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Abstract

Conventional spectral wave models, which are used to determine wave conditions in coastal regions, can account for all

relevant processes of generation, dissipation and propagation, except diffraction. To accommodate diffraction in such models, a

phase-decoupled refraction–diffraction approximation is suggested. It is expressed in terms of the directional turning rate of the

individual wave components in the two-dimensional wave spectrum. The approximation is based on the mild-slope equation for

refraction–diffraction, omitting phase information. It does therefore not permit coherent wave fields in the computational

domain (harbours with standing-wave patterns are excluded). The third-generation wave model SWAN (Simulating WAves

Nearshore) was used for the numerical implementation based on a straightforward finite-difference scheme. Computational

results in extreme diffraction-prone cases agree reasonably well with observations, analytical solutions and solutions of

conventional refraction–diffraction models. It is shown that the agreement would improve further if singularities in the wave

field (e.g., at the tips of breakwaters) could be properly accounted for. The implementation of this phase-decoupled refraction–

diffraction approximation in SWAN shows that diffraction of random, short-crested waves, based on the mild-slope equation

can be combined with the processes of refraction, shoaling, generation, dissipation and wave–wave interactions in spectral

wave models.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction The effects of refraction are readily accounted for in
Waves approaching a coastline may refract and

diffract due to the presence of shoals and channels or

obstacles such as islands, headlands, or breakwaters.
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phase-averaged (i.e., spectral) wave models. These

models can also account for the generation, dissipa-

tion and wave–wave interactions of the waves in deep

and shallow water (e.g., Booij et al., 1999; Benoit et

al., 1996). However, this type of model does not

account for diffraction. The effects of diffraction are

traditionally computed with phase-resolving models

such as mild-slope models (e.g., Battjes, 1968; Schön-

feld, 1971; Holthuijsen, 1971; Berkhoff, 1972; Rad-

der, 1979; Booij, 1981; Kirby, 1986) or Boussinesq

models (e.g., Peregrine, 1966; Madsen and Sørensen,

1992; Li and Zhan, 2001). However, these models do
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not, or only to a limited degree, account for the

generation, dissipation and wave–wave interactions

of the waves. A combination of the two types of

model capabilities would obviously be most conve-

nient: add diffraction to a spectral model or add the

generation, dissipation and wave–wave interactions

of waves to a phase-resolving model (mild-slope or

Boussinesq). Adding diffraction to a spectral model

has the advantage that (a) large-scale computations

remain perfectly feasible (as long as the required high

spatial resolution in the diffraction regions are re-

tained, e.g., by nesting or by using a variable-resolu-

tion grid; in contrast to this, phase-resolving models

require a prohibitively high spatial resolution over the

entire computational region), (b) the random, short-

crested character of the waves is inherent (in contrast

to this, mild-slope models would require multiple

runs) and (c) the formulations for all processes of

generation and dissipation and wave–wave interac-

tions are included (in contrast to this, phase-resolving

models do not include all of these).

One approach to add diffraction to a spectral model

would be to mimic diffraction with spatial or spectral

diffusion (e.g., Resio, 1988; Booij et al., 1997; Mase

et al., 2001). This approach has been shown to

simulate some of the diffraction effects, but either

the effects are limited (e.g., the diffraction induced

turning of the wave direction is not simulated) or the

numerical schemes are not stable. Another approach is

to add the diffraction-induced turning rate of the

waves (obtained from the mild-slope equation) to a

spectral model. This was suggested by Booij et al.

(1997) and Rivero et al. (1997). In the present study

this option is implemented in the third-generation

spectral wave model SWAN (Booij et al., 1999).

Computational results are compared to analytical

solutions, results of conventional refraction–diffrac-

tion models and observations.
2. The mild-slope equation

Consider a harmonic wave with complex wave

function n = a exp(iw), where Re(neixt) is the surface

elevation as it varies in space and time, a = a(x,y) is

the (stationary) amplitude and w =w(x,y) is the (sta-

tionary) phase function. In the linear theory of surface

gravity waves over a mildly sloping bottom, the
propagation of this wave is given by the mild-slope

equation (Berkhoff, 1972):

j � ccgjn þ j2ccgn ¼ 0 ð1Þ

where c =x/j and cg = Bx/Bj and the separation

parameter j is determined from x2 = gj tanh(jd)
(where g is gravitational acceleration and d is water

depth (e.g., Dingemans, 1997). In the absence of

diffraction, c and cg would be the phase speed and

the group velocity respectively and j would be equal

to the wave number k (the magnitude of the spatial

gradient of the phase function w): j = k= |jw|. By
multiplying the mild-slope equation with the complex

conjugate of n and then taking the imaginary part, we

obtain an energy balance equation, which for a con-

stant frequency x (a basic assumption for the mild-

slope equation), reduces to

j
k

j
cga

2

� �
¼ 0 ð2Þ

This energy balance equation shows that, in the

presence of diffraction the energy propagation speed

in geographic space, is

Cg ¼
k

j
cg ð3Þ

By substituting the wave function into the mild-

slope equation it is readily shown that the magnitude

of the gradient of the phase function in the presence of

diffraction is given by

k2 ¼ j2 þ j:ðccgjaÞ
ccga

ð4Þ

If diffraction is ignored (i.e., the variation in

amplitude is taken to be zero), the second term on

the right-hand-side of Eq. (4) vanishes and this

equation reduces to k = j. This second term therefore

represents diffraction in the phase function w. Denot-
ing the diffraction parameter da as

da ¼
j:ðccgjaÞ

j2ccga
ð5Þ
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the diffraction-corrected phase speed C is

C ¼ x=k ¼ c 1þ dað Þ�1=2 ð6Þ

and the diffraction-corrected group velocity is

Cg ¼ cgð1þ daÞ1=2 ð7Þ

The spatial rate of directional turning can be

derived for a spatially varying phase speed, without

assuming that the variations are induced by refraction.

The derivation can be formal, using general mathe-

matical properties of the phase function (e.g., Dinge-

mans, 1997; his Eq. (2.94)). As an alternative, the

following derivation is based on a more physically

oriented geometric argument. Consider in an arbitrary

situation, a line of equal phase (iso-phase line) of the

wave, along which the phase speed varies (Fig. 1). A

right-turning system of orthogonal m,s coordinates is

used with m oriented along the iso-phase line. Two

points, A and B on the iso-phase line, separated by

distance Dm, move in a time interval Dt normal to the

iso-phase line (along an orthogonal or wave ray) over a

distance DsA= cDt and DsB=(c +Dc)Dt, respectively.

The corresponding directional turning of the iso-phase

line is Dh = (DsA�DsB)/Dm. The spatial rate of direc-
Fig. 1. The directional turning of an iso-phase line and correspond-

ing orthogonals (wave rays).
tional turning Dh/Ds (per unit distance in the wave

direction, i.e., along the wave ray) is therefore Dh/
Ds =�DcDt/DmDs. Or, sinceDs = cDt,Dh/Ds =� (Dc/

c)/Dm. For infinitesimally small differences, this is

Bh
Bs

¼ � 1

c

Bc

Bm
ð8Þ

With c =x/k and x = constant substituted in this Eq.

(8), this turning rate can also be written as

Bh
Bs

¼ 1

k

Bk

Bm
ð9Þ

or in terms of the separation parameter j (substituting

Eq. (4) in Eq. (9)),

Bh
Bs

¼ 1

k

Bk

Bm
¼ 1

j
Bj
Bm

þ 1

2ð1þ daÞ
Bda
Bm

ð10Þ

If diffraction is ignored, da = 0 and the turning rate

reduces to the commonly used turning rate for refrac-

tion only:

Bh
Bs

¼ 1

k

Bk

Bm
¼ 1

j
Bj
Bm

ð11Þ
3. The spectral energy balance

In the absence of diffraction and currents, the

spectral energy balance equation, which is the basic

equation of spectral wave models, is (e.g., Komen et

al., 1994)

BE

Bt
þ BcxE

Bx
þ BcyE

By
þ BchE

Bh
¼ S ð12Þ

where E =E(x,h) is the energy density of the waves as
a function of frequency x and direction h. The

generation, dissipation, and wave–wave interactions

of the waves are represented by the source term

S= S(x,h). Since inclusion of this term is not relevant

for this study, we will ignore it, so that S(x,h) = 0. The
first term on the left-hand side represents the local rate

of change of energy density (t is time), the second and

third term represent rectilinear propagation in the

horizontal, flat plane (x, y; propagation on a sphere is

ignored here). The fourth term represents propagation
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in spectral direction space (refraction). The propaga-

tion speeds cx, cy are the x-, y-component of the group

velocity cg respectively and ch is the rate of directional

turning (propagation speed in h-dimension). (The

dependencies on x, y and t have been ignored in the

notation for the sake of brevity.) These propagation

speeds are taken from the linear theory of surface

gravity waves without the effects of diffraction (e.g.,

Mei, 1983; Dingemans, 1997). To add diffraction,

note that the turning rate ch is the rate of directional

change of a single wave component as it travels along

the wave ray with the group velocity. It is readily

obtained from the spatial turning rate Bh/Bs. As the

wave energy travels along the ray over a distance Ds

in a time interval Dt, it turns over an angle Dh. The
spatial rate of turning is then Dh/Ds. Since the

distance Ds= cgDt, it follows that the temporal rate

of turning Dh/Dt= cgDh/Ds. Taking the infinitesimal

limits, denoting the temporal rate of turning as ch and

substituting Eq. (10), gives

ch ¼ cg
Bh
Bs

¼ cg
1

k

Bk

Bm

� �
ð13Þ

Adding diffraction to the energy balance equation

involves only replacing cg by Cg and ch by Ch in the

spectral energy balance of Eq. (12).

Ch ¼ Cg

Bh
Bs

¼ Cg

1

j
Bj
Bm

þ 1

2ð1þ daÞ
Bda
Bm

� �
ð14Þ

These expressions for Cg and Ch are formulated in

terms of the diffraction parameter da, which is

expressed in terms of the amplitude of a harmonic

wave and not in terms of the spectral density E(r,h).
Unfortunately, formulations in terms of E(r,h) are not
available but it seems reasonable to replace the nor-

malised derivatives of amplitude a in these expressions

by the normalised derivatives of the square root of the

energy density,
ffiffiffiffi
E

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðr; hÞ

p
(the more so as both

are normalised), so that da is replaced by dE.

dE ¼ j:ðccgj
ffiffiffiffi
E

p
Þ

j2ccg
ffiffiffiffi
E

p ð15Þ

Including this diffraction term in the expression of

Eq. (14) for the turning rate seems to be a straight-
forward expansion of the energy balance equation.

But it is not. The energy balance equation does not

account for the phase evolution of the waves, whereas

the mild-slope equation does: replacing the amplitude

a = a(x,y) with the energy density E(r,h; x,y) removes

phase-information and therefore decouples the phases

spatially. We will therefore refer to this approximation

as the phase-decoupled refraction–diffraction approx-

imation. (The corresponding expressions for the prop-

agation speeds in the presence of currents are given in

Appendix A) The most important effect of decoupling

the waves in practical applications seems to be that

standing wave patterns are not accounted for (i.e.,

nodal wave patterns are absent). This characteristic is

shared with the parabolic refraction–diffraction ap-

proximation of the mild-slope equation, albeit for

other underlying reasons. In the parabolic approxima-

tion, waves cannot reflect and propagate against the

incident wave direction (e.g., Radder, 1979; Booij,

1981), which implies that standing wave patterns

cannot be properly represented in the parabolic ap-

proximation. In the present phase-decoupled approx-

imation, waves can reflect and propagate against the

incident wave direction but phase coupling between

the incident wave and its reflection (required to

represent a nodal pattern) is not possible.

With this addition of phase-decoupled diffraction,

the spectral energy balance equation changes from a

second-order differential equation to a fourth-order

equation: the refraction term on the left-hand-side of

Eq. (12) contains a first-order spectral derivative of ch,

which itself contains a first-order spatial derivative.

The diffraction parameter dE adds a second-order

spatial derivative of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðr; hÞ

p
. By separating the

numerical treatment of diffraction (see below) from

the numerical treatment of refraction, a conventional

spectral model for refraction can be expanded to

include this approximation of diffraction.
4. Numerical implementation

The expressions for the group velocity Cg of Eq. (7)

and the directional turning rate Ch of Eq. (14) with dE
from Eq. (15) have been implemented in the SWAN

model of Booij et al. (1999). This third-generation

wave model is based on the action balance equation,

which reduces to the energy balance equation in the
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absence of currents. Ignoring the generation, dissipa-

tion, and wave–wave interactions, reduces the basic

equation of SWAN further to Eq. (12) with S(x, h) = 0.
In some of the following validation cases, we will use

the option in SWAN for reflection against obstacles

(linear reflection elements with one dimension smaller

than the grid resolution). With this option, the wave

energy of each wave component reflects in a specular

mode off an obstacle.

For the propagation in geographic space (which

accounts for rectilinear propagation and shoaling), an

iterative, up-wind, implicit scheme with third-order

diffusion is used in SWAN (the SORDUP-scheme;

Rogers et al., 2002). The (near) absence of numerical

diffusion in this scheme ensures that practically all

spreading and smoothing effects in the wave field

are not due to numerical diffusion (which is some-

times suggested to simulate diffraction, e.g., Resio,

1988). For propagation in spectral space (which

accounts for refraction), an implicit, second-order

upwind scheme, which is supplemented with a

central scheme, is used (Booij et al., 1999). It too

has very little numerical diffusion and does therefore

also not simulate diffraction.

The diffraction effect is implemented in SWAN by

adding the diffraction parameter dE to the expressions

for the group velocity components cx, cy and to the

turning rate ch (i.e., the refraction term) in these

propagation schemes. In each of the iterations of the

original propagation scheme, the second-order deriv-

ative j:ðccgj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðr; hÞ

p
in the expression of dE is

obtained with a simple, second-order central scheme

based on the results of the previous iteration. For the

x-dimension the estimation is

B

Bx
CCg

B
ffiffiffiffi
E

p

Bx

� �� �n

i
1

2Dx2

�
CCg

� �
i
þ CCg

� �
i�1

n o ffiffiffiffiffiffiffiffi
Ei�1

p
� CCg

� �
i�1

þ2 CCg

� �
i
þ CCg

� �
iþ1

n o ffiffiffiffiffi
Ei

p
þ CCg

� �
i
þ CCg

� �
iþ1

n o ffiffiffiffiffiffiffiffi
Eiþ1

p �n�1

ð16Þ

where i is a grid counter in x-dimension and the

superscript n indicates iteration number. For the y-

dimension, the expression is identical, with y replac-
ing x. The estimation of dE is thus based on the

values of the energy density E obtained from the

preceding iteration in the geographic propagation

scheme (the value of dE is cut off at the low side

at � 1 to avoid imaginary propagation speeds; there

is no upper bound). For models with a variable

geographic resolution (optional in SWAN), the nu-

merical approximation of the gradients needs to

account for different values of Dx and Dy on either

side of the central grid point in the scheme (not

available in the present version of SWAN). The

advantage of a variable-resolution grid is that the

model can be based on a high spatial resolution

where diffraction requires this (near obstacles) and

on a coarser resolution where such high resolution is

not required. Diffraction is thus computed in the

entire computational domain with high resolution

only where needed. At the boundaries of the compu-

tational domain (coast, obstacle or open boundaries)

first-order spatial gradients in SWAN are set at zero.

Open boundaries should therefore be chosen such

that diffraction near these boundaries can be ignored,

i.e., the gradients should be small there. At the coast

or at an obstacle, the second-order gradients are

approximated with the assumption of a horizontal

first-order gradient at the coast or the obstacle.

Various other boundary conditions were tried but

the effects on the computational results of this study

(see below) were barely noticeable.

The discretization of the gradients with the finite

difference scheme of Eq. (16), in terms of the values

of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðr; hÞ

p
in neighbouring points in the x-and y-

dimension, seems trivial but the following shows that

it is not. Diffraction of random, short-crested waves

can also be computed as the superposition of solutions

for a large number of incident monochromatic, unidi-

rectional waves, each computed independently with

the mild-slope equation. In each such computation,

the spatial gradient is taken of the amplitude of the

monochromatic wave. The direction of such a mono-

chromatic wave varies geographically so that for each

grid point in the computational domain, the wave

energy in neighbouring grid points propagates in

slightly different directions. The spatial gradient offfiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðr; hÞ

p
in the present approach (estimated from

these neighbouring points) should therefore also be

taken at these slightly different directions. Instead, Eq.

(16) states that at these grid points the same direction
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is to be taken as in the central grid point. In the

extreme case of a semi-infinite breakwater, the cor-

responding error in direction can be estimated from

the fact that in the shadow zone behind the breakwa-

ter, the wave crests are nearly circular and centred at

the tip of the breakwater. The difference in wave

direction Dh at two neighbouring grid points is then

approximately DhiDx/r where Dx is the spatial

resolution and r is the distance to the tip of the

breakwater. To reduce this error to acceptable propor-

tions would require that E(r, h)iE(r, h +Dh). This
implies that Dh be small compared to the width rh of

the directional distribution of the wave spectrum, i.e.,

Dh =Dx/rbrh. For wind waves, with a directional

width of typically 30j, this is only true for distances

of more than 10Dx to 20Dx from the breakwater tip.

With a resolution of Dx = 1/5 to 1/10 of the wave-

length (typical for refraction–diffraction models), this

implies that this approximation is reasonable only at a

distance larger than one or two wavelengths from the

breakwater tip. However, at such a distance, the

gradients in the wave field are usually small and

diffraction need no longer be considered (i.e., the

local diffraction-induced turning of the wave direc-

tion). For swell, with a directional width of 10j or so,

the distance would be even larger. Nevertheless, the

computations of this study were tried with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðr; hÞ

p
but they converged so slowly as to be impracticable.

They will not be considered here. To avoid these

problems, the direction-integrated spectral density

E(r) is taken instead of E(r, h), but only to estimate

the value of dE.
In early computations of this study, the wave fields

often showed slight ‘‘wiggles’’ in geographic space

with a wavelength of about 2Dx in x-direction (or 2Dy

in y-direction). These unduly affected the estimations

of the gradients that were needed to compute the

diffraction parameter dE. The wave field was therefore

smoothed with the following convolution filter:

En
i;j ¼ En�1

i;j � 0:2

� Ei�1;j þ Ei;j�1 � 4Ei;j þ Eiþ1;j þ Ei;jþ1

� �n�1

ð17Þ

where i is a grid counter in x-dimension, the super-

script n indicates iteration number (i.e., iteration of the
convolution cycle). The width of this filter (standard

deviation) in x-direction ex, when applied n times is

exc
1

2

ffiffiffiffiffi
3n

p
Dx ð18Þ

In the computations of the present study, n = 6 was

found to be an optimum value (smallest value of n for

which the computations, with spatial resolution 1/5 to

1/10 of the wavelength, remained numerically stable),

so that exc 2Dx in the present study. For the y-

dimension, the expressions are identical, with y re-

placing x. Note that this smoothing is only applied to

compute the diffraction parameter dE. For all other

computations the wave field was not smoothed.

Breakwaters or other obstacles will induce discon-

tinuities in the wave field and corresponding singu-

larities in the diffraction-induced turning rate of the

waves. The finite difference scheme of Eq. (16) is not

suited to approximate these discontinuities and singu-

larities. Estimating the gradients at these locations

therefore requires a different numerical treatment.

This was not investigated in any depth but to illustrate

the significance of these discontinuities and singular-

ities, an ad-hoc approach was taken by enhancing the

value of ch as computed with the above technique by a

factor 50, but only at the one grid point in the shadow

zone behind the corner point of the obstacle that is

nearest to the corner point (e.g., the tip of a breakwa-

ter in case of a breakwater). This grid point may be

different for different wave directions as each wave

direction casts its own shadow. Trial and error showed

that larger enhancements sent too much energy into

the deep shadow area behind the breakwaters whereas

much lower values were ineffective.
5. Verification

5.1. Introduction

As stated earlier, the aim of adding the above

phase-decoupled refraction–diffraction approxima-

tion to the spectral energy balance is, to obtain a

reasonable estimate of diffraction effects in large-scale

computations (size of computational domain is dozens

of wave lengths or more) in which the waves are

assumed to be random, short-crested and non-coher-
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ent. To verify the present approach would require

observations or superior computations with convinc-

ing diffraction effects in such conditions. However, to

the best of our knowledge, these are not available. We

therefore consider instead small-scale computations

(size of computational domain at most a few wave

lengths) for which such observations or superior

computations are available. However, even at such

small scales, diffraction is barely noticeable for ran-

dom, short-crested wind waves (e.g., wind sea con-

ditions with a JONSWAP spectrum, Hasselmann et

al., 1973, and 30j directional spreading). We therefore

consider situations with monochromatic, unidirection-

al waves, and occasionally long-crested, random

waves. These verification conditions are well outside

the intended range of applications. It implies our

confidence that if the model performs reasonably well

in these conditions, it will almost certainly perform

reasonably well within the proper range of applica-

tions where diffraction is significantly less relevant.

We consider two types of academic cases. The first

is a situation without land or obstacles, where diffrac-

tion is induced by variations in the wave field due to

extreme refraction (over an elliptical shoal). The

second type is one in which a breakwater induces

diffraction. We consider laboratory measurements,

analytical solutions and numerical solutions of para-

bolic refraction–diffraction models.

5.2. Elliptical shoal

Vincent and Briggs (1989) measured waves prop-

agating across an elliptical shoal with major and

minor radii of 3.96 and 3.05 m, respectively (at the

bottom of a laboratory wave tank; Fig. 2). The

maximum height of the shoal above the bottom is

0.305 m and the largest water depth is 0.457 m. The

waves propagate across this shoal with significant

refraction effects (probably including caustics) with

corresponding wave amplitude variations. These var-

iations induce diffraction effects, which will tend to

smooth the wave amplitude pattern. We will consider

two cases: one with monochromatic, unidirectional

waves and one with random, long-crested waves.

The wave fields have been computed with SWAN,

with and without diffraction. SWAN is fundamentally

formulated in terms of a spectrum with finite direc-

tional bandwidth. The waves can therefore not be
exactly unidirectional as in the observations. (Such

finite bandwidth would also be required in frequency

space in the presence of an ambient current to allow

frequency shifting. However, in the absence of such

currents, as is the case here, monochromatic waves

can be modelled with one frequency in SWAN).

5.2.1. The monochromatic-wave case (the d-spectrum)
The incident waves for the monochromatic case are

approximated with a spectrum with one frequency and

a very narrow Gaussian directional distribution

around the mean direction. The incident wave height

and period are 0.055 m and 1.30 s, respectively. The

directional spreading is rh = 1.5j (defined as in Kuik

et al., 1988) and the directional resolution in the

computations Dh = 0.25j. We will refer to this spec-

trum as the d-spectrum. The spatial resolution is

Dx =Dy = 0.2 mc 0.08L (L = wave length).

The computed wave field is compared with the

observations of Vincent and Briggs (1989) and with

the computational results of Panchang et al. (1990;

which they obtained with their parabolic refraction–

diffraction model). Since the case is symmetrical

around the centre line of the shoal, the observations

and computational results are shown only in one half

of the tank (different half for different results; Fig. 2).

The observations are presented here with the normal-

ised wave height in plan view and along two lines:

the centre line of the tank and a line normal to the

centre line through the location with minimum wave

height (slightly different location in the different

models). Inspection of the computational results of

SWAN in Fig. 2 shows that adding the phase-

decoupled refraction–diffraction approximation to

the conventional refraction computation, spreads the

effect of the shoal over a slightly larger area (partic-

ularly in the lateral direction). It does not affect the

maximum value of the wave height and it only

slightly increases the minimum wave height. The

values of the maximum and minimum wave height

are reasonably well reproduced with the phase-

decoupled approximation (normalised values: 2.2

computed vs. 2.4 observed and 0.6 computed vs. 0.6

observed, respectively). The parabolic approximation

of Panchang et al. (1990) gives a better estimate of the

observed maximum wave height (2.4 vs. 2.4; lower

panel of Fig. 2) but not for the minimum wave height

(0.2 vs. 0.6; lower panel of Fig. 2). The wave patterns



Fig. 2. Normalised wave height (local wave height divided by incident wave height) for unidirectional, monochromatic waves propagating from

bottom to top (in this figure) over an elliptical shoal. Since the computational results are symmetric around the centre line, they are shown for

half the tank (left side = refraction only; right side = phase-decoupled refraction–diffraction). Line (A–A) through the location of minimum

wave height. Comparison with the observations of Vincent and Briggs (1989; inferred from their figures) and the parabolic refraction–

diffraction approximation of Panchang et al. (1990; inferred from their figures).
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of the phase-decoupled approximation and of the

parabolic approximation differ significantly outside

the area of observation (not shown here). In this outer

area where only computational results are available,

the results of the parabolic approximation show a line

of minimum wave height (normalised wave height as

low as 0.4), starting just outside the area that is shown

in Fig. 2, radiating in a direction away from the centre

of the shoal under an angle of roughly 30j (relative to

the incident wave direction). This line of minimum

wave height is missing in the phase-decoupled ap-

proximation. No judgement is possible without obser-

vations but the pattern in the parabolic approximation

may well be realistic as it also occurs in observations
by Berkhoff (1972) and in the Boussinesq model of Li

and Zhan (2001) for wave propagation over a (differ-

ent) shoal.

5.2.2. The random-wave case (the narrow spectrum)

The above case is also considered for long-

crested incident waves. These are approximated in

SWAN with the narrow JONSWAP spectrum that

was used in the laboratory experiments of Vincent

and Briggs (1989; peak enhancement factor c = 20
and directional width rhc 10j). The incident sig-

nificant wave height is 0.0254 m and the peak

period is 1.30 s. The computational results are

shown in Fig. 3. The effect of adding the phase-



Fig. 3. Normalised wave height (local wave height divided by incident wave height) for waves with a narrow JONSWAP spectrum propagating

from bottom to top (in this figure) over an elliptical shoal. Since the computational results are symmetric around the centre line, they are shown

for half the tank (left side = refraction only; right side = phase-decoupled refraction–diffraction). Comparison with the parabolic refraction–

diffraction solution of On zkan and Kirby (1993; inferred from their figures) along the centre line and line A–A (at end of shoal).
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decoupled approximation is essentially the same as

in the above monochromatic case. The phase-

decoupled approximation hardly affects the maxi-

mum wave height but it increases the minimum

wave height (normalised value from 0.4 to 0.7).

These results are reasonably close to the solution

of the parabolic approximation of On zkan and Kirby

(1993), as shown in Fig. 3.

5.3. Breakwaters

Occasionally a breakwater may occur in the com-

putational domain. To estimate the effect of this in the

present approach, we consider the classical case of a

semi-infinite breakwater and a gap in an infinitely
long breakwater. As noted earlier, such obstacles will

induce discontinuities in the wave field and cor-

responding singularities in the diffraction-induced

turning rate of the waves. This aspect of the compu-

tations will be addressed separately.

5.3.1. Semi-infinite breakwater

Consider a situation with a semi-infinite, infinitely

thin, vertical, rigid, fully reflecting straight screen

(breakwater) in an infinite body of water with constant

depth. Unidirectional, monochromatic waves ap-

proach the breakwater perpendicularly from one side

(Fig. 4). The analytical solution for this case (due to

Sommerfeld, 1896; see also Lamb, 1932) is given in

Fig. 4 in terms of the normalised wave height (local



Fig. 4. Normalised wave height (local wave height divided by incident wave height) of unidirectional, monochromatic waves propagating

around a semi-infinite, straight breakwater. Upper left panel = no diffraction, upper right panel = phase-decoupled diffraction (no singularity

accounted for). Lower panel = circular-section at 3.0 times wavelength L, including comparison with analytical solution of Sommerfeld.
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wave height/incident wave height). In the SWAN

computations the breakwater is fully reflecting and

the waves are approximated with the same d-spectrum
as above. It is obvious from the SWAN results (Fig. 4)

that without diffraction, SWAN does not properly

reproduce the Sommerfeld solution. Only a small

fraction of the energy penetrates in the area behind

the breakwater. This is essentially due to some nu-

merical diffusion, illustrating the relatively small

numerical diffusion of the propagation schemes in

SWAN. Obviously, the wave direction in that region is

the (spectral) direction of this diffused energy. Any

energy above this level in the following diffraction
computations must be due to the diffraction approx-

imation that is added in these computations. With the

phase-decoupled refraction–diffraction approxima-

tion included (but without explicitly accounting for

the singularity at the tip of the breakwater), SWAN

reproduces the Sommerfeld solution reasonably well

near the shadow line and in the exposed region and

certainly much better than without diffraction (Fig. 4).

Even the overshoot on the exposed side of the shadow

line is reproduced to some extent. The largest devia-

tions occur in the deep-shadow region (where nor-

malised wave height < 0.3, i.e., less than 10% of the

incident wave energy). The wave directions too are
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well reproduced (even deep inside the shadow area

where the error is less than 5j, not shown here). These
computations were for unidirectional waves. For

short-crested waves for which spectral wave models

such as SWAN are basically intended, the diffraction

effects reduce considerably in this case, both in the

Sommerfeld solution (superposition for a large num-

ber of unidirectional waves) and in the phase-

decoupled solution (computations were made with
Fig. 5. Normalised wave height (local wave height divided by incident wav

tank from bottom to top (in this figure) through a gap in an ‘‘infinitely’’ lo

right-hand half of the tank (line of symmetry indicated by - ). Arr

propagation; upper centre panel = phase-decoupled diffraction (singularitie

Sommerfeld solution. Lower panels: comparison along transects and com
spectral directional widths of 10j and more; results

not shown here). However, also in these cases the

penetration of wave energy deep into the shadow area

remains underestimated in the phase-decoupled re-

fraction–diffraction approximation.

5.3.2. Gap in infinite breakwater

Yu et al. (2000) observed the wave field in a

compound of the above situation in a laboratory
e height) for unidirectional, monochromatic waves propagating in a

ng, straight breakwater. The computational results are shown for the

ows indicate mean wave direction. Upper left panel = recti-linear

s accounted for in the computation), upper right panel = analytical

parison with observations of Yu et al. (2000).
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wave tank (a gap in an infinitely long, straight

breakwater). The breakwater is a vertical wall

(width = 0.15L) with rounded tips. The gap is 4L

wide (the wave length L= 2 m). The sides of the

tank are absorbing, as is the up-wave side of the

breakwaters. The incident waves are monochromatic

and unidirectional (same d-spectrum as above) with

the incident wave direction normal to the breakwater.

Since the case is symmetrical around the centre line

of the gap, the observations and computational

results are shown in one half of the tank (Fig. 5).

The wave field in this case can be estimated with the

(complex) Sommerfeld solution of two semi-infinite

breakwaters superimposed. It is remarkable that the

Sommerfeld solution is close to the observations,

except on the centre line of the gap where the

Sommerfeld solution gives significantly higher wave

heights than the observations.

It is obvious from the SWAN results (Fig. 5) that

without diffraction, the SWAN results are poor, with

the same characteristics as in the case of the semi-

infinite breakwater. With the phase-decoupled re-

fraction–diffraction approximation included (the sin-

gularity at the tip of the breakwater is not explicitly

accounted for), SWAN reduces the differences with

the Sommerfeld solution by about a factor 2.

Remarkably, an overshoot off the central line is

created in the phase-decoupled refraction–diffrac-

tion computation, which to some extent is supported

by the observations (along the line y/L= 1.5; but
Fig. 6. Same as lower panels of Fig. 4. Singularities at th
this observation is curiously far from the Sommer-

feld solution).
6. Singularities

The computations have so far ignored the existence

of the singularity at the tips of the breakwaters. To

include these singularities in the computational model

is not a trivial matter and we did not study this

problem in depth. We only show here the significance

of these singularities by using at the breakwater tip a

much larger value of Ch than estimated in the above

computations with the finite difference scheme (50

times larger; see section Numerical implementation).

Comparing the results of the computations using this

enhanced value of Ch, with the observations and the

Sommerfeld solution of the gap in the breakwater

shows that the results improve considerably, in par-

ticular in the deep shadow of the breakwater (Fig. 6).

The computational results agree even slightly better

with the observations than the Sommerfeld solution.
7. Discussion

The phase-decoupled refraction–diffraction ap-

proximation for spectral wave models that was used

in this study is based on the mild-slope equation of

Berkhoff (1972) but it has not been rigorously derived
e breakwater tips accounted for in the computation.
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from that equation. That would require an investiga-

tion of a more fundamental nature. Instead, a reason-

able assumption is made (replacing gradients of the

normalised wave amplitude with gradients of the

normalised square-root of the spectral density). Dif-

fraction is thus formulated as an addition to the

refraction-induced directional turning rate of the indi-

vidual wave components in a continuous spectrum.

The approximation has been coded with a central,

second-order finite-difference technique in the itera-

tive propagation schemes of the third-generation wave

model SWAN (Booij et al., 1999).

The model has been verified in conditions that are

more diffraction-prone than in the intended range of

applications (verifications in small-scale conditions

with monochromatic, long-crested waves versus

applications in large-scale conditions with random,

short-crested waves). But even in these extreme

diffraction-prone conditions, the computational re-

sults agree reasonably well with observations and

results of conventional refraction–diffraction models.

The application of the approximation seems to be

limited only by the required absence of phase-cou-

pling in the wave fields (i.e., no coherent wave

fields). In real conditions, such coherent wave fields

may occur when the waves reflect in a coherent

manner off a nearby obstacle or coastline (i.e., with

deterministic phase-relationships between the inci-

dent wave field and the reflecting wave field). This

implies that the phase-decoupled approximation

should not be used if,

(a) an obstacle or coastline covers a significant part of

the down-wave view, and in addition,

(b) the distance to the obstacle or coastline is small

(less than a few wavelengths), and in addition,

(c) the reflection off that obstacle or coastline is

coherent, and in addition,

(d) the reflection coefficient is significant.

(These are essentially the same criteria as for using

parabolic refraction–diffraction models.) This implies

that the phase-decoupled refraction–diffraction ap-

proximation of this study can be used in most sit-

uations, including situations near absorbing or

reflecting coastlines of oceans, seas, bays, lagoons

and fjords with an occasional obstacle such as islands,

breakwaters, or headlands. It cannot be used in
harbours with standing waves or near well-defined

cliff walls. Note that the coastline may be fully

reflecting as long as the reflection is incoherent

(e.g., irregular blocks, rocks or reefs that are small

compared to the wave length) because incoherent

reflection can be accounted for separately (it is in

SWAN). A harbour with reflective quays that would

induce coherent wave fields in the harbour (seen as

standing wave patterns) cannot be accommodated.

The phase-decoupled refraction–diffraction ap-

proximation of the present study allows a separate

evaluation of refraction and diffraction phenomena in

specific cases. This can be achieved by de-activating

the diffraction or refraction option in the code of the

numerical model and inspect the effect in the compu-

tational results. This seems to be inherently impossi-

ble in Boussinesq models or models based on the

mild-slope equation (the full mild-slope equation or

the parabolic approximation). It is perhaps even more

important that, with the phase-decoupled refraction–

diffraction approximation it is possible to identify the

areas in the computational domain where diffraction

or refraction effects are induced. Such areas would be

identified by high values of the refraction part of Ch

(refraction–induction areas) or by high values of the

diffraction part of Ch (diffraction–induction areas).

This may help to select the proper model (refraction,

diffraction, or a combination) to compute the wave

field with more advanced propagation models if

needed. In addition, it would help to determine in

which areas of the computational domain the grid

resolution should be high and in which areas it can be

coarser. Alternatively, it may help to determine where

nesting of models is required (possibly with different

types of wave models).

Combining diffraction with refraction as in this

study has many advantages, but more verification is

required before any firm conclusion as to the appli-

cability of the phase-decoupled refraction–diffraction

approximation can be drawn. Our main but prelimi-

nary conclusion is that it seems to work reasonably

well, at least for the intended range of applications

(large-scale computations near an open coast with

occasional obstacles). The problem of how to treat

singularities in the computational domain, e.g. in the

presence of breakwaters, is still unresolved. We do not

suggest that the approach in the present study is

correct. We merely showed that for monochromatic,
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long-crested waves, a separate treatment of such

singularities is required to obtain acceptable results

in the deep shadow behind obstacles. It must be born

in mind that spectral models are not intended to be

used for such conditions.

The SWAN wave model that was used in the

present study is a third-generation wave model for

shallow water waves. The implementation of phase-

decoupled diffraction in this model thus combines

diffraction not only with refraction but also with

processes of generation, dissipation, and wave–wave

interactions, including wave–current interactions.
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Appendix A

In the presence of an ambient current, the action

balance equation is used rather than the energy

balance equation. The action balance equation is:

BN

Bt
þ BcxN

Bx
þ BcyN

By
þ BcrN

Br
þ BchN

Bh
¼ S

r
ð1Þ

where the action density is N =N(r,h) =E(r,h)/r
(where r is the relative frequency) and cr is the

propagation speed in frequency space (Doppler

shifting).

When diffraction is ignored, the expressions for the

propagation speeds in the presence of an ambient

current are (note that if diffraction is ignored, the

separation parameter j from x2 = gj tanh(jd), is

equal to the wave number k = j):

!
c g ¼ ðcx; cyÞ ¼

!
j
j

Br
Bk
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U ð2aÞ
cr ¼ Br
Bd

Bd

Bt
þ!
U �jd
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!
U
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ch ¼ � cg
1

j
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þ

!
j
j
� B

!
U

Bm

" #
: ð2cÞ

When diffraction is not ignored and the phase-

decoupled approximation of this study is used, then

the expressions are:

!
C g ¼

!
cg 1þ dEð Þ1=2þ!

U ð3aÞ

Cr ¼ Br
Bd

Bd

Bt
þ!
U �jd

� �
� cg

!
j � B

!
U

Bs
ð1þ dEÞ1=2

ð3bÞ

Ch ¼ �
"
cgð1þ dEÞ1=2

1

j
Bj
Bm

þ 1

2ð1þ dEÞ
BdE
Bm

� �

þ
!
j
j
� B

!
U

Bm

#
ð3cÞ

in which all symbols have the same meaning as in the

main text.
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