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Abstract

The effects of Coriolis force on long waves have been discussed based on gravity waves propagating in an unbounded ocean, channel

and basin. In case of ocean, results show that the Coriolis effect will be significant and negligible, when the wave period is comparable to

2p/f and much shorter, respectively. Results also show in a channel, the wave amplitude and water particle velocity decrease

exponentially in the positive y direction in the northern hemisphere (where f is positive). Moreover, in a basin, the Cotidal lines have been

found as curves and rotate counterclockwise around the origin.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, long waves with periods of several minutes
have been recognized as important and exciting component
to beach erosion, sedimentation in harbors, and oscillation
of water. Due to earth rotation, the Coriolis force is
continuously generated which affects the long wave. The
motion of the atmosphere and the ocean is naturally
studied in a coordinate frame rotating with the earth. The
wave frequency o is the same order as f, the Coriolis
parameter defined as 2O sinf, where f is the earth’s
latitude (Fig. 1) measured positive and negative in the
northern and southern hemisphere, respectively, while O is
the earth rotation speed (7.28� 10�5 rad/s). As a particle
moving forward will tend to be deflected to the right by the
Coriolis force under the wave crest, but this motion is
resisted by the crest elevation gradient. The relevant work
has discussed extensively for simple flows in a paper of
Leblanc and Cambon (1998).

Knowledge of the long waves (Fig. 2) is of great
importance in a number of coastal engineering problems.
Various forcing factors such as the bottom friction, wind
e front matter r 2007 Elsevier Ltd. All rights reserved.
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stress and Coriolis force are involved in the changes of long
waves generation. Clarification of these individual forces
and evaluation of their mutual interactions are useful for
the prediction of long waves generation. The present study
regards the influence of Coriolis force on long waves.
Although great efforts have been devoted to obtain the
influence of different pertinent variables affecting the long
waves, the effects of Coriolis force on long waves have not
been well investigated yet.
Previous studies (Sorensen, 1978; Dean and Dalrymple,

1984; Fovell, 1991; Durran, 1993) on long waves genera-
tion were commonly performed based on the earth’s
rotation. Maa (1990) used implicit finite-difference scheme
to solve the depth-averaged equations of motion and the
continuity equation while including Coriolis force and his
model was successfully worked. Neumann (1984) empha-
sized that the observed rate of rotation of direction is not
constant over the diurnal cycle as it should be only the
earth rotation were operative. Bishop (1979) suggested that
there is only weak coupling between Coriolis force and
Stokes drift.
Some recent works (Hsiung and Aboul-Azm, 1982;

Mousseau et al., 2002; Li, 2004) on long waves including
Coriolis force have been considerable attention to the
researchers. Hsiung and Aboul-Azm (1982) developed a
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Fig. 2. Photograph of long waves (Cox’s bazar, Bangladesh).
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Fig. 1. Definition sketch of Coriolis force in local Cartesian coordinates.

A. Hoque, A. Rahman / Ocean Engineering 34 (2007) 1701–17051702
mathematical model for iceberg drift based on Coriolis and
geostrophic effect. Mousseau et al. (2002) solved the two-
dimensional shallow water equation including Coriolis
parameter numerically. Li (2004) presented the horizontal
length scale of wave profile is proportional to the square
root of the product of amplitude and gravity and is
inversely proportional to the Coriolis parameter. Polton et
al. (2005) investigated that how the Coriolis–Stokes forcing
affects the mean current profile in a wind-driven mixed
using simple model and found good agreement to the
experimental data.

The objective of this paper is to characterize the long
waves including Coriolis parameter in an unbounded
ocean, channel and basin.
2. Scale analysis

Scale analysis, or scaling, is a convenient technique for
estimating the magnitudes of various terms in the govern-
ing for a particular type of motion. In scaling, typical
expected values of the following quantities are specified: (1)
the magnitudes of the field variables, (2) the amplitudes of
fluctuations in the field variables, and (3) the characteristic
length, depth and time scales on which these fluctuating
occur. These typical values are then used to compare the
magnitudes of various terms in the governing equations.
For synoptic scale motions, we define the following

characteristic scales of the field variables based on observed
values for midlatitude synoptic systems:
U�10m s�1
 horizontal velocity scale

W�1 cm s�1
 vertical velocity scale

L�106m
 length scale

D�106m
 depth scale

DP/r�103m2 s�2
 horizontal pressure fluctuation scale

L/U�105 s
 time scale
3. Mathematical formulation

In an inertial reference frame, Newton’s second law of
motion may be written symbolically as

daŪa

dt
¼
X

F̄ . (1)

In order to transform this expression to rotating
coordinates, we must first find a relationship between Ūa

and the velocity Ū relative to the rotating system. This
relationship can be written as

Ūa ¼ Ū þ Ō� r̄. (2)

Letting Ā be an arbitrary vector and daĀ=dt be the total
derivative of Ā, we can write

daĀ

dt
¼

dĀ

dt
þ Ō� Ā. (3)

Next, we apply Eq. (2) to the velocity vector Ūa and
obtain

daŪa

dt
¼

dŪa

dt
þ Ō� Ūa. (4)

Substituting from Eq. (2) into right-hand side of Eq. (4)
gives

daŪa

dt
¼

dŪ

dt
þ 2Ō� Ū � O2R̄, (5)

where O is assumed to be constant and R̄ is a vector
perpendicular to the axis of rotation. Eq. (5) states that the
motion in an inertial system equals the acceleration
following the relative motion in a rotating system plus
the Coriolis acceleration plus the centripetal acceleration.
If we assume that the only real forces acting on the

atmosphere are the pressure gradient, gravitation and



ARTICLE IN PRESS
A. Hoque, A. Rahman / Ocean Engineering 34 (2007) 1701–1705 1703
friction force, we can write Eq. (1) with the help of Eq. (5)
as

dŪ

dt
¼ �2Ō� Ū �

1

r
rpþ ḡþ F̄ r. (6)

The components of equation of motion for a thin shell
on a rotating earth can be written as

du

dt
�

uv tan f
a

þ
uw

a
¼ �

1

r
qp

qx
þ 2Ov sin f

� 2Ow cos fþ Fx, ð7aÞ

dv

dt
þ

u2 tan2 f
a

þ
vw

a
¼ �

1

r
qp

qy
� 2Ou sin fþ Fy, (7b)

dw

dt
�

u2 þ v2

a
¼ �

1

r
qp

qz
� gþ 2Ou cos fþ F z, (7c)

where d=dt ¼ ðqu=qtÞ þ uðqu=qxÞ þ vðqu=qyÞ þ wðqu=qzÞ.
Which are the eastward, northward, and vertical

component momentum equations, respectively. These arise
from transformation of the accelerations in the Cartesian
system of equation of motions to the non-Cartesian system.
These equations are nonlinear, so they are difficult to
handle in theoretical analyses.

In order to simplify Eqs. (7a) and (7b) for synoptic scale
motions, we use the characteristics scales. It should be
pointed out here that the synoptic scale vertical velocity is
not a directly measurable quantity. We can now estimate
the magnitude of each term in Eqs. (7a) and (7b) for
synoptic scale motions at the given latitude f ¼ 451.

Table 1 shows the characteristic magnitude of each term
in Eqs. (7a) and (7b) based on the above scaling
considerations (Section 2). We obtain, as an excellent
approximation for the horizontal equilibrium is a balance
between the Coriolis force (E) and the pressure gradient
(D) while other terms are not similar:

�fv � �
1

r
qp

qx
; fu � �

1

r
qp

qy
. (8)

To retain the acceleration terms, the approximation
horizontal momentum equations can be found as

qu

qt
� fv ¼ �

1

r
qp

qx
, (9a)
Table 1

Scale analysis of the horizontal momentum equations

Moment. equation (A) (B) (C)

x-com. eq.- du

dt
�

uv tan f
a

uw

a
¼

y-com. eq.- dv

dt

u2tan2 f
a

vw

a
¼

Scales- U2

L

U2

L

UW

a

¼

Magni.- 10�4 10�5 10�8 ¼
qv

qt
þ fu ¼ �

1

r
qp

qy
, (9b)

where the nonlinear advective terms have been neglected
under the small amplitude assumptions.
For long-wave theory, if we define the pressure at height

z from the bottom, being hydrostatic, and the velocity
components are given, respectively,

p ¼ rgðhþ Z� zÞ,

U ¼
1

hþ Z

Z Z

�h

udz and V ¼
1

hþ Z

Z Z

�h

v dz.

The linearized continuity equation for long waves can be
written as

qZ
qt
þ h

qU

qx
þ

qV

qy

� �
¼ 0 (10)

while the equation of continuity with the time average
depth, h, constant and Z5h. Substituting the value of p, u

and v into Eq. (9) and taking the time average depth, we get

qU

qt
� fV ¼ �g

qZ
qx

, (11)

qV

qt
þ fU ¼ �g

qZ
qy

. (12)

The above Eqs. (10)–(12) are now linear and it is possible
to solve the equations analytically.

4. Solutions

4.1. Gravity wave propagating in a horizontally unbounded

ocean

For a horizontally infinite ocean with f ¼ constant, it can
be shown that the free modified gravity waves have periods
To2p/f for both surface and internal types of gravity
wave. Taking f ¼ constant, a solution for a wave traveling
in the x-direction is

ðU ;V ; ZÞ ¼ ðÛ ; V̂ ; ẐÞeiðkxþly�otÞ, (13)

where Û ; V̂ ; Ẑ are the complex amplitudes and the real
part of the right side is meant. After simplification of
Eqs. (10)–(12) with the help of Eq. (13), we have

�ioẐþ ihðkÛ þ lV̂ Þ ¼ 0, (14)
(D) (E) (F) (G)

�
1

r
qp

qx

2Ov sin f �2Ow cos f Fx

�
1

r
qp

qy

�2Ou sin f 0 Fy

P

Lr
fU fW

10�3 10�3 10�6 10�12



ARTICLE IN PRESS
A. Hoque, A. Rahman / Ocean Engineering 34 (2007) 1701–17051704
�ioÛ � f V̂ ¼ �ikgẐ, (15)

�ioV̂ þ f Û ¼ �iglẐ. (16)

Solving Eqs. (15) and (16), yielding

Û ¼
gẐ

o2 � f 2
ðok þ iflÞ,

V̂ ¼
gẐ

o2 � f 2
ð�ifk þ olÞ.

Substituting these in Eq. (14), we get

o2 ¼ f 2
þ ghK2, (17)

where K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þ l2

p
is the magnitude of the horizontal

wave number. Eq. (17) represents the dispersion relation of
gravity waves in the presence of Coriolis force. This
relation shows that the waves can propagate in any
horizontal direction and have o4f.

A plot of Eq. (17) is shown in Fig. 3. It is seen that waves
are dispersive except for obf and Eq. (17) gives
o2 ¼ ghK2, so that the wave propagation speed C becomes
C ¼ o=K ¼

ffiffiffiffiffi
gh

p
. Finally, we may conclude that the

surface gravity waves unaffected by Coriolis forces in the
case of high-frequency limit.

4.2. Gravity wave propagating parallel in a channel

If a vertical boundary exists, then the solution to Eqs.
(10)–(12) is also possible. Consider the propagation of long
progressive waves in an infinitely long straight canal in the
x-direction with flat bottom. With transverse velocity
V ¼ 0, the x-momentum equation and continuity equation
are unchanged. That means, these are not affected by the
presence of the Coriolis force. Eqs. (10)–(12) give

qZ
qt
þ h

qU

qx
¼ 0, (18a)

qU

qt
¼ �g

qZ
qx

, (18b)
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Fig. 3. Dispersion relation for different values of Coriolis force.
fU ¼ �g
qZ
qy

. (18c)

The above equations are linear, a solution can be
assumed as

Z ¼ ẐðyÞ cosðkx� stÞ,

U ¼
oẐðyÞ

kh
cosðkx� stÞ.

Then a nontrivial solution is therefore possible only if
o ¼ �k

ffiffiffiffiffi
gh

p
, so that the wave propagates with a non-

dispersive speed C ¼
ffiffiffiffiffi
gh

p
.

The y-equation of motion is now

dẐ
dy
þ

fo
gkh

Ẑ ¼ 0. (19)

The solution of Eq. (19) that decays away from the coast
is

Ẑ ¼ Z0e
�fy=C ,

where Z0 is the amplitude at the coast. Therefore, the sea
surface slope and the velocity field for a Kelvin wave have
the form

Z ¼ Z0e
�fy=C cos kðx� ctÞ, (20a)

U ¼ Z0

ffiffiffi
g

h

r
e�fy=C cos kðx� ctÞ. (20b)

Solutions (20a) and (20b) show that at the wave crest,
the wave amplitude and water particle velocity decrease
exponentially in the positive y-direction in the northern
hemi-sphere (where f is positive). This wave is called a
Kelvin wave.
The Coriolis force wants to divert the particle motion to

the right under the wave crest, but this motion is resisted by
the crest elevation gradient. The opposite occurs under the
wave trough. The crest and trough amplitudes are depicted
in Fig. 4, where the wave is propagating along the x-axis.
(SWL) y 

z 

Trough

Crest

Fig. 4. Wave crest and trough profiles for a Kelvin wave propagating into

the page.
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Fig. 5. Cotidal lines for a rectangular basin.
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4.3. Gravity wave propagating in a basin

If we superpose two-Kelvin waves having opposite
directions of travel along the x-axis to form a standing
wave with the same height, the water surface elevation is
given by

Z ¼
H

2
e�fy=C cosðkx� stÞ �

H

2
efy=C cosðkxþ stÞ. (21)

At x, y ¼ 0 the water surface elevation is zero at all
times. Lines of maximum water surface elevation may be
found when

qZ
qt
¼ 0.

Eq. (21) becomes

e�fy=C sinðkx� stÞ þ efy=C sinðkxþ stÞ ¼ 0

which, after some manipulation yields

tanh
fy

C
¼ �

tan kx

tan st
. (22)

For given standing wave period and water depth, the x, y

coordinate positions of Cotidal lines can be plotted as a
function of time from Eq. (22). With Coriolis effects, the
Cotidal line pattern will be as shown in Fig. 5, which is plan
view of this basin. Cotidal lines are curved and rotate
counterclockwise around the amphidromic point (origin).

5. Conclusions

A theoretical analysis was performed to establish the
effects of Coriolis force for a gravity wave propagating in a
horizontally unbounded ocean, channel and basin. The
dispersion relation shows that when the wave period is
comparable to 2p/f, then the Coriolis force will be
important for horizontal unbounded ocean. Moreover,
for high-frequency limit, the surface gravity wave is
unaffected by the Coriolis force and will be consistent
with the Kelvin wave.
In a channel, the wave amplitude and water particle

velocity decreased exponentially in the positive y-direction
in the northern hemi-sphere due to the effects of Coriolis
force. Where as in a basin, the Cotidal lines were found as
curve and rotate counter clockwise around the origin.
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