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ABSTRACT 

Holthuijsen, L.H., Booij, N. and Herbers, T.H.C., 1989. A prediction model for stationary, short- 
crested waves in shallow water with ambient currents. Coastal Eng., 13: 23-54. 

A numerical model for the hindcasting of waves in shallow-water (HISWA) is described and 
comparisons are made between observations and model results in a realistic field situation. The 
model is based on a Eulerian presentation of the spectral action balance of the waves rather than 
on the more conventional (at least in coastal engineering) Lagrangian presentation. Wave prop- 
agation is correspondingly computed on a grid rather than along rays. The model accounts for 
refractive propagation of short-crested waves over arbitrary bottom topography and current fields. 
The effects of wave growth and dissipation due to wind generation, bottom dissipation and wave 
breaking (in deep and shallow water) are represented as source terms in the action balance equa- 
tion. The computational efficiency of the model is enhanced by two simplifications of the basic 
balance equation. The first one is the removal of time as an independent variable to obtain a 
stationary model. This is justified by the relatively short travel time of waves in coastal regions. 
The second simplification is the parameterization of the basic balance equation in terms of a mean 
frequency and a frequency-integrated action density, both as function of the spectral wave direc- 
tion. The discrete spectral representation of wave directionality is thus retained. An untuned 
version of HlSWA has been tested in a closed branch of the Rhine estuary where measurements 
with buoys and a wave gauge are available. In this situation, where wave breaking and short- 
crestedness dominate, rms-errors in the significant wave height and mean wave period are about 
10 and 13 % respectively of the observed values. 

INTRODUCTION 

C o a s t a l  e n g i n e e r s  a r e  r e g u l a r l y  c o n f r o n t e d  w i t h  t h e  t a s k  o f  e s t i m a t i n g  w a v e  

c o n d i t i o n s  in  c o a s t a l  r e g i o n s  o r  in  i n l a n d  w a t e r s  f r o m  w a v e  i n f o r m a t i o n  in  
d e e p e r  w a t e r  a n d  l o c a l  w i n d  i n f o r m a t i o n .  T h i s  e s s e n t i a l l y  e n t a i l s  t h e  c o m p u -  

t a t i o n  o f  w a v e  p r o p a g a t i o n  in  n e a r s h o r e  r e g i o n s  t a k i n g  i n t o  a c c o u n t  t h e  e f f e c t s  
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of wind, bottom and currents. In this paper we formulate a numerical wave 
model (called HISWA:HIndcasting shallow water WAves) to carry out such 
computations for short-crested waves with fairly limited computer capacity 
and we compare results of this model with observations in the Rhine estuary. 
The model is of a complexity which places it between models based on mono- 
chromatic wave-ray techniques and time-dependent discrete spectral wave 
models. 

Refractive wave propagation in shallow water is sufficiently well described 
by linear wave theory in many coastal engineering situations. In conventional 
coastal engineering models this theory is implemented with the wave ray tech- 
nique, either in a monochromatic approach (e.g. Arthur et al., 1952) or in a 
discrete spectral approach (e.g. Cavaleri and Malanotte Rizzoli, 1981; Brink- 
Kj~er, 1984; Mathiesen, 1984 ). These models are of a Lagrangian nature in the 
sense that the wave development is considered while travelling with the waves 
along rays. However, this approach is numerically inefficient when nonlinear 
wave generation and dissipation is to be determined. The reason for this is that 
to compute such nonlinear phenomena the effects of wave propagation of dif- 
ferent spectral components need to be integrated in the spectral domain. This 
is numerically costly in the wave-ray approach as the relevant information is 
available only on the wave rays and these are scattered over the area of interest. 
In an Eulerian approach of wave propagation all wave information is inher- 
ently available at the mesh-points of a regular grid. The nonlinear source terms 
are then readily computed. Such an Eulerian approach is common in models 
for ocean wave forecasting (e.g. Gelci et al., 1956; Barnett, 1968; Ewing, 1971 ). 
In fact some of these models have been extended to include finite depth effects 
(e.g. Golding, 1983; Janssen et al., 1984; Graber and Madsen, 1985; Young, 
1988). Other Eulerian wave models have been designed specifically for shallow 
water (e.g. Piest, 1965; Battjes, 1968; Karlson, 1969; Chen and Wang, 1983; 
Sakai et al., 1983; Hirosue and Sakai, 1987). 

Ideally one would prefer a fully discrete spectral model accounting for all 
processes of generation and dissipation and wave-current interactions. How- 
ever, the very high spatial resolution that is sometimes required in coastal 
areas would demand excessive computer requirements (e.g. 100×100 grid- 
points in an area of 10 X 10 km for a coastal model as compared to 35 × 35 
gridpoints in an area of 3500 X 3500 km for an ocean model). Some degree of 
simplification is therefore needed. One simplification would be to ignore the 
wave-current interactions. In fact, these interactions are absent in all but one 
of the above Eulerian models. The exception is the model of Chen and Wang 
(1983) in which wave-current interactions are accounted for but in which the 
waves are assumed to be unidirectional at every frequency. We feel that this is 
unrealistic in many situations, for example when wind waves propagate through 
strong tidal currents or over very shallow shoals. 

We introduce two simplifications to reduce the required computer capacity 
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to manageable proportions. The first one is based on the fact that  in coastal 
situations the travel time of the waves through the area of interest  is often 
short compared to the time scale of the local windfield or the ambient  currents. 
The situation can then be treated as stationary. This simplifies the wave model 
considerably since it permits the removal of time as an independent variable. 
The second simplification is to parameterize the balance equation of wave ac- 
tion in the following manner.  The action balance equation consists basically 
of three terms: the local rate of change of the spectral action density (which 
we removed to make the model stationary); the propagation term (including 
refraction and shoaling); and the source function which represents the gen- 
eration and dissipation of wave action due to wind, wave breaking, etc. A full 
numerical t rea tment  of the source function is not only prohibitively expensive 
because of the complex nature of nonlinear wave-wave interactions (e.g. Has- 
selmann and Hasselmann, 1981 ) but in fact not well possible since the source 
functions are not well understood in shallow water in the presence of currents. 
For practical applications some degree ofparameterizat ion is therefore needed. 
Such parameterization can be applied either to the source function alone (no- 
tably the nonlinear wave-wave interactions; e.g. Hasselmann et al., 1985) or 
to the spectral balance equation as a whole (e.g. Gtinther et al., 1979). The 
first option, a parameterization of the source function alone is usually suffi- 
cient for ocean wave models. However, it is not sufficient for our model as the 
expected number of gridpoints is potentially one order of magnitude larger 
than in an ocean wave model. We have therefore chosen for the second option: 
to parameterize the complete action balance equation. In some presently op- 
erating ocean wave models such parameterization is carried out by expressing 
the wave spectrum and the energy balance equation (action is not used in these 
models) in terms of a small number of characteristic parameters such as the 
significant wave height, the mean wave period and a main wave direction (e.g. 
Giinther et al., 1979; Janssen et al., 1984). This implies a considerable reduc- 
tion of frequency and directional information of the wave field. We feel that  
for applications in coastal waters such a parameterization is too drastic. In 
particular the directional details of the wave spectrum should be retained in 
coastal regions with a complex ba thymetry  where the occurrence of cross-seas 
is an essential aspect of the wave field. Therefore, instead of defining integral 
parameters such as a significant wave height, we define two directional wave 
functions: the directional action spectrum Ao (0) and a mean wave frequency 
as a function of spectral direction O)o(0). We accordingly parameterize the 
propagation terms and the source terms of the spectral action balance equation 
(the local rate of change has already been removed as indicated). The number 
of degrees of freedom of the wave model is thus reduced from about 125 per 
spatial grid point (the number of wave components in a two-dimensional spec- 
t rum) to about 25 (the number  of directions of Ao and O9o) while retaining the 
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spectral representation of the directionality of the waves. To implement the 
HISWA model on a computer we have used a finite difference method. 

The model has been applied to waves penetrating a closed branch of the 
Rhine estuary where detailed wave observations are available (Dingemans, 
1983; Dingemans et al., 1985) using a priori chosen coefficients from the lit- 
erature. Experimental computations show that the observed situation is dom- 
inated by wave breaking and short-crestedness, suppressing the effects of re- 
fraction. Such combination is usually not handled well by other models. We 
found the rms-error of the model results to be 10.2 and 13.0% respectively of 
the observed values of the significant wave height (which varied from about 
3.0 to about 0.5 m) and of the mean wave period (which varied from about 7.0 
to about 2.5 s). 

PHYSICALBACKGROUND 

Introduction 

Models for hindcasting waves in the absence of currents are usually based 
on the energy balance equation of the waves in which the wave energy density 
E, as a function of absolute frequency ~o and direction 0, is considered as a 
slowly varying function in space (x,y) and time t (e.g. Gelci et al., 1956; Has- 
selmann, 1960; Phillips, 1977). However, in the presence of an ambient current 
the more relevant wave parameter for modelling purposes is action density A 
defined as (e.g. Whitham, 1965, 1971): 

A ((o,O;x,y,t) =E(oo,O;x,y,t)/a 

with the relative frequency a defined as: 

a=o~-k.  V 

(1) 

(2) 

in which k is the wavenumber vector (magnitude k and direction 0) and V is 
the current velocity vector. The action balance equation, which replaces the 
more conventional energy balance equation, is then, in the adopted Eulerian 
approach (dropping the notation for the independent variables from A ): 

~-~x(CxA)+~-~v(cyA)+ (coA)+ (c~A)=T (3) 
Ot y 

The local rate of change of action density is represented by the first term on 
the left-hand side of Eq. 3. The other terms on the left-hand side represent the 
net transport of action in the x-, y-, 0-, and o)-domain respectively. The total 
effect of generation and dissipation of action (e.g. by wind) is represented by 
the action source function T. It is also a function of x, y, t, 0 and to. 

The propagation speeds cx and cy in the balance equation (Eq. 3 ) are defined 
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as the x- andy-component respectively of the action propagation speed in (x~y)- 
space, also called the group velocity e. In linear wave theory e is defined as: 

Oak c= -k + v (4) 

It should be noted that in the presence of a current the direction of the group 
velocity c is in general not equal to the wave direction 0 (the direction normal 
to the wave crest of wave component (8,w)). 

The propagation speed co, representing refraction (see below), is given by 
linear wave theory as: 

l Oa Od k O V 
c ° = - k O d ~ n - k  On (5) 

in which d is the local water depth and n is the coordinate in (x,y)-space nor- 
mal to the spectral wave direction 0. 

The propagation speed c~, which represents the shift of action in the fre- 
quency domain induced by time variations in the propagation medium (vari- 
ations in water depth or current speed and direction) is given by: 

~_[ Oa Od 
c~=k. ~ Od Ot (6) 

This representation of wave propagation in the action balance equation (Eq. 
3) is unconventional in coastal engineering. The more usual representation is 
based on wave ray techniques. Fundamentally there is no difference as both 
approaches represent wave propagation according to the linear theory of sur- 
face gravity waves. However, some explanation of the correspondence between 
the two approaches seems in order. To do this, we consider a situation where 
the wave field, the bottom topography and the current fields are constant in 
time. In such a situation the first and fifth term on the left-hand side of the 
action balance equation (Eq. 3) vanish. This is a situation normally considered 
when using the wave ray approach. When following the wave energy along a 
wave ray, the energy is followed across x,y-space with the group velocity with 
x- and y-component cx and cy respectively (the difference between energy and 
action is not essential for this explanation). This illustrates that the second 
and third term on the left hand side represent propagation in x,y-space at a 
given location x,y in a given direction 8. However, in general the direction of 
the energy propagation is not a constant as wave rays in shallow water are 
usually not straight lines due to refraction. A curving wave ray implies that the 
direction of wave propagation changes while travelling along the ray. In other 
words the energy continually changes direction while travelling through x,y- 
space. This can be conceived as the energy travelling not only through x,y- 
space but also (and simultaneously) through 0-space. The travel speed in 8- 
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space is the rate at which the direction changes as one travels with the group 
velocity along the (curving) ray. This rate of change is the above speed Co. This 
illustrates that the fourth term on the left hand side represents refraction. The 
effect of currents is taken into account by including the current speed and 
direction in the expressions for cx, c~ and co and by using action density rather 
than energy density in the formulation (Bretherton and Garrett, 1968). 

For the HISWA model we consider precisely such stationary situations as in- 
dicated above. The basic equation of our model therefore reduces to: 

~--~(cxA ) + ~--~(c~A ) +~(coA  ) = T (7) 

with % cy and co as given above. 
However, as indicated in the introduction, this equation is still too complex 

for a full numerical treatment. We therefore parameterize this equation as a 
whole with the side-condition that the directional characteristics of the waves 
should be retained. To this end we have chosen the zero-th and first-order 
moments of the action spectrum in the frequency domain for the parameteri- 
zation. The corresponding two wave functions are the one-dimensional direc- 
tional action spectrum Ao (0) and the mean frequency as a function of spectral 
direction o)o (0): 

Ao(O) = mo(0) (8) 

o)o(O) =ml(O)/mo(O) (9) 

in which the moments mn of the action density spectrum are defined as: 

mn(O) = ~  O)~A (o),0) do) (10) 
0 

Note that the function Ao(O) is a directional spectrum in the sense that it 
presents the directional distribution of frequency-integrated wave action den- 
sity. It is not the directional spectrum in the more conventional sense of a two- 
dimensional wave spectrum, e.g. A (o),0). The parameterization of the action 
balance equation is carried out by applying the definition operator used in Eq. 
10 with n = 0  and n=  1 to the basic balance equation (Eq. 7). This gives two 
evolution equations: one for mo(O) and one for ml(0). The corresponding 
equations are (dropping 0 from the notation ): 

O (c~xmo) 0 . 0 . +~yy (coymo) +~-~( coomo ) = To (11) 

0 0 ** 0 ** 
O-~x(C'6*ml ) +~y(Coy ml ) +-~(Coo ml ) = TI (12) 
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* and c]e in Eq. 11 and ** ** and ** in Eq. 12 are the prop- in which c~,  Coy COx, COy Co0 
agation speeds through (x,y,O)-space of mo and ml respectively. To and T1 are 
the parameterized source functions for mo and ml respectively. Equations 11 
and 12 are implemented in the HISWA model. 

The propagation part  of these equations (left-hand side) and the genera- 
t ion/dissipation part (right-hand side) are addressed next. 

Propagation 

In view of other uncertainties in our model (particularly the generation and 
dissipation of waves in shallow water), the propagation speeds in Eq. 11 and 
12 are taken equal to the corresponding speeds at the mean frequency COo; Co~, 
Coy and Coo. Of these, Co~ and Coy are the x- and y-component respectively of the 
group velocity Co at frequency COo (see Eq. 4): 

Oao ko 
~-V (13) Co- Oko ko 

in which ko is the wavenumber vector corresponding to (Oo (0) (with magnitude 
ko and direction 0) determined from linear wave theory by: 

~o =ao+ko 'V  (14) 

and: 

ao = (gko tanh ( kod) } 1/2 (15) 

The propagation speed representing refraction at the mean frequency Wo, Coe 
is, from linear wave theory: 

10aoOd ko OV 
Coe= ko Od On ko On (16) 

The source functions To and T1 are derived below using the above assumptions 
regarding the propagation speeds. 

Generation and dissipation 

Formally the source functions To and T1 can be obtained by parameterizing 
the action source function T of Eq. 3. However, this function is only partially 
known and rather complex. Therefore, instead of at tempting such a formal 
parameterization we express To and 7'1 in terms of functions which can be 
estimated more readily, at least to some extent, from information in the liter- 
ature. To this end we express To and T1 in terms of the source functions of 
wave energy (S E) and the mean frequency of the energy spectrum (So~). 
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If the directional action density Ao(O) is approximated by the frequency 
integrated directional energy density Eo (0) ( = f ~ E  (0),0) do)) divided by ao (0) 
then the source function of trti (8 ) ,  T 1 is the rate at which Eoeoo/ao is generated 
or dissipated. If we assume that the frequencies 0)o and ao are approximately 
equally affected by wave generation and dissipation so that their ratio varies 
only slowly, then T1 is related in a simple fashion to SE, the rate at which Eo (8) 
is generated or dissipated: 

0)O 
T: ~- - - S t  ( 1 7 ) 

ao 

SE will be determined below from information in the literature. 
The source function for mo, To can be readily formulated in terms of S t  and 

S~, the rate of change of the mean frequency 090(0). This is achieved by first 
subtracting Eq. 11 multiplied by 0)0 from Eq. 12. The result of this is: 

00)0 , 00)0  , 0o9o 1 
C°x--~-x -V C°S~Y "V C°° -~ - A o  ( T1 - 0)o To ) (18) 

of which the left-hand side represents the evolution of 0)0 in stationary con- 
ditions ( = S~). Substituting T1 from Eq. 17 in Eq. 18, the source function To 
can be obtained in terms of S t  and S~ as: 

1 Ao To--  oSt -0)oSo  (19) 

The source functions SE(O) and S~o(0) represent the effects of generation 
and dissipation. We therefore write them as the sum of their constituent source 
terms: 

SE( O ) : SE(  O )wind ~- SE( O)bottom-~ SE( O)breaking ~- SE( O)blocking (20) 

So)( O ) :S¢o( O )wind-~" So)( O)bottom'~ So)( O)breaking'~- So)( O)blocking (21) 

The subscripts wind, bottom, breaking and blocking refer to wind generation, 
bottom friction, wave breaking and current-induced blocking of wave propa- 
gation respectively. In the following we formulate these source terms in a fairly 
pragmatic way. The reasons for this are firstly, that we wish to use rather 
simple expressions to avoid costly computations and secondly, that detailed 
information on each of the individual source terms is not available for very 
shallow water (e.g. the effects of shallow-water wave breaking). In addition 
the formulations are such that the results of rather basic numerical or physical 
experiments can be readily incorporated in the model. It should be noted that 
wind generation is interpreted in the present context to include all processes 
of wave generation and dissipation in deep water (i.e. wind input, nonlinear 
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wave-wave interactions and deep-water wave breaking in the absence of 
currents). 

Instead of addressing the source function of the action-averaged frequency 
S~ (0) we will address in the following the source function S~ (0) of the energy- 
averaged frequency t~o (0): 

~o(0) -Eo(O) w E(eo, O)da~ 
0 

(22) 

The reason for this change from 090(0) to 52o(0) is that information on the 
energy-averaged frequency t2o (0) is more readily available in the literature 
than on the action-averaged frequency O)o (0). The ratio of the values of O9o (0) 
and t-2o(0) is usually close to one, in fact, in HlSWA we use the value for the 
mean JONSWAP spectrum (o)o/t2o----0.92; Hasselmann et al., 1973). We corre- 
spondingly take S~ = O)o/t~o S~. 

To roughly estimate the nature and the magnitude of the source terms we 
assume in the following a shape of the wave spectrum without implying that 
the model predicts such a shape. Other assumptions on the spectral shape would 
probably give roughly the same results. Of course, it would be a simple matter 
to supplement the output of the model with a standard shape frequency spec- 
trum for each spectral direction (with Eo (0) and t2o (0) as parameters, e.g. the 
k-3-spectrum of Eq. 39 or a JONSWAP spectrum (Hasselmann et al., 1973) 
modified with the Kitaigorodskii scaling, e.g. Bouws et al., 1985). 

Generation by wind 

The formulation of wave generation by wind is taken from empirical infor- 
mation in an idealized situation. This situation is one in which a stationary, 
spatially uniform wind with velocity U starts to blow over deep water (no cur- 
rents, no waves) at time t=O. In such a situation, we formulate the evolution 
in time of the total wave energy E1 and the overall mean frequency ~21 as: 

2 z  

E1 = ~Eo(O)dO (23) 
0 

and: 

2 z  

0 

with the following expressions: 
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~:1 = a i b for t<  t'~ I 
E, = a [~ for t>  t'~ I (25) 

and: 

for t <  t" m [ 
ff2  = c  tam for t>__ I (26) 

in which J~l, ~721 and { are dimensionless representations of El, t21 and t based 
on wind speed U and gravitational acceleration g. Taking the time derivative 
of Eq. 25 and 26 gives expressions for SE(O) and S~(O) in terms of dimension- 
less time t provided that  we assume the normalized directional energy distri- 
bution D (0) in this ideal case to be constant in time, so that: 

Eo(O) =El Dideal(0) (27) 

and that  £20(0) is constant over 0, so that: 

~'~o (0) ~-~1 (28) 

To determine SE(O) and S~(0) we use a directionally decoupled parametric 
model the notion of which has been suggested by Seymour (1977). It is based 
on the assumption that  the two-dimensional energy density in direction 0 de- 
velops independently from the energy densities in other directions (but it does 
depend on the energy density at other frequencies in the same direction). The 
validity of these suggestions is supported by Holthuijsen (1983) who observed 
directional wave spectra with a high directional resolution which in off-shore 
wind conditions were affected by the shape of the up-wind coast. The observed 
effects could be reconstructed with a directionally decoupled parameteric model. 
Observations with similar characteristics were obtained by Donelan et al. 
(1985). SE(O) and S~(0) are correspondingly taken to be dependent on the 
equivalent total wave energy ET (0) = Eo (0)/Dideal and the equivalent mean 
wave frequency ~T (0 )=~o(0 ) .  During the computations E'~(O) and t2~(0) 
are substituted in Eq. 25 and 26 to obtain equivalent dimensionless durations 
t( 0 ) for E T (0) and ~ T (0) respectively which in turn provide the rates of change 
o f E T ( 0 ) and t~ T (0). The rate of change of E T (0) is directionally distributed 
with Dideal to find SE(O). In HISWA we take Did~al=A cos~(0-  0w) in which 0w 
is the wind direction and n is usually taken 2.0. S~(0) is found by assuming 
the rate of change of ~T(0) to be independent of 0. The values of SE(0) and 
Sa (0) are thus determined solely from the values of Eo (0) and £2o (0) and the 
wind speed and direction. To obtain results of deep-water wave growth com- 
parable with those of the Shore Protection Manual (CERC, 1973) in another 
ideal situation (where a constant wind blows perpendicular off a long and 
straight coast with no currents), we choose the values of the constants in Eq. 
25 and 26 as: a=1 .44X10-s ;  b=l .12;  c=43.59; d---1/3; and tm=6.6X104 
(see Fig. 1). 
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Fig. 1. Growth curves for fetch-limited conditions according to Shore Protection Manual (CERC, 
1973, full lines) and HISWA (crosses and dashed lines). Dimensionless significant wave height 
(/~s); wave period (~'s; Ts-- 1.2 T assumed); and fetch (/~) on basis of wind speed (U) and gravi- 
tational acceleration (g). 

For the evolution of £2o(0) in non-ideal situations, we assume that the wind 
generation forces the value of £20 (0) towards the following directional equiv- 
alent of the universal relationship ~1 = e ~:1: (e.g. Hasselmann et al., 1976): 

~o( 0) =e{E,o( O) /Didea~( O) }: (29) 

in which El,  1~o (0), .01 and ~o are dimensionless representations of El, Eo(O), 
SQ~ and £20 (0) based on wind speed U and gravitational acceleration g. It follows 
from Eq. 25 and 26 that e = ca -'~/b and f =  d/b. To achieve this behaviour of the 
model we have chosen the following relaxation formulation: 

: ~ 0 ( 0  ) ~m 

S~ 2 (0) wind ---~ S O, ideal (0) w i n d  ~ e {Eo (0)/Dide~,l (O) }/] (30) 

thus forcing the value of £20 (0) towards the value imposed by Eq. 29. The value 
of m, governing the rate of relaxation, has been chosen such (m = 5) that the 
model results are similar to those obtained by Giinther (1981) (see Fig. 2). 
This illustration shows the evolution of/~1 and ~ in a homogeneous, station- 
ary wind field for various initial values of E1 and ~1. 

The effect of currents on wave generation is accounted for in the model by 
taking the wind speed and direction relative to the current. 
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Fig. 2. Relaxation of the dimensionless wave energy (~:1) and the dimensionless peak frequency 
(fp; ~1 = 0.75 2~fp assumed) to the universal relationship {full lines); according to Gfinther ( 1981, 
panel a) and HISWA (panel b); time in min. 

Bottom dissipation 

Bottom dissipation in our model is based on the conventional quadratic fric- 
tion law to represent bottom shear stress. The corresponding energy dissipa- 
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tion for a harmonic wave with frequency o) and energy E1 = -~H 2 is (e.g. Put-  
nam and Johnson, 1949): 

bottom-- -~n g \sinh(kd)) (31) 

in which cfw is a friction coefficient and H is the wave height. Note that  energy 
is interpreted here and anywhere else in this paper as variance. This expression 
has been extended by Dingemans (1983) to unidirectional random waves with 
Rayleigh distributed wave heights, (one single frequency o)): 

( d E 1 )  - l c f w  o)3 3 
-8n,/2 (32) - ~  bottom g sinh3(kd)Hrms 

in which Hrms is the rms-value of the wave height (Hrm~ = 2 (2E~) 1/2 if the waves 
are Rayleigh distributed). Ignoring the negative sign for the moment,  this 
expression may be written as the product of a measure < 3> of the shear-stress 
proportional to the orbital velocity squared and a measure < v > o f  the orbital 
velocity at the bottom: 

< 3> ---- (8 /n)  1/2 Cfw 092 
g sinh2(kd)E1 (33) 

co r-1/2 (34) 
< v >  - s i n h ( k d ) - i  

To obtain a simple directional version of this formulation we assume, analo- 
gous to the above, that  the shear stress is directionally distributed in propor- 
tion to the square of the orbital velocity in each direction: 

<7~(0)> =(8 /n ) l / 2 C fw  ~'~2(O) 
g sinh2{ko(O)d}.Eo(O) (35) 

In view of the nonlinear character of the bottom dissipation we assume that  
the dissipation in each direction is coupled to the other directions through the 
magnitude of the orbital velocity at the bottom (estimated analogous to Col- 
lins, 1972): 

I ~  2 1/2 
2,~ ~o(O)Eo(O) dO1 

< V l > =  sinhZ{ko(O)d } .] (36) 
o 

We consequently write the directional distribution of the bottom dissipation 
as: 

SE(O)bottom -~- -- < 3 ( 0 ) >  < U 1 > (37) 

The effect of a mean current  on the bottom dissipation is taken into account 
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by adding the current component  in the 8-direction, Vo to the characteristic 
orbital velocity < vl > ,  with its own friction coefficient cfc, and by replacing 
the absolute frequency Do (8) by the relative frequency ao (8) in the source term 
SE(8)botto m (Eq. 35, 36 and 37): 

(8/7C) 1/2 (Cfw < U 1 > -~- Cfc Vo) 
SE(8)bottom = g 

in which lie= Vx cos 8+ Vy sin 8. 

a~(o) 
8)d~Eo~ (8) (38) sinh2{ko ( 

To formulate the effect of bottom dissipation on the mean frequency Do (8) 
we assume that  this dissipation is concentrated at the low frequency side of the 
wave spectrum because the longest waves are more affected by the bottom than 
the shorter waves. In addition, the spectrum is assumed to have a universal 
high-frequency tail if expressed in terms of wavenumber k, in both deep and 
shallow water (e.g. Kitaigorodskii et al., 1975; Thornton,  1977). Our direc- 
tional version of this universal spectrum is: 

E(k,O)=a(O)k -'~ for k>kp 
E(k,8) =0 for k<kp (39) 

in which k, is the peak wave number and n=3 (Kitaigorodskii et al., 1975; 
Thornton,  1977). The rate of change of the mean frequency ~2o (8) as induced 
by this low-frequency bottom dissipation is estimated by first considering the 
corresponding rate of change of the mean wavenumber Ko(8) defined as: 

Ko(O)-Eo(O ~ - -  kE(k,O) dk (40) 
0 

It is readily shown that  for the assumed spectrum of Eq. 39 with a (8) constant 
in time, the rate of change of Ko (8) is directly related to SE (8)bottom as: 

1 g° (8 )S  (8) m d(Ko(8))  - (1 -n)  Eo(8-----) E bot~ (41) 

If we replace ~Oo and ko by Do(O) and Ko(O) in Eq. 14 and 15, assuming that  
these equations hold for ~2o ( 0 ) and Ko (8), the rate of change of Do (8) is readily 
determined from Eq. 41: 

1 Co(8)Ko(8) 
Sa(0)bottom-- ( l - - n )  Eo(8) SE (8) b°tt°m (42) 

The effect of a current on the mean frequency is implicit in the formulation 
of Sa (8) bottom through SE (0) bottom in Eq. 42, and in the propagation speed Co (0) 
and the determination of Ko (8) from t2o (8) with Eq. 14 and 15. 
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Wave breaking 

To account for wave breaking due to a large wave steepness or due to direct 
bottom effects (e.g. over shoals or on a beach), to the extent that  it has not 
been accounted for implicitly in SE (0) wind and S~ (0)wind, we use the expression 
of Battjes and Janssen (1979) in our notation: 

= -o~lQb~21H~/(8 ~z) (43) 
breaking 

in which Hm is a maximum wave height, Qb is the fraction of breaking waves 
(estimated from the Rayleigh distribution for wave heights and the value of 
Hm (Battjes and Janssen, 1979) and c~1 is a numerical constant. The value of 
Hm is taken by Battjes and Janssen (1979) from the criteria of Miche (1944) 
(wave steepness in deep water and water depth in shallow water): 

Hm = Yl k ~- 1 tanh (y2 k~ d/~  ) (44) 

with k~ obtained from ~21 with the linear wave theory. We choose the direc- 
tional distribution of this dissipation such that  it does not influence the shape 
of the directional energy distribution: 

SE(0)breaking = --Og I Qbt2o(O)H~Eo(O)/(8/rE1) (45) 

We have considered to use the values of c~, Yl and ~'2 as used by Battjes and 
Janssen (1979) (viz. 1.0, 0.88 and 0.8 respectively) but since in our model some 
deep water breaking is already implicitly accounted for in the wind generation 
terms, we wished to trigger the above dissipation term at higher values for wave 
steepness (controlled by y~ ). After some trial and error we choose Yl = 1.0 (wave 
steepness Hm/LI=O.16; where L1 is 2n/k~) as a fairly low value (i.e. close to 
0.88 or Hm/L1 =0.14) for which the dissipation modelled by Eq. 45 does not 
affect deep water wave growth significantly. The values of c~ and ~'2 in the 
HISWA model are those used by Battjes and Janssen (1979). 

The effect of the above wave breaking mechanism on the mean frequency in 
shallow water is chosen to be similar to the effect of bottom dissipation (low- 
frequency dissipation) since in the above model of Battjes and Janssen ( 1979 ) 
only the highest waves (with lowest frequencies) break. We assume that  in 
deep water the mean frequency is not influenced by wave breaking. This be- 
haviour of the model is achieved by using an expression for Sa (0) breaking similar 
to that  of S~ (0)bottom multiplied with a depth dependent reduction factor R the 
value of which is 0 in deep water and 1 in shallow water: 

R Co(O)go(O) 
S~Q (0)breaking = 1 __ n E o ( 0  ) S E  ( 0 )  breaking (46) 

in which R is: 



38 

R =  1 - {tanh (y2 kl d) } e (47) 

The effect of currents on wave breaking is included in the above source terms 
to the extent that  the propagation speed Co (0) is influenced by the current and 
to the extent that  Ko(O) is determined with Eq. 14 and 15. 

Wave blocking 

In a situation with a strong opposing current some fraction of the wave en- 
ergy cannot be transported upstream because the group velocity of the highest 
frequencies in the spectrum is less than the opposing current velocity. This 
fraction of the wave energy may be dissipated or reflected by the counter cur- 
rent. The lowest frequency above which this phenomenon of wave blocking 
occurs (the critical frequency (oc) is the maximum frequency for which a so- 
lution exists for the wavenumber k in the dispersion relationship: 

o)~-k. U -  [gk tanh(kd)  ]1/2=0 (48) 

The corresponding wavenumber is the critical wavenumber kc. To estimate the 
rates of change of Eo (0) and #2o (0) induced by wave blocking we again assume 
that  the shape of the wavenumber spectrum is a k -  n-tail, (see Eq. 39), except 
that  in this wave blocking situation no wave energy is present above the critical 
wavenumber: 

E(k'O)=a(O)k-n f°r kv<k<kc  (49) 
E(k,O) =0  for k<k~ or k>kc 

The rate of energy dissipation for this spectrum (with c~ (0) constant in time ) 
is directly related to the current induced rate of change of the critical wave- 
number. It follows directly from the time derivative of Eo (0) corresponding to 
Eq. 49 that: 

k:" ( l - n )  dk~ (0) 
SE(O)blocking - ( k l - n  1--n dt -kp ) E o ( O ) - -  (50) 

where dk~ (0) /d t  is the current induced rate of change of k~ determined in the 
model with Eq. 48. The corresponding rate of change of the mean wavenumber 
Ko (0) follows directly from the rate of change of kc (0): 

d 
d~ (Ko(O) )= {kc(O) --Ko(O) }SE(O)blocking/Eo(O) (51) 

Replacing Wo and ko by ~o(0) and Ko(O) in Eq. 14 and 15, and assuming that  
the equations hold for ~o (0) and Ko (0), the rate of change of ~o (0) is readily 
determined from Eq. 51: 

S~(O)blocking=Co(O) {kc(0)--Ko(0)} SE(O)blocking/Eo(O) (52) 
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The primary effect of the above formulation of blocking is to decrease the mean 
frequency of the waves ~2o(0) to a value that is sufficiently low to permit the 
waves to propagate against the current. The secondary effect is to change the 
main wave direction of the waves (~ see paragraph on input/output) away 
from opposing the direction of the current because the more the propagation 
direction opposes the current direction, the stronger the blocking effect will 
be. The mean current therefore affects the shape of the directional energy 
distribution. 

Note 

It should be noted that the effects of currents on the evolution of the waves 
in the propagation area are not limited to the above indicated effects on the 
source terms. The currents also influence the propagation, and therefore the 
residence time of the waves in the area of interest. The integrated effects of 
wind generation, bottom dissipation and wave breaking are thus indirectly in- 
fluenced. Currents also cause a type of shoaling effect which may either in- 
crease or decrease the wave energy (which in turn may affect wave breaking). 

NUMERICAL BACKGROUND 

Numerical method 

The evolution equations for Ao(O) and for the product too (0)Ao(0), Eq. 11 
and 12, are partial differential equations of first order with the horizontal co- 
ordinates x and y and the spectral direction 0 as independent variables. Due to 
the nature of the equation the state in a point in (x,y,O)-space (e.g. the value 
of Ao) is determined by the state upwave from this point (upwave as defined 
by the propagation speeds Cox, Coy and the directional rate of change Coo). We 
have therefore chosen to carry out the computation in a direction roughly par- 
allel to the main wave propagation direction (x-direction in Fig. 3). A conse- 
quence of this is that only waves can be represented in the model which make 
an angle of less than 90 ° with the computational direction. The computation 
is carried out using a leap-frog finite difference scheme for propagation in (x,y)- 
space with user-controlled numerical diffusion added and an upstream finite 
difference scheme for propagation in P-space (i.e. refraction). The leap-frog 
scheme is a diffusion-free second-order scheme, the upstream scheme is a first- 
order scheme with inherent numerical diffusion (of order AO). Both schemes 
are subject to stability conditions, as a consequence of which the angle between 
wave propagation and computational direction is further restricted. It depends 
on the mesh sizes; typically the angle is less than 60 °. The total directional 
sector is therefore less than 120 ° . This seems to be acceptable for most appli- 
cations of our model since either the waves propagate from deep water to the 
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Fig. 3. Diagram of the method of stepwise computation in mean wave direction. 

coast with directional changes usually less than 90 o or the waves are generated 
by a local wind within a sector of 90° on both sides of the wind direction. 
However, this directional restriction implies some limitations on the use of the 
model. For instance, the propagation of two wave fields crossing each other at 
large angles is not properly modelled (e.g. locally generated wind sea orthog- 
onal to swell). In such cases one may find an approximate solution by combin- 
ing the model results obtained separately for each wave field. 

Boundary conditions 

The boundary conditions for the above partial differential equations are in 
general the specification of the wave field entering the computat ion area and 
the absorption of waves at the boundaries where the waves leave the compu- 
tation area. 

Since we have restricted wave directions to a sector of less than 180 ° and 
since wave information along the lateral boundaries in (x,y)-space is usually 
not available we assume that  wave information is given only along the upwave 
boundary of the model in (x,y)-space (which may or may not be on land). At 
the other boundaries in (x,y,O)-space we assume that no waves enter the model. 
One consequence of these assumptions is that  energy which is refracted to 
outside the directional sector is removed from the model ( t ransported across 
the boundaries in 0-domain where it is fully absorbed).  Another consequence 
of the above assumptions is that  the wave field near the lateral boundaries in 
(x,y)-space is not well represented in the model since no wave energy enters 
the area across these boundaries. These boundaries must  therefore be chosen 
far enough from the area of interest. In a nested mode the model accepts wave 
information along the lateral boundaries in (x,y)-space that  is provided by 
previous computations with the model. 
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Digitization 

Two grids are used in the model: a two-dimensional grid in (x,y)-space to 
represent the ba thymetry  and the current  field and a three-dimensional grid 
in (x,y,O) -space to compute the wave field. Each may have different resolution 
and orientation in (x,y)-space as long as the wave field grid is covered by the 
bot tom/cur ren t  grid (wind is constant  and therefore needs no grid). The mesh 
sizes Ax and Ay of the bot tom/current  grid should be small enough to resolve 
relevant spatial details in the ba thymetry  and in the current  field. For the 
three-dimensional wave field grid the spatial resolutions Ax, Ay and AO should 
be sufficient to resolve the relevant spatial variations of the wave field, the 
horizontal scales of which are roughly equal to those of the bathymetry  or of 
the current  field. The value of AO depends very much on the width and the 
smoothness of the functions Ao(O) and COo (0). For swell, with a narrow direc- 
tional width of Ao (0) (10 ° on either side of the mean wave direction, say), a 
relatively high resolution is required (e.g. AO= 2 ° or 3 ° ) whereas for a typical 
wind sea, with a directional width of (Ao(O) of about 30 ° on either side of the 
wind direction, a directional resolution of about 10 ° seems to be sufficient. To 
resolve spatial details, the model can be used in a nested mode. 

The values of Ax, Ay and AO are normally based on the above physical criteria 
but the value of Ax should additionally be based on a numerical stability cri- 
terion. For our model this criterion can be shown to be (by a Von Neumann 
stability analysis; e.g. Abbott, 1979): 

coyAx cooAx < 1 (55) 
I Cox---~Yl + coxAO 

In choosing the values of Ax, Ay and AO for a particular application of the HISWA 

model, we take the value of each of the terms on the left-hand side of Eq. 55 
equal to or less than 1/2. From this and the value of AO, the values of Ax and 
Ay can be determined as shown below. The smallest of these values and the 
ones following from the above resolution considerations are to be used. 

To estimate the grid size Ax, the ratio of the propagation velocities Coo and 
Co~ must be considered. It can be shown that  in the absence of currents this 
ratio is maximal for long waves (phase velocity approximately equal to 
(gd) 1/2). Hence the" second term on the left-hand side of Eq. 55 is always less 
than or equal to 1/2 if (see Eq. 5): 

 <cos(O) (56) 

Since in the HISWA model the maximum value of [ 0[ is typically 60 ° it follows 
from Eq. 56 that  Ax and AO must be chosen such that  (replacing the bottom 
slope normal to 0, Od/On by the bottom slope itself, I Vd[ ): 
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Ax 1 d 
- - < - - -  (57) 
 0-2 J VdJ 

To subsequently estimate the grid size Ay consider again a situation without 
currents. The direction 0 is then  equal to the direction of propagation so that: 

c°~--: = tan (0) (58) 
COx 

Using this expression one obtains a value of the first term on the left-hand side 
of Eq. 55 which is less than or equal to 1/2 if the ratio of Ax and Ay is chosen 
such that: 

AY>_2 tan (0) (59) 
Ax 

This implies that  the maximum value of 0 must  be less than 90 ° so that  the 
directional sector of wave propagation in the HISWA model is always less than 
180 ° wide. In fact, the maximum value of 0 is usually chosen to be 60 ° with 
Ay/Ax equal to about 3.5. 

For very shallow water criterion Eq. 57 often implies a fairly small value of 
Ax. Such a small value can be avoided if the numerical scheme is uncondition- 
ally stable. Work is therefore in progress to replace the upstream scheme for 
refraction with a fully implicit scheme. The present  practice is to use a rather 
larger value of Ax (determined from the above spatial resolution requirements ) 
and to restrict the refraction speed Coo when (occasionally) condition 55 is not 
met during the computations. Experience has shown that  it does not occur very 
frequently and that  it does not  greatly affect the model results. 

Integration scheme 

The integration scheme in the model can be divided into two parts: the prop- 
agation of the waves on one hand and the generation and dissipation of the 
waves on the other. Both parts are briefly described below. 

The computational grid (the wave-field grid) is a rectangular grid in (x,y,O) - 
space (see Fig. 3 ) with its x-axis roughly parallel with the mean wave direction 
in the x,y-plane. The computations start at the upwave boundary at the plane 
x = 0 in (x,y,O)-space where the values of Ao and ~Oo (and consequently also of 
cox, Coy and Coo) are given for all locations along this boundary and for all spec- 
tral directions. The computations proceed step-wise in the x-direction. The 
values of A o and O9o for each (y, 0) -value in the plane x---Ax in (x,y, O)-space are 
computed from the wave information in the first plane (x = 0). This process of 
propagation is repeated for each next step, that  is, the values of Ao and e)o in 
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the next plane, x = (j + 1 )Ax are determined solely from the wave information 
on the previous plane x=jAx (see Fig. 3). 

The propagation in the model is carried out with the finite difference schemes 
mentioned in the section on Numerical method which have a first order accu- 
racy in Ax, Ay and AO if the option of added numerical diffusion is used. 

The modelling of the growth and dissipation from the previous plane x =jAx 
to the next plane x = (j + 1 )Ax is partially explicit and partially implicit. The 
fairly smoothly behaving wind generation source terms are evaluated analyti- 
cally in the model from only the previous wave information (at plane x=jAx) 
to develop the waves from plane x=jAx to plane x= (j+ 1 )Ax. The other source 
terms are sometimes highly nonlinear, depending on the geophysical situation. 
To avoid unstable behaviour of these terms we have chosen an implicit repre- 
sentation of these terms, i.e. the evaluation of these terms in the model includes 
the (as yet unknown) wave information at the plane x.= ( j+l)Ax.  This im- 
plicit formulation can be combined with the explicit propagation in a simple 
manner, since it involves only one unknown value, i.e. Ao (0). 

Input/output 

As indicated in the section on Boundary conditions, the model requires wave 
input at the up-wave boundary (either a discrete spectral representation of 
Eo (0) and ~2o (0) or a parametric representation, i.e. Eo (0) = E1Didea, (0). Ad- 
ditional input is limited to only the bottom topography and current field (on 
a regular grid), the wind speed and direction, grid definitions and output re- 
quests. Output of the primary results, Eo(0) and a)o(0) is available on grid 
points, or lines and locations which are all independent of the computational 
grid. Integral parameters such as the significant wave height: 

H~=4E~/2 (60) 

the mean wave period: 

T = 2  ~ 2 {  -1 (61) 

and the mean wave direction 0 and directional spreading go (following defini- 
tions used for the analysis of pitch-and-roll buoy wave data (e.g. Kuik et al., 
1988): 

0= arctan (b/a) (62) 

00= [2{1-  (a2+b 2) 1 / 2 } ] 1 / 2  (63) 

2g 2g 

in which a= f cos (0) D(0)d0 and b= f sin (0) D(O)dOand other secondary 
0 0 

output such as the radiation stress gradient for short-crested waves (Battjes, 
1972) are also available at the same output grid points, lines or locations. 
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TESTS 

To assess the behaviour of the model as regards wave propagation, genera- 
tion and dissipation the model has been successfully applied to rather basic 
idealized situations for which the results can be compared with analytical so- 
lutions or information in the literature (Booij et al., 1988). This is illustrated 
here for propagation towards a plane beach and in an opposing current. To 
compare the results with analytical solutions from linear wave theory the waves 
are taken as fairly long-crested (cos64 (0)-directional energy distribution) and 
all source terms have been set at zero (this implies that  the mean frequency 
09o (0) remains constant) .  The waves approach a plane beach (slope 1 : 120 ) at 
an incidence angle in deep water of 30 o. In the case of the opposing current 
(deep water) the waves approach a shear-current (current speed increasing 
cross-stream from 0 to 2 m s -  1 over a distance of 1000 m) at an angle of inci- 
dence of 60 ° (30 ° off the normal to the current direction). The analytical 
solutions are based on conservation of action and wave number component  in 
the direction normal to the beach or to the current. The results are given in 
Fig. 4 where it is obvious that  the agreement between analytical solutions and 
numerical results is excellent. Wave growth in a standard situation is ad- 
dressed in the section on Generation by wind (see Fig. 1 ). 

Tests in laboratory conditions have been described by Booij et al. (1985) 
and Dingemans et al. (1987). Dingemans et al. (1987) have analyzed their 
tests quantitatively and in great detail. It concerned a situation with short- 
crested, random waves propagating around and across a submerged breakwater  
located in an otherwise flat area. The waves produced a relatively strong cur- 
rent caused by gradients in the wave-induced radiation stresses. These cur- 
rents were measured and subsequently used as input to the HISWA model so 
that  the test  included wave-current  interactions which were quite significant. 
An earlier version of the HISWA model was used which was slightly different 
from the model described here as regards some numerical and physical aspects. 
The observed rms-errors are typically about 5% in the significant wave height 
(Hs), 10-25% in mean period (7 ~) and about  5 ° in mean wave direction (% of 
observed values except directions). Considering the performance of conven- 
tional wave models in such situations these results are deemed to be satisfying. 
A more crucial test  is of course the performance of the model in field condi- 
tions. The first test  of the model under these conditions (no tuning of the 
model) is presented next. 

To test  the model in geophysical conditions which are more realistic and 
complicated than in the academic tests and laboratory tests indicated above, 
the model has been applied to an area of the Rhine estuary (the Haringvliet, 
see Fig. 5). This area was chosen because the model results can be compared 
with the results of a well documented field campaign of the Ministry of Trans- 
port  and Public Works in the Netherlands (Dingemans, 1983, 1985; Dinge- 
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Fig. 4. Analytical solutions from linear wave theory (full lines) and numerical results from HISWA 
(crosses). Panel (a) for wave propagation towards a plane beach (angle of incidence 30 ° ). Panel 
(b) for propagation through a shear current (angle of incidence 60 °, current speed increasing 
linearly from 0 to 2 m/ s  over 1000 m). The waves are fairly long-crested (cosS4(0)-directional 
energy distribution) and their (mean) wave period is 5 s. 
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Fig. 5. Location and bathymetry of the Haringvliet estuary and locations of the WAVEC buoy (1), 
the waverider buoys (2-7) and the wave gauge (8). 

mans et al., 1985). This campaign involved the use of one WAVEC pitch-and- 
roll buoy, one wave gauge and six waverider buoys. The situation can be char- 
acterized as non-locally generated waves passing from deeper water into shal- 
low water over a shoal with a regeneration by wind behind the shoal. Currents 
are practically non-existent in the chosen situation because this particular 
branch of the Rhine estuary is closed by gates. The location and bathymetry  
of the study area are indicated in Fig. 5 with the locations of the buoys and the 
wave gauge. The bathymetry  can be roughly characterized as a relatively shal- 
low river mouth, no currents, water depth typically 4-5 m, about 10 X 10 km in 
surface area. It is partly protected from the southern North  Sea by a shoal of 
roughly 2 × 4 km (water depth typically 1-2 m) extending over half the mouth 
opening. 

The computations have been carried out for a situation which occurred on 
October 14, 1982 at 22.00 h (M.E.T.).  The waves are locally generated in the 
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southern North Sea with a significant wave height of about 3 m and a mean 
period of about 7 s at the estuary entrance (location 1, Fig. 5). These waves 
penetrate the area from a northwesterly direction. They  break over the shoal 
with a reduction in wave height from about 2.5 to about 0.5 m over the shoal. 
The local wind of 16.5 m s -1 from a northwesterly direction regenerates the 
waves to about 0.9 m significant wave height at the wave gauge which is located 
5 km behind the shoal (location 8, Fig. 5). Quantitative information is pro- 
vided in Table 1 (after Dingemans, 1983, 1985). The WAVEC pitch-and-roll 
buoy in 16 m water depth (location 1, Fig. 5) provides the significant wave 
height, the peak wave period (the inverse of the peak frequency of the energy 
spectrum), the mean wave direction and the directional width as input at the 
up-wave boundary of the model (for parameter  values see Table 1 ). We assume 
a cos 2 (0) -directional frequency-integrated energy distribution, commensurate 
with the directional spreading of co= 31 ° as observed by the WAVEC buoy. The 
waverider buoys and the wave gauge are located at various positions in the area 
(locations 2-7, Fig. 5) each providing a significant wave height and a mean 
wave period which can be compared to the results of the model. 

The pat tern of the model results, shown in Figs. 6 (panel a) and 7 and in- 
dicated as "standard" in Table 1, is consistent with the pat tern of the obser- 
vations, e.g. the significant wave height which at the up-wave boundary of the 
model (16 m water depth) is about 3.4 m, reduces gradually to about 2.5 m at 
6 m depth and then very rapidly to about 0.6 m over the shoal. South of the 
shoal the gradual shoreward decrease in wave height continues. At the location 
of the wave gauge (about 5 km behind the shoal; location 8 in Fig. 5) the sig- 

T A B L E 1  

Observations and  model results a t  various locations in the Haringvliet  of the significant wave 
height  Hs and  the  mean wave period 

location ins t rument  measurement  HISWA 

Hs 7 ~ s tandard no refraction no wind 
(m)  (s) 

H~ T H~ ~ H~ 
(m) (s) (m) (s) (m) (s) 

1 wavec 3.38 7.0* . . . . . .  
2 waverider 2.90 6.3 3.27 6.8 3.31 6.8 3.25 6.8 
3 waverider 2.58 6.3 2.62 5.9 2.61 5.8 2.62 5.9 
4 waverider 2.68 5.9 2.56 5.8 2.54 5.7 2.56 5.8 
5 waverider 0.62 2.6 0.68 2.8 0.65 2.9 0.60 2.8 
6 waverider 1.05 3.7 1.01 3.4 1.03 3.4 0.76 3.2 
7 waverider 1.60 5.1 1.37 3.8 1.36 3.8 1.35 3.7 
8 wave gauge 0.95 2.8 0.83 3.4 0.94 3.5 0.64 3.2 

*taken as 0.85 T o where Tp is the  observed peak period of 8.3 s. 
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nificant wave height is about 0.8 m. The mean wave period follows roughly the 
same pattern (Fig. 7). 

The initial gradual decrease of wave height is caused by bottom dissipation 
whereas the rapid decrease near the shoal is caused by wave breaking. The 
effect of refraction is relatively unimportant as illustrated with the results of 
a computation in which the refraction term has been set at zero (see Fig. 6, 
panel b and Table 1). This minor influence of refraction on the spatial wave 
height distribution is a result of the short-crestedness of the waves. The fo- 
cussing and defocussing of individual directional components tend to cancel in 
a short-crested sea. Such short-crestedness can in principle also be properly 
accounted for in models based on the wave-ray technique (although it would 
be uneconomical to add wave generation and dissipation, see Introduction) 
but only in a discrete spectral manner. In the conventional monochromatic, 
unidirectional wave-ray approach unrealistic results are obtained in this case, 
in particular behind the shoal (see Fig. 8; with the same (mean) wave period 
and (mean) wave direction at the upwave boundary). Behind the shoal the 
waves are regenerated by the wind. This is illustrated by applying the model 
to the same situation (including refraction) but without wind (Fig. 6, panel c 
and Table 1 ). 

The differences (rms-errors) between the observations and the model re- 
sults (labelled "standard" in Table 1, i.e. computations including refraction 
and wind generation) are 0.18 m and 0.6 s for the significant wave height and 
the mean wave period respectively. This is 10.2 and 13.0% respectively of the 
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Fig. 8. Wave rays for 7 s period monochromatic, unidirectional waves. 

mean observed values. The mean errors for the significant wave height and,~ 
mean period are small (less than 0.01 m and 0.1 s respectively). 

The above rms-errors are partly based on data from locations near the uI~ 
wave boundary where any reasonable model will produce small errors since 
little happens to the waves anyway. On the other hand, some data are from 
locations where the waves have been modified considerably (e.g. a factor five 
in significant wave height at location 5). A good model should reproduce such 
large changes. Such a quality however is not  properly expressed by rms-errors. 
For instance, the field tests of the model of Resio (1987, 1988) show a small 
rms-error in the significant wave height (0.16 m which is only 7.1% of the 
observed mean value) but  the observed change in significant wave height is 
also small (0.41 m rms-value).  A more suitable measure for the model perform- 
ance, in which the boundary situation cannot  dominate, is therefore defined 
as the performance of a perfect model (unity) minus the performance of the 
model relative to the observed changes (from the upwave boundary):  

performance rate -- 1 
rms (error) 

rms (observed changes) 
(64) 

For the above tests with the HISWA model the rms-value of the changes in 
significant wave height is 1.83 m and in mean wave period 2.4 s. With  the above 
rms-errors, the performance rates for the HlSWA model are then 0.91 and 0.76 
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respectively for the significant wave height and the mean wave period. This 
compares favourably with 0.61 for the significant wave height in the field tests 
of the model of Resio (1987, 1988; model wave periods not available). 

CONCLUSIONS 

The wave prediction model HISWA presented here is a stationary, direction- 
ally decoupled parametric model for predicting short-crested waves in shallow 
water with arbitrary bottom topography and current patterns. The phenomena 
accounted for are shoaling, refraction, wind generation, wave breaking 
(surfzone inclusive), bottom dissipation and wave blocking including the in- 
fluence of currents on these phenomena. The basis of the model is the predic- 
tion of two directional wave functions: the one-dimensional directional action 
spectrum and the average frequency as a function of spectral direction. From 
these functions (in each of a large number of grid points in the geographical 
prediction area), the model determines integral functions such as the signifi- 
cant wave height, the average wave period and the mean wave direction and 
other functions such as the radiation stress gradient. For reasons of computing 
efficiency the computations are carried out on a regular grid rather than along 
wave rays. 

The model is stationary, i.e. the environment (depth, wind and current) is 
not allowed to vary in time and the predicted wave functions are also constant 
in time. This is normally not a serious restriction for wave computations in 
coastal regions because the travel time of the waves in such regions is usually 
small compared to the time scales of variations in depth, wind and currents. If 
such slow variations are to be taken into account then the wave model should 
be applied in a sequence of stationary situations which approximate the non- 
stationary situation. 

After passing a number of academic tests the model has been applied to a 
fairly complex situation in the mouth of the river Rhine in which wave break- 
ing and short-crestedness dominate other effects such as refraction. The rms- 
errors for the significant wave height and the mean wave period for this situ- 
ation are about 10 and 13% of the mean observed values respectively. This 
implies that  in this situation HlSWA correctly reproduces about 90% of the 
observed changes in the significant wave height and about 75% of the observed 
changes in the mean wave period. 
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