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Abstract 

We show that the Craik-Leibovich (CL) theory of Langmuir circulation in an ideal incompressible fluid driven by rapidly 
fluctuating surface waves due to the wind may be formulated in terms of Eulerian mean fluid variables as a Hamiltonian 
system. This formulation is facilitated by first determining Hamilton's principle for the CL equations. The CL Hamilton's 
principle is similar to that for a fluid plasma, driven by a rapidly varying external electromagnetic field via " J  - A" minimal 
coupling, after averaging the plasma action over the fast phase of the (single frequency) driving field. This similarity leads to a 
precise analogy between the CL vortex force and the Lorentz force on an electrically charged fluid due to an exernally imposed 
electromagnetic field. We determine the effect of this force on the inflection point criterion and the Richardson number criterion 
for stability of planar CL flows. The Noether symmetries of Hamilton's principle for the CL equations (under fluid particle 
relabeling) lead to conservation laws for Eulerian mean potential vorticity and helicity, and generate the steady Eulerian mean 
flows as canonical transformations. The generalized Lagrangian mean theory is discussed from the same viewpoint. 

Keywords: Wave mean-flow interaction; Hamilton's principle; Geophysical fluid dynamics 

1. Introduction 

The Craik-Leibovich (CL) equations [8,9,15-19] describe the dynamics of  the Eulerian mean fluid velocity u 

depending on time t and spatial position x in three dimensions, when the fluid motion is driven by rapidly oscillating 

surface waves due to the wind. These circumstances may generate Langmuir circulations - sets of  vortices with axes 

nearly parallel to the wind direction which sometimes occur in the upper layers of  lakes and oceans. Here we recast 

the ideal (nondissipative) CL equations as a Hamiltonian system. We discuss the implications of  this Hamiltonian 
formulation for the steady flows, circulation theorems, and conservation laws for the CL equations. 

In the CL theory, the rapidly oscillating waves at the surface are assumed to be unaffected by the more slowly 

changing currents below. The effect of  the waves on the Eulerian mean flow is parameterized in the CL theory 

by introducing into the Navier-Stokes equations a "vortex force," expressed in terms of  a prescribed Stokes drift 

velocity, us (x, t). The CL equations are given by 

0F 
0 - - ~ + ( ~ ' ~ 7 ) ~ + V n r = ~ S x c u r l ~ + V T ~ 7 2 ~ ,  V . ~ = 0 ,  n r = P + ½ 1 ~ + ~ s l 2 - - ½ 1 ~ l  2. (1.1) 
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Here ar is a modified pressure term that includes the mean pressure p as well as the increase of the kinetic energy 

of the fluid due to the waves. The term ~s x curl ~ is the "vortex force" of the CL theory of Langmuir circulation 

and VT is the constant eddy viscosity. The Eulerian mean fluid velocity ~ is assumed to be divergenceless and is 

required to vanish on the fixed mean boundaries of the domain of flow for ~ ~ 0, and be tangential to them for 

VT=0 .  
If the Eulerian mean velocity ~ is initially divergenceless, it will remain so according to (1.1), provided the mean 

pressure p solves the Poisson equation, 

obtained by taking the divergence of the CL motion equation (1.1) and setting ~r .  ~ = 0. A Neumann boundary 

condition for the pressure in the Poisson equation is found by evaluating the velocity boundary condition in the 
motion equation. The Poisson equation for the pressure closes the CL equations, and shows how the vortex force and 

increased kinetic energy due to the mean Stokes drift velocity contribute to the mean pressure. Thus, the CL theory 

preserves the form of the Navier-Stokes equations, while introducing inhomogeneous forcing terms involving us. 

These forcing terms are both ponderomotive (proportional to V I~sl 2) and parametric (proportional to ~ and V~). 

The most important effect is vortex stretching along us. The curl of the motion equation in (1.1) gives 

0F  
- -  ( ~ + ~ s )  • V ~ + ~ .  ~ 7 ( ~ + ~ s )  + ~ d i v ~ s  + ~ 7 2 ~ ,  (1.3) 

at 

where ~ = curl ~ is the Eulerian mean vorticity. Thus, the vortex force in Eq. (1.1) adds vorticity transport, stretching 

and creation terms to the Navier-Stokes vorticity equation. These terms are proportional to ~s and its gradients. 
The additional vortex stretching term ~ .  V~s  tends to convert Eulerian mean vorticity in the vertical direction into 

Langmuir circulations oriented along the mean Stokes drift velocity. Of course, the vorticity source term ~ div ~s 

vanishes when us has no divergence. 
The Stokes drift velocity us (x, t) is related to the velocity Uw of the surface waves treated in the CL theory by [9] 

where overbar denotes average over fast time variations at fixed Eulerian position, e.g., 

T 

f = -~ f d t ,  (1.5) 

-T 

and the time T is assumed to be long compared to the period of the surface wave oscillations. 
The unaveraged Eulerian velocity u (x, t) is supposed to satisfy the original Navier-Stokes equations (Eqs. (1.1) 

with ~s absent) and is expressed as 

u(x,  t) = ~(x, t) + u'(x,  t) with u -7 = 0. (1.6) 

Here the mean Eulerian velocity ~(x, t) satisfies the CL equations (1.1) and u ~(x, t) represents the fluctuations in 
velocity caused by the surface waves at a certain Eulerian position. The CL theory is based on the observation that 
these velocity fluctuations are irrotational to leading order in an asymptotic expansion in the surface wave slope, 
E, which is assumed to be small compared to unity. An associated small O(E) oscillatory displacement from the 
reference path of a fluid particle is assumed to be given by a prescribed vector field ~(x, t). This assumption leads 
to an alternative expression for the Stokes drift velocity which may be calculated in this scaling as [17] 
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O 1 ---:----w. 02~L 
US = "U(X -+- ~, t) -- U(X, t) = ~i --Utox i + ~ ' ~ J  OxiOxJ -1" O(~:4C) 

: ( ~ '  V ) / / '  "~- o(Eac) ,  (1.7) 

where we have used Eq. (1.6) and Taylor expanded in 5. The quantity c is a typical wave speed. Driven by waves, the 

Stokes drift velocity us is supposed to achieve its maximum at the upper mean boundary (the mean wave height), 
to which it may be taken to be tangential. It decreases steadily with depth in a prescribed fashion, until it vanishes 

at a certain depth, below which the Navier-Stokes equations hold. 
Leibovich [17] shows under the assumptions of small surface wave slope, ~, and nearly irrotational rapid oscil- 

lations, curl u' = O(E), that the sum of the Eulerian mean velocity ~ and the Stokes drift velocity us is equal to the 

Lagrangian mean velocity UL discussed by Andrews and Mclntyre [3], to order o(eac),  

(1.8) // '{- US = ~L "~ O(E4C) • 

In this relation and in Eq. (1.7) UL(X, t) = u(x + ~, t), so that 

u(x q- ~, t) = UL(X, t) + ul(x ,  t), 

where the Lagrangian fluctuation velocity u s satisfies [3] 

= ~ + ~ L . V  ~ - -  ~- and u 7 = 0 .  

(1.9) 

(1.1o) 

In this paper, we shall assume the following expression for the Stokes mean drift velocity in terms of the displacement 

field ~: 

us -= (~ '  V)~--~ with curl d--~ = 0. (1.11) 

As we shall see, this form of us brings the CL theory into agreement with the generalized Lagrangian mean 

formulation discussed in [3]. 
In their discussion of the generalized Lagrangian mean formulation, Andrews and Mclntyre [3] point out that the 

divergence of the Lagrangian mean velocity does not vanish in general, since [3 Eq. (9.4)] (summing on repeated 

indices) 

V . ~ L  = ~ +~L"  V (~,'~D,ij +O(~3) • (1.12) 

However, being quadratic in the small displacement ( ,  the divergence of the Lagrangian mean velocity is neglected 
in the CL theory. Thus, the Lagrangian mean velocity ~L is taken in the CL theory at the appropriate order in E to 
be divergenceless and equal to the sum ~ + ~s, which we assume to be tangential to the mean boundary 077, i.e., 

~ L = ~ + ~ S  a n d V . ~ L = 0  w i t h ~ . ~ L = 0  atO~D. (1.13) 

As a consequence of these relations, V • ~ = 0 implies V • us = 0, as well [16]. So the Stokes drift velocity us 
is divergenceless at this order in e. (We discuss modifications of the ideal CL theory to accomodate nonvanishing 
V • ~L in Section 9.) 

The Lagrangian mean velocity is a useful construct in interpreting the role of the vortex force in the CL theory. 
In terms of UL, the CL equations (1.1) may be rewritten as 

oq~ L cqU S 
- -  + (-aL • ~7)~L + ~Tp -- UT~72~L -- ~L × curl~s -- VTV2~S, 
at Bt (1.14) 

V . ~ L  = O = V . ~ s  . 
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In this form, the Stokes drift terms drive the dynamics of the Lagrangian mean velocity with the "Lorentz force" 
of an externally imposed "electromagnetic field" with vector potential given by - u s ;  implying an electric field, 
O~s/3t, and a magnetic field, -cur l  us. The plasma physics analogy suggested by this form of the CL equations 
will be a useful guide at several points in the present discussion. Of course, for a steady prescribed us the "Lorentz 
force" is also equivalent to a Lagrangian mean Coriolis force, UL x 2 ~ ,  with 2 ~  = -cur l  us. 

One of the issues raised here is the distinction between "flow" and "particle" properties of ideal CL flows, as 
distinguished by whether a given property (e.g., a conservation law, or a stability condition) is expressed in terms 
of only the Eulerian mean velocity, or only the Lagrangian mean velocity, respectively. The kinetic energy, for 
example, is conserved and turns out to be a particle property - being expressed as the integral of the square of 
the Lagrangian mean velocity. On the other hand, the conserved helicity is a flow property: this is the spatially 
integrated scalar product of the Eulerian mean velocity with its curl. There are, of course, also mixed expressions, 
such as the conditions required for an ideal CL solution to be steady (cf. Eq. (3.1)). In Sections 3 and 8 we show that 
the stability conditions for steady planar CL solutions are expressed either as flow properties (e.g., inflection point 
of Eulerian mean velocity), or as particle properties (Richardson number criterion, written in terms of Lagrangian 
mean velocity), depending on the situation being investigated. 

The distinction between flow and particle properties helps in interpreting the effects of the vortex force introduced 
in the CL theory. As expected from the form of equation (1.14), this force turns out to be closely analogous to the 
Lorentz force on a charged particle in an external electromagnetic field. Moreover, Hamilton's principle for the ideal 
CL equations is similar to that for a fluid plasma which is driven by a rapidly varying external electromagnetic field 
via "J • A". minimal coupling, after performing in the plasma action a two-time-scale average over the fast phase 
of the (single frequency) driving field [23,24]. 

This paper is organized as follows. Section 2 discusses the energy, helicity and enstrophy balances for the CL 
equations (1.1). We then specialize to the ideal case (VT = 0) for the remainder of the paper, in order to focus 
on the nonlinear effects of introducing the Stokes drift velocity terms into Euler's equations. Section 3 discusses 
the effects of us on steady flows, circulation theorems and conservation laws for the ideal CL equations. This 
discussion is elucidated by recovering the ideal CL equations from a constrained Hamilton's principle in Section 4. 
Section 4 shows that the us terms in the CL theory preserve the particle relabeling symmetry of its Hamilton's 
principle. We pass to the Hamiltonian formulation of the ideal CL theory in Section 5 and discuss the implications 
of preserving this symmetry from the Hamiltonian viewpoint in Section 6. Section 7 extends the treatment of the 
previous sections to include rotation and buoyancy due to density stratification in the Boussinesq approximation. 
Section 8 discusses the linearized stability conditions for planar steady ideal CL flows with density stratification, 
and derives the modifications due to Stokes drift of both the inflection point criterion and the Richardson number 
criterion for stability of planar steady ideal Euler flows. Section 9 extends the analysis presented for the ideal CL 
theory to the case of fluctuations described by the generalized Lagrangian mean theory [3,21]. 

2. Energy, helocity and enstrophy balances 

We begin by rewriting the dissipative CL motion equation (1.1) as 

3~ 
oq-~- --~L x ~ n  t- V ( p  -}- ½I~LI 2) = I~V2~ , (2.1) 

where ~ = curl ~ is the Eulerian mean vorticity. We obtain a local balance law for the Lagrangian mean kinetic 
energy by taking the scalar product of (2.1) with the Lagrangian mean velocity WE. Namely, 
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0 1 0 
~(~l~LI 2) = --diV[~L(p q- libEl2) -- ½v-rVl~] 2] q-UL' ~-~US q- VTUS" V2U -- VTUi,jui,j, (2.2) 

where we have used the divergence-free condition, V .  ~L = 0 from (1.13). Hence, the integrated Lagrangian mean 
kinetic energy will satisfy a balance relation obtained by integrating (2.2) over the mean domain of flow 79 and 
using the divergence theorem. Upon using the tangential boundary condition for ~L in (1.13) to remove a boundary 
term, this integration of (2.2) yields the balance relation, 

/ ] d d3x½1uLI 2 ---- d 3X ~L ~ U S  -t- I.;T~S • ~72~ -- I)Tlli,j~i,j (2.3) -~  . , 

provided ~ vanishes on the mean boundary, 079, which is required in the case that VT ¢ 0. This energy balance 
relation is not definite in sign, even for VT = 0, since the terms involving the mean Stokes drift velocity ~s may 
have either sign. The indefinite middle term in (2.3) would be removed, though, if the turbulent viscous force were 
taken to be I ~ 2 U L ,  instead of VT~2~ in (2.1). This change would result in the standard form for dissipation of 
(Lagrangian mean) kinetic energy by viscosity when the mean Stokes drift velocity is steady. However, this change 
would have other implications for helicity balance, which is addressed next. 

Eq. (2.1) and its curl yield the equation 

0 
~ - ~ .  ~)  = -div[(~.  ~)~L -- ~Tor' × U--] q- I)T[~ • ~72~ -t- U. ~,2~],  (2.4) 

where we have defined another modified pressure 

or' = p + ½l~sl 2 - ll~12. (2.5) 

Hence, the Eulerian mean helicity, the total "knottedness" of the flow lines of ~, 

= f d3x ~- w, (2.6) A 

satisfies the equation 

f --~ d3x u • ~ ---- - d2x [(u.  ~ ) h  • UL -I- V o r '  × ~ • u] q- VT d3x [ ~ .  V 2 u  -q- u .  V2~] .  (2.7) 

The volume integral proportional to VT is indefinite in sign, so viscosity may either create or destroy Eulerian mean 
helicity in CL flows. The boundary term is also indefinite, although it does vanish for steady flows. If VT vanishes 
and the modified pressure or' is constant on the mean boundary (so that the cross product ~,ort × ~ vanishes in 
the surface integral), then the Eulerian mean helicity (2.6) is conserved. Had the turbulent viscous force in (2.1) 
been vT~TE~L, it would have contributed an additional volume source of helicity in (2.7). Thus, the choice of 
turbulent eddy viscosity modeling (VTV2~ versus VT~72UL) is quite important to the relative balances of energy and 
helicity. 

The Eulerian mean vorticity equation (1.3) with div~s = 0 gives an equation for transport, production and 
dissipation of the square of the Eulerian mean vorticity, 

O l l~12 _-- - -~L '  V½1~l: + ~oj~oi~lJLi + I)T(~Oi(olj),j -- I)T(~Oi,j~Oij ). (2.8) 
0t 2 
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Consequently, we have the following equation for Eulerian mean enstrophy production: 

1 d f d 3 x l ~ 1 2 = _  f d 2 x [ _  I I~I2~.~L + Vy(CSitl . v~bi)] 
2 dt 

79 079 

- ~ f  d3xl~r~12 + f d3xCoj~i~J i. (2.9) 

The (indefinite) last term shows that ~s contributes to Eulerian mean enstrophy production, as a result of its 
contribution to vortex stretching in the vorticity equation (1.3). We leave the dissipative aspects of the CL theory 
at this point and focus on the nonlinear effects of introducing the mean Stokes drift velocity terms into Euler's 
equations. 

3. Steady flows, circulation theorems, and conservation laws for the ideal CL equations 

3.1. Steady ideal CL flows 

The curl of the ideal CL motion equation, (2.1) with VT = 0, implies a "frozen-in" relation for the Eulerian mean 
vorticity, ~ = curl ~. Namely (cf. Eq. (1.3)) 

a 
- - ~  = curl(~L x ~ )  = --(UL • V ) ~  + (~-  V)~L = --[~L, ~],  (3.1) 
Ot 

where [-, .] denotes the Lie bracket between divergenceless vector fields. As discussd earlier, the vorticity stretching 
term (~  • V)~L contains the Lagrangian mean strain rate, V~L, rather than the corresponding Eulerian mean 
quantity. From (3.1), we see that steady ideal CL vorticity solutions (denoted with subscript e for "equilibrium") are 
characterized by the symmetry relation [~Le, We] = 0. Thus, in steady ideal CL flows the Lagrangian mean velocity 
~tx generates a volume preserving spatial transformation that leaves invariant the Eulerian mean vorticity -~e. 

3.1.1. Planar flows 
The simplest example of the situation [ULe, We] = 0 occurs when the Stokes drift velocity is time-independent 

and the Lagrangian mean velocity is invariant under a spatial translation. There are the planar ideal CL flows, e.g., 
taking place in the x-z  plane when O~L/Oy vanishes and ~s = Us(z)2, with curl ~s = U~(z)~, for a function Us 
and its derivative U~ = dUs/dz.  In this case, a stream function ~(x,  z, t) may be introduced, and used to express 
the Lagrangian mean velocity and Eulerian mean vorticity as 

~L = .~ x V ~  = (~z, 0, --~x), (3.2) 
= curl(~L -- US) = ~(A~ -- U~(z)) = .~d>, 

where A~b = ~Pxx + (Pzz is the planar Laplacian of the stream function ~. Thus, the Eulerian mean vorticity equation 
takes the familiar form 

0& 
- -  = .~ .  ~T& x Vq) = J(&,  ~/), (3.3) 
Ot 

where if(g,  h) = gzhx - hzgx is the Jacobian of the functions g(x, z) and h(x, z). The steady planar flows then 
satisfy 

J ( ~ e ,  &e) = 0. (3.4) 
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So there is a functional dependence at equilibrium, which we write as 

~e = tlbt(•e) with &e = A~e -- U~(Z) (3.5) 

for a function we denote as ~ ' .  
The stability of these flows may be understood by noticing that they are critical points of the following conserved 

functional (cf. [5] and references in [13]) 

f 
HC ---- J dx d z [ l l v ~ l  2 + ~(&)]. 

This is the Lagrangian mean kinetic energy, constrained by the quantity, 

C~ = f dx dz • (~b), 

(3.6) 

(3.7) 

which is conserved when the velocity is tangential on the boundary. The first variation of Hc is expressible (after 
integration by parts) as 

(3.8) 

where ~ '  is the derivative of the function ~.  Thus, the integrand of (3.8) vanishes for steady flows of Eq. (3.3), by 
virtue of (3.5). 

The second variation of Hc, given by 

S2Hc ---- f dx dz[t$&(-A-l)6& + ~"(&e)(Sff))2], (3.9) 

is (positive) definite, and thus the equilibrium is linearly Lyapunov stable [5], provided 

d4e 
c_ < ~"(&e) = - -  < c+, (3.10) 

d&e 

for finite positive constants c+ and c_, with c+ >_ c_. (There is also a negative-definite case, analogous to the 
corresponding case for Euler flows discussed in [5].) For a plane-parallel flow, with ULe (Z) = ( dg/e / dz, 0), condition 
(3.10) becomes 

dffe d~e /dz  ULe ULe 
C_ < . . . .  < C+. (3.11) 

-- d&e d&e/dz d2[~Le -- Us(z)]/  dz 2 -- d2~e(z)/ dz 2 - 

Consequently, plane-parallel ideal CL flows with no inflection point in the Eulerian mean velocity within the region 
of flow are stable. This is the analog for planar CL flows of Rayleigh's inflection point theorem for planar Euler flows. 
Actually, this is a slight extension of Rayleigh's theorem, since it refers to Lyapunov stability, besides linearized 
stability (cf. [5,13]). 

3.1.2. Beltrami f lows 

Another, more complex, example of the steady flow condition [ULe, We] = 0 is the case ULe = ~--l~e with 
Ue " V)~ = 0. In this case, the steady Lagrangian mean velocity shifts the fluid particles along the lines of steady 
Eulerian mean vorticity. This situation reduces to the Beltrami flows for Euler's equations when us is absent. The 
Beltrami flows are truly three-dimensional when ~. is a constant. (See, e.g., [4] for discussions and references to 
Beltrami flows for Euler's equations.) 
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Steady flows for the ideal CL equations may be obtained from Beltrami flows with constant eigenvalue L for the 
Euler equations, by solving 

CUl'I Ue = )~,We -'[- ~-WS, (3.12) 

given the prescribed functional form of the Stokes drift. In the case that Ws = Us (z)i, so that curl Ws -- U~ (z).~, we 
obtain 

--~72We = )~2We -k- ~.2WS -~- )~ curlWs = )~2W e -~- ~.2Us(z).~ -~- ~U~(z).~, (3.13) 

by taking the curl of (3.12). Consequently, the inhomogeneous terms (those involving Us(z)) in the Helmholtz 
equation (3.13) have no influence on the f:-component of We in this case. The inhomogeneous solutions of the 
and.~-components of (3.13) satisfy decoupled ordinary differential equation in the depth, z. These are each driven 
harmonic oscillator equations, that may be solved by Green's function method to give 

We : WBel -'~ US(Z)X + 0~(Z).~, (3.14) 

where the homogeneous solution WBel satisfies the Euler-Beltrami condition, curl WBel : ~.WBel, and 0s denotes the 
sine transform of Us, 

Z 

Us(z) j ' ' -  z '  = dz sm)~(z z)Us( z ), (3.15) 

satisfying 

d ~  d ~  l 
- - U s  = Z0~ and - Us(Z) = ~.0s(z) + ~.Us(z), (3.16) 
dz -~z 

so that (cf. Eq. (3.13)) 

d2Us - )~2[0s(z) + Us(z)]. (3.17) 
dz 2 

Consequently, given a Beltrami flow WBel for the Euler equations, we may obtain a corresponding steady flow of 

the ideal CL equations, by substituting Ws = Us (z)J into (3.14). 
The stability of the steady ideal CL flows satisfying (3.12) with constant X may be ascertained by noticing that 

these flows are critical points of the conserved functional, 

HA = d3x IWLI 2 -- - -W.  ~ (3.18) 
2Z 

which is the Lagrangian mean kinetic energy, constrained by the Eulerian mean helicity. The first variation of HA 
is expressible (after integration by parts) as 

8HA = f d3x (WL - -  ~ - 1 ~ )  . ~W. (3.19) 

Consequently, the first variation 3HA vanishes for steady ideal CL Beltrami flows satisfying (3.12). Now, the theory 
of Lyapunov stability of conservative dynamical systems (see, e.g., [5,13]) implies stability of equilibrium solutions 
which are critical points of a conserved quantity that is convex at the equilibrium. However, the quadratic conserved 
quantity HA is not convex at the equilibrium. This becomes clear upon examining the second variation of HA, 

82HA = f d3x (18Wl 2 - ~.-16W • curl 3W), (3.20) 
J 
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which is conserved, even for f ini te  perturbations of the CL Beltrami equilibrium. Being indefinite in sign, this 
conserved quantity imposes no restrictions on the growth of perturbations, independently of the choice of us. 
Consequently, the critical points of Ha corresponding to the CL Beltrami flows satisfying (3.12) may possess 
unstable directions, independently of the choice of us. The same situation applies, of course, in Beltrami flows of 
the Euler equations, when ~s is absent. 

3.2. Kelvin circulation theorem and vorticity advection 

From the ideal CL motion equation (cf. equation (2.1)) 

3~ 
- ~L x curl~ + V ( p  + I~LI2) = O, (3.21) 

3--T 

a Kelvin circulation theorem may be found for the time-averaged contour integral, with X = x + ~, 

I(t)=fu.~= f(~L. ~+u'. de) 
r'(t) #(t) 

f I ~ L _ ( ~ . ~ ) d ~  ~ x c u r l  d ~ ( d ~ ) j  
= ,it ¥ + v  e . ¥  .ax 

= f dx, (3.22) 

= f V ( - - p - -  I]UL]2 

p(t) 

= - ~ Vnr ' -  dx = 0, (3.23) 

#(t) 

where the third line is obtained by using the ideal CL motion equation (3.21).So the time-averaged Kelvin theorem 
is satisfied by the ideal CL equations. In fact, we could have derived the correct form of the ideal CL equations by 
requiring that the time-averaged Kelvin theorem be satisfied. 

In terms of the Lagrangian mean, then, the Kelvin circulation equation (3.23) expresses itself as a "flux rule." 
The Lorentz-force version of this is (of. (1.14)) 

,,f ) 
dt "~L " dx  = d t  u s  " dx  = \ 3t - UL X curl uS . dx. (3.2zt~ 

y(t) ~(t) )9(t) 

÷ UL " U) ' 

#(t) #(t) 

where we have used Eq. (1.11). The closed contour ~ (t) moves with the Lagrangian mean velocity UL = U + US, 
since it follows the fluid particles as the time average is taken. The circulation of~ around such a contour is conserved 
by the CL equations (1.1), as shown by direct calculation, 

d--7 = ~ + (~L" V)~ + ~ij Wi • ~ 
)5(t) 

= ~ - UL x curl ~ + V(UL- U) • dx 

~(t) 
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This relation rephrases the Kelvin circulation theorem as an electrical-circuit analogy, in which Lagrangian mean 

"current" is induced by the "electromotive force" of  the mean Stokes drift velocity, Ws, regarded as the negative of  

the electromagnetic vector potential. The difference is that the "electrical circuit" deforms to follow the fluid as it 
moves. 

The fluid particle labels l A (X, t), A = 1, 2, 3, that parameterize the contour )7 (t) in the CL Kelvin theorem (3.23) 
follow the Lagrangian mean velocity and, therefore, satisfy 

dl  A Ol A 
d~- -- Ot + WE • ~71A = 0, A = 1, 2, 3. (3.25) 

Hence, we may write the components of  the Lagrangian mean velocity in terms of derivatives of  l A a s  

- i  _ ( D - I ) ~  OIA ( 3 . 2 6 )  
UL = Ot ' 

where we sum on repeated indices, as usual, and ( D - l ) ~  is the inverse of  D a = ( o l A / O x i ) ,  the 3 x 3 Jacobian 

matrix for the map from Eulerian coordinates to Lagrangian fluid labels, l a (x, t), A = 1, 2, 3. This inverse exists, 

provided the determinant D = det(D A) does not vanish. This determinant is equal to unity for incompressible flow. 
In fact, as a consequence of (3.25), D satisfies the continuity equation 

OD 
- - V .  DWL. (3.27) 

Ot 

Thus, if D is initially equal to unity, it will remain so, according to (3.27), provided ~7 • WL = 0 at all times. This is 

ensured by imposing ~7 • Ws = 0 and solving for the pressure p via the Poisson equation (1.2). 
From the mean vorticity equation (3.1), we find by using (3.25) and (3.27) an advection relation 

dS2 a 0~'2 a 
- - - -  + W E . V J 2  A = 0 ,  A =  1, 2, 3, (3.28) 

dt Ot 

for the quantities ~ A  given by 

~71A . curl 
~('2 A - , A = 1, 2, 3. (3.29) 

D 

That is, the CL equations preserve each component of  the Eulerian mean flow vorticity, relative to the coordinate 

frame of the Lagrangian mean flow. This is expressible as the "frozen-in" condition, or Cauchy solution for the 

mean vorticity, 

curlW(t) • dS(t)  = curl W(0) • dS(0), (3.30) 

where dS(t)  is a surface element composed at time t of  line elements that flow under the Lagrangian mean velocity, 

WE(t). In coordinates, (3.30) is expressible as 

curlW(t) = WC, B(O)Vl B x V l  c, (3.31) 

from which we see that 

~2 A = ~ABCWc, B(O), A = 1, 2, 3. (3.32) 

Thus, the quantities I2 A, A = 1, 2, 3, represent the initial Eulerian mean vorticity components, which are then 
frozen into the Lagrangian mean WL(t) flOW. As a consequence of this, the following infinite family of integrals is 

conserved under the CL dynamics: 

f d3x D ~ ( ~ A ) ,  A = 1, 2, 3, (3.33) C~ 
J 
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for any function ¢~, provided UL is tangent to the boundary. To explain how these conservation laws, as well as the 
conservation of helicity A in (2.6), arise from Noether symmetries, we will write Hamilton's principle for the ideal 
CL equations in terms of Lagrangian path variations, then project the resulting Hamiltonian formulation onto the 
Eulerian variables. The conserved quantities C~ and A will be seen to generate canonical transformations of the 
Lagrangian mean fluid particle coordinates and their canonically conjugate momenta that leave invariant the Eulerian 
fluid variables appearing in Hamilton's principle. In fact, these canonical transformations shift the Lagrangian mean 
fluid particles along the streamlines of the steady ideal CL flows. So the Noether symmetries generated by C~ and 
A are precisely the motions of the fluid particles, under steady CL flows in the Eulerian fluid variables. This is a 
general property of Eulerian fluid dynamics. 

4. Hamilton's principle 

The ideal CL equations arise from stationarity of a constrained Hamilton's principle 8L ---- 0, under variations 
of the Lagrangian particle paths la(X,  t ) ,  A = 1, 2, 3, at constant Eulerian position. The constrained Hamilton's 
principle is given by 

£ =  f dt f d 3 x [ ½ D l ~ L l 2 - D ~ L . ~ S - p ( D - 1 ) ] ,  (4.1) 

where D = det(~71a), the Lagrangian mean velocity UL is given in (3.26) in terms of derivatives of l A, and p is a 
Lagrange multiplier that enforces incompressibility. (The integrand in the action (4.1) is expressible compactly in 
terms of the pressure, as p - Dnr~.) Varying the action (4.1) with respect to the Lagrange coordinate l A at fixed x 
and t gives 

8L= fd t f  d 3 x  [8~L • ( D U L  - D ~ S ) . - [ - S D ( ½ [ ~ L I 2 - - I I L . H S - - p ) - - S p ( D  - 1)] 

with definitions 

3 0  O(O-1)iASl A 3~iL - l  i - j  B = = - ( D  )BULSI, j -- (D-1)~S/B. 

(4.2) 

(4.3) 

Substituting the definition of 8ti~ into the variational formula (4.2) and using u = gL --  US gives the momentum 
rrA canonically conjugate to I A as 

8 L  _ _ O ~ l i ( o _ l ) ~ .  (4.4) 
~ A  - -  81A 

Hence, the ith component of the Eulerian mean velocity is related to the canonical variables I A and 7r A by 

/~i - 1  A = - D  7tAl,i. (4.5) 

Upon integrating by parts and using the tangency conditions on the boundary, the variation of the action (4.2) 
becomes 

aL=fdt fd3x{81A[Ot(D(D-l) iaV~i)+Oj(Dr~JL(D-1)ia~i)]  

q-3IAOi[D(D-1)iA( p -- 11~12 + ll~s[2)] -- 8p(D - 1)]. (4.6) 
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Rearrangement of formula (4.6) using the continuity equation (3.27) for D and the identities 

ajD = D(D-l)iaajDa, (D(D-l)~),i = 0, -~t (D- l )~  = UL,j-i (D-1)j (4.7) 

gives the following expression for the variation of the action: 

8/2= f dt f d3x {D(D-1)iaSla[(o, +aJLOj)ai +ajOi~+Oi(P-- ½l~lZ+ ½1~sl2)] --~p(D--1)}, 
(4.8) 

Vanishing of 8/2 for arbitrary variations ~l A and 3p within the domain of flow now implies, upon using the funda- 

mental vector identify of fluid mechanics, 

--UL X curl~ = (~L • ~7)~  --  /~J~7fij, (4.9) 

that 

and 

a ,  _ ~L x curl ~ + V (p + ½ I~tl 2) = 0, (4.10) 
at 

D = 1, (4.11) 

which recover the ideal CL equations (3.21). 
In [12], the Euler equations for an incompressible fluid in three dimensions are derived from stationarity of 

the constrained action (4.1) with us absent. The action/2 appearing in (4.1) in terms of averaged quantities may 
be interpreted as the kinetic energy of the fluid particles, coupled to the "external field" ~s through the particle 
"current" D~L and constrained by incompressibility. This is the same as the action for a fluid plasma, driven by 
a rapidly varying external electromagnetic field via "J • A" coupling, after averaging in Hamilton's principle over 
the fast phase of the electromagnetic field in the action as in [23,24]. The further approximation is made for the CL 
equations that the fluid motion does not act back on the surface wave field, since this field is assumed to produce 
a prescribed Stokes drift velocity, ~s. Thus, the plasma physics analogy encountered earlier upon writing the CL 
equations in the form (1.14) is exact in the case of prescribed wave motion. 

We next pass to the Hamiltonian formulation via the Legendre transformation, using the relation obtained from 

(3.26) and (4.4), 

7rAl A : --  O(l i  (D-1) /A  IA = OF- UL, (4.12) 

to find the Hamiltonian. Then we transform the Poisson bracket from the canonically conjugate variables 7/ A and 
lA(x, t ) ,  A = 1, 2, 3, to the noncanonical Eulerian fluid variables, D = det '~7l A and m = D~ = - - 7 r a V l  A, by 
using the chain rule for functional derivatives. This will yield the ideal CL equations in Lie-Poisson Hamiltonian 
form [12] in terms of the noncanonical Eulerian fluid variables, thereby allowing us to investigate the Noether 
symmetries of the CL theory as canonical transformations and the equilibrium solutions of the CL theory as critical 

points of conserved quantities. 

5. Hamiltonian structure 

Passing from the constrained Lagrangian (4.1) for the CL equations via the Legendre transformation yields the 
following constrained CL Hamiltonian (actually this is a Routhian; the pressure p is not Legendre-transformed, since 
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it has no canonically conjugate momentum, see e.g., [ 12] for the analogous situation in the case of the incompressible 

Euler equations): 

. = f d3x[½D[~ + ~sl 2 -t- p(D - 1)]. (5.1) 

Evaluating this Hamiltonian at D = 1 gives the Lagrangian mean kinetic energy. The definitions D = det V l  A and 
m ---- --:rra~rl A ~. D~ allow one to use the chain rule to transform the canonical Poisson bracket in terms Of~A and 
l a , that follows from Hamilton's principle with Lagrangian (4.1), 

{F, G}(ZrA,iA) = _ f d3x [ ~ A ~G 
8l A 

8G 8F ] 
82ZA ~1A , (5.2) 

into the Lie-Poisson bracket in terms of variables m and D that is discussed in [12]. Namely, 

/ ,o ,o) :o,O 1 
{F, G I ( m , D ) = -  d3x ~ (OjmiWmjOi)3mjq-DOi- ~ "~--'~Oj~ ~mj].]' (5.3) 

where Oj = O/OxJ, j = 1, 2, 3, operates on all terms it multiplies to its right. This Lie-Poisson bracket satisfies 
the Jacobi identity, 

{E, {F, G}} + {F, {G, E}} + {G, {E, F}} = 0, (5.4) 

for any functionals E, F and G of m and D, simply because (5.4) is a variable transform of the Jacobi identity for 
the canonical Poisson bracket. 

In terms of the variables m and D, the Hamiltonian (5.1) is expressible as 

/ [ ,  ] H =  d3x ~ - ~ l m l 2 + m . ~ s + ½ D l ~ s l 2 + p ( D  - 1) (5.5) 

with variational derivatives 

8H m / D  --I- US = "~L, 8H 8m 8 0  P + llusl2 ½lul2 w .  (5.6) 

The corresponding equations of motion are given in Hamiltonian form by 

~mi 
= {mi,  H} = - ( O j m i  q- mjOi)uJL -- Daio3 r/ 

Ot 
OD 

= {D, H} = -OjO~ j.  
Ot 

(5.7) 

These are the CL equations (1.1) in Lie-Poisson Hamiltonian form in terms of m and D. These equations imply the 
CL motion equation in the form that appears in the Kelvin theorem calculation, (3.23), 

0F 
- -  = -C~L • V)~  - /~ jV/ l  j -- Vo3r'. (5.8) 
Ot 

As discussed after Eq. (3.27), if D is initially equal to unity, it will remain so under these dynamics, provided 
the Lagrange multiplier p in (5.5) satisfies the Poisson equation (1.2) and the Stokes drift velocity is taken to be 
divergenceless, ~7 • us = 0. 
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6 .  N o e t h e r  s y m m e t r i e s  

D.D. Holm/Physica D 98 (1996) 415~141 

The Lagrangian (4.1) and the Hamiltonian (5.1) are invariant under transformations of the fluid-particle labels 
l A (x, t), A = 1, 2, 3, and their canonically conjugate momenta ~a that leave invariant the Eulerian fluid variables 

m and D. Among these symmetry transformations are those generated by the helicity A in (2.6) and the frozen-in 
vorticity conservation laws C~ in (3.33). This may be checked by computing the infinitesimal canonical transfor- 
mations generated by A and C~ according to either bracket, (5.2) or (5.3). First, the helicity A satisfies the Poisson 
bracket relations (ignoring surface terms) 

{A, m} = O, {A, D} = 0 {A, 1 A } = ( 1 / D ) ~ .  V I  A, (6.1) 

in which the Eulerian variables are invariant and the particle labels are shifted along the mean vorticity. Thus, the 
helicity is conserved, since it Poisson-commutes with the Hamiltonian (5.1) depending only on the Eulerian fluid 
variables. Moreover, the Noether symmetry that the helicity generates as an infinitesimal canonical transformation 
via the Poisson bracket relations (6.1) is a shift of the fluid particles along the streamlines of a steady CL Beltrami 

flow. This explains why the CL Beltrami flows are associated with critical points of the sum of energy and helicity: 
the CL Beltrami flows are relative equilibria. That is, they are stationary relative to the frame of motion of the fluid 
particles generated by the conserved helicity the Lie-Poisson bracket (5.3). 

Next we compute the infinitesimal canonical transformations generated by C~, via the Poisson bracket relations, 

{C~,m} = 0, {C~, D} = 0, 

{C~, I A} : ~. V I  A, with ~ = D - l ~ r l  B x V O~ 
OQs ' 

(6.2) 

obtained using {IA(x), mi(xl)} = lAS(x -- x t) and the chain rule. Thus, the symmetry generated by C~ is a shift 

in the particle labels I A by an amount ~ depending on the function ~.  Under this canonical transformation of the 
particle labels, the Hamiltonian H in (5.5) is invariant, since the Eulerian fluid variables m and D are invariant. 
Hence, the conserved integrals C~ are Noether symmetries that shift the fluid particle labels along the vector field 

in (6.2) without changing the Eulerian fluid variables. This implies that ULe = V in (6.2) is a steady solution 
of the CL equations. Note that ~ in (6.2) satisfies the symmetry relation [~, We] = 0 required by (3.1) for steady 
solutions. Since they leave the Eulerian fluid variables invariant, the spatial transformations (volume-preserving 
diffeomorphisms) of the fluid labels generated by the vector fields of the steady flows may be regarded as the 
"gauge transformations" of fluid dynamics. 

Having cast the CL equations into Hamiltonian form, we now may interpret the energy balance relation (2.3) 
simply as 

d H  OH 
- -  - - -  ( 6 . 3 )  

dt Ot ' 

when VT = 0. This is the usual relation for time-dependent Hamiltonian systems. If O~s/Ot = 0, as well, the 
Lagrangian mean kinetic energy is preserved and the CL system enjoys all the properties of Lie-Poisson Hamiltonian 
fluid system, including classification of its (relative) equilibrium solutions as critical points of the constrained energy 
H + C~ and a method for determining Lyapunov stability conditions for these equilibria, as in, e.g., [13] Thus, 
the vortex forcing introduced by Craik and Leibovich to parameterize the effects due to rapidly fluctuating surface 
waves which may produce Langmuir circulations has the advantage of preserving the fundamental Hamiltonian 
structure of the Euler equations for an incompressible fluid. 
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7. Boussinesq approximation with rotation 

7.1. The averaged equations 

The motion of a rotating continuously stratified ideal incompressible fluid is governed by the adiabatic inviscid 
Euler equations, in which the effects of buoyancy are treated in the Boussinesq approximation and the Coriolis 
parameter 2 f  is allowed to vary spatially. Euler's equations in the Boussinesq approximation (EB equations) for 

such a fluid are 

+ u . ~ 7  u + 2 f $ . × u + g p $ . + ~ p = O ,  + u . ~ 7  p = O ,  ~7.u  = 0 ,  (7.1) 

where p is the buoyancy and f is the local rotation frequency about the vertical direction, L 
The EB motion equation in (7.1) implies the following Kelvin circulation theorem for any closed curve y (t) 

moving with the fluid: 

d 

-~ f (u 
),(t) 

/[(o ) ] + R ( x ) ) - d x =  - ~ + u . ~ 7  ( u + R ) + ( u j + R j ) V u  j .dx 

y(t) 

= - g  f p £ . d x +  f V ( - P + ½ l u l 2 + u . R ) . d x  

~'(t) y(t) 

= - g  ~ P dz, 
t l  

r(t) 

(7.2) 

where curlR(x) = 2f (x)L We may derive the form of the time-averaged EB motion equation by first decomposing 
the fluid velocity into its Eulerian mean plus irrotational fluctutions, u(x, t) = ~(x, t) + u'(x, t), as in Eq. (1.6). 
Substituting this decomposition into the Kelvin circulation theorem (7.2) for the EB equations and averaging gives 
(cf. Eq. (3.22)) 

dt (~ + u' + R(x) ) . dx = --~ (~ + R(x) ) . 

v(t) ~(t) 

£ 
dx dz. = - g  ~o p 

t /  

~(t) 

(7.3) 

Thus, the time-averaged EB motion equation takes the following form (cf. Eqs. (3.23) and (7.2)): 

d Rj)Vt7 j V/5, -~  (~ + R) + (~j + = -gp~ - (7.4) 

where d / d t  = O/Ot + UL • V, as usual, and/5 is an undetermined function. A slight rearrangement of Eq. (7.4) 
gives 

0F 
- -  - -  U L  × (curl ~ + 2f£,) = -gp~. - X7(/5 + (~ + R) • ~L). (7.5) 
Ot 

Next, we rederive this form of the time-averaged EB equations by modifying the action (4.1) in Hamilton's principle 
for the CL theory to include effects of rotation and stratification, then pass to its Hamiltonian formulation and study 
its equilibrium solutions and their stability using the Hamiltonian framework. 
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7.2. Hamilton's principle 
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Hamitlon's principle (4.1) may be modified to incorporate buoyancy effects due to density stratification in the 
Boussinesq approximation and Coriolis force due to rotation, by accounting for gravitational potential energy and 
rotation as follows: 

= f ,. / ,o , z -  + , , o -  

This action is the difference of the kinetic and potential energy, plus "J • A" coupling to external driving and 
rotation, along with the incompressibility constraint imposed by the pressure as a Lagrange multiplier. The canonical 
momentum 7l"3 now includes the prescribed "vector potential" R, according to 

~L 
YrA --  8l~t --  - -O( i t i  -q- R i ) ( o - l ) ~ .  (7.7) 

The action £B depends on the fluid variables l A only through the quantities ~L, D and p, and incompressibility is 
imposed by - p ( D  - 1). In this case, Hamilton's principle gives 

D(D-I)iA~IA d$ b ~u--T -j'-~ ~-ffJ L,i \-~.],i ~-~] 

-fdtfd'xlL[ lot D~u~J 

J-~-~ [D(D-I)iA,IA ( ''B,J-~- I ''B.J~l I L}I/ (7.8) 

Vanishing of the coefficient of 8l m gives the motion equation, while vanishing of the coefficient of 8p gives volume 
preservation. Vanishing of the exact derivatives gives the "natural" boundary conditions. We note that the coefficient 
of 81 a in square brackets in (7.8) is expressible as 

d f 1 8 £ B . d x = - - f  l ' £ B d p ,  (7.9) 
d t  D 8~----L D ~p 

p(t) p(t) 

where the contour ~(t) moves with velocity UL. This is Kelvin's circulation theorem, which thus holds for any 
action whose dependence on l A is expressed only in terms of the Eulerian variables WE, D and p. 

The variation of the action (7.6) at fixed x and t give (cf. Eq. (4.2)) 

8£B= f dt f d3x[8 ,L . (D"- -  DR(x)) +SD(II"LI2--UL.US + " L . R ( x ) - -  p--  Pgz) 

-Sp(gzO) - 3p(O - 1)], (7.10) 

with definitions (cf. (4.3)) 

8D = D(D-1)~I  A, ~p = OP sIA 3F~iL = -(D-1)~t~Jsl B. - (D-1)iBSlBt. (7.11) 
Ol A ' 

The equations resulting from Hamilton's principle with the modified action £B in (7.6) may be obtained either 
by following the same route as in (4.6)--(4.10), or by substituting the variational derivatives in Eq. (7.10) into the 
general form (7.8) for 3£B. These equations are: 



D.D. Holm / Physica D 98 (1996) 415-441 431 

OF 
~L×CUrl(-a+R) pg£ V ( p + l l ~ L I 2 ) ,  

0t (7.12) 
0p 

- -  ~L . $ 7 p ,  ~ 7 . ~  = 0. 
0t 

These CL equations in the Boussinesq approximation (CLB equations) first appear in [ 16]. Of course, these equations 
are in the form (7.5) obtained by averaging Kelvin's circulation theorem for the EB equations and assuming that 
the Eulerian velocity fluctuations are irrotational. 

An interesting feature of the CLB equations (7.12) is that the rotating frame couples to the shear of the mean 
Stokes drift velocity to produce vortex stretching in the direction of~s. Taking the curl of the CLB motion equation 
gives (cf. Eq. (1.3)) 

- ~L" V ( ~ + 2 f ~ )  + ( ~ +  2 f £ ) .  ~7(U + ~ S ) .  (7.13) 
0t 

If ~S is time-independent, the term 2f£, • ~7~s is a steady source of Eulerian mean vorticity in the direction of ~s. 
Thus, in the CLB equations, a vertical gradient of us conspires with the Coriolis force to produce a steady source of 
Eulerian mean vorticity along ~s, by the mechanism of vortex stretching. In reality (or, in a higher order theory) this 
apparent difficulty would be removed by a self-consistent dependence of us on the mean Lagrangian flow velocity 
UL, which would allow feedback between the fluctuations and the mean flow. See [11] for details. 

7.3. Hamiltonian structure 

We may now pass from Hamilton's principle (7.6) to the corresponding noncanonical Hamiltonian theory for 
the CLB equations, (7.12). See, e.g., [12,1,2] for descriptions of this step in the case of the usual Boussinesq 
approximation, without the vortex forcing of the CL theory. The Hamiltonian that results from (7.6) via the Legendre 
transformation is 

nn  

Upon defining 

p = p ( I a ) ,  D = d e t  V l  A, lz = - - J r a V l  a = D(~WR) - -  
8 ~ L  ' 

(7.14) 

(7.15) 

the canonical Poisson bracket (5.2) in terms of 7/" A and 1 A transforms into the following Lie-Poisson bracket in 
terms of variables/z, D and p" 

f { F , G } ( ~ , D ) = -  d3x ~ (Oj#i +IzjOi) 31zj + DOi--~--~-p,i-~--~pp 

8F 8G 8F 8G ] 
+ - - ~ O j D ~ j  + 8---~p,j~-~j j , 

where, as before, 0j = O/OxJ, j = l, 2, 3, operates on all terms it multiplies to its fight. 
In terms of the variables ~, D and p, the Hamiltonian HB in (7.14) is expressible as 

HB = d3x -~ - R -t- Dpgz -t- p(D - 1) 

(7.16) 

(7.17) 
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with variational derivatives 

8HB 8HB 
--  I~ /D  - R + Ws = WE, = D g z ,  

81* ~p 
~HB 

= P +  llWsl2- llWl2--WE-R+RgZ-- 
8D 

The CLB equations (7.12) are then given in Hamiltonian form by 

O lzi 019 O D 
= {#i, HB}. - -  = {p, HB}, = {D, HB} 

8t 8t Ot 

in terms of the Hamiltonian Ha and Lie-Poisson bracket (7.16). Namely, 

cq # i  
- - F, - o i( '-W.R+pgz) + O g w . i ,  

Ot 

OO _ OjD~J ,  Op _ P j K J .  
Ot Ot " 

Rearranging gives (cf. Eq. (7.12)) 

0W 
- -  = WL x (curlW + 2f£)  -- V ( p  + llWLI 2) -- gp~.. 
Ot 

~ff-.B _ uo.t _ UL • R + pgz .  
8 D  

(7.18) 

(7.19) 

(7.20) 

(7.21) 

According to these dynamics, if D is initially equal to unity, it will remain so, provided V .  Ws = 0 and the Lagrange 

multiplier p satisfies the Poisson equation obtained by taking the divergence of (7.21) and requiring that ~7. - = u 0. 

7.4. No ther  symmetr ies  

Taking the scalar product of $7p with the curl of the CLB motion equation (7.21) gives conservation of potential 
vorticity q = ~ rp .  (curl W + 2 f ~ ) / D  along flow lines of the Lagrangian mean velocity WL. That is, 

V p .  t )  
Off _ -UL • Vq,  for q -- - -  with ~ = curlW+ 2f£,  D = 1. (7.22) 
Ot D 

Consequently, the following infinite family of integrals is conserved under the CLB dynamics: 

co: f D~(p, q), (7.23) 

for any function q~ of its two arguments. 
Under the Lie-Poisson bracket (7.16) for the CLB dynamics, the infinitesimal transformation generated by the 

conserved quantities C~ leaves invariant the Eulerian fluid variables/x, D and p. That is (cf. (6.2)), 

{C~, ~} = 0 = {C~, D} = {C~, p}. (7.24) 

The corresponding infinitesimal canonical transformation (gauge transformation) of the Lagrangian fluid labels 

l a ( x ,  t), A = 1, 2, 3, is given by (cf. (6.2)) 

{C~, l A} = P. V l a  with ~ = D - l V p  x V 0 ~ ,  D = 1. (7.25) 
Oq 

Thus, C~ generates a volume-preserving shift in the Lagrangian fluid labels along intersections of level surfaces of 
density p and potential vorticity q, that leaves invariant the fluid's Eulerian momentum density,/~. The corresponding 
relative equilibrium flow of the CLB equations is given by WLe = ~ with ~ from (7.25). The relative equilibrium 
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solutions of the CLB dynamics are critical points of the sum Hc = HB + C , ,  in which the function • is related to the 
Bernoulli function for the equilibrium solution. The stability of these equilibrium solutions may be investigated by 
using constrained energy methods similar to those developed for Euler's equations in the Boussinesq approximation 

in [2]. 

Remark. From (7.16), the helicity A satisfies the Poisson bracket relation {A, p} = (2 /D)~ • ~Tp # 0. Hence, 
the helicity A is not conserved in CLB flows, because the Hamiltonian (7.17) depends upon p explicitly. In fact, 
OA/at = {A, HB} = 2gz-~. V p  ~ O, in general. 

7.5. Equilibrium solutions 

The equilibrium states (Pe, We) of the dynamical system (7.12) are the three-dimensional steady CLB flows. For 
such steady flows, there are three "streamline relations" for the equilibrium Lagrangian mean velocity, ULe, 

ULe" ~7pe = 0, ULe" ~Tqe = 0, ULe" ~ ' (Pe  + ll~Lel 2 + pegz)  = 0. (7.26) 

The first two of these relations follow by Lagrangian-mean advection of buoyancy p in (7.12) and potential vorticity 
q in (7.22), while the last one is the Bernoulli Law, obtained by taking the scalar product of ULe with (7.21) and 
using ~Le • Vpe = 0 for steady solutions. 

At points where ULe :fi 0, the three streamline relations (7.26) imply that the quantities Pe, qe and (Pe + 1 [ULe 12 + 
PegZ) are functionally dependent. We assume we may express this dependence explicity by solving for 

Pe + ½lutel 2 + PegZ = g(pe,  qe), (7.27) 

where K(pe, qe is called the Bernoulli function. We also assume that Vpe x ~Tqe # 0, so that level surfaces of 
Pe, qe divide the volume of flow into "cells." We now show that if qe # 0, then (cf. (7.25)) 

1 
ULe = - -  Kq(Pe,  qe) V #e x ~Tqe, (7.28) 

qe 

which automatically satisfies the three streamline relations (7.26). In (7.28), the subscript notation denotes partial 
derivative, e.g., Kq = OK/Oq. The CLB motion equation (7.21) for steady flows and the relation (7.27) lead to 

ULe X ~-~e = ~ r K ( p e ,  qe) -- g Z V p e  (7.29) 

Vector multiplication of this by ~'Pe produces 

Uke(~'~e' ~rPe) -- ~'2e(-ULe" V pe) = Kq(Pe,  qe) V Pe x V q e .  (7.30) 

Relation (7.28) follows, since be  • ~Tpe = qe and the scalar product ULe • Vpe vanishes by (7.26) 
Another useful relation for steady flows arises by scalar multiplication of (7.29) by be,  yielding 

gz - (i2e . ~Tqe)Kq(Pe, qe)/qe - Kp(pe, qe) = 0. (7.31) 

Relations (7.30) and (7.31) will be useful in developing a variational principle for steady CLB flows in three 
dimensions. 

7.6. Variational principle for steady CLB flows 

Steady CLB flows will now be sought as extrema of the conserved quantifies HB + C~ in (7.14) and (7.23). Let 

u) = HB + C¢, = f d3x[ll~ + ~sl 2 + pgz + rp(p, q)]. (7.32) Hc(p, 
d 
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We compute 3HE, the first variation of Hc with respect to p and W, i.e., 

8Hc = D H c ( p ,  ~) . (Sp, ~f4). (7.33) 

(We note that in taking this variation we may as well set D = 1 and 6D = 0 before varying; since their 
contributions vanish after taking variations.) After integration by parts and use of the divergence theorem to remove 
inconsequential boundary terms, 3Hc is expressible as 

f d3x (gz + ~ p  - [-1. V ~ q ) 6 p  + (UL -- (I)qq~Tp x 17q) • 3W. (7.34) 3Hc 

Consequently, the first variation 6Hc vanishes for steady CLB flows, provided q~(De, qe) is determined from 

K (De, qe) by 

qe@q (De, qe) - ~ (De, qe) = K (De, qe). (7.35) 

If (7.35) holds, then, e.g., ¢71)qq = Kq/q  and the coefficients of 8p and 3W in (7.34) will vanish, in view of (7.31), 
the velocity relation (7.28) and the definition q = V p  • [-I/D with D = 1 in (7.22). Solving relation (7.35) gives 
the constraint function ~ in terms of the Bernoulli function for the steady flow, as 

@(JOe, qe) = qe -~K(De ,  s) + x(De) , (7.36) 

where the integration "constant" x(De) is an arbitrary function of De. Thus, a steady CLB flow whose Bernoulli 
function K is expressible in the form (7.27) may be identified as a critical point of/-/c in (7.32), with constraint 

function • given in terms of K by (7.36). Note that ULe in (7.28) and ~ in (7.25) are identical when the critical point 
condition (7.36) is satisfied. 

These considerations put the ideal CLB theory exactly into the framework developed in [21 for determining 
sufficient conditions for nonlinear stability to steady three-dimensional stratified incompressible Euler flows in the 

Boussinesq approximation. Consequently, we may immediately take over the conditional stability results of [2] for 
the steady Euler flows to the case of steady ideal CLB flows. For these flows, the only difference from stability 

results expressed in terms of the Bernoulli function K for Euler flows is that the equilibrium pressure Pe depends 

on the Stokes drift velocity Ws through the Poisson equation obtained from the divergence of Eq. (7.21) (cf. also 
(1.2)). 

8. Linear instabil ity condit ions  for planar CLB flows 

We first rewrite the CLB equations (7.12) in the "Lorentz force" form, as 

OWL OWS 
- -  + (UL • V)WL + V p  + pg~, -- UE x curlR -- - -  WL × curlWs, 

Ot Ot 
Op (8.1) 
O-=t- -FWL • ~ 'p  ~-- O, 

V.WL = 0 =  V.WS. 

These equations admit two-dimensional solutions in the x-z  plane when the Coriolis force and OWL/Oy both vanish, 
and Ws = Us(z)~ with curlWs = U~(z).9 for a function Us and its derivative U~ = dUs /dz .  As in Section 3.1.1, 
for two-dimensional motion we ignore OWs/Ot and find that the CLB equations reduce to 

069 ap ap 
0t -- WL'V&+go- -~ ,  Ot -- WL-17p, (8.2) 
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or, in terms of the steam function ~,  

0~o f f  (~o, ~ )  + J ( g z ,  p), ap i f ( p ,  i t) ,  & = A]~ U~(z), (8.3) 
at Ot 

where ,4~ = ~Pxx + ~zz and i f (g ,  h) = gzhx - hzgx is the Jacobian of the functions g(x ,  z), h(x ,  z). Thus, certain 
functional relationships must hold among the equilibrium solutions ~#e, Pe and (be, for which the motion (8.3) is 

time-independent. 
We set ~e = ~(Pe), in order to satisfy the steady buoyancy equation, J (Pe ,  ~e) = 0. The steady vorticity 

equation is given by 

J(~be, l~e) -t- J ( g z ,  pe) = 0. (8.4) 

This implies 

J + -a- gz, = o, (8.5) 

which will be satisfied by the relation 

dpe 
~oe + - ~ e g Z  = L(~e), (8.6) 

for a function L, or written in terms of the equilibrium stream function only, 

i dpe 
A@e -- Us(Z) -t- -d--~eegZ = t(q)e). (8.7) 

This is the modification of Long's equation [10,20,26] which is necessary for a planar Boussinesq equilibrium to 
accommodate the CL vortex force. 

We investigate the linearized stability conditions for a plane-parallel CLB flow, with Lagrangian mean velocity 

U L e :  (U(z) ,  0, 0) -- ( - ~ Z e , 0 , 0 ) ,  (8.8) 

and buoyancy Pe = P e ( Z ) .  For this, we follow [14,22] and return to the velocity equation (8.1). We set 

! ! 
ULe = (U(z)  + u, 0, w) and P = Pe -- Per/, with Pe < 0, (8.9) 

where u and w denote the x- and z-components of the perturbation velocity and r/denotes the vertical displacement 
of a particle from its initial position. The planar CLB equations linearize to give 

Du D w  
- -  + w U '  = - ( p  - Pe)x + wV~, - -  - gr/P'e = - ( P  - Pe)z - uU~, 
Dt  Dt  (8.10) 
Dr/ D a 0 
Dt = w, Ux + Wz = O, Dt  Ot + U (Z)~x ' 

where subscripts denote partial derivatives and primes denote derivatives with respect to depth, z. We assume the 
separated-variable solution for a streamwise perturbation in ~, 

ll(X, Z, t) = F(z )e  ik(x-ct), (8.11) 

where k is real, but c may be complex. Consequently, we obtain 

w = ik(U - c)r/, u = - [ ( U  - c)r/]', P - -  P e  = ( U  - c)rlU ~ -k- (U - -  ¢)2r / t ,  (8.12) 
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and 

[(U - c)FU~ + (U - c)2F']  ' - [(U - c)F]'U~ - k2(U - c)2 F - gp'e F = 0. (8.13) 

The boundary conditions are that F vanish at fixed z = zl and z = z2. The flow is unstable if (8.13) with these 
boundary conditions has nontrivial solutions with Im c > 0. Set c = Cr + ici, and let W = U - c. If F is an unstable 
solution, then ci > 0, so W ~ 0. Now set G = W1/2F, and replace the variable F in (8.13) by G. Then Eq. (8.13) 
becomes (cf. [14, Eq. (2.2)]) 

(WG') '  - [ I U "  + k2W + l ( I u ' 2  - N2(z))]G + (GU~)' - U~G' = 0, (8.14) 

where NZ(z) = -gp~ is the buoyancy frequency. Multiplication by the complex conjugate G of G and integration 

over (Zl, z2) then leads to 

Z2 

f dz [W(IGtl 2 + k21GI 2) + IU"IGI2 ( I u ' 2  - NZ(z))-WIG/WI 2] + 

Zl 

Z2 

+ ]  dz U~(-G'G + G 'G)  = 0. (8.15) 

Zl 

The last term in real, so it does not contribute to the imaginary part of (8.15), which gives 

Z2 

j dz [IG'f 2 + k21GI 2 + IG/WI2(N2(z) - 1U'2)]  = 0. (8.16) ci 

Zl 

Hence, the familiar Richardson number criterion follows, but expressed in terms of the Langrangian mean velocity 
for planar steady CLB flows. Namely, N 2 (z) - (½ U') 2 being everywhere nonnegative is sufficient for linearized 

stability of the plane-parallel flow WEe = U (Z)X to streamwise perturbations. 
Transforming Eq. (8.13) to the vertical velocity function, 

go(z) = (U - c ) F  = WF, 

gives the equation 

U" - U s + go = 0. go,, _ k2go + 

Multiplication of this by W and integration over (z l, z2) gives the integral relation, 

dz Igo'[ 2 +k2lgo[ 2 -  s )  igol2 = 0, 

Zl 

whose imaginary part is 

C i U t t - U s  - T - ~ ( U - c r )  1~(~ =0 .  

Zl 

(8.17) 

(8.18) 

(8.19) 

(8.20) 
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Thus, a necessary condition for instability is that the quantity 

2N 2 
Ut'  -- Us' - I - - ~ ( U  - Cr) 

437 

(8.21) 

must change sign somewhere in the flow. This is the inflection point theorem for planar steady CLB flows, which 
has the same form as Synge's generalization of Rayleigh's theorem for steady Euler-Boussinesq flows [14] when 
expressed in terms of the Eulerian mean velocity (cf. Section 3. I. l) in the case N 2 = 0. 

Thus, the linearized stability analysis of Miles [22 and Howard 14] for planar steady stratified ideal Euler flows 
passes over almost unchanged to the linearized analysis of wave-induced instability of planar steady ideal CLB 
flows. The difference is in the distinction between particle criteria and flow criteria for stability. For planar steady 
CLB flows, the Richardson number criterion is unchanged for the Lagrangian mean velocity (a particle criterion) 
and the inflection point criterion is unchanged for the Eulerian mean velocity (a flow criterion). 

The Howard semicircle theorem for planar steady CLB flows also follows from Eq. (8.13), by multiplying by F and 
integrating over (z l, z2) as in the derivation of the stability criteria. The inflection-point criterion and the semicircle 
theorem for CLB flows have been discussed by Craik [6] from the viewpoint of the generalized Lagrangian mean 
(GLM) formulation [3]. Leibovich [17] and Craik [7] discuss linearized stability analysis of spanwise perturbations 
of planar steady ideal CLB flows from the GLM viewpoint. 

9. Generalized Lagrangian Mean (GLM) equations 

The GLM theory of Andrews and Mclntyre [3] is a hybrid Eulerian-Lagrangian description in which Lagrangian- 
mean flow quantities satisfy equations expressed in Eulerian form. The GLM description associates to an Eulerian 
velocity field u(x, t) a unique "related velocity field" v(x, t), such that when a fluid parcel at X = x + ~ moves with 
its velocity u(x + ~, t), a fictional parcel atx is moving with velocity v(x, t). That is, 

- ~ + v . V  [ x + ( ( x , t ) ] = u ( x + ( , t ) .  (9.1) 

The displacement ~(x, t) associated with the waves has zero Eulerian mean, ((x, t) = 0, and v(x, t) is defined to 
be a mean quantity, i.e. v(x, t) = v(x, t). In fact v(x, t) is the Lagrangian mean velocity, denoted in this section as 

W E (x, t), following the notation of Ref [3]. The GLM operator ~--~.L involves averaging over particles at the displaced 
positions X = x + (, e.g., 

p(x ,O L = p~(x,t) withp~(x,t)  = p(x + ( , t ) ,  (9.2) 

where ( ) denotes a suitably defined Eulerian average. For example, ( ) may denote the average over the rapid 
oscillation phase of a single-frequency wave displacement. 

The ideal compressible (homentropic) GLM momentum and continuity equations in the absence of rotation are 
given by [3] 

"DL(u L - - p )  -4- (u L -- pk)Va L + ~-~ VPglm = O, 

0"-t "1- wE " W. (9.3) 

The vectorp(x, t) is the "pseudomomentum" (per unit mass), defined as 

p(x, t) = -u~ V~j,  (9.4) 
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and satisfying curl (p - us) = 0 provided u t is irrotational, since [cf. Eq. (1.7)] 

P - us  = -u~XT~j  - (~ .  XT)u I = - (cu r lu  1) × ~ - V ( u  I . ~). 

Here symbols with label ( )t are "wave quantities" with zero mean, such that, e.g., 

t ~ ..-g ~ _ ~ ,  Uj = U j  - -Uj  = Uj 

(9.5) 

(9.6) 

and we have neglected the difference between u' and u t as being of higher order. Also, the wave fields ~(x, t) and 
u t (x, t) are related by the kinematic condition, 

UI(x, t) = ~L~. (9.7) 

The physical significance of the pseudomomentum p can be understood from the contour integral appearing in 
Kelvin's circulation theorem (cf. Eq. (3.22)). Namely, 

l (t) = f u " d X  = f (~L + Ul) " ( dx  + d~) 

y(t) y(t) 

= f (~L + u~Xr~j), dx = f (~L--p) • dx, 
~(t) ~(t) 

(9.8) 

where the contour )5 (t) moves with velocity UL, since it follows the fluid parcels as the average is taken. Consequently, 
Kelvin's theorem gives (cf. Eq. (3.23)), 

dI f [DL(u -L -- p )  q- ((t L -- pk)  XTFtL] . dx,  (9.9) 
0 - -  dt - 

)~(t) 

upon using Eq. (9.3) and (1/p~) ~7pglm -- •hglm (P~), which is implied by the homentropic equation of state. Thus, 
in the case that the fluctuation velocity is irrotational, the "relative mean velocity" (~L _ p )  plays the same role in 
the GLM theory as played by the Eulerian mean velocity ~ in the CL theory and these two quantities differ by a 
gradient. In this case, the formal analogy between (~L _ p) and EL -- us) provides many parallels between the two 

theories which allow ready transfer of results from one to the other. 
The density of the related flow ~L(x, t) is defined so as to satisfy the continuity equation in (9.3), and is connected 

to the actual fluid density p~ (x, t) = p ( x  + ~, t) by 

= p~ J, where J = det(V(x + ~)). (9.10) 

Note that constant density flows, p~ = const, do not necessarily produce a constant related density ¢5. However, a 
simplification is that the ratio ~ / p ~  is prescribed.  To complete the GLM formulation,/5 in (9.10) is defined to be 
a mean quantity, ~3(x, t) = iS(x, t) ---= p~7.The GLM equations are then closed by choosing an equation of state 

which links pressure Pglm and density p~, and specifying the wave field ~(x, t). 
Leibovich [17] explains that the CL equations result from an asymptotic expansion of the compressible GLM 

equations (9.3) for small-amplitude waves and relatively larger mean shear, provided the Eulerian velocity fluc- 
tuations u' are assumed to be irrotational. (See also [6-8].) In order to compare with the CL theory, we write 
the GLM equations for an incompressible  relative mean velocity, ~L _ p, with constant p~ and irrotational u t. 
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In this case, rearranging the motion equation in (9.3) for the incompressible case with constant p~ leads to (cf. 
Eq. (1.14)) 

OW L 0p uL 
0---t- + (~L. v )~L + V(PgimlP~ + II~L _p l  2 _ ½[Pl 2) = 0-t X curlp, 

DL/5 + t 3V . f iL  = 0 wi thD L = 0 + ~ L . v ,  (9.11) 
Ot 

~ r .  (~L _ p) = 0. 

Here, the GLM pressure Pglm is solved from the Poisson equation, 

_~72 (Pglm'~ 
t , O~e ) = V .  [ (~L .  V) (wL _ p )  _1._ (/~L _ pk)V/~kL], (9.12) 

obtained by taking the divergence of the GLM motion equation (9.11) and requiring the relative mean velocity to 
be divergenceless, i.e., 

~7.  (~L _ p )  = 0. (9.13) 

The appropriate boundary conditions for the Poisson equation (9.12) come from evaluating the motion equation 
(9.1 l) on the boundary and requiring the Lagrangian mean velocity to be tangential there. 

Thus, in the case that the velocity fluctuations u 1 are assumed to be irrotational, the incompressible GLM equations 
(9.11) correspond formally to the CL equations (5.8), upon identifying 

W L = WL, p ~--- WS, wL - - P  --- ~, Pglm/P ~ + ½1U L -pl: - llpl2 = P. (9.14) 

Making these formal replacements allows us to transfer many of the results derived for the CL equations in the 
previous sections over to the GLM equations. For example, the action principle for the GLM equations is expressible 
as (cf. Eq. (4.1)) 

E.GLM= f dt f d3x[½DIWLI2--DWL.p--rr(D/p~--J)], (9.15) 

where D = det(~r/A), and the Lagrangian mean velocity W E is given in terms of derivatives of mean particle labels 
l A as (cf. (3.26)) 

= - (D-1)~  00~. (9.16) /,~Li 

The variation of the GLM action (9.15) with respect to the mean Lagrange Labels l A at fixed x and t gives 

i i  [ ") ( ° ) ]  8/~GLM = dt d3x t~W L .  (OW L - Dp) + 8D IwLI 2 -- W L - p  -- ~ -  -- 8rr ~-  - J (9.17) 

with definitions (cf. (4.3)) 

8D = D(D-1)~SI A and 8~ Li = --(D-1)~KLJsIB -- (D-1)~Sl B. (9.18) 

The action £GLM depends on the fluid variables l A only through the quantities UL and D, and incompressibility is 
imposed by -Jr  (D/p~ - J). in this case, Hamilton's principle gives 
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~GLM = dt d3x D(D-I)A~IA -dt O ~u-iL -~-O ~u~ uL't ~ , ] , i  --~Yg P f f - J  

--fdtfd3x{ [D(O-')iA"a  'c°LM uc ] 
+0---~ ~ i + D  ~u~ u . (9.19) 

Vanishing of the coefficient of ~l a gives the motion equation, while vanishing of the exact-derivative terms gives 
the boundary conditions. Thus, either by following the lines of Eq. (4.2)-(4.8), or by substituting from (9.17) into 
(9.19), we find that vanishing of ~£GLM implies 

t~IA: DL(~ L -- p )  -4- (•L _ pk ) V~lL 4_ V (yg lpe  _ ½1~L _pl2 4- ½[Pl 2) = 0 
D (9.20) 

~7r: ~ ---- J, 

where J is given in (9.10). Now identifying D as/5 in (9.10) and setting 

1 Pglm re 1 I~ L _ p i e  + [pl 2 -- (9.21) 
2 

recovers the ideal GLM equmions from Hamilton's principle for the action ~GLM in (9.15). 
The action/~GLM is invariant under the spatial transformations of l A that leave the Eulerian quantities D and 

W E unchanged (the particle-relabeling gauge transformations). These Noether symmetries endow the GLM theory 
with the various fundamental properties we have discussed for the CL theory, including Kelvin circulation theorem, 
Lie-Poisson Hamiltonian structure, and conservation of potential vorticity and Eulerian mean helicity. Stability 
results for the GLM equilibria analogous to those discussed for the CL theory are also available, including both 
Lyapunov stability conditions and linearized stability results. Inclusion of rotational effects in the GLM theory 
parallels that of the CLB theory discussed in the previous sections. 

10. D i scuss ion  

The subject of three-dimensional fluid dynamics driven at a free surface is, of course, very complex. Approximate 
theories such as the CLB theory and the GLM formulation that preserve the underlying structure of the original Euler 
equations are more likely to produce acceptable results than approximations which would destroy this structure. 
The structure to which we refer for the Euler equations is their Kelvin circulation theorem and Hamilton's principle, 
which are linked by the Noether symmetry of fluid particle relabeling. This symmetry, in turn, generates the steady 
motions as canonical transformations in the Hamiltonian framework and associates the steady flows to critical 
points of a constrained energy. The nature of these critical points determines whether the steady flows are stable to 
perturbations. Our discussion places both the ideal Craik-Leibovich theory of wave-current interactions at widely 
different time scales and the hybrid Eulerian-Lagrangian GLM theory into this classical framework. Although the 
presence of the Stokes drift velocity ~s in the CL theory introduces inhomogeneous terms into the equilibrium 
flow relations and their stability conditions, the CL theory preserves all of the structure emanating from particle- 
relabeling symmetry in Hamilton's principle. Moreover, the GLM formulation for currents driven by prescribed 
wave forcing also preserves this structure. 

These examples suggest that the CLB equations as well as other approximations derived by averaging could be 
obtained by applying the averaging techniques directly to Hamilton's principle for the Euler equations themselves. 
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One  benefit  o f  meet ing  this chal lenge is that the result ing averaged theories for solutions varying at slow t ime 

scales retain as much  as possible  of  the structure of  the original  theory, inc luding  conservat ion laws arising from 

symmetries.  This, of  course, is an old idea [25] which  is seeing renewed interest  in the context  of  the present  

example.  Another  benefit  of  averaging directly in Hami l ton ' s  pr inciple  is that such an approach leads to a self- 

consistent  theory which includes both the rectified effect o f  f luctuations on the mean  state and the inf luence of  the 

developing mean  flow on certain aspects of the fluctuating part of  the motion.  For details, see [11]. 
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