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Abstract 

We find Hamiltonian balance equations (HBE) in Eulerian variables in the momentum formulation. This is done by 
expanding Hamilton's principle (HP) for the primitive equations (PE) in powers of the Rossby number, E << 1, truncating at 
order O(E), then retaining all the terms that result from taking variations. An alternative set of Hamiltonian balance equations 
is derived in isopycnal variables (IHBE). The two sets of approximate equations HBE and IHBE differ from PE and isopycnal 
PE (IPE) at order O(E2). Each of these four systems conserves energy and possesses an exact Kelvin theorem, which implies 
exact potential-vorticity advection. However, HBE and IHBE are balanced, while PE and IPE are not. 
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1. Introduction 

1.1. Background and problem statement 

We say a fluid motion equation is balanced, if specifying the fluid's stratified buoyancy and divergenceless velocity 
determines its pressure through the solution of an equation which does not contain partial time-derivatives among its 
highest derivatives. The Euler equations for the incompressible motion of a rotating continuously stratified fluid are 
balanced in this sense, because the pressure in this case is determined from the buoyancy and velocity of the fluid by 
the Poisson equation (1.11). However, the hydrostatic approximation of this motion by the primitive equations (PE) 
is not balanced, because the Poisson equation for the pressure in PE involves the time-derivative of the horizontal 
velocity divergence, which alters the mathematical character of the Euler system from which PE is derived and may 
lead to rapid time dependence [9]. Balanced approximations which eliminate this potentially rapid time dependence 
have been sought and found, usually by using asymptotic expansions of the solutions of the PE in powers of the 
small Rossby number, E << 1, after decomposing the horizontal velocity u into order O(1) rotational and order O(E) 
divergent components, as u = ~ x V~z + ~VX, where ~ and X are the stream function and velocity potential, 
respectively, for the horizontal motion. (This is just the Helmholtz decomposition with relative weight E.) 
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Balance equations (BE) are reviewed in the classic paper of McWilliams and Gent [24]. Succeeding investigations 
have concerned the well-posedness and other features of various BE models describing continuously stratified 
oceanic and atmospheric motions. For example, consistent initial boundary value problems for BE are examined in 
[ 12] and regimes of validity for BE are determined in [ 13]. Balanced models in isentropic coordinates are discussed 

in [ 14]. The development of methods for the numerical solution of BE [28], and the applications of BE to the study of 
vortex motion on a E-plane [25,26], and to wind-driven ocean circulation [27] have also been discussed. In studies 
of continuously stratified incompressible fluids, solutions of BE that retain terms of order O(1) and order O(E) 
in a Rossby number expansion of the PE solutions have been found to compare remarkably well with numerical 
simulations of the PE [26]. Discussions of the relation between BE and semigeostrophy have also recently appeared 

[15,32]. 
One recurring issue in the literature is that, when truncated at order O(E) in the Rossby number expansion, the 

BE for continuously stratified fluids conserve energy [23], but do not conserve potential vorticity on fluid parcels. 
Recently, Allen [3] formulated a set of BE for continuously stratified fluids that retains some terms of order O(e 2) 
and does conserve potential vorticity on fluid parcels. Allen calls these balance equations "BEM equations", because 
they are based on momentum equations, rather than on the equation for vertical vorticity, as for the standard BE. 
One advantage of the momentum formulation of BEM over the vorticity formulation of the original BE is that 
boundary conditions are more naturally imposed on the fluid's velocity than on its vorticity. A disadvantage of 
the BEM equations formulated in [3] is the absence of any systematic derivation of them from a higher-level fluid 

theory. 
Here we find Hamiltonian balance equations (HBE) in the momentum formulation by using the weighted 

Helmholtz decomposition for u and expanding Hamilton's principle (HP) for the PE in powers of the Rossby 
number, e << 1. This expansion is truncated at order O(e), then all terms are retained that result from taking varia- 
tions. As preparation, we discuss an asymptotic expansion of HP for the Euler-Boussinesq (EB) equations which 
govern rotating stratified incompressible inviscid fluid flow. This asymptotic expansion of HP for the EB equations 
has two small dimensionless parameters: the aspect ratio of the shallow domain, a, and the Rossby number, e. Setting 

equal to zero in this expansion yields HP for PE. Setting e also equal to zero yields HP for equilibrium solutions 

in both geostrophic and hydrostatic balance. Setting oe = 0, substituting the e-weighted Helmholtz decomposition 
for u and truncating the resulting aysmptotic expansion in E of the HP for the EB equations yields HP for a set of 
nearly geostrophic HBE. The resulting HBE differ slightly from Allen's BEM equations by certain terms of order 
O(E 2) which are dropped in [3]. However, a redefinition of pressure due to P. Gent shows the HBE and BEM models 

are equivalent. 
The HBE model is 

d 
e- -~u  R -~- e2URj~Tu J -'[- f ~  X U -t- ~Tp = O, p -b Pz -4- E 2 / , / R  - U D z  = 0 

dp 
with -~- = Otp -[- ll • ~ 7 p  -b EWpz = 0 and ~7 • u + eWz = 0, (1.1) 

where the horizontal fluid velocity is given by u = UR + cUD = ~ x ~r~p + e~Tx, subscript z denotes vertical 
derivative and the rest of the notation is explained in Section 1.2. Dropping all terms of order O(E 2) from either 
HBE or BEM recovers the BE discussed in [12,13]. As we have discussed, the HBE retain the order O(e 2) terms in 
the equations that arise from HP for the PE at order O(e). These order O(e 2) terms retained in the HBE provide the 
conservation laws due to symmetries of HP at the truncation order O(e). Retaining these terms does not improve 
the order of accuracy of the HBE to order O(e 2) because the HBE do not retain all order O(e 2) terms which could 
result from the PE via the asymptotic expansion in e using the e-weighted Helmholtz decomposition. However, 
since the resulting HBE differ from EB and PE only at order O(e 2) and do share the same conservation laws 
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and Hamiltonian structure, they may be valid approximations for times longer than the expected order O(1/e) 

for BE. 
By their construction from a HP which possesses the classic fluid symmetries, the HBE conserve integrated 

energy and conserve potential vorticity on fluid parcels. Their Hamiltonian structure endows the HBE with the 

same type of self-consistency that the PE possess (for the same Hamiltonian reason). After all, the conservation 
laws in both HBE and PE are not accidental. They correspond to symmetries of the Hamiltonian or Lagrangian 
for the fluid motion under continuous group transformations in accordance with Noether's theorem. In particular, 
energy is conserved because the Hamiltonian in both theories does not depend on time explicitly, and potential 
vorticity is conserved on fluid parcels because the corresponding Hamiltonian is invariant under the infinite set of 
transformations that relabel the fluid parcels without changing the Eulerian velocity and buoyancy. See, e.g., [31] 
for a review. The vector fields which generate these relabeling transformations turn out to be the steady flows of the 
HBE and PE models. By definition, these steady flows leave invariant the Eulerian velocity and buoyancy as they 
move the Lagrangian fluid parcels along the flow lines. Hence, as a direct consequence of their shared Hamiltonian 
structure, the steady flows of both HBE and PE are relative equilibria. That is, steady HBE and PE flows are 
critical points of a sum of conserved quantities, including the (constrained) Hamiltonian. This shared critical- 
point property enables us, for example, to use the Lyapunov method to investigate stability of relative equilibrium 
solutions of HBE and PE. See [ 18] for an application of the Lyapunov method in the Hamiltonian framework to the 
stability of PE relative equilibria. According to the Lyapunov method, convexity of the constrained Hamiltonian at 
its critical point (the relative equilibrium) is sufficient to provide a norm that limits the departure of the solution 
from equilibrium under perturbations. See, e.g., Abarbanel et al. [2] for applications of this method to the Euler 
equations for incompressible fluid dynamics and Holm et al. [20] for other applications to a range of fluid and 
plasma theories. 

Thus, the HBE possess the same Hamiltonian structure as EB and PE, and differ in their Hamiltonian and 
conservation laws by small terms of order O(e2). Moreover, the HBE conservation laws are fundamentally of the 
same nature as those of the EB equations and the PE from which they descend. These conserved quantities - 
particularly the quadratic conserved quantities - may eventually be useful measures of the deviations of the HBE 
solutions from EB and PE solutions under time evolution starting from similar initial conditions. 

The plan of the paper is as follows. Section 1 introduces the dimensionless EB equations and defines the notation 
and scaling regime in which we work. Section 2 derives the dimensionless EB equations from HP and Section 3 
discusses their restriction to the PE, upon setting the aspect ratio (a) of the domain to zero in the equations of 
motion. Section 3 also rederives the PE by making this same restriction in the HP for EB, thereby setting up the 
theme of Rossby-number expansions in HP by which we derive the HBE in Section 4. Section 4 also discusses 
the conservation laws, Kelvin circulation theorem and Hamiltonian formulation for the HBE. Section 5 compares 
the HBE with other BE in the literature and discusses solution procedures for the HBE based on their relation to 
the BEM equations of Ref. [3]. Section 6 gives explicit expressions for the Kelvin circulation theorem, potential- 
vorticity advection and energy conservation for HBE. Section 7 presents the Hamiltonian formulation of the HBE 
in the Eulerian representation and shows that the HBE steady flows are relative equilibria, by showing that they 
are critical points of the sum of the Hamiltonian and the conserved functionals of buoyancy and potential vorticity 
for HBE. Section 8 begins our study of isopycnal HBE, by first discussing the isopycnal representation of the PE. 
Section 9 transforms the HBE into the isopycnal representation and then presents an altemative isopycnal HBE 
(denoted IHBE) in which the pressure equation attains a much simpler form than for the direct transformation of 
the HBE from Eulerian to isopycnal coordinates. The IHBE model is derived by making the e-weighted Helmholtz 
decomposition of the horizontal fluid velocity in terms of gradients along level surfaces of buoyancy p (instead of 
level surfaces of height, h) and using the layer thickness h p as the measure in the inner product in which orthogonality 
is defined. The IHBE motion equations are given by 
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e--~/IRd _ _ E2/~Dj~r/~ j + f~  X ~ + ~r(/3 + ff2~ R ' ~ D  + ph)  = O, 

php + (p + E2UR • / l D ) p  = 0 ,  
(1.2) 

where tilde -~ denotes dependence on (x, y, p, t) and subscript p denotes partial derivative. The nondivergent and 
divergent components of the horizontal fluid velocity in isopycnal coordinates are expressed as 

(1.3) 

where ~ and )~ are the stream function and "velocity potential", respectively, for ~. The IHBE are closed by the 
kinematic conditions, 

dh 
Ew - - Oth q - F t . ' ~ h  

dt 

Othp = - ~ 7  . hpFt 

(the definition of vertical velocity), 

(incompressibility), 
(1.4) 

in which IOthl and 1~Thl are order O(E). 
The IHBE model differs at order O(~ 2) from the Isopycnal BE of Gent and McWilliams [14] by the effects 

of the weight 1/hp in UD which lead to an order O(e 2) different circulation theorem whil e producing an exactly 
conserved energy not present in the Isopycnal BE. See Section 9 for full details. Section 10 discusses the Lie-Poisson 
Hamiltonian formulation of IHBE which results from its derivation via HP. Finally, Section 11 discusses IHBE in 
comparison to the isopycnal primitive equations (IPE) and Isopycnal BE. 

1.2. Dimensionless  Euler -Bouss inesq  (EB) equations 

We consider the motion of a rotating continuously stratified ideal incompressible fluid governed by the adiabatic 
inviscid Euler equations, in which the effects of buoyancy are treated in the Boussinesq approximation and the 
Coriolis parameter is allowed to vary spatially. We use dimensionless variables in Cartesian coordinates (x, y, z) to 
write the Euler equations in the Boussinesq approximation (EB equations) as 

du 
~73"U3=--V'UWEWz=O, ~-d~+ f ~ x u + V p = O ,  

dp (1.5) d w  
E 2 a 2 - - + P + P z = 0 ,  - -  = 0 .  

dt dt 

The notation used here reflects the asymmetry between horizontal and vertical directions induced by the strong 
tendency of the solutions of these equations to remain in hydrostatic and geostrophic balance. These balances are 
enforced physically by gravity and rotation about the vertical and are obtained formally by setting ot = 0 and e = 0, 
respectively, in Eq. (1.5) In this notation, three-dimensional vectors and gradient operators have subscript 3, while 
horizontal vectors and gradient operators are left unadorned. Thus, we denote 

• ~'3 = (X, y, Z), X = (X, y, 0), 

~3 ---- ( U , V ,  E W ) ,  U---- ( U , v , O ) ,  

, v =  , G , o  , 

d 3 
- -  -'1- II 3 • ~73 = 3 t -]- U • ~7 --[- EWOZ ' 

dt 3t 

(1.6) 
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and g is the unit vector in the vertical z direction. Without risk of confusion, we denote vertical derivatives such as 

Wz =- 0 w/Oz and Pz = Op/Oz in Eq. (1.5) with subscript z. Note that the vertical component of the three-dimensional 

velocity vector u3 in the set (1.6) is weighted by the parameter E (Rossby number). 
We form dimensionless variables using the scales (L, B, U0, fo) for, respectively, horizontal length, vertical 

depth, horizontal velocity, and Coriolis parameter. The dimensionless Rossby number ¢ and aspect ratio a,  are both 

expected to be small parameters, 

u0 B 
E = - -  <<1 and c ~ = - -  << 1. (1.7) 

f oL  L 

Denoting dimensional variables with primes gives the following scale relations: 

(x, y) = (x', y ' ) / L ,  z = z ' /B ,  

(u, v) = (u', v ' ) /Uo,  ~w = w ' L / ( U o B ) ,  

t = t 'Uo/L ,  f ( x ,  y) = f ' ( x ' ,  Y ) / f o ,  (1.8) 

P = P ' / P c ,  with Pc = poUofoL = poU2/e,  

P = P ' /Pc ,  with PC = p c / ( g B )  = PoF2/E, 

where P0 is the constant reference density, g is the constant acceleration of gravity and F = Uo/.Jg--B is the Froude 

number, F << 1. (In terms of the external Rossby deformation radius, LR = v / - ~ / f o ,  the Froude number is also 

expressed as F = ~L/LR. )  Thus, in Eq. (1.5), the quantities (u, v, Ew) are the dimensionless velocity components 

in the (x, y, z) coordinate directions, t is time, and f is the dimensionless Coriolis parameter. In addition, the 
quantities p and p are the dimensionless pressure and buoyancy, respectively. 

We are primarily interested in the case of small Rossby number and shallow fluids, E << 1, ot << 1, with slow 
spatial variations in dimensionless Coriolis parameter f (Ex )  and bottom topography z = -b (Ex )  so that 

I V f l  = O(E) and IVbl = O(E). (1.9) 

The boundaries at the surface, z = O, the slowly varying bottom, z = - b ( e x ) ,  and the sidewalls are all taken to be 

rigid, so the fluid velocity satisfies u3 • t]3 = 0 at the boundary with rigid lid, sidewalls and bottom, where t]3 is the 

three-dimensional outward unit normal vector at the boundary. For simplicity, the sidewalls of the domain are taken 
to be vertical. Thus, in this geometry, the boundary conditions are expressed as 

EWlz=O = 0, EW]z=_b(ex ) = --u • Vb,  u • t~lsides ---- 0, (1.10) 

where ii is the horizontal outward unit normal vector at the boundary. The pressure is determined in the EB theory 

by requiring 0 t ~ 3  " U3 = 0 and solving for the p in the dimensionless Poisson equation which results from taking 
the 3-divergence of the motion equation in the set (1.5). Namely, 

Ap + (Pzz + Pz)/Or2 + ~ 3 "  [ E ( / / 3  • ~73)U3 -1- f £  X U] = 0, (1.11) 

where A is the Laplacian in the horizontal coordinates. (Note the scaling in z by ot and subscript notation for z 
derivatives.) This equation is to be solved with Neumann boundary conditions which are obtained by evaluating 
the normal component of the horizontal EB motion equation at each vertical sidewall. Thus, in terms of the normal 
derivative Pn = Op/On = fi • V p ,  one imposes 

Pn d- ~-  f £  x u = eu3 • (V3n3) • u3 = Eu- ( V ~ ) .  u ---- -e tc(u • g)2, (1.12) 

at each lateral boundary, where g is the horizontal unit tangent vector (which is unique up to a sign) and tc is the 
(only) curvature in the horizontal plane. We assume that the unit vertical vector ~, the outward unit normal vector 
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t], and the unit tangent vector g form a right-handed orthonormal coordinate frame on the boundary, so £ x h = g. 

Consequently, we may rewrite the boundary condition (1.12) as 

Pn -- ( f  -- etcU . g)U " g = 0, (1.13) 

where the horizontal velocity is tangential on the boundary; so (u • g)2 ___ lul 2 there. Thus, the product x u  • g of 

the curvature of the vertical lateral boundary of the domain and the tangential velocity of the fluid appears in the 

pressure boundary condition as a shift in the Coriolis parameter. (This curvature term in the pressure boundary 

condition was pointed out to the author by C.D. Levermore.) In the case of the EB equations, solving the Poisson 
equation (1.11) with Neumann boundary conditions (1.13) determines the pressure p from the buoyancy p and the 

fluid velocity components, u and w. So the EB equations with four degrees of freedom (u, w, p) are balanced both 

in the sense used here and in the sense of removing acoustic waves. 

2. HP for ideal fluid dynamics in Eulerian variables 

2.1.  H P  f o r  the  d i m e n s i o n l e s s  E B  e q u a t i o n s  

The dimensionless Euler-Boussinesq (EB) equations (1.5) arise from HE ~ E B  = 0, under variations of the 
Lagrangian particle lables IA(x3, t) ,  A = 1,2, 3, at constant Eulerian position x3 and time t. The constrained 

action/~EB for the HP leading to the EB equations (1.5) is given in dimensional form in [ l, 19] 

: f f + + 
where curlR(x) = f ( E x ) L  t he  quantity D is defined by 79 : det(V3lA), and the pressure p appears as a Lagrange 

multiplier which enforces incompressibility. By definition, the fluid particle labels Ia(X3, t), follow the three- 

dimensional fluid velocity u3 = (u, v, Ew) and therefore satisfy the advection law, 

dl  A Ol A 
- -  - -  -k- U3 • V 3  lA = Ot IA d- u • ~ r l A  q- e w l  A = 0, A = 1, 2, 3. (2.2) 

d t  Ot 

i i = 1, 2, 3, in terms of partial derivatives of l A, as Hence, we may write the components of the fluid velocity u 3, 

• Ol A 
u~ = _(79-1)~...~__, i = 1, 2, 3, (2.3) 

where we follow the convention of summing on repeated indices over their ranges and (79-1)/a is the inverse of 
79i a = ( O l A / O x ~ ) ,  the 3 x 3 Jacobian matrix for the map from Eulerian coordinates to Lagrangian fluid labels. 

The inverse matrix exists, provided the determinant 79 = det(79 A) does not vanish. This determinant is equal to a 
constant (taken to be unity) for incompressible flow. Indeed, as a consequence of (2.2), 79 satisfies the continuity 

equation 

079 
- -  = - V 3  • 79u3. (2.4) 
Ot 

Thus, if 79 is initially equal to unity, it will remain so, according to (2.4), provided V3 • u3 = 0 at all times, as 

ensured by the Poisson equation (1.1 1) for pressure. 
Varying the action 12EB in (2.1) at fixed Eulerian coordinate x3 and time t gives 
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dt f d3x[(DEu + D R ( x ) ) .  8u + E30t2wSw -- ~DZSp + (½~(lUl 2 + 62ot2w2) 

+ u .  R(x)  - pz - p )8D - (79 - 1)8p]. 

385 

(2.5) 

This is expressible in terms of variations 81A with respect to the Lagrange coordinate I A, by using the following 
relations derived from the definitions of 79, u3, and p, 

8o = V(V-l)  l A, 

8U~=-- (D-1)~ugS lA- - (D-1) iAS1A,  i , j =  1,2,3,  (2.6) 

8p = ~---~A Sl A = p,i(D-1)~S1A. 

Remark (on indices). The placement of indices - raised or lowered - is immaterial in Cartesian coordinates. We 
place them to indicate properties under general coordinate transformations. As a rule then, lowered indices sum with 

A oIA/Ox j and 1A = OlA/Ot. raised ones. Subcript-comma notation denotes partial derivatives. For example, 1,j ,t 

The comma is dropped for simplicity in denoting partial derivatives of familiar quantities such as Pz and hp where 
no confusion can arise. 

Upon substituting the definitions of 8p, 8u~ and 8D in terms of 81A into the variational formula (2.5) and 
integrating by parts using the tangency conditions (1.10) on the velocity at the fixed boundary - that u3 • ~3 = 0 - 
the variation of the action (2.5) becomes 

f d3x{~lA[ot( D(D-1)iA(Eui -}- Ri) + ~2ot2D(D-1)3to) 

"[-~(*DU~[(~)-I)iA(~Ui + Ri)-1-E20t2(~D-I)31/)])] 

+ a t a  oi[D(D-1) a ( p  + Zp --  U . R - ½E(lul 2 + EZ=2w2))] 

--7)(D-1)iAalAzp, i -- 8p(D -- 1)} (2.7) 

Rearrangement of formula (2.7) using the continuity equation (2.4) for 79 and the identities 

OjD-~ ~)(~)-I)~0j~DA, (~)(~)-I)/A),i =0, d(~)-l)~ ~-U~ j(~)-l)j, 

gives the final expression for the variation of the Euler-Boussinesq action, 

a£EB = f dt f d3x {D(D-' )iaala [E- ui + a3i EZ Z- sw + uJ (Ri.j -- Rj,i ) + a3i p + P,i ] 

-(D- 1)8p}, 

(2.8) 

(2.9) 

where 8 3 is the Kronecker delta and the reader is reminded that Ui (without subscript 3) is the horizontal fluid 
velocity, so it only has components i = 1, 2. Notice that 

uJ(Ri, j  - Rj,i) = - ( u  × curlR)i = (f~ x u)i, (2.10) 
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since R depends only on the horizontal Eulerian position, x. Vanishing of 8/2E8 in (2.9) for arbitrary variations 
(~l A and 8p within the domain of flow now implies the dimensionless EB equations (1.5). This is HP for the EB 
equations in Eulerian variables. 

2.2. More general forms of the action for Eulerian ideal fluid dynamics 

For any action E depending on the fluid variables 1A only through the quantities u3, 79 and p, and with incom- 

pressibility imposed by constraining D to be constant, HP gives 

,/2 fdtfd3x{V(79_l)iasia[dla/2 lS/2 j (,/2) 1 s/2] } = i ---= . - + ~ P , i ~ p j  - (79 - 1)Sp 
at 79 8u~ + ~ Bug3 u3'z ~-~ ,i 

_ / f 1+ ÷l .J l I (2.11) 
D~ui3J Ox~L \ SD' ~ 31J I" 

Vanishing of the coefficient of 61A gives the motion equation, vanishing of the coefficient of 6p gives incompress- 
ibility, and vanishing of the exact-derivative terms gives the boundary conditions. From this motion equation, one 

obtains the Kelvin circulation theorem 

f fl,  d 1 8/2 . dx3 -[- dp = 0, (2.12) 
dt ~ 8u--3 ~ -~p 

y(t) y(t) 

where the contour V(t) moves with the fluid velocity u3 and D = 1 is imposed by the Lagrange multiplier, p, 
the pressure. The Kelvin circulation theorem (2.12) is a general result of HP for any action/2 expressed in the 
Eulerian fluid variables (u3, 79, p). Thus, one may develop approximate Eulerian fluid models which possess a 
Kelvin circulation theorem, simply by making approximations in the original HP. This is our strategy here. 

The quantity 8/2/8u3 appearing in the circulation integral in Kelvin's theorem (2.12) plays an important role 
in the Hamiltonian formulation of ideal fluid dynamics in Eulerian variables. Indeed, the chain rule and relation 
(2.3) for the velocity u3 imply 8/2/8u3 = --Yra~73 Ia ,  where 7r A = (~/2/~l A is the momentum density canonically 
conjugate to l a in the Hamiltonian formulation. Consequently, the circulation integral in (2.12) becomes 

f f 7t'A 1 8/2 . dx3 = -  dl A, (2.13) F s,-S 
y(t) y(t) 

and 79 = 1. Hence, Kelvin's theorem (2.12) states that the circulation integral (2.13) is invariant when the fluid 
contour y (t) lies on a level surface of p. In the Hamiltonian formulation, this invariance characterizes the class of 
fluid flows generated by HP with action £(u3, D, p) in the same way that invariance of PoincarCs action integral 
f p dq characterizes the Hamiltonian dynamics of classical particles - as canonical transformations in phase space. 
Thus, from the Hamiltonian viewpoint, Kelvin's theorem is the geometrical statement of invariance of the fluid action 
integral f ~rA dl A on level surfaces of buoyancy. (Incidentally, this geometrical statement takes the same form in 
Lagrangian fluid variables - invariance of f H .  dX on level surfaces of buoyancy, w h e r e / / i s  the momentum 

canonically conjugate to the fluid trajectory X(l A, t).) 
Applying Stokes' theorem to the relation (2.12) on a surface of constant buoyancy S(t)Ip with boundary y (t) 

yields 

f / a, -0. (2.14) d ~7 3 x ~'3P iX73pl _ _  , - -  

dt 
S(t)lp 
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Thus, the flux of this curl (which turns out to be the absolute vorticity in fluid applications) through a surface 

of constant buoyancy is invariant under the incompressible flow whose motion equation arises from variations 
of la(X3, t) in HP, Eq. (2.11). Moreover, Kelvin's theorem and advection of the buoyancy p together imply the 
advection law for potential vorticity, 

0--'t- + u 3 .  V3Q = 0 with Q - ~ V 3  x \~8--~3,]" V3p. (2.15) 

Thus, advection of potential vorticity is also a general result of HP for any action of the form E(u3, D, p). This 
property may also be obtained directly from the three-dimensional curl of the motion equation arising from HP in 
(2.11), i.e., from the "vorticity equation", 

3 × \ ~ 8 - - ~ 3 , ] - V 3  x u3 x V 3  × ~ =V3\~pp/ × V 3 P .  (2.16) 

Finally, the exact derivative terms in the variational equation (2.11) vanish, provided: (1) the variations 81 a 
vanish at the endpoints in time; and (2) either u3 • ~3 = 0 = 8x3 • ~3 at the fixed boundaries (as we assume, with 
Sx~ -- (79 -1 )~sIa), or the following condition is satisfied; 

BE. 1 8L 
8~ n3 + ~ 8--~3 (u3 • n3) = 0, (2.17) 

at free boundaries (i.e., moving boundaries without traction). This is the starting point for generalizing the present 
considerations from fixed to moving boundaries in Eulerian variables. 

3. Restriction of the EB to the primitive equations (PE) 

Setting the aspect ratio parameter ot to zero in the EB equations (1.5) yields the dimensionless primitive equations 
(PE) of ocean and atmosphere models; namely, 

du 
~ r . u + E w z = O ,  ~--~+ f ~ x u + ~ 7 p = O ,  

dp (3.1) 
P+Pz  = 0 ,  - -  = 0 .  

dt 

Setting ot = 0 in the EB vertical motion equation (1.5) imposes hydrostatic balance in the PE, which allows the 
pressure p to be determined from the vertical integral of the buoyancy p, by the third equation in the set (3.1). The 
vertical velocity w is determined in the PE from the vertical integral of the continuity equation, the first equation 
in the set (3.1). Thus, the pressure p and the vertical velocity w in the PE are both diagnostic variables. We shall 
see later from the viewpoint of HP that p and w are both Lagrange multipliers, which impose the constraints of 
incompressibility and hydrostaticity, respectively. Thus, the PE system, written in terms of the five variables p, p, 
and u3, with two constraints, has only three remaining degrees of freedom, in agreement with the number of partial 
time derivatives in the PE (3.1). 

The PE form a dynamical system which clearly inherits its structure from the EB equations. For example, the 
Kelvin circulation theorem and the conservation laws for potential vorticity and energy in the EB system lead to 
those for PE, as follows. Let us define the a2-weighted three-dimensional velocity v3 = (u, v, Eot2w). Then the EB 
equations (1.5) are expressed more compactly in the equivalent form 

~OtV3 -- U3 X curl3(~v 3 + R )  q- ,o~, -+- ~73( p q- l~u 3 • v3) : 0, 

V 3 . u 3 = 0  and d p  = 0 .  (3.2) 
dt 
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The PE emerge from these equations when ct ~ 0 and, consequently, v3 ~ u. 

3.1. Kelvin theorem for PE 

The EB motion equation in (3.2) implies the following Kelvin circulation theorem for any closed curve y(t)  
moving with the fluid; 

f f ] (EV3 -k-R) • dx3 = (ev3 d-R) q- (ev3j + Rj)~r3u~ • dx3 

F(t) y(t) 

= -- f p~ " dx3 + f V 3 (  - p + I ,u3 " v3 + ua " R)  " dx3 

y(t) y(t) 

= -  f p dz, (3.3) 

F(t) 

where we have re-expressed the EB motion equation using the fundamental vector identity of fluid mechanics, 

- U  x curl3 V = (U.  V 3 ) V  - uJ~73Vj, (3.4) 

which holds for any three-component vectors U and V. Setting ot = 0 replaces v3 by u in Eq. (3.3) and thereby 
produces the Kelvin theorem for the PE, 

d f fig_ ] (Eu + R )  • dx3 = -~t(Eu + R ) +  (fUj + Rj)~73 uj  "dx3 
d--~ 

y(t) y(t) 

= - f p£ . dx3 + f ~Ta( - p + l Elu12 + u . R) . dx3 

V(t) y(t) 

= -  f pdz.  (3.5) 

V(t) 

An application of Stokes' theorem in Eq. (3.3) implies that the flux of total vorticity curl3 (ev3 +R)  through a surface 
of constant p is invariant. From the viewpoint of the Hamiltonian formulation, the Kelvin circulation property of 

the EB and PE systems is a fundamental property of Eulerian ideal fluid dynamics. Indeed, any approximate ideal 
fluid model misses being a fluid theory to the extent that it sacrifices the Kelvin circulation property. Fortunately, as 
we have seen in Section 2.2, this property is preserved by any approximate ideal fluid model derived from HP with 
action/~(u3, D, p). Thus, HP asymptotics for such an action is guaranteed to produce an ideal fluid model which 

possesses the Kelvin circulation property. 

3.2. Potential vorticity for PE 

The three-dimensional curl of the EB motion equation in (3.2) yields the total vorticity equation 

0 
--curl3(ev3 q-R) - curl3 (u3 x curl3(Ev3 -k- R)) -- ~ x ~73p. 
0 t  

Combining this result with the remaining two equations in (3.2) gives 

d QEB 
- -  -- 0 with QEB ------ curl3(~v3 + R )  • •3P- 

dt 

(3.6) 

(3.7) 
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When we restrict to ot = 0, we replace v3 with u = (u, v, 0) and (3.7) becomes the advection law for the PE 
potential vorticity, given by 

dQpE 
- -  = 0 with QPE ----- curl3(Eu q-R) • V3p. (3.8) 

dt 

Advection of both Q and p (where Q is either Qes,  or QPE), combined with the weighted divergence condition 
and tangential boundary conditions on u3, yields an infinity of conserved quantities 

C,/~ = f d3x ~(Q,  p), (3.9) 

for any function q~, and for either the EB, or the PE fluid theories. 

3.3. Energy conservation for PE 

Taking the dot product of the EB motion equation in (3.2) with the velocity !l 3 = (U, !), EW) and summing with 
z times the buoyancy equation gives energy conservation for the EB equations, in the form 

0 1 
~ (~El.13" V3 -[- pZ) "[- ~73" (p + 1EU3 "V3 + pZ)U3 = O. (3.10) 

In the case c~ = 0, this EB energy conservation equation restricts to that for the PE, again by replacing v3 with u. 
Namely, 

O~(1Elul2 q- pz) -t- V3" (p + 1Erul2 + pz)u3 = 0, (3.11) 

where p is now the pressure for the PE. The energy integral, 

E = f d3x(l , lul  2 -k- z,o), (3.12) 

is then time independent for PE solutions satisfying the boundary conditions (1.10). 
The Kelvin circulation theorem (3.5) and the conserved quantities E and C~ for the PE are evidently the a = 0 

legacy of the corresponding properties for the EB. We shall see later (in Section 7) how to interpret E and C~ from 
the viewpoint of the Hamiltonian formalism. 

3.4. HP for the dimensionless PE 

The dimensionless constrained action/~EB in (2.1) which leads via HP to the EB equations (1.5) is expressed in 
terms of the ot2-weighted velocity v3 = (u, v, ea2w) as 

= f dt f + (3.13) £Es 

where u3 = (u, v, Ew). Setting the aspect ratio parameter ot to zero in/2EB in (3.13) immediately provides the 
action in HP for the dimensionless PE (3.1). 

= f dt f d3x[leDl.l 2 + D . .  R ( x ) -  D p z -  p(D - 1)]. (3.14) £PE 

Varying/~OE with respect to the fluid particle labels lA(x3, t), with A = 1, 2, 3, at fixed Eulerian position x3 and 
time t now leads to the PE, upon retracing the steps taken between Eq. (2.5) and (2.10) in deriving the EB equations. 
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Thus, from the viewpoint of HP, imposition of hydrostatic balance corresponds to ignoring the kinetic energy of 
vertical motion by setting ~ = 0 in the EB action (2.1). 

Remark. In the other limit, e ~ 0, HP for EEB (cf. Eq. (2.9)) gives 

f~. x u +~p  + V3p = O, (3.15) 

which enforces both hydrostatic and geostrophic equilibrium balance. 

4. Balance equations via HP 

4.1. Setup 

Balance equations (BE) approximate the PE by using asymptotic expansions and an E-weighted Helrnholtz 
decomposition of the horizontal fluid velocity u = £ x ~7~ + eVX to remove the potentially high-frequency 
compression waves which arise in deriving PE, as ot ---> 0 while imposing the hydrostatic approximation on the EB 
equations. The source of these waves is the order O(~ 2) partial time-derivative of the divergence of the horizontal 

velocity in the Poisson equation for the pressure, 

--Ap=EOtV.U+~r.[E(U3.V3)u+f~xu] w i t h X T . u = - e W z ,  (4.1) 

obtained from the divergence of the PE motion equation in (3.1). Removing this term to higher order in e establishes 
a balanced pressure equation, which determines the pressure from the velocity without using time derivatives. 
Apparently, the accuracy of BE compared to the PE depends on the Rossby number being small, e << 1. Thus, 
we are in the realm of approximation theory and in possession of the small dimensionless parameter e. In making 
approximations, though, we wish to preserve two potentially opposing structural aspects of the original EB equations: 
their balanced nature and their Hamiltonian property. Our approach in doing this is to continue the theme of small- 
Rossby-number expansions in HP discussed in Section 3. The approximate equations we derive this way will have 
the advantage of being Hamiltonian systems. Such systems will conserve energy and potential vorticity at each 
order in the e-expansion, because they preserve the fundamental symmetry properties of HP for fluids. They will 
also admit Hamiltonian methods for their subsequent analysis. Thus, our strategy is to first seek approximations 
of the PE that are Hamiltonian, then to check whether they are also balanced. A similar strategy is used in [30] 
for deriving approximate models of rotating shallow water dynamics which satisfy energy and potential-vorticity 

conservation. 
BE modeling begins, [12-14], by expressing the dimensionless horizontal velocity vector u as the E-weighted 

sum of its rotational and divergent parts, UR and up, respectively, 

U = U R q'- EUD ~ Z X ~ r  --~ E ~ X ,  

or uR : (UR, VR, 0) = (--lpy, 1/.rx, 0) UD = (UD, 1)D, 0) = (Xx, Xy, 0). (4.2) 

Thus, in BE modeling the rotational part of the horizontal velocity is assumed to dominate its divergent part, in 
proportion to the ratio of the Coriolis force to the nonlinearity in the PE. In the Helmholtz decomposition of u, the 

BE ordering assumption implies that 

curl3 u3 = (ewy -- I)R z, - -~Wx  q- URz, 1)Rx --  URy), (4.3) 

~ 3  • U3 = e(UDx -I- UDy) --}- EWz = 0, 
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and, thus, in terms of ~p and X, 

( -- $. curl3 u3 = VRx -- URy = ~xx ÷ l[/yy -~- A I ~ ,  (4.4) 
divu = Ux + Vy = e(UDx + VDy) = E A x .  

The continuity equation in (4.3) then gives 

Wz = -ZlX,  (4.5) 

so w is determined from X and the top boundary condition, Wlz=O -- 0. Vice versa, UD is determined from w by 

u p  = -- A -  1 ~7 Wz. (4.6) 

Hence, variations in UD are related to variations in w and X by 

t$//D = - - Z I - I ~ 7 ~ ) z t S W  = 'q~Tt~x. (4.7) 

Finding Z from w via the Poisson equation (4.5) requires a boundary condition on X, in order to invert the 

horizontal Laplacian in (4.7). The condition that the velocity u = UR + EUD be tangential at the boundary gives 

f~. UR ÷ Eft .  u o  = 0, so one could take ~.  UR = O(E) on the boundary and expand UR in powers of E to match order 
O(~) terms at the boundary. However, for simplicity, we follow Ref. [ 12] in setting the normal components of both 

velocities to zero separately at the boundary. This choice gives the homogeneous Neumann boundary condition, 

• u o  = 0 ,  i . e . ,  

Xn = 0 with Xn = ~ " ~'X : ~ "//D, (4.8) 

and enforces 

- ~ s  = ~ ' U R  = 0 ,  ( 4 . 9 )  

at each (vertical) lateral boundary, where h is the two-dimensional outward unit normal vector at each level surface 

of the height z. This choice is restrictive, since it eliminates Kelvin waves, which may be important in maintaining 

balance when an interior flow is strongly influenced by waves on the boundaries [12]. Nonetheless, we shall use 

condition (4.8) in our discussion of the E-expansion of HP in Section 4.2 and decline to discuss the question of more 

general boundary conditions at this point. Gent and McWilliams [12] offer several alternative choices of boundary 
conditions for balanced models in a finite domain. Such boundary conditions could be incorporated into the HP 

approach by using the standard technique of adding a null Lagrangian to L. (A null Lagrangian is the space and time 

integral of a total divergence, whose only contribution in HP appears at the boundary. See, e.g., [ 11 ] for discussion.) 
However, we do not pursue this approach here. 

The partial time-derivative of the boundary condition (4.9) must also vanish, so that 

f~ • ~tUR = --~Pst = 0 at the boundary. (4.10) 

This relation will be useful later, in proving energy conservation for HBE in Section 6. 

Coun t ing  degrees  o f  f r e e d o m .  The Poisson equation --A X = Wz, with Xn ---- 0 at the domain boundary, 
determines g from w and, thus, the number of degrees of freedom reduces from three for the PE 0P, P, X) to only 
two for the HBE (~,/9). The HBE reduction is thus intermediate between the PE and model equations in which the 
potential vorticity alone is used to determine the velocity, see, e.g., [3,32] for more discussion of the counting of 
degrees of freedom involved in balance models. 
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4.2. The e-expansion of liP for EB and PE 

The relative ordering in e assumed for u in (4.2) allows us to expand the kinetic energy of horizontal motion 
I1ll 2 = I//R -q- ~?UDI 2 which appears in the action for the EB equations (2.1) and rewrite this action as a nested sum, 
ordered in powers of e, 

/~EB = ~0 -'1- e/~l --I- ~2/~2 -I- E3/~3 q- e30t2/~4 

=f dtf d3xt79. ,(x)-79Oz-,,(79-1)l+,f dtf d'x½79,.-,.o,2 
+,:f d, f d3x79(.-e.o)..o+e3f d, f d3x179,.o,2+, =:f dtf d'x½79m2. (4.11) 

The Rossby-number expansion of HP 8£EB = 0 now gives a hierarchy of equations which is ordered in powers of 
E. Each equation in the hierarchy will be Hamiltonian and will conserve energy and potential vorticity, although 

not all of them will necessarily be balanced in the sense that we use here that the pressure is solved as a diagnostic 
variable from an equation with no partial time derivatives appearing at highest derivative order. 

4.2.1. O(E) variation and the HBE 
As in Eq. (3.15), variation of the leading order action gives 

6£o = f dt f d3x[D(D-1)iAglA(f£ x u + £p + ~73P) i  - (79 -- 1)Sp], (4.12) 

whose vanishing implies the leading order conditions of geostrophy, hydrostaticity, and incompressibility. 
Upon using definitions (2.6) and BUD = ~78X from (4.7), the variation of the next entry in the E-series for the 

action in (4.1 1) is expressed as 

= f dt f d3x[IIuRI2879- - 79UR. (Su --EtSUD) ] 

= f  d t f  d3x[79(79-1)~Sla(duR+eURjV3UJD)i--,79UR.K78X]. (4.13) 

The final term in (4.13) may be shown to vanish, by using the divergence theorem. Namely, 

fdtfd'x79..wx=fdtfd3x V(79.. X)- XV(79..)], 

Both terms in (4.14) vanish, one because of the boundary condition UR" t] = 0 and the other because the expression 
79UR = 79£ × V~p has no horizontal divergence when 79 = 1. Hence, the sum of Eqs. (4.12) and (4.13) gives 

[cf. Eq. (2.11)] 

3( /20+/21)=  dt d3x 79(79-1)(~,8/A ( f£xu+~p+V3p)+e  "-~UR ,',ai 

-(79-1)ap-e2,XV.79UR}+e2 f dt f dzf ds79~.URSX. (4.15) 

HP now implies the HBE; namely, the O(e 2) motion equation in the Rossby-number hierarchy which arises from 
vanishing of the sum S (120 + e/21) in Eq. (4.1 5). The HBE motion equation is found to be 
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E-~uRd + ~ 2 U R j V 3 U J D + f ~ x u + ~ , p + V 3 p  = 0. (4.16) 

In addition, we have 

D =  1, div79uR = 0 ,  f i 'UR = 0  on the boundary. (4.17) 

The kinematic relations that complete the system are 

dp 
- -  = 0 and ~t79 = - d i v 3 7 9 u 3 .  (4.18) 
dt 

These relations follow from advection (2.2) of  the Lagrange coordinates and the definitions 

p = p(l  A) and 79 = de t (v3 / a ) .  (4.19) 

As an immediate consequence of  Eq. (4.18), the constraint 79 = 1 implies Xr 3 -u3 = 0, so the flow is incompressible. 

With OUD/at absent in Eq. (4.16), waves due to horizontal compression are absent. Thus, the motion equation in 

(4.16) is balanced, in the sense that no time-derivatives appear in the equations which determine the pressure, p,  

Ap + V .  [ I z  x u + , (u3 .  V3),,R + ~2(URjVu~)]  = 0, 
(4.20) 

Pz + P + E2URjUJ z = O, 

where A = Oxx + Oyy is the two-dimensional Laplacian. Given/9, uR and up,  the Poisson equation in (4.20) for the 

pressure p is solved with Neumann boundary conditions, 

tg"-n + (:2uRj UJD + ~ " [f~" x U + ~?(//3 • ~73)1/R] = 0, (4.21) 

applied at each vertical lateral boundary, whose outward unit normal vector ~ is horizontal. By ~73 • u3 = 0 and 

• UR = 0 = ~ • U on the boundary, we find 

j i ^ _u~hi , juJ  ~c(g. UR)(g" u), (4.22) t~ • (U3 • ~r3)UR = --U3URaajni = = 

where g is the horizontal unit tangent vector and x is the curvature of  the boundary in the horizontal plane. Since 

~,, ~, and g are assumed to form a right-handed orthogonal coordinate frame on the boundary, we may then rewrite 
(4.21) as, cf. Eq. (1.13), 

Pn + E2URjUJ n -- ( f  -- EK~n)(~n + ~:Xs) = 0. (4.23) 

Solving the Poisson equation (4.20) determines the pressure p from the buoyancy p and the velocities uR and UD 

for HBE, just as in the case of  the EB equations, without the appearance of  any time-derivative terms. Thus, the 

motion equation obtained from the first two terms in the HP E-series is balanced. It turns out that the next-order set 
of  equations obtained from the HP hierarchy is not balanced in this way. 

Remark (on boundary conditions, constraints, and the weighted Helmholtz decomposition for  HBE). Theboundary 

conditions summoned by HP for the HBE (4.16) are expressed in terms of  the Helmholtz velocity decomposition 
(4.2), as 

" UR = 0 = ~ • UD at the boundary, (4.24) 

and are expressed in terms of  the velocity potential X and stream function lp, as 

~'s = 0 = Xn at the boundary. (4.25) 
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In the variation 3Z~1 in Eq. (4.13), the horizontal velocity potential X looks, at first, like a Lagrange multiplier 

which could enforce ~ "UR = 0 (or, equivalently, ~Ps = 0) on the boundary and XT. (DUR) = 0 in the interior region of 

the flow. However, the variation 3X is related to the vertical velocity variation ~w by (4.7) and this, in turn, is related 

to variations of the Lagrangian coordinates by the formula (2.6) with i -- 3. After a computation, this last relation 

implies a nonlocal contribution to the equation for UR, which however vanishes when the UR-divergence condition 

X7 • (DUR) ---- 0 is satisfied, as imposed by the Helmholtz decomposition (4.2) and the p-constraint, 79 = 1. At first 
sight, this convenient simplification appears to be a coincidence. However, recall that the preservation in time of 

the uR-divergence condition by the horizontal motion equation (in combination with hydrostaticity) determines the 

pressure, p. Thus, the Helmholtz decomposition (4.2) makes sense as a dynamical constraint. In fact, the functionally 
related pair, w and X, may be regarded as a single Lagrange multiplier which imposes the uR-divergence condition, 

~ r .  (DUR) = 0, as a constraint and whose dynamical preservation determines p, the (hydrostatic) pressure. It 

remains then, to determine w and X together, by the method of Lagrange multipliers. 

We remark also that the uR-divergence condition is consistent with a weighted Helmholtz decomposition, 

(? 
u = UR + EUD = --X7 x ~ + ~ T X ,  (4.26) 

according to which UR and UD are orthogonal with respect to the measure 79, i.e., 

f d3x • UD = 79UR 0. (4.27) 

In the present case, the additional constraint 79 = 1 is imposed by the other Lagrange multiplier, p, the pressure in 

the action (4.11). So the weight in the Helmholtz decomposition (4.26) turns out to be unity, as appears in Eq. (4.2). 
Thus, HP provides a self-consistent framework with an orthogonal decomposition of the variables in the Rossby- 

number expansion of the horizontal velocity. It also gives a solution procedure for these variables (the method of 

Lagrange multipliers) and natural boundary conditions. 

Remark (on the case of a single layer at constant p). In the case of a single layer of fluid undergoing columnar 

motion (i.e., OzU = 0) at constant mass density, the O(e) action £;EB in (4.1 1) reduces to 

/~01 = [~0 -]- 6~l] l - layer  

f dt f d x d y [ D u ' R ( x ) -  p(79-b(ex))+ ½+791u - (4.28) 

where z = -b(ex) at the bottom. The assumption OzU = 0 allows us to perform the z-integration in the action 

(4.11). In this situation, incompressibility, X73 • u3 = 0, and the top boundary condition wlz=0 = 0, imply that w 

may be expressed in terms of u as 

ew = -zX7 • u. (4.29) 

The bottom boundary condition, Ew Iz=-b = --u • XTb, then gives weighted incompressibility 

X7 • bu = 0. (4.30) 

Variations of the single-layer action in (4.28) give 

• C o , = f d t f d x d Y 1 7 9 ( 7 9 - 1 ) i ' l a [ ~ U R + ' 2 U R j V U ~ +  f P ~ x u + V P ] i  
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where i, a = 1, 2, and we have integrated by parts as in Eq. (4.15). HP now implies the single-layer equation 

(cf. the HBE (4.16)) 

d + E2URj~rU j + f~ X U + ~7p O, (4.32) 

as well as (cf. Eq. (4.17)) 

79 = b(Ex), gr. bUR = 0, ~ • UR = 0 on the boundary. (4.33) 

Finally, we have the kinematic relation 

0t79 = - ~ r .  79u, (4.34) 

which completes the system. Inserting the constraint 79 = b(~x) with Orb = 0 into the last equation recovers 
the weighted incompressibility condition (4.30) for u. Then, since u = UR + EUD and UD = VX, the condition 
~r. bUR = 0 in (4.33) which leads to a balanced pressure equation, combined with weighted incompressibility 

(4.30), implies 

V . b V x  = 0; (4.35) 

whose only solution for b > 0 and Xn = 0 on the boundary is X = constant. Hence, UD = 0 and the single-layer 

HBE system (4.32)-(4.34) reduces to 

d 
~--~u + f~: × u + ~rp = 0 with ~r.  bu = 0. (4.36) 

These are the so-called "lake equations" of Ref. [10], placed into a rotating frame. Eqs. (4.36) with f = 0 and 
E = 1 are obtained in [10] as the leading order equations in an asymptotic expansion of the EB equations (1.5) in 
powers of the aspect ratio ot in Eq. (1.7). See Refs. [10,21,22] for detailed discussions of the properties of the lake 
equations and also of the higher-order, nonhydrostatic, equations that arise in the shallow-water expansion of the 
EB system. 

4.2.2. O(~ 2) variation and higher-order fluid equations 
Next, the variation 8/~2 from (4.11) is calculated as follows: 

~/~2 = f dt f d3x [(UR. UD)879 + 79UD" ~u q- 79(UR 6UD) " SUD] l 

= f  d t f  d3x79(79-1)iASlA(duD--URjV3uJo+½E~731UDI2)i--,f dt f d3x79x~w. (4.37) 

Using the relations in (2.6) allows us to express the last term in (4.37) as 

-,f dtf d3x79xaw=-f dtf d3x79(79-1)iA,la(  +,XV3w)i (4.38) 

The motion equation arising from HP, 8(~0 + E/~I + E2Z~2) = 0 ,  is found to be 

d 
E--~u + f~  x u +~p  + ~'3(P + ½'31UDI2) - ~ : 3 z  d X  - E4X~r3 w = 0. (4.39) 

dt 

This equation retains rapid fluctuations due to waves of horizontal compression at order 0(6 2) and is not balanced in 
our sense, because its 3-divergence contains time derivatives. Moreover, it differs from the PE only by O(E3), since 
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the term f 2 U R j ~ 3 u J  in (4.16) cancels  in computing (4.39), as might be anticipated from the "nested" appearance 
of the sum (4.11) for the action. We pursue Eq. (4.39) no further. Its only purpose is to show which terms are being 
neglected in the E << 1 asymptotics of HP for the PE, when we truncate at order O(e 2) in Eq. (4.16). Varying the 
fourth term in the Rossby-number series for the action in (4.11) cancels the O(E 3) and O(e 4) quantities in (4.39) 

and returns us to the PE. 

Prospect.  For the rest of this paper, we shall focus our attention on the HBE (4.16)-(4.18). Obtained systemat- 
ically from a Rossby-number expansion of HP for the PE, the HBE system inherits several advantages beyond that 
of being balanced. These advantages include self-consistent boundary conditions, Kelvin's theorem, and conserva- 
tion of energy and potential vorticity, as well as a Hamiltonian formulation in which to make at least qualitative 

comparisons between its solution properties and the corresponding properties of the PE which it approximates. 

5. Comparison of  the HBE with PE and other BEs in the literature 

The HBE (4.16)-(4.18) may be conveniently rewritten in terms of horizontal and vertical velocity components, 

as 

EOtUR --~ E2WURz -t- (E~ -t- f ) £  × U q- V ( p  + -12ElURI2 -t-EZuR • UD) = 0, 

P + Pz + E2UR "UDz = 0, 
(5.1) 

with d p  = 0 t p + u 3 . ~ 3 P = 0 t p + u . ~ r p + ~ w p z = 0 ,  
dt 

gr . u + ~wz = O, w h e r e u = u R + E u D .  

The HBE differ from the PE at order O(E2). The nature of this difference becomes clear, upon writing the PE (3.1) 

as "HBE plus order O(~2) '', 

E0tUR "q- E:ZlHURz "+" ((:~ Jr- f )£  x u + V ( p  -+- 1ElURI 2 + ~2UR" UD) 

= --E2OtUD -- e3WUDz -- I~3VlUDI 2, 

P + Pz + ~2UR " UDz = E2UR " UDz, (5.2) 

with d p  = Otp --}- u • V p  -}- fWpz  = O, 
dt 

V . u + Ewz = O, w h e r e u = u R + ~ U D ,  

in which the left-hand sides of the first two equations are the HBE, and the right-hand sides are order O(E 2) 
adjustments required to obtain the PE. We interpret the O(~ 2) differences as unbalanced perturbations of HBE that 

could potentially lead to high-frequency, or rapidly growing fluctuations [9]. 
Expanding the buoyancy p around a time-independent background stratification ~(z) as p = ~(z) + Et3(x3, t) 

gives the buoyancy equation as 

_ _ _  d~ 
Buoyancy  equation " d~ S ( z ) w  = 0, where - S(z)  = - - .  (5.3) 

dt dz 

By taking the curl of the horizontal motion equation in (5.1), the equation for the vertical component of vorticity, 

= ~ • curluR = A~,  is found to be 

- ~  ~" + + (e~" + f )  AX + ~Vw • ~ O  z = 0, (5.4) 
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or, equivalently, 

Vorticity equation : at( + [~P, ( + f /E] + f a x  + e~r " (w~7~z + (~TX) = O, (5.5) 

where the square brackets denote the Jacobian, e.g., [~p, X] = ~ x X y  - lPyXx. Now 1~7f[ = O(e), by the scaling 
assumption (1.9). So u • V f i e  = O(1) and the ( equation (5.4) contains only O(1) and O(e) terms. Taking the 
horizontal divergence of the UR equation in (5.1) gives the following balanced equation for pressure (in which we 

recall that UR = £, x Vap, UD = ~TX, and Wz = - '4X),  

Divergence equation : Ap - -  ~ 7  . ( f ~ 7 ~ )  - -  2e[~x, ~y] +'e[X, f] 
+ e2 ( ' 4 [ ~ ,  X] -t- I x ,  "41p] Jr- [lP z, to]) = 0, (5.6) 

The divergence equation (5.6) relates pressure and velocity to each other without requiring any time derivatives. 
Hence, these equations are balanced. The z component of the motion equation in (5.1) is also balanced in the same 
sense, 

Hydrostasy equation : P + Pz + e2[~, Xz] = O. (5.7) 

In comparison to other BE in the literature, the BE discussed in [ 1 2,1 3] retain only order O(1) and order O(e) terms 
in Eqs. (5.4)-(5.7) and in their boundary conditions. The BEM equations of Allen [3] differ from Eqs. (5.4)-(5.7), 
by having one different O(e 2) term in the divergence equation (5.6) and no O(e z) term appearing in the hydrostasy 
equation (5.7). The O(e 2) term in the HBE (5.7) breaks the exact hydrostatic relationship of the PE, in order to 
ensure that the balanced motion equations (5.1) will be Hamiltonian in the original Eulerian fluid variables. (This 
order O(e 2) term will also play an important role in deriving a balanced omega equation for w.) As pointed out to 
the author by P. Gent, the HBE equations transform to the BEM equations of Allen [3], upon introducing a new 
pressure, 79, related to the physical pressure, p, and horizontal velocity decomposition u ---- UR + CUD, by 

79z = Pz + e2UR " UDz = Pz + e2[~, Xz], (5.8) 

which may be formally integrated, as 

z 

p + e2/-/R " UD = 79 -~- e 2 f URz " UD dz, (5.9) 

where p is the pressure in our notation and 7 9 is the pressure in the notation of Ref. [3]. In the rest of this paper, we 
shall retain our present notation for pressure. However, we keep in mind the equivalence of the HBE equations to 
Allen's BEM model [3] under Gent's redefinition of pressure (5.9), especially for the sake of the numerical solution 
procedures and linearized analysis discussed in [3]. This equivalence between HBE and BEM also allows us to take 
advantage of the numerical and analytical comparisons already made between solutions of BEM and other balanced 
models [3,7]. These numerical comparisons are made with horizontally periodic boundary conditions [7]; so the 
difference in the definitions of pressure in (5.9) between HBE and BEM in the horizontal boundary condition (4.23) 
is not an issue. Also, the curvature K at the boundary vanishes for a periodic domain. 

Although the HBE divergence and hydrostasy equations (5.6) and (5.7) for p and X decouple from the rest of the 
system and could be addressed separately, it is better to solve them as part of the larger system (5.1). The method for 
doing this in BE theory is to calculate a so-called "omega equation", [ 12]. The omega equation for HBE is found by 
calculating the sum of three equations: the Laplacian .4 operating on the buoyancy equation (5.3), plus the operator 
fO/Oz acting on the vorticity equation (5.5) and a2/azat  acting on the divergence equation (5.6). On taking this 
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sum and using the hydrostasy equation (5.7), the highest order derivative terms cancel identically and one finds the 
following omega equation for determining the vertical velocity w, 

Omega equation : - -S(z)Aw -- f2Wzz + LOT = 0, (5.10) 

where the terms denoted LOT are lower order in derivatives of w. Thus, the solution for the vertical velocity w in 
HBE is obtained from an elliptic equation. The appropriate horizontal boundary condition for w in a finite domain 
comes from tangency of the horizontal velocity, the buoyancy equation (5.3) and hydrostasy equation (5.7). This 
boundary condition is given by 

-1  
w = - -  (OtT'z + (~Pn + ~Xs)OsPz) on the boundary, (5.11) 

Pzz 

where P is given in Eq. (5.8). The vertical boundary conditions for w are given in (1.10). Numerical solution 
procedures for BEM are described in detail in [3]. These same numerical procedures apply for HBE, modulo the 
redefinition in pressure p to T' given in Eq. (5.8). In addition, because the omega equation (5.10) for HBE is elliptic, 
standard methods for BE also apply in numerical solutions of HBE. 

6. Kelvin circulation theorem, potential-vorticity advection and energy conservation for HBE 

The HBE (4.16) implies the following Kelvin circulation theorem for HBE: 

d (R + 6UR) • dx3 = + + (Rj d--t ~-~(R ~UR) + EURj)~73U " dx3 

y(t) y(t) 

=--  / pT.. dx3+ f ~ 7 3 ( - - p +  I E I u R I 2 + u ' R ) "  dx3 

y(t) g(t) 

= -  f i  pdz  (6.1) 
y(t) 

for any closed curve V(t) moving with the fluid. We compare this result with the Kelvin circulation theorem for PE 

in Eq. (3.5), rewritten as 

f d t  (R -~- fU)" dx 3 = ~-~ ( e  -k-~ EUR -+- ~2UD) ' .  dx3 = - p dz. (6.2) 

y(t) P~E y(t) HBE Zero y(t) 

Since the last term vanishes, by f UD • dx3 = / dx = 0, one expects the HBE circulation integral to differ from 
that of PE only through the differences in buoyancy between the two theories. 

6.1. Potential vorticity for HBE 

Applying Stokes theorem to (6.1) on a surface of constant buoyancy p gives 

dff dS = 0 .  (6.3) --~ [curl3(EUR + R ) .  V3P] 1~73p-~-- ~ 

S(t)lp 
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Thus, the flux of total vorticity through a surface of constant buoyancy is invafiant for HBE. Taking the three- 

dimensional curl of the uR-equation in the HBE (4.16), rewritten as 

E0t/.IR -- I/3 X curl3(EUR + R )  + p£ + V3(p + ½EIURI 2 + E2UR • UD) = 0, (6.4) 

implies the total-vorticity relation 

Otcurl3(~UR -q-R) - curl3 (u × curl3(EUR +R) )  = £ x V3p. (6.5) 

As a consequence of Eq. (6.5) and d p / d t  = 0, the potential vorticity, Q, satisfies the advection law, cf. Eq. (2.16), 

dO 0Q 
- + u3 • $73 Q = 0, where Q - cud3(EUR + R) • ~r3p. (6.6) 

dt Ot 

Advection of both Q and p, combined with the tangential boundary conditions on u3, yields an infinity of conserved 

quantities, 

C~ = f d3x~(Q,  p), (6.7) 

for any function q~. 

6.2. HBE energy 

An energy conservation equation may also be derived for the HBE, by taking the scalar product of u3 = (u, Ew) 

with Eq. (6.4), summing the result with z times d p / d t  = 0, and using V3 • u3 = 0 to find 

~(~EI/IR(9 1 12 + Zp) . . . .  --¢S2V (X(gtUR) V 3  (p + Zp + ½ElURI 2 + E2UR " UD)U3. (6.8) 

The integrated energy, 

E ---- f d3x(1ElURI2 + Zp), (6.9) 

is then time-independent as a consequence of the boundary conditions (1.10) and (4.10), namely 

u3 • fz3 = 0 and ft • (gtUR = 0 at the boundary. (6.10) 

The conserved quantities E and C~ are evidently the asymptotic legacy of the corresponding quantities for the PE 
and result from the derivation of HBE from HP. More of the nature of these conserved quantities will be clear from 
the Hamiltonian formulation of the HBE given in Section 7. 

7. Hamiltonian formulation of Eulerian HBE 

7.1. Legendre transformation in Eulerian variables 

In order to find its associated Hamiltonian, we Legendre transform the HBE action, (4.11) at order O(E). The 
action at this order is given by 

£HBE = ,~0 -+- E £ 1 

=f d, f dtf d'x½Z,,.-..D,'. 
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The momentum Jr A canonically conjugate to l a at this order in e may be computed using the variational formulas 
in Eqs. (2.6) as follows: 

~EHBE _ 8U~ (~£HBE 
7gA-- ~1A ~l A Su~ 

l i ~/~HBE 
~"--(79- )A ~U~ 

= - ( o - l ) ~ 7 9 ( R i  + EURi) + E ( o - l ) 3 A - l O z O j 7 9 u J ,  (7.2) 

where we have used X = - - A - l w z  and integrated by parts in calculating the last term. The momentum density 

defined by mi = --Tra D A with i = 1,2, 3, is given by 

mi = 79(Ri -t- fURi)  for i = 1, 2, m3 = --~A-l(79UJR), jz  for i = 3. (7.3) 

Eventually, m3 will vanish when the condition ( D u J ) , j  = 0 is imposed. However, we must first take variations of  

the HBE Hamiltonian with respect to m3. Using (7.2) and the definition of the fluid velocity in Eq. (2.3) leads to a 

useful formula 

:rr Al A = m3 • u3 = i n .  u + ~m3w.  (7.4) 

The Legendre transformation to the Hamiltonian for HBE is then expressed purely in terms of  Eulerian variables, 

as 

= f   x[Tra lA - -  LHBE] 

f d3x[m3 • u3 - 79u. R - ½ , D l u  - Euol 2 + D z p  + p(79 - 1)]. (7.5) 

Substituting the definitions m = D ( R  + fUR) and UR = u -- EUD into Eq. (7.5) gives the Hamiltonian 

f E  1 ] HBE = d3x ~ E - ~ l m - 7 9 R I 2 + D z p + p ( D - 1 ) + ~ w m 3 + e ( m - D R ) . U D ,  (7.6) 

which consists of  the sum of the order O(~) approximate kinetic energy, the potential energy, and a sum of terms 

that appear in the form of constraints on/-/BE. The variational derivatives of  HBE(m3, 79, p)  are given by 

8HBE = f d3x[u3 • 8m3 -I- 79z6p -t- ( - ½elURI 2 - -  u .  R + zp + p)ST) 

-t-(79 - 1)Sp -k- m38w -t- [m - D ( R  -t- fUR)] " ~U 

,D..>]- f dzf ds79Sx"'uR. (7.7) 

Thus, the quantities p, w, X and u appear to be five Lagrange multipliers which impose the following constraints: 

8p : 79 - 1 = 0, volume preservation of  the flow; 

8u : ra - D ( R  + ~:/gR) = 0, which defines m in terms ofuR and 79; 

8w : m3 = 0, as expected with m3 = - - E A - l O z  ~r • 79UR; 

8X : ~7 • (DUR) = 0 in the interior and UR • h = 0 at the boundary. 

(7.8) 
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However, the variations 3Z and/~w are linked by the formula 

~ X = -- A - l  Oz t~w" (7.9) 

Hence, we may integrate by parts in Eq. (7.7) to regroup these terms, as 

8HBE = f d3x[u3 • 8m3 4- 79z$p 4- ( - ½~lURI 2 - -  u .  R + zp 4- p)879 

+(79 - 1)3p + [m - 79(R + EUR)] • 8u 
/ *  

+(m3 + A-lOz ~" (m - DR))3w] - ~ ds3xfz. UR. (7.10) 

Thus, vanishing of the variations of/-/BE with respect to the velocity components (the 8u and 8w terms) defines the 
components of the momentum density, cf. Eq. (7.3). This is a general property of the Legendre transformation [6]. 
This property also holds, e.g., in the case of the Hamiltonian formulation of the PE, which is the same as for HBE 

modulo terms of order O(E2). 

Remark. The constrained Hamiltonian HBE is equal to the conserved energy E in (6.9) when the constraints in (7.8) 
are imposed. Actually/-/BE is a Routhian; the pressure p is not Legendre-transformed, since it has no canonically 
conjugate momentum. See, e.g., [19] for the analogous situation in the case of the incompressible Euler equations. 

7.2. Lie-Poisson bracket in Eulerian variables 

The change of variables from 7r A and 1A to m3, p and D, given by 

m3 = --]ra~73 la, p = p(la) ,  7) = de t (v3la) ,  (7.11) 

transforms the canonical Poisson bracket arising from HP, namely, 

{F 'G}(Tra ' la )=- -  f d3x[  8~ASG'I a ¢~YfASG 81ASF] , (7.12) 

into the following Lie-Poisson bracket in terms of variables m3, p and D, whose algebraic properties are discussed 
in full detail in [16,17,19,20] and references therein 

/ ( ,o ,o ,o)  
{F, G}(m3, p , 7 9 ) = -  d3xF 8F (Ojm3i 4- 4- 790i-~ 

L ~S m 3 i m 3 j O i ) ~---~j3 j - p , i ~p 

8F 8G 8F 8G -I 
-'}--~p p, j s--~j3j + ~-~aj79S-~3j J, (7.13) 

where Oj = O/Ox j , j = 1, 2, 3, operates on all terms it multiplies to its right. This Lie-Poisson bracket satisfies the 
Jacobi identity, 

{E, {F, G}} 4- {F, {G, E}} 4- {G, {E, F}] = 0, (7.14) 

for any functionals E, F and G of m3, p and 79, simply because (7.14) is a variable transform of the Jacobi identity 
for the canonical Poisson bracket. 

The corresponding equations of motion are given in Lie-Poisson Hamiltonian form by 

atm3i -~- {m3i, HBE} = --(Ojm3i 4- m3jai)u~ 4- p, i79z - 790i( - ½EluRI 2 -- u . R + zp + p), 
(7.15) 

O,p = { p , / - / B E }  = --p, ju~, 0,79 = {79, nBE] = --aj79u~. 
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These are the HBE (4.16) now expressed in terms of m3, p and D. Substituting into (7.15) the definitions of the 
components of m3i given in Eq. (7.3) recovers the HBE motion equation in the form that appears in the Kelvin 
theorem calculation in (6.1), namely 

d 
~-~ (EUR + R )  + (EURj + R j ) V 3 u ~  : - p z  4- V 3 (  - p + 1ElURI 2 4- U. R). (7.16) 

If D is initially equal to unity, it will remain so under the dynamics of (7.15), provided V3 • u3 = 0. If m3 = 0, it 
will remain so under the dynamics of (7.15), provided the modified hydrostatic condition p 4- Pz 4- ~2UR "UDz = 0 

is satisfied. The Lagrange multipliers p and X satisfy the divergence and hydrostasy equations (5.6) and (5.7). 

Remarks. (1) The Hamiltonian (7.6) for HBE differs from that of PE by terms of order O (E 2), and the Hamiltonian 
structures of the two theories are identical in form, but with O(~ 2) differences in the expressions for their horizontal 
momentum densities. See Holm and Long [18] and Roulstone and Brice [29]. In both theories, the constraints 
imposed by the Lagrange multipliers p (for volume preservation) and w (for hydrostasy) each remove one degree 
of freedom from EB. In HBE, the relation between w and X removes one more, so only two degrees of freedom 
remain, ap and p. 

(2) The mathematical nature of the Lie-Poisson bracket (7.13) for HBE and others like it (which are defined on 
spaces dual to semidirect-product Lie algebras) is discussed in detail in [16,17,19,20]. The Casimirs C~ for the 
Lie-Poisson bracket (7.13) have variational derivatives that lie in the null space of the Poisson operator for (7.13) 
and, thus, they Poisson-commute with every functional of the Eulerian variables m3, p and D. Consequently, they 
are conserved, since they Poisson-commute with the Hamiltonian HBE, which is expressed in Eulerian variables 
and generates the HBE evolution under the operation of Lie-Poisson bracket. One particular implication of the 
Casimirs is that the canonical transformations they generate in the Lagrangian variables l A are the steady HBE 
flows. Thus, the steady HBE flows are relative equilibria of the Casimirs. That is, they are critical points of the 
sum He = //BE 4- C~ of the Hamiltonian HBE and the Casimirs, C~. The functional freedom in the definition 
of the Casimirs allows all of the steady HBE flows to be characterized this way. This setting makes it possible to 
investigate the Lyapunov stability properties of the HBE steady flows using the methods described in [2,18,20]. We 
do not pursue such a stability investigation for HBE steady flows here, because of its O(e 2) similarity to that for the 

PE, already discussed in [18]. 

8. Isopycnal representation of PE 

In the PE (3.1) the buoyancy p is a Lagrangian coordinate, which may be used in place of the vertical Eulerian 

coordinate z, provided the function 

z = h(x ,  y, p, t) (8.1) 

is one-to-one (i.e., provided hp = 1/pz 5 ~ 0). Upon making that assumption, the action £PE in HP for the PE in 
Eq. (3.14) transforms to 

= f f d x d y d P [ ½ ~ b l f t l 2 +  [ ) f t . R ( x ) -  D p h - / 5 ( / )  - hp)], (8.2) 

where tilde ~ denotes dependence on (x, y, p, t). For example, fi = (fi, fi) are the components in the fixed x and y 
directions of the horizontal fluid velocity, expressed as a function of (x, y, p, t). That is, 

ft(x, y, p, t) = u(x ,  y, h(x ,  y, p, t), t). (8.3) 
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Likewise, the Lagrangian coordinates [~(x, y, p, t) are related to the earlier ones, la(x, y, z, t), a = 1, 2, by 

la(X, y ,  p, t) = la(x ,  y, h(x,  y, p, t), t), a = 1, 2. (8.4) 

Thus, 

~77 a = ~71a(x, y, h(x,  y, p),  t) = ~71 a + lz ~Th, (8.5) 

where ~r denotes (Ox, 3y) at constant p. By the definition (8.4), l a and T a satisfy the chain-rule identities, 

l~ = l with a = 1, 2, 

1 7a " ~ (8.6) 
w ,  = _  GVh ' 0, a = 0da -- 7"p0,h. 

Being Lagrangian coordinates, the [a (x, y, p, t) also satisfy the advection rule 

O= - -  =_ Ot'[ a + ~ . ~ l  -a w i t h a = l , 2 ,  
dt 

= -~ la (x ,  y, h(x,  y, p, t), t) =Otl  a 5- u" V la  5- lz(Oth 5- i t .  ~Th). (8.7) 

Hence, the vertical velocity tb(x, y, p, t) = w(x,  y, h(x,  y, p, t), t) is found from the last term of (8.7) to be 

dh 
,ff;(x, y, p, t) - dt - Oth + ft .  ~Th, (8.8) 

upon using definition (8.3) to replace u by ft. Note that Eq. (8.8) implies that the space and time derivatives ofh  are 
of order O@), i.e., 

lathl = O(,)  and l~rhl - O(,).  (8.9) 

In also follows from Eq. (8.8) and the incompressibility relation, 

I 
V3 • u3 = ~r. fi _ ~.~p,p. ~r h + --tbp,  (8.10) 

hp 

that 

Othp = - ~ 7  . hp~. (8.11) 

Finally, Eq. (8.7) for the advection of [a implies that the isopycnal Jacobian/) = det(~r[ a) satisfies 

0tD = - ~ .  Da. (8.12) 

So b and hp satisfy the same equation. This is the meaning of the constraint imposed by/3 in the action (8.2). 
Varying the action EpE in (8.2) at fixed (x, y, p, t) gives 

f dt f d x d y d p [ ( D , "  5- D R ( x ) ) " 8 "  "4-(1,[,[2 5- ,  " R ( x ) -  p h -  ~)SD 8•pE= 

- bpsh  + h~hp - ( b  - h p ) ~ h ] .  (8.13) 

This formula is expressible in terms of variations 3l "a with respect to the Lagrange coordinate T a on each level surface 
of buoyancy, p, by using the definitions (cf. Eqs. (2.6)) 

8b  = b(b- ' ) i~?, i ,  ~ i  = _(b-,) ia;dSp; _ (b-,)ias?,, i = I, 2, (8.14) 
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where partial derivatives are taken at constant p. We substitute these definitions into the variational formula (8.13) 
for 8£pE and integrate by parts using the tangency conditions on the velocity at the boundary and requiring 6h to 
vanish at the endpoints in p. Consequently, we find (cf. Eq. (2.7)) 

t ~ 
8/~pE = J dt J dx dydp{3[a[ot(L)(L)-l)ia(E~ i + ei)  ) + Oj(L)bt j (/V)--l)/(ff/~i _~_ Ri))] 

+31ao i [b (b - ' ) i  (~ + ph - ft. R --  lffl /~[2)i  ] 

-(bp + pp),~h - (b - h,o),~p}. (8.15) 

Rearrangement of formula (8.15) using the continuity equation (8.12) for / )  and the identities (cf. Eqs. (2.8)) 

orb b(b-~faOjb'/, (D(b  -1 i  d = )a),i =0,  (D-I) / =u,j-i (b- l ) j  (8.16) 

for a, i, j = 1, 2 gives 

8 ~ p E  = f dt f dxdydp{b(b-l)i'? [E-~i +~J(Ri,j -Rj,i)+ (#+Ph),i] 

--(L)p + ~p)3h - (D - hp)3/3 }. (8.17) 

Vanishing of ~ P E  for arbitrary variations g/a, 3h and 3/~ within the domain of flow implies the dimensionless 
isopycnal PE, called IPE, 

d 
E - - ~  + f~ × ~ + ~'(~ + ph) = O, php +/3p = 0, (8.18) 

dt 

where we have used/)  = hp and/JR " l~[p = 0 at the boundary. This is a closed system, when augmented by the 
kinematic conditions, 

¢Co - -  d h  _ Oth + fi . ~Th 
dt 

Oth p = - ~  . hp~t 

(the definition of vertical velocity), 

(incompressibility), 
(8.19) 

in which [Oth[ and I~rh[ are order O(E). Kelvin's theorem for IPE (8.18) is expressed as, cf. Eq. (6.2), 

d f (R+,a)  O, 
dt 

;,(t) 

(8.20) 

where the contour ~ (t) moves with horizontal velocity fi on an isopycnal surface. 
Thus, the isopycnal PE (8.18) emerge from HE upon transforming the action £pE from Eulerian coordinates 

(x, y, z) to mixed Eulerian (x, y) and Lagrangian (p) coordinates and assuming that the Jacobian hp does not 
vanish. The same isopycnal PE can, of course, also be obtained by applying this transformation directly to the 
Eulerian PE. However, we shall find this approach via the transformation of HP useful in Section 9, in constructing 
an alternative to the direct isopycnal representation of the Eulerian HBE derived in Section 4. 
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9. HP for isopycnal HBE 

9.1. Recap of  Eulerian HBE 

The HBE in Eulerian coordinates (x, y, z) are 

EOtIIR + E2WURz -'1- (E(  -{'- f )~ x u + V ( p  + IElURI2 + E2UR • UD) = 0, 

(9.1) 
l 9 + Pz + E2UR " UDz = 0, in which d p  = 0. 

dt 

The divergence equation (5.6) which determines the balanced pressure is rewritten here as 

Ap -- ~r.  ( fV~p) -- 2EDPx, ~y] + E 2 ([X, f/E] + ADp, X] + [X, A~p] + [~Pz, w]) = 0. (9.2) 

Also recall that u = UR + EUD, with UR = ~' x V ~ ,  UD = ~TX, and Wz = --Ax.  The action in HP for the Eulerian 
HBE is given by E0 + EEl in Eq. (4.11) as 

= i dt f d3x[½EDIu -EUDI "~ + DU. R(x)-  Dpz -  p(D - 1)]. (9.3) £HBE Eo +EEl  

9.2. Direction transformation of HBE to isopycnal coordinates 

The Lagrangian coordinate p may be used in place of the Eulerian vertical coordinate z, provided the function 

z = h(x, y, p, t) (9.4) 

is one-to-one (i.e., provided hp = 1/p z ~ 0), which we assume. The kinematics and notation of the transformation 
to isopycnal variables is explained in Section 8. The Helmholtz deomposition (4.2) transforms to ~P = u R-p + ~ ,  
in the isopycnal representation, with ~ and ~ defined by the formulae 

1 t ~  
= - ( 9 . 5 )  

Here tilde -.~ represents dependence on (x, y, p, t) and prime ' denotes the results of directly transforming the 
Eulerian Helmholtz decomposition (4.2) into isopycnal coordinates. The Eulerian HBE (9.1) then transform into 
isopycnal coordinates as 

EOt~tR + (~(' + f )~ x fd + ~7(ff + ph + ½EI~I 2 + E 2 ~  - ~ ) )  = O, 

• - '  gz -p # O, (9.6) where ('_=~, ~ r X U R ,  .U R 

php + #p + E2~t~t • UDp ~' = O. 

The transformed velocity, ~ ,  is not isopycnally divergenceless (~ ' .  fi~ # 0), since the isopycnal transformation 
produces (cf. Eq. (8.10)) 

1 , 
0 = V "/ /R = ~ "  i'i~ --  _ _  ~ • ~ h ,  (9.7) hp uRp 
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1 
- '  • ~ r h  = O ( E ) .  ( 9 . 8 )  ~pp~Rp 

Consequently, the balanced equation determining the pressure/31 in the isopycnal representation of HBE resulting 
from directly transforming the Eulerian Helmholtz decomposition (4.2) is not expressible in a simple form in isopyc- 
nal coordinates. (Imagine transforming the order O(E 2) terms is Eq. (9.2) directly.) This difficulty in transforming the 
divergence equation to isopycnal (or isentropic) coordinates at order E 2 does not occur for BE at order O(~), cf. [ 14]. 

9.3. Alternative isopycnal HBE 

Because of the complicated form of the pressure equation obtained by directly transforming HBE to isopycnal 
coordinates, we are motivated to seek an "alternative" set of HBE which would produce a simpler balanced pressure 
equation in those coordinates, but would still have errors relative to the PE that are order O(E2). To obtain such an 
alternative isopycnal HBE, we write a new Helmholtz velocity decomposition in isopycnal coordinates, as 

/] - -  UR + Ei'iD ~--- Z × '~7~ "4- ~p '~7 X , (9.9) 

in which ~R is isopycnally divergence-free ~r.  ~R = 0 (primes are absent) and 

f dx dy dp hpiiR • = (9.10) /~D 0, 

SO that ~R and ~D are orthogonal with weight hp. The introduction of the weight l /hp  in ~D retains orthogonality 
of ~R and ~D in the original (x, y, z) coordinates. We then vary the action gHBE in (9.3) at fixed (x, y, p, t). This 
action transforms into isopycnal coordinates as 

/ZHBE-= f dt f dxdydp[16L)lft-,~DI2 + i)ft.R(x)- L)ph- /~(/) -- h p ) ] ,  (9.11) 

in which ~D is now given as h~-l~r~ in Eq. (9.9). Varying £HBE at fixed (x, y, p, t) using the new velocity 
decomposition (9.9) gives 

8/2HBE = f dt f dx dr  dp[(/)¢"R + / ~ ) R ( x ) )  • t$" - E2/~)"R • t$"D 

+ (½,1tTRI 2 + a .  R(x) - ph - ~ ) sD  - DpSh + [~6hp - (D - hp)Sp]. (9.12) 

This is expressible in terms of variations 3[a, a = 1, 2, with respect to the Lagrange coordinate f'~ on each level 
surface of buoyancy, p, by using the definitions (8.14) again. As in the case of SI2pE in Eq. (8.13), we substitute 
these definitions into the variational formula (9.12) for 8£HBE and integrate by parts using the tangency conditions 
on the velocity at the boundary and requiring 8h to vanish at the endpoints in p. In the process, we find (cf. 
Eqs. (8.15)-(8.17) in the PE case) 

t$~HBE:f d t f  dxdydp{D(D-l)i<$[aIE-~URi+~2URj(tJD,i-P(~J(gi,j--Rj,i)q-(19h+/~),i; 

+ &~2~ ' .  ~UR -- b p  + ~p + ~R. ~D ~h - (b  - hp)~p 

P 
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dp-~pUR. ~Io3X, (9.13) 

where t~lp is the horizontal unit normal vector at the boundary, which lies on a level surface of p. Vanishing of 
8EHBE for arbitrary variations 6[ a, 8h, 8/3 and 8)~ within the domain of flow and on the boundary implies the 
following dimensionless isopycnal Hamiltonian balance equations, denoted IHBE, in a form similar to the IPE in 
(8.18): 

6 ~ u R d  ~ _ 62tlDj~?/~ j + f£  X f + V(/~ + 62fR • UD + ph) = 0, (9.14) 

p h p  + (~  + 62 fR  . UD)p ~--- 0, 

where we have used the constraints 

8p : [)  = h p ,  

8;~ " ~ • -D-DfiR = 0 in the interior and fir "nip = 0 at the boundary. (9.15) 
hp 

These equations are augmented by the kinematic conditions 

dh 
3thp = - ~  • hpf  and 6Cv -- dt - Oth + fi . ~ h .  (9.16) 

Thus, the IHBE emerge from HE by transforming the action EHBE from Eulerian coordinates (x, y, z) to mixed 
Eulerian (x, y) and Lagrangian (p) coordinates, assuming that the Jacobian hp does not vanish, and using the 
alternative isopycnal Helmholtz decomposition (9.9), which differs from that of (9.5) by terms in ~Th of order 
O(E) and has the virtue that fR is divergenceless as a combined result of the constraints imposed by p and ~. This 
process justifies choosing the Helmholtz decomposition (9.9) in which ~')~ in UD acquires the weight 1/hp, so 
that ~' • UR = 0 and ~7 • hpfD = / ~ ,  where z~ is the two-dimensional isopycnal Laplacian. The IHBE model is 
balanced, since the time derivative UDt is absent in the elliptic equation that determines the IHBE pressure 

,~(p + ph) + ~r. (f~ x fi + 6 ( f .  ~r)fR + 62/~Rj~t~ j )  : 0. (9.17) 

This balanced pressure equation (obtained from the horizontal isopycnat divergence of the motion equation in 
(9.14)) is to be solved with Neumann boundary conditions 

Ft[p. (~r(~ + ph) + f£  x f + 62/~Rj~7/~ j )  + 6glfR[  2 = 0, (9.18) 

where x is the curvature at the boundary and nip is its horizontal unit normal vector defined on a level suface of p. 
Finally, the relation between )~ and w in IHBE is obtained from the kinematic condition (9.16) as 

6ff_;p -- ( f  . ~rh)p = _ ~ r  . ( h p f )  : -~. . ' ~ f  X ' ~ h p  -- 6z~X. (9.19) 

The last equation is still properly ordered in 6, since I~rhl = O(6), as discussed earlier, cf. Eq. (8.9). 

10. Hamiltonian formulation of isopycnal HBE 

10.1. Legendre transformation 

In order to Legendre transform the action £HSE in (9.1 1) we first compute the momentum ~ ,  with a ---- 1, 2, 
which is canonically conjugate to l a at order O(E). By definition, 
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t~HBE St~ i S/~HBE 

i ~/~HBE = - ( b - 1 ) a  - ~  

= --(D-1)//)(EfiRi + Ri), (10.1) 

where we have used Eq. (9.13). Thus, the momentum density defined by ga = -#a ~7[ a is given by 

/~ = D(E/,IR +R) .  (10.2) 

Consequently, we have the usual relation 

7~al',~ = ~ ' / . l .  (10.3) 

The Legendre transformation to the Hamiltonian for IHBE is then expressed as 

HIBE = f dx dy dp(fra[a,t - LHBE) 

f dx dy dp [~ .  fi - / ) f t .  R - ½E/)lfi - efiDI 2 + Dph + ~({) hp)] 

-_ f + +  1o.4  

which is a sum of kinetic and potential energies, plus constraints on HmE. Again this is a Routhian; we are not 
Legendre transforming the Lagrange multipliers,/?, h and )~, since these quantities have no conjugate momenta. 
The variational derivatives of HmE(~, D) are given by 

f dxdydp 1~ .Sffl + ( -  ½EI~RI 2 --~t .R + ~-F ph)SD SHINE= 

I t  

+ b p  + t5 + E2npUR. 8h + (/5 - hp)81? + ~)~V. 
P 

_f 
where we have dropped a boundary term arising from integrating by parts in p. Thus, the quantities/3, h and )~ are 
three Lagrange multipliers that impose the following constraints: 

8/3 : /} - hp = 0, volume preservation of the flow; 

Sh : /gp + p + E ~ U R  • UD = 0, modified hydrostasy; (10.6) 
p 

/3 
8)~ : ~ • ~--~p ~R = 0 in the interior and ~R • ~[p = 0 at the boundary. 

10.2. Lie-Poisson bracket in isopycnal variables and Kelvin's theorem for IHBE 

The change of variables from ~i'a and i a to ~ and/)  induces the following Lie-Poisson bracket from the canonical 
Poisson bracket in ~a and T a (cf. Eq. (7.13)): 
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,o - , o )   ,ol,  lO.7  {F,G}(m,D) = -  f dxdydp ~ (~jr~'li-~-mj~i)-~-~mj -[-DOi-8- ~ -~---~-~j ~ j j  

where 0j = OilOx j , j = 1, 2, operates on all terms it multiplies to its right. The corresponding equations of motion 
are given in Lie-Poisson Hamiltonian form by 

Otthi = {/'hi, HIBE} :-- --(Ojl~li q- t~ljOi)~i j -- 1)Oi( -- ½EI~RI 2 -- f~" R + ~ + ph),  
(10.8) 

0tD = {D, HIBE} : --OjDu j. 

These are the IHBE (9.14) and (9.16) now expressed in terms of ~ and/) .  Substituting into (10.8) the definitions 
of ~ given in Eq. (10.2) recovers the IHBE motion equation in Kelvin theorem form, namely 

d 
--~(Eag -[- R) + (E/~Rj d- Rj)'fTfi j = ~ (  -- p -- ph + ½EIaR] 2 + a .  R). (10.9) 

Hence, we obtain Kelvin's theorem for IHBE: 

-~  (EaR + R)-  ~ = -~(~aR + R) + (EtiRj + R j ) ~ i J  • dx 

y(t) y(t) 

= ~ ~ ( -  p - ph + ½EIaR] 2 + a  .R ) .  dx = 0. (10.10) 

~,(t) 

Application of Stokes theorem implies, as before, that the flux of total vorticity through an isopycnal surface is 
invariant. Rearranging the IHBE motion equation (10.9) using the vector identity (3.4) gives 

EOt~R -- U X ( ~  X (EUR + R ) )  + ~(/~ + ph + ½EIfiRI 2 + E2UR • ~D) = 0, (10.1 1) 

whose isopycnal curl in combination with the continuity equation for/T) = hp yields 

d - 1^  1 
-d-~Q = 0 with 0 = --hpZ • ~ x (EaR + R )  = _~.D ~r x ~ / b .  (10.12) 

This is advection of the IHBE potential vorticity, which may also be written as 

d 
( f  + 'WR'~ = 0, (10.13) 

dt \ hp ,] 

where (3R --= £- V x ~R = Z ~  is the scalar isopycnal vorticity. Hence, the IHBE conserve both the energy, 

= f dxdydpi)(½¢]UR] 2 + ph) with £1 = hp, (10.14) E 

as well as the Casimirs, 

= f dx dy dp D ~ ( 0 ) ,  (10.15) C~ 

for any function q~. The Casimirs (10.15) also Poisson-commute under the Lie-Poisson bracket (10.7) with any 
functional of ~ and D, i.e., 

{C~, G} = 0 for all G(t~, D). (10.16) 

Thus, the weighted Helmholtz decomposition (9.5) has led via HP to the system IHBE in (9.14), in which all of 
the structure of the Eulerian HBE is preserved and the hydrostatic condition is slightly altered in isopycnal variables. 
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Remark (on single layer IHBEfor shallow water). We specialize IHBE to a single fluid layer of thickness, rl. For 
this, we decompose the horizontal velocity as 

U : UR -~- 6UD : ~" X ~ 7 ~  --}- ~ T X .  (10.17) 
0 

Substituting this velocity decomposition into the correspondingly modified action, cf. Eq. (9.11), 

/ f  [' ESWBE = dt dx dy ~rllu - EUDI 2 + flu. R(x) - b)2_ 
(7 ] 

2-~ J '  (10.18) 

yields Hamiltonian balance equations for rotating shallow water dynamics in essentially the same form as IHBE. 
Namely, cf. Eq. (9.14), 

d 62UDjVUJ + f £  X U + ~Th = 0 with h -- r / -  b 
E ~  u R  - -  E.~" ' (10.19) 
0 t 1"] -~- ~7 • 17U : O. 

In these equations f = ~ • V × R, while h is the nondimensional height of the free surface above the equilibrium 
level, z = 0. The bottom is fixed at z = - b ( x ,  y) and ~ denotes the squared ratio of the typical horizontal scale of 

motion to the Rossby deformation radius. 

The motion equations (10.19) for shallow water HBE coincide with those for the shallow water BEM model 
discussed in [4,5]. However, because of the weight r/in the Helmholtz decomposition (10.17) for u, the equation of 

balance for X is different. Instead, the decomposition (10.17) and the divergence of eq. (10.19) combine to give 

~7. ( f V ~ )  - Ah = EIq, X]. (10.20) 

Here q is the potential vorticity, which is advected, cf. Eqs. (10.12) and (10.13), 

f + EAap dq Oq 
q -- , -- + u • ~Tq = 0. (10.21) 

0 dt Ot 

These shallow-water HBE conserve the energy, 

ESWBE -~- f dx dy(1Er/lUR] 2 q- lh2),  (10.22) 

as well as the usual Casimirs for the corresponding Lie-Poisson bracket in the Hamiltonian formulation, 

= f dx dy r/q)(q), C~ (10.23) 

for any function ~ .  We will discuss the Hamiltonian formulation of the shallow-water HBE and its implications in 

more detail elsewhere. 

11. Summary of IHBE in comparison to IPE and other Isopycnal BE in the literature 

The two families of Hamiltonian equations HBE and IHBE are only order O(E 2) different from PE and IPE, 

respectively. In addition, HBE and IHBE are balanced and retain an exact Kelvin theorem (which implies exact 
potential vorticity advection). Our objective has been to create such equations by making approximations in HP for 
the ideal fluid equations. We have also explored commonalities among the Lie-Poisson Hamiltonian descriptions, 
conservation laws and Kelvin circulation properties of the resulting models. Section 5 compares the HBE with PE 



D.D. Holm / Physica D 98 (1996) 379-414 41 l 

and with other BEs in the literature. Here we summarize and compare the isopycnal models IPE and IHBE. We also 

discuss the differences between IHBE and another Isopycnal BE in the literature ] 14]. 
The motion equation and hydrostatic balance for the IPE model are recalled from Eq. (8.18): 

d 
E - - ~ +  f ~ . x f L + ~ 7 ( ~ + p h ) = O ,  p h p + p p = O .  (11.1) 

In IHBE, we first write the Helmholtz velocity decomposition in isopycnal coordinates, as in Eq. (9.9) with an 

additional weight in the divergent component, 

~ _ ~ ~7 ~ -=l lR + E U D  = Z  × ~ 7 ~  -+- ~ X. (11.2)  

The dimensionless IHBE then appear in a similar form to Eqs. (11. l) for the IPE, 

d _ + daRj ,a  + × a + + ph) O, 
E -d-~UR = (1 1.3) 

php + (~ + E2UR • UO)p = 0. 

Both models impose / )  = hp and ~R • hip = 0 at the boundary. Both systems are closed by applying the kinematic 

conditions, 

~ffo -- dh _ ath + ~ • ~rh (the definition of vertical velocity), 
dt (11.4) 

Oth p = _ ~r . h p~ (incompressibility), 

in which IOthl and [~rh[ are order O(E). 
We now write the IPE motion equation as "IHBE with order O(e 2) perturbations", cf. Eq. (10.11), 

E0t~R --/~ × ( f  + ECbR)~ -1- ~r(fi + ph + 1EI~R[2 + ~2a R • aD) 

= E2( -- 0t~O -[- ~ × (~r x ~D) -- I(?~rIUDI2), (1 1.5) 

where (~R = ~r x UR and the left-hand side vanishes for IHBE. Thus, IPE can be regarded as IHBE driven by 
an order O(e 2) "Lorentz force", E + ~ x B, in which E = -OtA  - ~7~b and B = '(7 x A .  The vector and scalar 

potentials are identified as A -- uO and ~b = E lUD 12/2. 
The same comparison can be made between IHBE and IPE in Kelvin theorem form, cf. Eqs. (8.20) and (10.10). 

Namely, 

--~ ( R + e f i ) .  d r =  ~ ( R +  e~R) • dx-[- -~-~ (E2UD) • dr, (11.6) 

)~(t) ~(t) ~(t) 

IPE=0 IHBE=0 Balance 

where the contour ~ (t) moves with velocity fi on an isopycnal surface. The last circulation integral in this case is 
nonvanishing, 

f E2~D • dr  = ~ d)~ ¢ O. (11.7) 

¢(t) ~(t) 

The order 2 O(e ) nonzero circulation of UD is the sense in which IHBE differs from both IPE and the Isopycnal BE 
in [ 14], which has the same circulation theorem as IPE. The latter model also has exact hydrostasy but no conserved 
energy. Like HBE, the IHBE model has two degrees of freedom, which can be taken as ~ and hp. 
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11.1. Geometrical interpretation of Kelvin's theorem 

As explained after equation (2.13), Kelvin's theorem in the canonical Hamiltonian formulation is the statement 
of invariance of the action integral f p dq on level surfaces of buoyancy in either Eulerian or Lagrangian variables. 
From this viewpoint, the decomposition of the IPE circulation integral on an isopycnal surface in (11.6) may also 
be understood geometrically, as follows. We shall regard 12 = (R + ~UR) • dx (the IHBE circulation 1-form) 
as a connection on a fiber bundle. Relative to this connection, horizontal vector fields Xh satisfy Xh • ~ = 0. 
Consequently, the IPE circulation integral in (11.6) divides into horizontal and vertical components relative to this 
connection, as 

IIPE= f(R-FEIt)" dx= f(RWEUR),  dx+ f(~21tD).d2c. (11.8) 
13(t) )5(t) ~(t) 

Y y Y 

Total Horizontal Vertical 
Applying Stokes theorem to these circulation integrals gives 

'iP :f f I h,o 
S(t) S(t) 

( 1 [~2 , )(] d/1A d[2, (11.9) 
/ 

S(t) S(t) 

where the Lagrangian surface element satisfies [1 A d/2 = hp dx A dy. Also, z~ denotes the Laplacian and square 
brackets denote the Jacobian expressed in isopycnal horizontal coordinates. Thus, the IPE circulation conserved 
around any contour 17 (t) moving with the fluid on an isopycnal surface is the area enclosed by that contour, weighted 
by its vorticity in Eulerian coordinates and by its potential vorticity in Lagrangian coordinates. It consists of the 
contribution conserved by IHBE dynamics plus the contribution arising from the divergent part of the IPE horizontal 

velocity. 
The geometrical significance of the decomposition (11.8) emerges from the relation of the Kelvin circulation 

integral to the Poincar6 action integral in the canonical Hamiltonian formulation. In the canonical Hamiltonian 
formulations of IPE and IHBE, the corresponding Kelvin circulation integrals are expressed as, cf. Eqs. (2.13) and 

(10.1), 

f f f ~:2 
~ I P E -  - IHBE IIPE t Tr a / h p ) d[ a d )( . . . .  (Tr a /hp) d[ a q- -~p 

~(t) ~(t) ~(t) 

=-f f d(~IPE/hp )A d[ a 

~(t) 

= - f  f d(~lanBE/hp) A d [ a + f  f d ~--~0 Ad)~, (11.10) 

IPE IHBE where ~a and ~a denote the momentum densities canonically conjugate to the isopycnal Lagrangian coordinate 
fields [a, a --- 1, 2, for the IPE and IHBE flows, respectively. Thus, the invariant IPE circulation integral IIpE around 
any isopycnal contour ~ (t) moving with the flow may be interpreted geometrically as the sum of the areas enclosed 
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by the horizontal and vertical lifts of  that contour onto Poincar6 surfaces embedded in the phase spaces of  the 

corresponding components of  the IPE system. The horizontal and vertical lifts of  the contour are determined 

relative to the connection defined by the IHBE circulation 1-form. 

11.2. Concluding remark 

Kelvin 's  circulation theorem is a consequence of  HP for ideal fluids and corresponds to invariance of  the Poincar6 

action integral f p dq in classical Hamiltonian particle dynamics. Asymptot ic  expansions of  HP for fluids preserve 

the Kelvin circulation property and lead systematically to the balanced HBE and IHBE models. The IHBE model 

preserves the same balance and Kelvin circulation properties as HBE and is expressed in isopycnal variables. The 

HBE and IHBE models each have two degrees of  freedom, as opposed to the three degrees of  freedom for PE and 

IPE. Up to a redefinition of  pressure the HBE approximation is equivalent to the BEM model, which performs 

satisfactorily in comparisons with EB (and with the equations of  rotating shallow water dynamics in the case of  

constant density) [3]. Both HBE and IHBE have Lie-Poisson Hamiltonian formulations and conserve energy and 

potential vorticity on parcels exactly. Also, their steady flows are relative equilibria, i.e., critical points of  a sum of  

conserved quantities including the constrained Hamiltonian. 
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