De"** = —imVa. (20)

Again the stress-conditions at this surface may be expressed by
•equating the stress across the plane z = h to a normal stress equal
to the weight of the harmoiiic inequalities. This requires F = 0,
II = —gp£, when z = h. The non-periodic constant on the right of
-(19) must vanish identically when z = h, and we find

2 -+• JUG ) — U, I

If z = 0 be the equation to the bottom, the conditions to be satisfied
at this surface will depend on the assumption we make as to the
nature of the action between the water and the ocean bed. If we
assume that no slipping is possible, we must have u = 0, w = 0 when
z — 0, and therefore

(22a)

If, on the other hand, we suppose that the bottom is perfectly
smooth, we require to = 0, F = 0 when s = 0; these conditions lead
to

(226)

The elimination of the constants A, B, 0, D, a from the equations
(20), (21), and (22a) or (226) will lead to an equation connecting V,
the velocity of wave-propagation, with 27r/?», the wave-length. The
character of the resulting motion will depend on the nature of the
roots of this equation. When v is absolutely zero, the roots will be
of the form

V —• V A*
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where Fo is a real quantity; in this case we have

or, retaining only the real part,

£ = a cos m,(x— Vot).

The motion will therefore consist of a train of simple harmonic
waves propagated with velocity Fo in direction parallel to the axis,
of x.

On the other hand, if F be purely imaginary, say

F = --i ,

where r is real, we have

£ = «e"" """""> =ae-"V"",

whence, discarding the imaginary part,

£ = ae~l'T cos ma;.

The surface will at any instant be of the form of a curve of sines,,
subsiding without displacement of the nodal lines until it ultimately
takes the equilibrium form £ = 0. This is the case which might be
expected to occur for very large values of v.

Lastly, if F is complex, it may be expressed in the form

Y i >
VIT

and we shall have
£ = ae~'/T cos m(x— Vxt).

The motion will then consist of a train of waves of length 2njm
propagated with velocity F,, the amplitude of vibration slowly
declining and being reduced in the ratio 1 : e in a period T. This is
the case which may bo expected to occur when the viscosity is very
small; further, we may anticipate that F, Avill differ but slightly from
Fo, its value when v = 0, and that r will be very large, when the
value of v is very small.

We have assumed that the values of r will be positive, which is a
necessary conseciuence of the stability of the equilibrium in the zero
configuration.

4. Approximate Solution when the Viscosity is Small.
We propose for the future to confine ourselves to the case where

the viscosity is very small; we see from (14) that k will then be a
large quantity of the order v~*.
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Let k denote that root of (14) which has its real part positive.
Then e~hk will be a very Bmall quantity; but from (22a) we see that
D cannot become large, while from (22b) we see that D cannot
become largo unless at the same time 0 becomes large of the same
order but with opposite sign. In either case we may neglect Da~l>k in
comparison with Gchk

t and therefore the first of equations (21) is
approximately equivalent to

f£e"*-B c~"l )- (23)

On substituting this value for Cekh and neglecting Do"kh in (20),
we obtain

Aem>-Be""h = - £±-™ mV'a; (24)

while from the second of equations (21) we obtain, with errors of the
order *»* only,

Aenth+Be-mh = - ^^—- (25)

On eliminating a from (24), (25), we have

Ae'"h+Be-mh y f -

B n t > b y ( 1 4 ) ,

( 2 6 )

Take first the case where the bottom is perfectly smooth. We then
have from (226)

A = B, 0 = - D ;

and, therefore, from (26)

— (1+2imvj Vy = tanh mh,

uii equation which may be readily solved by successive approximation.
If, as a first approximation, we neglect *>, we find

7g* = -^tanlimfc; (27)

thus verifying the well-known formula for the velocity of wave-
VOL. xxvm.—NO. 592. T
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propagation in a frictionless liquid.* Replacing V by Fo in the
small terms which contain v, we deduce, as a second approximation,

whence F = Fo — 2imv.

To the order of approximation considered the velocity of wave-
propagation is therefore unaltered by friction, while the modulus of
decay is given by the formula

l X2

_ . 1 _ _ = = _ _ (OS)

where A. denotes the wave-length. This agrees with the formula
given by Prof. Lambf for the case of waves in deep water. We sou
now that it holds for waves of any wave-length in water of any depth,
provided that the bottom is perfectly smooth and that the internal
viscosity is sufficiently small to allow of our approximations.

Dealing next with the case where no slipping is allowed at the
bottom, we see from (23) that, since ekh is large, G must be excessively
small. Hence the equations (22a) which are applicable under these
circumstances take the approximate forms

.1 + 1* = - - F D , "1
vi I

from which we deduce

and hence from (26)

VlT (1 + Oimv,Vy = hsinhmh-mcoHhmh^
y kcoahnih—visimimh '

But fi'om (14) we have, with errors of the orders **,

k = ± y { -imV/v] = ± (1-0 y(mF/2.-),

and, since by hypothesis the real part of k is positivo, we must talce
the upper sign ; we therefore find

' k - y(2F)~— ( 3 0 )

• Lamb, Hydrodynamics, p . 372.
t L.c, p . 545 ; or Proc. Lond. Math. Soc, Vol. xm. , p . 62.
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The right-hand member of (29) is appi'oximately equal to

tanh mh (1- -•'" cotli mh)(l + -~*anh mh+ ~ tanh9 mfc +. . . "\

= tanhm/t 1 = — r r — • — - +. . . J.
\ A; smh zmh hr cosh* mh I

Hence equation (29) may be written

where wo have retained only the most important terms on the right.
As a first approximation we find, as before, on omitting all small terms
involving r or r1,

v=v0.
Using this value of V in small terms, we obtain as a further

-approximation

(. y(2F0) sinh 2m/i )

= v J I y(l>lv

°l /(2V) i
2WIP

sinh 2mh) J2 sinh 2nih

V - •''--
OUT

-vil V ' ( W ) I 1
1 - °( v/(2F0)sinh2m/i)'

where

v^2 sinh

From these equations we see that the velocity of wave-propagation
is slightly retarded by friction with the ocean bed. Of the two terms
in 1/r the first alone appears when we neglect bottom-friction. Hence
we may attribute these terms to internal viscosity and to bottom-
friction respectively. In general for small values of v the second
term, involving vh, will be far more important than the first, which

T2
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involves only v ; in other words, the friction at the bottom will be
far more efficacious than internal viscosity in destroying the motion*
But, if tho depth be largo in comparison with the wave-length,.
sinh2?)i7i will assume a veiy large value, and therefore the second
term of 1/r becomes relatively unimportant. For waves of short
wave-length (in comparison with the depth) the nature of the action
at the bottom will be of no account, and we shall obtain the same
formula (28) whatever assumption we make as to this action.

For " long waves " we may replace tanh mh by mh, and sinh 2mh
by 2w7t. Tho formulrc (27), (31) then give

(32)

4 M

The apj>roximations we have used require vi to be small compared
with V0/u and e~kh small compared with unity.

Tho first condition l-eqnires v to bo small compared with V0/m; the-
second requires v to bo small compared with ml/i8 (VJin).

In the case of deep sea waves, both conditions will be satisfied
provided v is small compai'ed with VJm. Taking

v = -0178,

the value for water, tho requisite condition will be satisfied provided
tlic wave-length is largo compared with 04 of a centimetre.

On the other hand, if the waves are of the nature of " long waves,"'
so that mh is small, the two conditions will be satisfied provided v is.
small compared with

'A1 (VJm).

With the same value, of v this requires the wave-length to be
small compared with

10* 7i* centimetres,

where the depth h is to be expressed in centimetres.
Wo see, then, that no serions limitations are introduced on the-

range of applicability of our results, provided we are dealing with a
liquid of such a small degree of viscosity as water.

Vov waves of 100 metres in a depth of 1 metre, the formulre (32)
will give a modulus of decay of about 1 hour 20 minutes, while there
will be no sensible retardation in the velocity of wave propagation*
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If there were no friction at the bottom, the modulus of decay in this
case would be about 2j years.

Except in the case of deep sea waves, where it is necessary to take
into account the tangential forces in the neighbourhood of the
surface, we may put

CV* = 0,

and a fortiori (7 = 0. Referring back to equations (17), we therefore
have, with a high degree of approximation,

if/ =s (Ae i ^ n \

= [- 4 (Ae-' + Be--) - ^ De"ta] «'-«-">,
L V in J

These equations indicate that the motion is the same as if there were
no friction, except through the region in the immediate neighbour-
hood of tlio bottom over which the term Dc~k: remains sensible. If
there is no friction at the bottom, D will be small of the same order
as 0, and hence the motion will be sensibly the same throughout as
if there were no friction.

5. Preliminary Analysis applicable to the Case of a Spherical .Sheet
of Water.

The differential equations for the three-dimensional oscillations of
••a mass of viscous liquid can be expressed in the form

dn O\l>

dt Ox

tit Oil
, . } (33)

<)n , civ . ()tu „

r)x dy dz

Avhere $ = V—pjp + const., (34)

the notation used being the usual notation for such problems.
The general solution of these equations applicable for satisfying
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boundary-conditions at concentric spherical surfaces has been
frequently discussed.* There is an inconvenience, however, attached1

to the use of the functions usually employed in the applications
which we propose to make here, arising from the fact that these
functions will always appear with large arguments. I have found it
possible, however, to considerably simplify the analysis by utilizing
a modified form of these functions applicable in the case where the
total range of the arguments involved is small in comparison with
the actual values of these arguments. Such will be the case if the
distance between the internal and external bounding spheres is
small in comparison with the radii of these spheres. We will com-
mence by a recapitulation of the analysis used in the papers cited
above, introducing where necessary the modifications referred to.

Take first the equation
= 0, (35)

and suppose <I> is of the form R<f>m where 12 is a function of r only,
and <pn a solid harmonic of degree n. On substituting this form for
<T> in (35), we deduce

+ O T8 = o. (36)
dr K '

Now, suppose r —

where h is small compared with a, and in the region to which our
solution is required to apply £ lies between 0 and 1. Changing the
vai'iable from r to £ and neglecting terms of the order 7t3/a2, the
above equation becomes

+2 (n+1) A. <™ +1MR = 0;
§ a £

or, with errors of the same order of magnitude,

^ + 2 (n + 1) A ^ + f(« + l ) 2 ~ +/^2}l2 = O. (37)
as a ag {. a )

The rigorous solution of this equation is

• Lamb, Proc. Zond. Math. Soc, Vol. xin., pp. 51, 189 ; Love, ibid., Vpl. xix.,
p. 170, &c.
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where £„ = e " Sn = e " ;

and therefore a solution of (35) is

* =
From (38), we have

wli ile, with errors of order

f» = i ^ —{«+C+D/«}*J

279

(38)

'39)

(40)

5 - ,

(41)

Consider next the equations

M = 0, (Vi + t2)u = 0, = 0,]
(42)

By the preceding we see that, if ^n+1, x» denote spherical solid har-
monics of degree indicated by their suffixes, since

nvo solid harmonics of degree n, the following will satisfy the first
three of equations (42),

11 ^z e I -- —1 A-11 • — 9Y,,1
2 - -

a; -I J

(43)
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These do not satisfy the last of equations (42), bat, in virtue of (40),
they make

dx ar

Another set of solutions of the first three of (42) is

from which we deduce

0?t dv , Ow _ ^ (n+2)(kai+n+2) t .
x dy dz or'"*4

in virtue of (41).

Henoe, if we put C = a2"*3 ~ fcot-n-1

(44)

and add together the particular solutions (43), (44), we obtain a set
of values of «, v, w which satisfy all four of equations (42).

Another set of solutions may be found by using the functions Sn

instead of £„; we therefore obtain solutions of the following types,
which may be treated independently:—

ay

9x. 3x,
— — 2

3s dy

„ i t)x, 3x»

z ' J

(45)



1896.] Influence of Viscosity on Waves and Ourrents. 281

4. *• d*2*i 4.
'"8 + (n+2jftii-n-2

2)1+3 3
kai + n

_ i 3«..+i . (
7 Tn\ 1 . 7n

(n + 2) kai+n + 2

»,,+8 A 3 /0,,.n

OzV

"IT 5
Avhere x»> X,,, ̂ H, *„ denote solid harmonics of degree n.

-6. On the Hate of Decay of Slow Currents in a Spherical Sheet of Water.

Returning now to equations (33), suppose w, v, to, if/ each propor-
tional to e"al, and put

&2 = a/v. .

Then (33) reduce to

dy

9u dw _ 0

dy dz

A set of particular integrals will be furnished by (45), provided

^ = 0.

(47)

If F, 0, II denote the components of surface-traction across any
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sphere r = constant, we have

r, / .du , dn , dn\ , I dn
Iu=— px + pv [x v-- + y i - +z^)+pv [x •-

* da; dy d z ' \ o.-c

= — px+pv (r- 1) u+ — (lus + vy + tcz),
\ Or ' Ox

&c. &c.

But the particular integr'als in question make

iix + ry+wz = 0;

and therefore Fr = —px+pv (r~ 1J u,

dv-_
da;

[Dec.

ox'

Gr = -py + pv ( r — - 1 ) v,

a7/r= — pz+pv (r _•v dc

or, from (45), with the aid of (40),

Fr = - I n - 1 ) + -^ (Aw-ii-1) ] L (y^ -

&c. &c.

If there be no slipping at the bottom, we must suppose u = 0, v = 0y

?c = 0, when $ = 0. These conditions will be satisfied if

Xn + X,, = 0, . (48)

since £„, Sn botli reduce to unity when £ = 0.

If there bo no stress at the free surface, we must have F=0,
G = 0, 11 = 0, when $ = 1 or r = a + h. This condition will be
satisfied if

(?»-l)+ -2—(kai—n—l) e « X»
L a J

n = 0. (49)
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From (48), (49) we deduce, on eliminating x«, X,,,

When the viscosity is small this equation may be solved by successive
approximation. Putting k infinite, we deduce

e2*" = - 1 ,

or 2hk = (

which is the same as the value found in § 1.
We conclude that the rates of decay of the free current-motions-

are not sensibly affected by the" curvature of the Earth's surface.

7. On the Stibsidence of Tidal Oscillations.

The equations (47) will still be applicable if the motion is
oscillatory. From them we deduce

Vs if/ = 0, (52>

with the particular integrals

I d& 1 3 * 1 3* ,KO.
n = —, v - ~^t to = ^ . (53>

a ox . « oij « az
A solution of (52) is

/r i-3 , (54>
where i/f,,+1, ^,l+, are solid harmonics of degree n + 1 ; and the corre-
sponding particular integrals are

a dx

a dy a < (55).

To these must be added complementary functions of the type (46) ~
Now we have seen that, in the case of long waves in two dimensions

the tangential stresses are of no account except in the immediate-
neighbourhood of the bottom. In the pi'esent case we shall assume-
that the motion, except through a very thin layer, will be sensiblv/
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irrotational, and therefore will be represented by the particular
integrals (55). The complementary functions selected should there-
fore be such that they vanish except for very small values of £. If
we suppose that the real part of ih is negative, this condition will be
'satisfied provided we omit from the right-hand members of (46) the
terms involving S}in £7.(,-3 and retain only those involving £„, s_,,_3.
Thus we obtain as appropriate solutions of the equations of motion

- 1 tyli±1_l 3 /*»*i\ , * <kn*i , (»+l) kai-H—\ ..«,.„ t 3 Y^.,i
o ox « Ox \i / Ox (n + 2) kai + u + 2, t)x \r

* ?^»±1J..(»*±1) ^ J I " " 1
 r>»s^ ^ . /f ' tL

& ' dy (n + 2) Awi + n + 2 €- ' -3 0^ V"<3

1 0\ba ,.i 1 3

(56)

The conditions n = 0, v = 0,'?u = 0, when r = a, will therefore be
satisfied if

',,(-,,-1 _ J («)
az'4-/i4-2 n+1 /

From equations (56) we find

which, by the aid of (57), reduces to

z = (M + 1 ) ( ^ - 1 ) - -—r——TT -.,(1<3(^-«-3-l) 0»*i.

At the free surface we may omit the small terms involving £„, £.,,_3,
and take

t — U — 1
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Let £ denote the height of the waves at the free sui'face. Then we
have the kinematical condition

r - =

when r = a -f- h; whence

^ f —1) A] ,„.,. (58)
a )

Finally, the pressure at the surface r = a + h mnst be equated to-
giit,, wliere g denotes the value of the acceleration due to gravity.
But from (34) we have

\p = const. 4- V—pjp,
and therefore

O ] = const. + [V]-g£,

where the square brackets indicate that surface values are to be
understood.

If there be no external disturbing force, the periodic part of V will
be the potential due to the harmonic inequalities £. Denoting the
surface-value of this potential by i' and equating periodic parts in the
two members of the last equation, we obtain

O] = v'-gl (59)

But from (58) we see that £ is a surface-harmonic of order (n-\-l)y

and therefore we obtain at once

while, if o- denote the mean density of the system under consideration,
including both solid nucleus and liquid surface layer, we have

g = |7r<r (a + h).

Thus „ ' = * £ , £ ,
(2n + 3) a-

and, if we denote by ^,l+1 the expression

'{r-(sf5)3' ( 6 0 >
the equation (59) becomes

Introducing the values of t/s £ from (56), (58), we find

1 + (jfcat-n-l)
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when r = a-f/i; thus, on using (57), we obtain

/—TON 7~H To i 1 —(2n + 8) A/a}
(w + 2) kai + n + 2 l ' ' J

<7».i (» + l)(2w+3) n - 1 ) h a •J

•or

whence, finally,

_cr_ _ _ (M -f 1) (

On putting h infinite it follows that, as a first approximation,

a
(a + h){a—

or, with sufficient accuracy,

where /i*==(» + l ) C » + i ) ^ ^ . ( 6 2 )

From this we obtain

whence k = ± (1 + 0

•or *-&=d=(»-

The upper sign must be taken, since by hypothesis the real part of
ik is negative. From (61) we therefore find, as a second approxima-
tion,

whence " = f'3 [X~

* Cf. Lamb, Hydrodynamics, p . 315,
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Hence the speed of the oscillation is reduced by friction in the
ratio

and the modulus of decay is

- (63)

, Using C.Gf.S. units and taking

<r/P = 5§, v = -0178, a = 6-357 X108, h = 4 x 10\

we deduce as the moduli of decay far the types corresponding to
n = 0, » = 1, 42-6 and 31*7 years respectively, while, when n = 100,
we find a modulus of decay of 4'8 years.

Even with considerably smaller depths, the moduli of decay of the
principal types of oscillation will still be long. Thus, if Ave tako

7*= 2x10',

which implies a depth of 200 metres, or rather more than 100
fathoms, the moduli of decay for the types n = 0, n = 1 are 4*5 and
3f3 years respectively.

These results indicate how slight can be the effects of viscosity on
the motions of the sea except possibly in shallow confined waters.
It seems that wherever the depth exceeds a very moderate amount,
say 100 fathoms, the rise and fall of the waters due to the disturbing
influence of the Sun and Moon will not be appreciably affected by
friction. It may be urged that we have a direct contradiction of this
statement in the fact that, the phases of the tides even at islands in
the open sea often differ widely from the phases of the corresponding
equilibrium tides. According to Sir Or. Airy,* the acceleration or.
retardation of the semi-diurnal tide on the Moon's transit " does not at
ono port in a hundred agree in any measure with the result of this
[the equilibrium] theory," and the want of agreement is attributed
by him entirely to the effects of friction. The explanation seems t-.)
have been generally accepted by his successors, and, if it be true, will
entirely invalidate our present results. A different explanation o;:

the phenomenon in question has,, however, been given by Newton.f
and, in spite of the criticisms to which this has been subjected by
Airy,J it appears to me that the results as stated by Newton aro

• Encye. Metrop.-, Art. "Tides and Waves," § 62.
t Principia, Book m., Prop. 24.
t L.c, §§ 16, 19.
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substantially correct, and that an agreement in phase at all places-
between the dynamical tides and the equilibrium tides, even -without
viscosity, could only be expected under very special circumstances as
to the distribution of land and water on the globe. In support of
this view, I may quote some examples worked out by Airy himself
in later sections of the paper referred to above, the bearing of which
does not seem to have been fully appreciated by the author. Thus,
if we take the case of a continuous equatorial canal subjected to the
disturbance of a luminary moving uniformly round the equator, it is
known that the forced tide will consist of a progressive wave follow-
ing the motion of the disturbing body, and that at any place high or
low water will always accompany the transit of the luminary across
the meridian. The circumstances will, however, be totally different
if the canal, instead 6i being continuous so as to return into itself, is
of limited extent. In the latter case,* to find the complete motion
arising from the disturbing force,.we must superpose on the primary
wave, due directly to the attraction of the luminary, secondaiy posi-
tive and negative waves due to the repeated reflection of the former
at the extremities of the canal. These secondary waves, which have,
as it seems to me, been erroneously described by Airy as "free
waves," will be co-periodic with the primary wave, but will give rise
to an entire re-adjustment of phase. Even in the case of continuous
canals the examples worked put by Airyf indicate that an agreement
in phase with the phase of the equilibrium tide can only be regarded
as fortuitous in character.

• Airy, I.e., $296.
t I.e., §§431 ctseq.




