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Abstract

We begin by placing the Generalized Lagrangian Mean (GLM)
equations for a compressible adiabatic fluid into the Euler-Poincaré
(EP) variational framework of fluid dynamics, for an averaged La-
grangian. We then state the EP Averaging Lemma – that GLM av-
eraged equations arise from GLM averaged Lagrangians in the EP
framework. Next, we derive a set of approximate small amplitude
GLM equations (g`m equations) at second order in the fluctuating dis-
placement of a Lagrangian trajectory from its mean position. These
equations express the linear and nonlinear back-reaction effects on the
Eulerian mean fluid quantities by the fluctuating displacements of the
Lagrangian trajectories in terms of their Eulerian second moments.

The derivation of the g`m equations uses the linearized relations
between Eulerian and Lagrangian fluctuctions, in the tradition of La-
grangian stability analysis for fluids. The g`m derivation also uses the
method of averaged Lagrangians, in the tradition of wave, mean flow
interaction (WMFI). The new g`m EP motion equations for compress-
ible and incompressible ideal fluids are compared with the Euler-alpha
turbulence closure equations. An alpha model is a GLM (or g`m)
fluid theory with a Taylor hypothesis closure (THC). Such closures
are based on the linearized fluctuation relations that determine the
dynamics of the Lagrangian statistical quantities in the Euler-alpha
equations. Thus, by using the EP Averaging Lemma, we bridge be-
tween the GLM equations and the Euler-alpha closure equations, upon
making the small-amplitude approximation resulting in the new g`m
equations in the EP variational framework. The g`m equations also
lead to generalizations of the Euler-alpha models to include compress-
ibility and magnetic fields.
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the GLM variational principle
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EP Variants of the alpha models arising from substituting Taylor
hypotheses based on the linear fluctuation relations into the
averaged variational principle at second order

Adding the effects of compressibility and magnetic fields to the
Euler-alpha models
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1 Introduction

1.1 Decomposition of multiscale problems & scale-up

In turbulence, in climate modeling and in other multiscale fluids prob-
lems, a major challenge is “scale-up.” This is the challenge of deriving
models that correctly capture the mean, or large scale flow – including
the influence on it of the rapid, or small scale dynamics.

In classical mechanics this sort of problem has been approached by
choosing a proper “slow + fast” decomposition and deriving evolution
equations for the slow mean quantities by using, say, the method of
averages. See e.g., Sanders & Verhulst [1985], and Lochak & Meu-
nier [1988] for descriptions of this method. For nondissipative systems
in classical mechanics that arise from Hamilton’s variational princi-
ple, the method of averages may extend to the averaged Lagrangian
method, under certain conditions. See, e.g., Whitham [1965, 1970]
for discussions of these conditions. In applying this method, the aver-
aged Lagrangian acquires additional symmetries that are induced by
the averaging process. These symmetries imply additional conserva-
tion laws for “adiabatic invariants” obtained via Noether’s theorem.
Thus, perhaps not unexpectedly, the system that results after averag-
ing has fewer actively coupled degrees of freedom than in the original
system, because averaging creates ignorable coordinates. This is an
example of Lagrangian reduction by symmetries – the counterpart for
Lagrangian systems of Marsden-Weinstein reduction for Hamiltonian
systems, introduced in Marsden & Scheurle [1993].

Lagrangian reduction for mechanics on Lie groups. Some addi-
tional features arise in Lagrangian reduction when the system’s state
space is a Lie group, G, as in the case of fluid dynamics. In particu-
lar, suppose that a Lagrangian defined on the tangent space of a Lie
group is also invariant under the group’s action. Then a reduced La-
grangian may be defined on the group’s Lie algebra (i.e., the tangent
space at its identity). Such a reduction can be accomplished, for exam-
ple, by transforming the Lagrangian to group invariant variables. The
Euler-Lagrange equations on the group’s cotangent space then reduce
to Euler-Poincaré (EP) equations describing motion on the dual of
its Lie algebra. This EP framework is now well developed. See Marsden
& Ratiu [1999] for the an excellent introduction to the classical theory.
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For continuum mechanics, see Holm, Marsden & Ratiu [1998a], who
provide proofs of the basic EP theorems and present many applica-
tions of them for ideal fluids and plasmas with advected quantities.

In fluid dynamics, G is the group of diffeomorphisms – the smooth
invertible maps that take the reference configuration of the fluid into
its current configuration. Correspondingly, the Euler-Lagrange dynam-
ics occurs in the Lagrangian picture of fluid motion, and the Euler-
Poincaré dynamics occurs in the Eulerian picture. The invariance of
the Lagrangian under the action of the group G arises in fluids when-
ever the variational principle depends only on Eulerian variables. These
Eulerian variables are invariant under redefinitions of the Lagrangian
coordinates by the action of the group (particle relabeling symmetry).

The EP theorems in the forms we shall use them for modeling in
fluid dynamics are stated in Appendix #1 (section 8). There are two
main EP theorems for continuum theories. The first EP theorem es-
tablishes that the two motion equations and also the two variational
principles for the Lagrangian and Eulerian pictures of continua are all
equivalent. The second EP theorem establishes the Kelvin-Noether cir-
culation law as a result of Lagrangian reduction by particle relabeling
symmetry. These two main EP theorems describe how the transport
structure of Eulerian fluid dynamics arises variationally, after factoring
the Lagrangian by its particle relabeling symmetry. For the continuum
theory, see Holm, Marsden & Ratiu [1998a], and for its basis in classical
mechanics, see Marsden & Ratiu [1999].

Eulerian vs Lagrangian means. In meteorology and oceanography,
the averaging approach has a venerable history and many facets.
Often this averaging is applied in the geosciences in combination
with additional approximations involving force balances (for example,
geostrophic and hydrostatic balances). It is also sometimes discussed
as an initialization procedure that seeks a nearby invariant “slow man-
ifold” Leith [1980]. Moreover, in meteorology and oceanography, the
averaging may be performed in either the Eulerian, or the Lagrangian
description. The relation between averaged quantities in the Eulerian
and Lagrangian descriptions is one of the classical problems of fluid
dynamics.
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Wave, mean-flow interaction (WMFI). An example of a slow +
fast decomposition appearing in meteorology and oceanography is the
wave, mean-flow interaction (WMFI) problem. For reports of recent
progress in the WMFI problem see, e.g., Grimshaw [1984] and Gjaja &
Holm [1996]. In the WMFI problem, Lagrangian trajectories are repre-
sented as a mean-flow trajectory plus a WKB wave packet. The wave
packet is taken as a small-amplitude rapid fluctuation with a slowly
varying envelope. That is, the wave packet has slowly varying am-
plitude, frequency and wavenumber, but it has rapidly varying phase.
The rapid phase sets the fast time scale over which one averages to
obtain the equations for the wave, mean-flow interaction. Averaging in
the Lagrangian over the fast phase of the wave in the WMF decomposi-
tion introduces a phase symmetry that leads via Noether’s theorem to
conservation of the adiabatic invariant called wave action density. The
WMF approach for waves in fluids has its counterpart in the eikonal
approximation for the physics of waves propagating in slowly varying
media. As in the eikonal approximation, averaging over rapid phases
in the WMFI problem leads to modulation equations. These WMFI
modulation equations describe the fluid interacting with wave packets
in the WKB geometrical ray optics approximation at leading order,
with small corrections for dispersion.

The standard WMFI equations are a special case of the GLM equa-
tions of Andrews & McIntyre [1978a,b] in which the fluctuating dis-
placement of the Lagrangian trajectory is given as a WKB wave packet.
The GLM equations give an exact theory of nonlinear waves on a
Lagrangian-mean flow for an arbitrary, but prescribed, representation
of the fluctuations. See Gjaja & Holm [1996] for a detailed description
of the various levels of approximation in the WMFI theory in terms
of their variational principles. This reference also discusses the rela-
tion of the WMFI theory to the GLM equations, expressed in terms of
the Lagrangian-mean of Hamilton’s principle for incompressible rotat-
ing stratified fluids. For convenience, these levels of approximation in
WMFI theory are also listed briefly in Appendix #3 (section 10).

Generalized Lagrangian mean (GLM). The GLM equations of An-
drews & McIntyre [1978a] systematize the approach to Lagrangian fluid
modeling by introducing a slow + fast decomposition of the Lagrangian
particle trajectory in general form, then relating the Lagrangian mean
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of a fluid quantity at the mean particle position to its Eulerian mean,
evaluated at the displaced fluctuating position. The GLM equations
are expressed directly in the Eulerian representation. The Lagrangian
mean has the advantage of preserving the fundamental transport struc-
ture of fluid dynamics. For example, the Lagrangian mean commutes
with the scalar advection operator and it preserves the Kelvin circula-
tion property of the fluid motion equation.

Compatibility of averaging and reduction of Lagrangians. In mak-
ing slow + fast decompositions and constructing averaged Lagrangians
for fluid dynamics, care must generally be taken to see that the averag-
ing and reduction procedures do not interfere with each other. (Reduc-
tion in this context refers to symmetry reduction of the action principle
by the subgroup of the diffeomorphisms that takes the Lagrangian rep-
resentation to the Eulerian representation of the flow field.)

This compatibility requirement is handled automatically in the
GLM approach. The Lagrangian mean of the action principle for flu-
ids does not interfere with its reduction to the Eulerian representation,
since the averaging process is performed at fixed Lagrangian coordinate.
After the Lagrangian mean is taken, the remaining particle relabel-
ing symmetry in the action principle may be modded-out by reducing
with respect to another diffeomorphism subgroup; namely, the sub-
group that leaves invariant the quantities in the Eulerian specification
of the averaged fluid flow. Thus, the process of taking the Lagrangian
mean is compatible with reduction by the particle-relabeling group.

We shall perform this reduction of the action principle and thereby
place the GLM equations into the EP framework. In doing this, we
shall demonstrate the variational reduction property of the La-
grangian mean. This is encapsulated in the

EP Averaging Lemma. GLM averaging preserves the
Euler-Poincaré (EP) variational framework that implies the
GLM fluid equations.

Thus, the Lagrangian mean’s preservation of the fundamental trans-
port structure of fluid dynamics also extends to preserving the EP
variational structure of these equations. Of course, this extension is
not possible with the Eulerian mean, because the Eulerian mean does
not preserve the transport structure of Eulerian fluid mechanics.
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Approach and main results. This paper begins by placing the exact
nonlinear GLM equations for a compressible adiabatic fluid into the
Euler-Poincaré (EP) variational framework of fluid dynamics for the
corresponding GLM averaged Lagrangian. This result demonstrates
the EP Averaging Lemma, that GLM averaged equations follow from
GLM averaged Lagrangians in the EP framework. Thus, the EP Av-
eraging Lemma puts the GLM averaged-Lagrangian approach and the
method of GLM-averaged equations onto equal footing.1 We also com-
pare the GLM result with WMFI equations in the EP framework.

Staying in the EP framework, we shall derive a set of approximate
small amplitude GLM equations (g`m equations) by expanding the
GLM Hamilton’s principle to second order in the fluctuating displace-
ment of a Lagrangian trajectory from its mean position. The resulting
g`m equations possess linear and nonlinear terms that express back-
reaction effects on the mean motion due to the fluctuating displace-
ments of the Lagrangian trajectories. The coefficients in these back-
reaction terms involve Eulerian mean second moments of the fluctuat-
ing Lagrangian displacements. These back-reaction terms appear both
in the mean stress tensor and in the total mean momentum. Thus,
these terms have both linear and nonlinear effects.

The EP derivation of the g`m equations uses the linearized relations
between Eulerian and Lagrangian fluctuctions, in the tradition of La-
grangian stability analysis for fluids. The g`m derivation also uses the
method of averaged Lagrangians, in the tradition of wave, mean flow
interaction (WMFI). We compare the new g`m EP motion equations
for compressible and incompressible ideal fluids with the Euler-alpha
turbulence closure equations. We discuss closure hypotheses based on
the linearized fluctuation relations that relate the g`m equations to the
Euler-alpha equations.

Thus, the new g`m equations result as a bridge between the GLM
equations and the Euler-alpha closure equations. This bridge is con-
structed by making a small-amplitude approximation of the GLM equa-
tions in the EP variational framework. In this framework, we also de-
rive another variant of the Euler-alpha model that includes the effects
of compressibility, or magnetic fields.

1 This is quite a bonus for both approaches to modeling fluids. The averaged-Lagrangian
theory produces dynamics that can be verified directly by averaging the original equations,
and the GLM-averaged equations inherit the conservation laws that are available from the
symmetries of the Lagrangian.
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Compressible g`m closure equations. The equations we propose for
the compressible g`m closure model for the Eulerian mean fluid veloc-
ity ū consist of the EP motion equation and two auxiliary equations.
The EP motion equation is given by

(∂t + ū · ∇)
(
ū− p̄

)
+
(
ūk − p̄k

)
∇ūk − ∇ Π̄g`m

+ 1
D̄

Γk l∇ξkξl = 1
D̄

(
∇· ν (D̄ − Ô)∇

)
ū .

Here the pseudomomentum density D̄p̄ and the symmetric operator
Ô are defined by

D̄p̄ = Ôū = 1
2

[
∆̂(D̄ū) + D̄∆̂ū + ū ∆̂D̄

]
,

where ∆̂ = ∂ l ξkξl ∂k is a generalized Laplacian operator.
The Eulerian mean density D̄ and statistical moments ξkξl of

the Lagrangian fluctuating particle displacements satisfy two auxiliary
equations,

∂t D̄ + divD̄ū = 0 and (∂t + ū · ∇) ξkξl = 0 .

The boundary conditions in the absence of kinematic shear viscosity ν
are

n̂ · ū = 0 and n̂ · ξξ = 0 on the boundary.

Here ξ(x, t) is the fluctuating displacement of a Lagrangian trajectory
away from its mean position, x. These boundary conditions require
the mean velocity and the Lagrangian fluctuating displacement both
to be tangential at the boundary. (An additional boundary condition
is needed when kinematic shear viscosity is present.)

Lagrangian averaged Navier-Stokes−α (LANS−α) models. The
barotropic compressible LANS−α model results from these g`m equa-
tions when the preserved initial condition ξkξl = α2δkl is chosen and the
Lagrangian correlation length scale α is taken to be a constant,
by choosing it to be so initially. For a constant α, the generalized
Laplacian ∆̂ in the operator Ô reduces to ∆̂ → α2∆, where ∆ is the
ordinary Laplacian.
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The incompressible LANS−α model results when, in addition, the
relation D̄ = 1 is also enforced in these equations through the pressure
constraint. In this case, the operator D̄ − Ô reduces to the Helmholtz
operator, 1 − α2∆. The incompressible LANS−α model using this
operator has recently been proposed and tested as a turbulence clo-
sure model in Chen et al. [1998], [1999a,b,c]. See Foias, Holm &
Titi [2001a,b] for reviews of the mathematical and physical properties
of the incompressible LANS−α model. See also Marsden and Shkoller
[2001] and references therein for additional analysis and discussions, as
well as alternative derivations and interpretations of this model.

Outline of the paper. Section 2 introduces the information from the
Generalized Lagrangian Mean (GLM) theory that we will need in the
remainder of the paper. Section 3 begins by placing the GLM equa-
tions for a rotating adiabatic compressible fluid into the Euler-Poincaré
(EP) variational framework of fluid dynamics in the Eulerian descrip-
tion. This is first done explicitly by re-deriving the GLM equations
using Hamilton’s principle with a GLM averaged Lagrangian. We then
explain that every ideal GLM continuum equation follows from a GLM
averaged variational principle, via the EP Averaging Lemma.

After re-framing GLM theory as an EP variational problem, we
identify the parallels and similarities between the GLM and WMFI
theories in the EP framework. We pause to correct an omission in the
Andrews & McIntyre [1978a] GLM theory of stratified Boussinesq fluids
that restores the Kelvin circulation theorem for these equations and its
implication of local conservation for potential vorticity. We then move
on to develop and discuss the g`m small-amplitude approximation of
GLM that also possesses this fundamental property.

In section 4, we review the standard linearized Eulerian/Lagrangian
fluctuation relations. This is done in preparation for section 5 in which
we construct a small-amplitude approximation of the GLM equations
for a compressible adiabatic fluid at second order in the fluctuating
displacement of a Lagrangian trajectory from its mean position. Sub-
stituting the linear fluctuation relations into the GLM action principle
in the EP framework turns out to have both linear and nonlinear ef-
fects on the resulting EP equations. Another characteristic feature of
these small amplitude GLM equations (g`m equations) is that they
involve second-gradients of Eulerian mean flow quantities, in combina-
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tion with quadratic moments of the Lagrangian displacement statistics.
The latter must be modeled in closing the system.

In section 6 we introduce several additional modeling decisions to
arrive at second-order closures for the g`m equations. These modeling
decisions are formulated as variants of the Taylor-hypothesis for frozen-
in turbulence. The resulting Taylor-hypothesis closure (THC) models
recover the recently discovered Euler-alpha equations for incompress-
ible ideal fluids. The THC models also provide a systematic basis for
extending the Euler-alpha equations to the compressible case. Thus,
the Euler-alpha equations reappear in a more general context than in
their original derivation in Holm, Marsden & Ratiu [1998a,b]. Section 7
summarizes these Taylor-hypothesis closure results, provides additional
discussion and makes suggestions for diagnosing direct numerical sim-
ulations for the purpose of determining the accuracy of these various
approximate models.

Four appendices collect additional related material. Appendix #1
(section 8) states the two main EP theorems of Holm, Marsden &
Ratiu [1998a] for fluids with advected properties. Appendix #2 (sec-
tion 9) collects the linearized relations between the Eulerian and La-
grangian fluctuating fluid quantities and expresses them in a convenient
geometrical (Lie-algebraic) form. Appendix #3 (section 10) lists the
Lagrangian-mean Hamilton’s principles for several levels of approxima-
tion in WMFI theory. (The GLM theory appears on this list of WMFI
approximations at a certain level, because the self-consistent WMFI
theory is more general than the GLM theory with prescribed fluctu-
ation properties.) Appendix #4 (section 11) highlights some of the
results in the rest of the paper by setting up the corresponding results
for the GLM, g`m, and α−models of ideal MHD (MagnetoHydroDy-
namics).

1.2 Eulerian and Lagrangian means

In fluids, averages over the fast variables in a slow + fast decompo-
sition may be taken in either an Eulerian sense, or in a Lagrangian
sense. The traditional Reynolds turbulence decomposition, for exam-
ple, is taken in an Eulerian sense. In the Reynolds decomposition, the
fluid velocity u at a given position, x, is decomposed as u = ū + u ′

where u ′ = 0 and overbar (as in ū) denotes the Eulerian mean. The
Eulerian mean commutes with space and time partial derivatives, but
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it has the disadvantage of not commuting with the advection oper-
ator D/Dt = ∂t + u · ∇, that appears thoughout the fluid equations.
This disadvantage leads to the well-known closure problem – that the
Eulerian mean fluid equations in general do not form a closed system.
For example, the Eulerian mean equation for advection of a scalar fluid
quantity χ gives

(Dχ
Dt

)
=
DEχ̄

Dt
+ u ′ · ∇χ ′︸ ︷︷ ︸

Extra

, with
DE

Dt
=

∂

∂t
+ ū · ∇ ,

in which the extra term must be modeled to obtain closure.
The Lagrangian mean – denoted as χ̄L(x, t) for a fluid quantity

χ – is taken at constant Lagrangian coordinate, x0. Consequently,
by its definition the Lagrangian mean commutes with the advective
derivative, written in the Lagrangian picture as

(
∂t
∣∣
x0
χ
)L

= ∂t
∣∣
x0
χ̄L .

Written in the Eulerian picture, this is

(Dχ
Dt

)L
=
∂χ̄L

∂t
+ ūL · ∇χ̄L ≡ DLχ̄L

Dt
,

where ūL is the Lagrangian mean velocity, i.e., ūL = DLx/Dt is the
tangent vector along the mean Lagrangian trajectory.

Defining relation for Lagrangian mean. The Lagrangian mean for
a fluid quantity χ is defined in terms of the Eulerian mean operation
as

χ̄L(x, t) = χ
(
x + ξ(x, t), t

)
,

where ( · ) denotes the Eulerian mean and x + ξ(x, t) is the current po-
sition of a fluid parcel whose mean position is x. See Andrews & McIn-
tyre [1978a,b] for discussions of the many implications of this defining
relation. For example, one sees immediately from this defining rela-
tion that, relative to the Eulerian mean, the Lagrangian mean has two
disadvantages: it is history dependent and it does not commute with
the spatial gradient.
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Thus, the Eulerian mean commutes with gradients, but it interferes
with the advection operator and fails to produce a closed system of
equations. In contrast, the Lagrangian mean commutes with the advec-
tion operator and produces the GLM equations. The GLM equations,
however, are also not closed. For closure, they require the statistical
properties of the Lagrangian disturbance ξ to be prescribed.

Levels of approximation. In principle, the GLM theory is more accu-
rate than an Eulerian-mean theory, because it exactly preserves scalar
advection relations and, thus, yields an exact nonlinear theory. As we
shall see in section 3, the GLM theory also preserves the EP mathe-
matical structure of the original unapproximated equations – including
the Kelvin circulation theorem and the balance laws for energy and
momentum. However, the results of any Lagrangian mean theory may
be difficult to interpret accurately in an Eulerian setting.

For its completion, the GLM theory still requires closure assump-
tions about the Lagrangian-mean statistics of its wave properties – the
Lagrangian fluctuating displacements, ξ. For sufficiently small distur-
bances, plausible assumptions based on WMFI theory may assist in this
closure. However, at finite disturbance amplitude, the nonlinear effects
of the mean motion on the statistics of the Lagrangian fluctuating dis-
placements must become part of a dynamically self-consistent solution,
and these statistics can no longer be taken as prescribed quantities.
See Gjaja and Holm [1996] for initial investigations of a dynamically
self-consistent WMFI theory at the level of the WKB envelope approx-
imation.

Therefore, we see the need for developing an approximate small am-
plitude counterpart to the GLM theory, in preparation for developing
a set of dynamically self-consistent closure assumptions. For this, we
shall begin in section 3 by placing the the GLM equations themselves
into the larger framework of EP variational principles.

In section 4 we shall recall the linearized Eulerian/Lagrangian fluc-
tuation relations that are familiar from traditional Lagrangian stability
analysis for fluids. In section 5, we shall apply these linearized fluctua-
tion relations within the EP framework to develop a small-amplitude
approximation that minimizes the disadvantages of interpreting the
GLM description in an Eulerian setting. Namely, we shall assume that
the fluctuating displacement of the fluid trajectory around its mean,
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ξ(x, t), is sufficiently small and also that the mean flow is sufficiently
smooth, that we may linearize the relations for Eulerian fluctuating
quantities in terms of the Lagrangian displacement fluctuation, ξ. This
is standard practice in traditional Lagrangian stability theory. These
standard linearized relations will allow us to identify which moments
of the Lagrangian statistics must be modeled in making an approxi-
mate second-order Eulerian-mean closure of the GLM equations
of motion at order O(|ξ|2). These second-order small-amplitude GLM
equations (denoted g`m equations) are derived by applying the EP
framework to the Eulerian mean of the second-variation Lagrangian
for GLM.

In section 6, we shall seek variational closures of the g`m equa-
tions. The closed g`m equations result, upon introducing an additional
Taylor hypothesis into the derivation of g`m theory. The g`m the-
ory is derived in section 5 by making approximations, averaging and
taking variations of the GLM Lagrangian. The family of closed g`m
equations will be derived in the same EP framework. However, we shall
first introduce particular (or partial) solutions of the linearized fluctu-
ation relations into the derivation of g`m theory, before averaging and
taking variations in the EP variational principle. The closed family
of g`m equations includes the Euler-alpha model for incompressible
ideal fluids discovered in Holm, Marsden & Ratiu [1998a,b], as well as
recent extensions of it derived in Marsden & Shkoller [2001].

Finally, the g`m theory given here also extends these Euler-alpha
equations to include the effects of compressibility and magnetic
fields.

2 Brief review of GLM theory for compressible

fluids

An exceptional accomplishment in formulating averaged motion equa-
tions for fluid dynamics is the Generalized Lagrangian Mean (GLM)
theory of nonlinear waves on a Lagrangian-mean flow, as explained in
two consecutive papers of Andrews & McIntyre [1978a,b]. This section
introduces what we shall need later from the rather complete descrip-
tion given in these papers. (Even now, these fundamental papers still
make worthwhile reading and are taught in many atmospheric science
departments.) In section 3 we shall place the GLM equations into the
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Euler-Poincaré variational framework. Then in section 5, we shall de-
rive the second-order approximate g`m equations in this variational
framework by making a small-amplitude approximation.

2.1 Relevant information from the GLM theory

Defining relations for Lagrangian mean & Stokes correction in

terms of Eulerian mean

The GLM equations are based on defining fluid quantities at a displaced
fluctuating position. In the GLM description, χ̄ denotes the Eulerian
mean of a fluid quantity χ = χ̄+ χ ′ while χ̄L denotes the Lagrangian
mean of the same quantity, defined by

χ̄L(x) ≡ χξ(x) , with χξ(x) ≡ χ(x + ξ(x, t)) .

Here xξ ≡ x + ξ(x, t) is the current position of a Lagrangian fluid
trajectory whose mean position is x. Thus, ξ(x, t) with vanishing Eu-
lerian mean ξ̄ = 0 denotes the fluctuating displacement of a Lagrangian
particle trajectory about its mean position x.

Remark. Fortunately, this notation is also standard in the
stability analysis of fluid equilibria in the Lagrangian pic-
ture. See, e.g., the classic works of Bernstein et al. [1958],
Frieman & Rotenberg [1960] and Newcomb [1962]. See Jef-
frey & Taniuti [1966] for a collection of reprints showing
applications of this approach in controlled thermonuclear
fusion research. For insightful reviews, see Bernstein [1983],
Chandrasekhar [1987] and, more recently, Hameiri [1998].
Rather than causing confusion, this confluence of notation
encourages the transfer of ideas between traditional La-
grangian stability analysis for fluids and GLM theory, as
we shall see in section 5.

In GLM theory, the difference χξ − χ̄L = χ` is called the La-
grangian disturbance of the quantity χ. One finds χ` = 0, since
the Eulerian mean possesses the projection property ¯̄χ = χ̄ for
any quantity χ (and, in particular, it possesses that property for χξ).2

Andrews & McIntyre [1978a] show that, provided the smooth map
2Note that spatial filtering in general does not possess the projection property.
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x → x + ξ(x, t) is invertible (that is, provided the vector field ξ(x, t)
generates a diffeomorphism), then the Lagrangian disturbance velocity
u` may be expressed in terms of ξ by

u` = uξ − ūL =
DLξ

Dt
, where

DLξ

Dt
≡ ∂ξ

∂t
+ ūL · ∇ξ .

Consequently, the Lagrangian disturbance velocity u` is a genuine fluc-

tuation quantity satisfying u` = 0, since uξ − ūL = uξ − uξ = 0, by
the projection property. (Alternatively, u` = DLξ/Dt = 0 also follows,
since the Eulerian mean commutes with DL/Dt and ξ has mean zero.)

The difference between the Eulerian and Lagrangian means is called
the Stokes correction, e.g.,

χ̄S(x) = χ̄L(x)− χ̄(x) .

In a Taylor series approximation, one finds

χ̄S = ξ · ∇χ ′ + 1
2
ξξ : ∇∇χ̄+O(|ξ|3) .

The order O(ξξ) terms in χ̄S may be neglected, provided the second
gradients of the mean ∇∇χ̄ are sufficiently small, as we shall assume
henceforth.

2.2 GLM preserves advective transport relations, modulo
their tensor transformation factors

GLM scalar advection relations

At position x the velocity uξ = ūL + u` is the sum of the Lagrangian
mean velocity ūL and the Lagrangian disturbance velocity u`. Thus,
uξ = DLxξ/Dt and for any scalar field χ(x, t) one has,

(Dχ
Dt

)ξ
=
DL

Dt
(χξ) .

Because ūL appearing in the advection operator DL/Dt = ∂t + ūL · ∇
is a mean quantity, one then finds, as expected, that the Lagrangian

mean ( · )L commutes with the material derivative D/Dt. That is,

(Dχ
Dt

)L
=
DL

Dt
(χ̄L) , and

(Dχ
Dt

)`
=
DL

Dt
χ` ,
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where χ` = χξ − χ̄L is the Lagrangian disturbance of χ satisfying
χ` = 0. For example, in an adiabatic compressible flow, the specific
entropy s is advected as a scalar. That is, it satisfies Ds/Dt = 0
and, consequently, DLs̄L/Dt = 0, as well. Hence, sξ = s̄L follows,
by integration of DL(s̄L − sξ)/Dt = 0 along mean trajectories and
invertibility of the map x→ x + ξ(x, t).

Remark. Of course, this identification is also obvious phys-
ically, since the Lagrangian mean s̄L and the current value
sξ refer to the same Lagrangian fluid label. That is, we
initialize with ξ(x0, 0) = 0, for a Lagrangian coordinate
x0 = x(x0, 0). (This initialization still allows for random
initial velocities.)

Mass conservation: the GLM continuity equation

Remarkably, D̄L is not the density advected in the GLM theory. That
is,

∂t D̄
L + divD̄LūL 6= 0 .

Instead, GLM satisfies another density advection relation – the GLM
continuity equation,

∂t D̃ + divD̃ūL = 0 , (2.1)

for a density D̃, which is also a mean quantity. That is, ¯̃D = D̃, where
we invoke again the projection property of the Eulerian mean. The
GLM conserved density D̃ is given by

D̃ = DξJ , where J = det
(
∇x(x + ξ)

)
. (2.2)

The GLM continuity equation for the density D̃ may be shown by
transforming the instantaneous mass conservation relation Dξ d3xξ =
D(x0)d3x0 into

DξJ ≡ Dξ(x) det(∇x(x + ξ)) = D(x0)d3x0/d
3x ≡ D̃

and then using the defining relation (1.2) for the Lagrangian mean
in terms of the Eulerian mean. In taking the Eulerian mean of this
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relation, we keep in mind that x is an average quantity, so the right
hand side is already an average quantity. Thus, D̃ = DξJ satisfies
¯̃D = D̃, as claimed, and we note that D̃ 6= D̄L, in general. The
mean mass conservation relation D̃d3x = D(x0)d3x0 then implies the
continuity equation for D̃,

∂t D̃ + divD̃ūL = 0 ,

upon recalling that ūL is the velocity tangent to the mean Lagrangian
position x.

Remarks.

• The advective transport result for the density D̃ is especially clear
when expressed in Lie derivative form as,

0 =
d

dt

[(
D(x0)d3x0

)
· g−1(t)

]

=
( ∂
∂t

+ £ūL

)
(D̃d3x) =

(
∂t D̃ + divD̃ūL

)
d3x ,

where ·g−1(t) denotes the right action of the group G and £ūL

denotes the Lie derivative with respect to ūL (in the notation
explained in Appendices #1 and # 2, sections 8 and 9).

• For a fluid with constant unit density, Dξ = 1, the GLM theory
gives

D̃ = DξJ = det
(
∇x(x + ξ)

)
= 1− 1

2

(
ξkξ`

)
, k`

+O(|ξ|3) .

Hence, for constant instaneous density, the Lagrangian mean ve-
locity ūL has an order O(|ξ|2) divergence,

div ūL = − 1

D̃

DLD̃

Dt
=

1

2

DL

Dt

(
ξkξ`

)
, k`

+O(|ξ|3) ,

as shown in Andrews & McIntyre [1978a].
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Magnetic flux advection: the GLM frozen-in magnetic field

A preserved mean magnetic flux equation is provided as a basic mean
advection relation in developing a GLM theory of ideal MHD.

The magnetic flux advection relation for a magnetic field in ideal
MHD (MagnetoHydroDynamics) is

∂t B
ξ =

(
curl (u×B)

)ξ
with (div B)ξ = 0 .

The corresponding GLM advection law may be obtained by averaging
the Cauchy solution for this relation

Bξ

Dξ
· ∂x

i

∂xξ
=

B(x0)

D(x0)
· ∂x

i

∂x0
,

in which the initial condition B(x0) has zero divergence. Upon taking
the mean of this relation and using D̃ = DξJ for the mean GLM
density, we find that the divergenceless vector B̃ whose components
are

B̃i = K i
j B

ξ j with K i
j = J ∂xi

∂xξ j
, i, j = 1, 2, 3 ,

is also a mean quantity. That is, ¯̃B = B̃ and we note that B̃ 6= B̄L.
Here K i

j satisfying K i
j (∂xξ j/∂xk) = J δik is the matrix K of cofactors

of the Jacobian J ≡ ∂xξ/∂x. The mean vector quantity B̃ = K·Bξ then
satisfies the magnetic flux advection relation,

∂t B̃ = curl (ūL × B̃) with div B̃ = 0 .

That is, the flux of the divergenceless mean quantity B̃ is “frozen” into
the Lagrangian mean motion of the fluid.

A fully three dimensional nonlinear GLM theory of MHD is still
under development. See, however, Grappin, E. Cavillier & M. Velli
[1997] for a recent account, based on the WKB approximation, of the
propagation of acoustic waves incident on the base of a stellar wind
and their back-reaction on the mean flow, in the spherically symmetric,
isothermal case.
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Advection of a covariant symmetric tensor

When nonlinear elasticity is also a factor in the fluid evolution, there
is an additional advection relation,

∂

∂t
Sξab = −

(
ukSab,k + Skbu

k
,a + Skau

k
,b

)ξ
.

This is the advection relation for the Cauchy-Green strain tensor
Sab(x

ξ, t), which measures nonlinear strain in Eulerian coordinates.
The corresponding Cauchy solution of this advection relation is ex-
pressed in a Cartesian tensor basis as

(Skl dx
k ⊗ dxl)ξ = Sab(x0) dx

a
0 ⊗ dxb0 .

The GLM advection law for such a covariant symmetric tensor may be
obtained by rearranging this Cauchy solution. Hence, the symmetric
tensor,

S̃ij ≡ (JT ·Sξ ·J)ij = Sξkl
∂xξ k

∂xi
∂xξ l

∂xj
= Sab(x0)

∂xa0
∂xi

∂xb0
∂xj

,

is a mean quantity, where the Jacobian matrix J has elements Jki ≡
∂xξ k/∂xi. The corresponding GLM advection law for the mean

Cauchy-Green strain tensor S̃ is given by

∂

∂t
S̃ab = − ūLk S̃ab,k − S̃kb ūLk,a − S̃ka ūLk,b . (2.3)

Note that S̃ = ¯̃S is a mean fluid quantity, but S̃ 6= S̄L because of the
additional factors involving the Jacobian J.
Remark.

These examples demonstrate that the GLM theory preserves
the advective transport structure of fluid dynamics, modulo
the means of their tensor transformation factors. On a Rie-
mannian manifold, additional metric terms are also present
in these tensor transformation factors. See, e.g., Marsden
and Shkoller [2001] and references therein.
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2.3 GLM motion equations for adiabatic compressible fluids

The GLM motion equation for adiabatic compressible fluids in a frame
rotating with constant frequency Ω are given in Andrews & McIntyre
[1978a] in Cartesian coordinates as

DL

Dt

(
ūL − p̄

)
+
(
ūLk − p̄k

)
∇ūLk + 2Ω× ūL +∇Π− T̄L∇s̄L = 0 . (2.4)

Here p̄ is the pseudomomentum vector, a mean quantity defined
by,

p̄ ≡ − [u`k + (Ω × ξ)k]∇ξk . (2.5)

The mean potential Π has the form,

Π = h(pξ, sξ) + Φ̄L(x)− 1

2
uξ · [uξ + 2Ω × ξ] , (2.6)

in which

h(pξ, sξ) ≡ e(Dξ, sξ) + (pξ/Dξ)

is the mean specific enthalpy and Φ̄L is the Lagrangian mean of an
external potential Φ. We note that sξ = s̄L since the specific entropy
is a Lagrangian variable in the adiabatic case. The partial derivative
T̄L = ∂e(Dξ, s̄L)/∂s̄L is the Lagrangian mean temperature.

For an adiabatic compressible fluid, the thermodynamic First Law
following a fluid parcel is

de(Dξ, s̄L) = − pξ d
( 1

Dξ

)
+ T ξds̄L .

Hence, its Eulerian mean becomes, upon using D̃ = DξJ from mass
conservation,

d e(Dξ, s̄L) = − 1

D̃
(pξ dJ ) +

1

D̃
(pξ/Dξ) dD̃ + T̄Lds̄L . (2.7)

Remarks.
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• The determinant J = det
(
∇x(x + ξ)

)
is a fluctuating quan-

tity, not a mean fluid quantity. Therefore, J will not contribute
to variations with respect to mean fluid quantities. However,
δJ = Kj

k(∂ δξ
k/∂xj) with cofactor K j

k = J ∂ xj/∂(xk + ξk) does
contribute to variations with respect to ξ in the self-consistent
WMFI theory of Gjaja & Holm [1996]. Such variations also arise,
for example, in the Lagrangian stability analysis of the equilib-
rium solutions of the GLM equations. See, e.g., Andrews & McIn-
tyre [1978b] for a discussion of Hamilton’s principle for the La-
grangian disturbance ξ and its relation to the wave action density
of the WMFI theory.

• For an elastic medium, the specific internal energy e(D, b, Sab) also
depends on the Cauchy-Green strain tensor Sab. In this case, the
stress tensor per unit mass σab is determined from the equation of
state by the Doyle-Erickson formula σab ≡ ∂e/∂Sab. The Eulerian
mean First Law relation for the specific internal energy of such
an elastic medium then contains an additional stress term,

deξ = − pξd(1/Dξ) + T̄Lds̄L + (σξ)abdSξab .

The corresponding mean stresses will be defined from the average
quantity

(σξ)abd (J−T ·S̃·J−1)ab = (σξ)ab(J−T ·d S̃·J−1)ab + terms in ξ .

• Thus, the preservation of advective transport relations in the
GLM theory enables proper definitions of the thermodynamic
derivatives of mean constitutive relations with respect to
GLM average fluid variables.

2.4 Pseudomomentum & the transport structure of the
GLM motion equation

The significance of the pseudomomentum p to the transport structure
of the GLM equations can be understood from the Lagrangian mean of
the contour integral appearing in Kelvin’s circulation theorem for fluid
motion in a rotating frame. The rotation frequency Ω is allowed to
depend on position and is given by 2Ω(xξ) = (curlR)ξ. The rotation
potential R(xξ) is decomposed in standard GLM fashion as Rξ = R̄L+
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R`. (A constant rotation frequency is recovered from specializing to
Rξ = Ω × xξ.)

The GLM average of Kelvin’s circulation integral is defined as,

I(t) =

∮

γξ(t)

(
uξ + R(xξ)

)
· dxξ

=

∮

γξ(t)

(
ūL + R̄L + u` + R`

)
· (dx + dξ)

=

∮

γ̄L(t)

(
ūL + R̄L + [u`k +R`

k]∇ξk
)
· dx

=

∮

γ̄L(t)

(ūL + R̄L − p) · dx ,

where the contour γ̄L(t) moves with velocity ūL, since it follows the
fluid parcels as the average is taken. Thus, the Lagrangian mean leaves
invariant the form of the Kelvin integral, while averaging the velocity
of its contour. In addition, the pseudomomentum vector p defined in
(2.5) appears in the GLM averaged Kelvin integral as the Lagrangian
mean contribution of the fluctuations to the GLM averaged integrand.

The time derivative of the GLM averaged Kelvin circulation integral
is,

d

dt
I(t) =

∮

γ̄L(t)

[
(∂t + ūL · ∇)(ūL − p) + (ūLk − pk)∇ūLk + 2Ω×ūL

]
·dx .

The combination of terms in the integrand defines the transport
structure of the GLM theory. From the GLM motion equation (2.4)
one now finds the GLM Kelvin circulation theorem for adiabatic com-
pressible flow,

d

dt
I(t) =

d

dt

∮

c(ūL)

(
ūL + R̄L − p

)
· dx =

∮

c(ūL)

T̄L ds̄L .

Thus, the Lagrangian mean averages the velocity of the fluid parcels
on the Kelvin circulation loop, while it adds the mean contribution
of the fluctuations to the Kelvin circulation integrand. In particular,
upon taking the Lagrangian mean, the velocity of fluid parcels on the
circulation loop and the velocity appearing in the circulation integrand
are different.
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In the isentropic case (or, if the loop c(ūL) moving with the La-
grangian mean flow lies entirely on a level surface of s̄L) then the right
hand side vanishes, and one finds the “generalized Charney-Drazin the-
orem” for transient waves discussed in Andrews & McIntyre [1978a].

3 EP formulation of the GLM equations using an
averaged variational principle

3.1 EP Averaging Lemma for GLM equations

Most of the important properties of the GLM equations are discussed
in Andrews & McIntyre [1978a]. Many of these properties arise from
general mathematical structures that are shared by all exact nonlinear
ideal fluid theories. With the help of the thermodynamic identity (2.7)

for d e(Dξ, s̄L) we shall recast the GLM fluid motion equation (2.4) as
an Euler-Poincaré (EP) equation,

∂

∂t

δ ¯̀

δūLi
+

∂

∂xk

( δ ¯̀

δūLi
ūLk

)
+

δ ¯̀

δūLk

∂ūLk
∂xi

= D̃
∂

∂xi

δ ¯̀

δD̃
− δ ¯̀

δs̄L
∂s̄L

∂xi
, (3.1)

expressed in terms of variational derivatives of an averaged Lagrangian,
¯̀(ūL, D̃, s̄L). See Holm, Marsden & Ratiu [1998a,b] for an exposition of
the mathematical structures that arise in the EP theory of ideal fluids
that possess advected quantities such as heat and mass. For GLM the
Eulerian expression of the averaged Lagrangian is

¯̀(ūL, D̃, s̄L) =

∫
d3x D̃

[
1

2

∣∣∣ūL +
DLξ

Dt

∣∣∣
2

+ (Ω × xξ) ·
(
ūL +

DLξ

Dt

)

− Φ(xξ)− e(Dξ, s̄L)

]
. (3.2)

The mean Lagrangian ¯̀≡
∫
L̄(ūL, D̃, s̄L; ξ)d3x is a straight transcrip-

tion of the standard Lagrangian for adiabatic fluids into the GLM
formalism, followed by taking the Eulerian mean. If desired, the ro-
tation frequency can be allowed to depend on position by replacing
(Ω × xξ) → R(xξ), in which case 2Ω → (curlR)ξ. The variational
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derivatives of ¯̀ are given by

δ ¯̀ =

∫
d3x

[
D̃
(
ūL − p̄ + Ω × x

)
· δūL − D̃ T̄L δs̄L − Π δD̃ (3.3)

+ D̃ [u`k + (Ω × ξ)k](∂t δξk + ūL · ∇δξk) + pξKj
k(∂ δξ

k/∂xj)

]
,

where Kj
k = J∂ xj/∂(xk + ξk) is the cofactor that arises from the ther-

modynamic identity (2.7). Thus, the pseudomomentum p̄ defined in

(2.5), the Lagrangian-mean temperature T̄L = ∂e(Dξ, s̄L)/∂s̄L and the
potential Π in (2.6) all arise naturally in the variational derivatives of
the Lagrangian ¯̀ in (3.2) with respect to the mean fluid quantities.

One may verify that the GLM motion equation (2.4) for the mean
fluid motion is now recovered by substituting the variational derivatives
of ¯̀ in ūL, D̃ and s̄L into the EP equation (3.1). This computation
places the GLM theory into the EP framework for the averaged La-
grangian (3.2) and, thus, directly proves the following.

Lemma 1 GLM adiabatic fluids satisfy EP equations The
GLM motion equation (2.4) for a compressible adiabatic fluid results
when the Euler-Poincaré equation (3.1) is applied to the averaged
Lagrangian (3.2).

This result suggests that a much broader principle is operating,
namely,

Lemma 2 EP Averaging Lemma GLM-averaging preserves the
four equivalence relations of the EP theorem.

Andrews & McIntyre’s exposition of the GLM theory was published
in 1978, while the EP theory for advective fluid dynamics was only
recently developed in Holm, Marsden and Ratiu [1998a]. Therefore,
it may be more natural to state the EP Averaging Lemma from the
viewpoint of a variational principle. Namely,

Corollary 1 Variational Reduction Property The GLM equa-
tions follow from a GLM-averaged EP variational principle.
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The Variational Reduction Property is summarized by the following
commutative diagram.

-
GLM-Average the Lagrangian

?

Vary the
GLM-Averaged
Lagrangian

-
GLM-Average the Motion Equation
?

Vary the
Lagrangian

Sketches of Proofs. Lemma 2 follows by using the definition of GLM
averaging, in combination with the four equivalence relations in the first
EP theorem 8.1 and the Kelvin-Noether circulation result of the second
EP theorem ?? in Appendix #1 (section 8). Three observations are
relevant in sketching the proof of Lemma 2. First, one observes that
the GLM average of a right-invariant Lagrangian is still right-invariant,
so the Lagrange-to-Euler reduction and GLM averaging are compatible
in the EP theorem. (This observation takes us along the top and down
the right side of the diagram.) Second, the GLM average of the motion
equation preserves the transport structure of the Kelvin circulation
theorem, which is also implied by the second EP theorem. (Recall the
GLM Kelvin circulation loop analysis in section 2.4.) Third, the GLM
average preserves the form of the advection relations, as discussed in
section 2.2. Finally, to identify the averages of thermodynamic deriva-
tives that appear in the averaged motion equation and, thus, complete
the proof, one uses commutation of exterior derivatives and GLM av-
eraging in the definitions of these average dual variables. For example,
the average temperature of a fluid parcel is correctly defined from the
GLM average of the First Law, since thermodynamic relations are ap-
plied in ideal fluid theories for each fluid parcel as a closed system.
Moreover, the same definitions are used in the variational derivatives
of the averaged Lagrangian. These observations are sufficient to prove
Lemma 2 – the EP Averaging Lemma. For more details, see Holm
[2001], who proves that the EP Averaging Lemma is the front face of
a cube of six interlocking equivalence relations and commutative dia-
grams representing the Lagrangian Averaged Euler-Poincaré (LAEP)
Theorem.

Corollary 1 follows immediately from Lemma 2 for any Euler fluid
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equation that is also an EP equation before the averaging is applied.
However, Corollary 1 can also be proven independently, by, say, us-
ing the Clebsch procedure to place the GLM averaged equations and
their average advection relations directly into the EP variational frame-
work. Descriptions of the Clebsch procedure in this context are given
in Marsden and Weinstein [1983] and in Holm and Kupershmidt [1983].

The EP Averaging Lemma and its corollary the Variational Re-
duction Property allow extension of the exact nonlinear GLM theory
to include, for example, the continuum theory applications of the EP
theorem considered in Holm, Marsden & Ratiu [1998a,b], and the geo-
physical fluids applications considered in Allen, Holm & Newberger
[2001] and in Holm, Marsden & Ratiu [2001]. The remainder of this
paper will be devoted to exploring some of the applications of the EP
Averaging Lemma in the small disturbance approximation.

3.2 GLM results arising in the EP framework

The EP framework instills several fundamental properties, including
some that the GLM theory is already known to possess. These known
properties include the Kelvin circulation theorem, the balance laws for
energy and momentum, and the potential vorticity conservation law for
GLM. These properties are briefly expressed in the EP framework, as
follows. For more details and the original development of the EP theory
with advected parameters, see Holm, Marsden & Ratiu [1998a,b].

EP Kelvin circulation theorem for adiabatic GLM

The EP motion equation (3.1) can be rewritten in Lie-derivative form,
as

( ∂
∂t

+ £ūL

)( 1

D̃

δ ¯̀

δuL
· dx

)
= d

δ ¯̀

δD̃
− 1

D̃

δ ¯̀

δs̄L
ds̄L ,

where £ūL is the Lie derivative with respect to the Lagrangian mean
velocity, ūL. Integrating this form of the EP motion equation around
a loop c(ūL) moving with the average motion of the fluid provides
the Kelvin-Noether theorem in the EP framework for adiabatic
compressible fluids, as

d

dt

∮

c(ūL)

1

D̃

δ ¯̀

δūL
· dx = −

∮

c(ūL)

1

D̃

δ ¯̀

δs̄L
ds̄L .
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Hence, for adiabatic compressible GLM flow, from equation (3.3) for
the required variational derivatives one recovers equation (2.4) as,

d

dt

∮

c(ūL)

(
ūL − p̄ + Ω× x

)
· dx =

∮

c(ūL)

T̄L ds̄L .

Energy balance for adiabatic GLM

Legendre transforming in ūL yields,

Ē =

∫
δ ¯̀

δūL
· ūL d3x − ¯̀

=

∫
D̃

[
1
2
|ūL|2 + 1

2
|u`|2 + Φ̄L(x) + e(Dξ, s̄L)

− (u` + Ω× ξ) · ∂t ξ
]
d3x .

Except for the last term, this is the total mean energy of the adiabatic
GLM theory. We notice the “pseudoenergy”

ē ≡ [u`k + (Ω× ξ)k]∂t ξk , (3.4)

appearing as the last term in the energy quantity Ē. This term is
independent of the internal energy and has a common factor with the
pseudomomentum defined earlier,

− p̄ ≡ [u`k + (Ω × ξ)k]∇ξk .

In fact, these two quantities may be expressed equivalently as

D̃ ē = πk∂t ξk and D̃ p̄ = −πk∇ξk ,

where πk ≡ δ`/δ(∂t ξ
k) = D̃ [u`k + (Ω × ξ)k] is the momentum density

canonically conjugate to ξk, before the Eulerian mean is taken in the
Lagrangian ¯̀.

The spatially integrated pseudoenergy is given by

〈 ē 〉 =

∫
D̃ ē d3x =

∫
πk ∂t ξk d

3x .
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This term would have cancelled, had we performed the complete the
Legendre transformation,

Ē =

∫ (
δ ¯̀

δūL
· ūL +

δ ¯̀

δ(∂t ξ)
· ∂t ξ

)
d3x − ¯̀ = Ē +

∫
π · ∂t ξ d3x .

in both fluid and wave properties. The pseudoenergy ē in equation
(3.4) is thus understood to be the mean classical-mechanical action
per unit mass of the fluctuating Lagrangian displacement field. This
complete Legendre transformation yields the expected result for the
conserved total mean energy for a self-consistent theory,

Ē =

∫
D̃
[

1
2
|ūL|2 + 1

2
|u`|2 + Φ̄L(x) + e(Dξ, s̄L)

]
d3x .

Hence, we find that dĒ/dt = − d
dt

∫
π · ∂t ξ d3x = − d

dt

∫
D̃ē d3x, since

the total mean energy Ē must be conserved for a theory with no sources
or sinks of energy.

Remark about averaging and conservation laws. Before averaging,
the integrated instantaneous pseudomomentum is defined as,

〈p〉 =

∫
D̃ p d3x = −

∫
πk∇ξk d3x ,

The spatially integrated quantity 〈p〉 generates infinitesimal Eulerian
spatial shifts of the wave properties as canonical transformations.
That is,

{〈p〉, ξ} = ∇ξ and {〈p〉, π} = ∇π ,
where {F,H} is the canonical Poisson bracket with {ξ(x ′), π(x)} =
δ(x− x ′).

Under this canonical Poisson bracket, one may verify the formulas

A = −
∫
π · ∂aξ d3x ⇒ {A, ξ} = ∂aξ and {A, π} = ∂aπ .

That is, the functional A generates a translation in phase space for
any parameter a that admits integration by parts. If the solutions
in phase space (π, ξ) are averaged over such a parameter, then the
averaged generator of the the translations, Ā = −

∫
π · ∂aξ d3x, will be

conserved. For example, the ith component p̄i of the pseudomomentum
would be conserved, if the solutions (π, ξ) were averaged over space in
the ith direction.
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Remark – the relation between GLM and WMFI. The GLM and
WMFI theories are closely related. For example, the WMFI wave ac-
tion density has the same character as the GLM quantities, pseudo-
momentum and pseudoenergy, which may also be aptly expressed in
terms of a single-frequency WKB wave packet. By varying the wave
properties ξ in the averaged Lagrangian as well as the mean fluid prop-
erties, Gjaja & Holm [1996] constructed a self-consistent Lagrangian
mean WMFI theory. This WMFI theory reduces to GLM theory when
the statistics of ξ are prescribed. See Appendix #3 (section 10) for a
brief discussion.

To explain how the wave action density of the WMFI theory is
related to the GLM pseudomomentum, we make the following pre-
canonical transformation,

D̃ p̄ · dx = −πk · ∇ξk · dx = −π · dξ .
If ξ and π depend on a phase parameter φ, we may write the phase-
averaged differential relation as

−π · dξ = −πk∂φξk dφ = Ndφ = Nk · dx ,
where the wavevector k is defined by dφ = ∇φ · dx = k · dx.

Thus, we obtain the wave action density N = −πk∂φξk, which is

related to the GLM pseudomomentum by D̃p̄ = Nk. For the WKB
wavepacket ξ = 1

2
(aeiφ/ε + a∗e−iφ/ε), one finds the formula,

N

D̃
= −

[DLξ

Dt
+ (Ω× ξ)

]
· ∂φξ = 2ω̃|a|2 + 2iΩ · a× a∗ + 2=

(
a · D

La∗

Dt

)
,

in which ω̃ = −DLφ/Dt = ω − k · ūL is the Doppler-shifted wave
frequency. This formula is in agreement with the wave action density
N appearing in WMFI studies such as that of Gjaja & Holm [1996].
As a result of the symmetry under translations in φ introduced by
phase-averaging the Lagrangian, we have

0 = − ∂

∂t

∂L̄
∂(∂tφ)

− div
∂L̄

∂(∇φ)
=
∂N

∂t
+

∂

∂xj

(
NūL j − pξKj

i ∂φ ξ
i
)
,

upon using the variational derivatives in equation (3.3). Andrews &
McIntyre [1978b] obtain the same conservation law by directly manip-
ulating the GLM motion equation (2.4). This equivalence, of course,
is guaranteed by the EP Averaging Lemma 2.
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We recover this conservation law as a result of Noether’s theorem
for the averaged Lagrangian. Thus, we have the following.

Lemma 3 When averaging introduces an ignorable coordinate, the
average of the corresponding canonically conjugate momentum is
conserved. In this case, the conserved wave action density N is the
phase-averaged generator of phase shifts.

Remarks.

• The GLM pseudoenergy is related to N by D̃ē = Nω, which again
identifies ē as an action variable.

• The self-consistent WMFI theory is closed by writing the pseu-
domomentum as D̃p̄ = Nk and using the conservation of waves
relation, ∂t k = ∇ω . In this equation, the frequency variable ω
must still be determined. Until this point, no small-amplitude
assumption has been made. Introducing a small amplitude ap-
proximation allows the frequency ω to be determined from its dis-
persion relation in terms of fluid and wave mean properties. See
Gjaja & Holm [1996] for more details, including the Lie-Poisson
Hamiltonian structure of the self-consistent WMFI theory, which
is reminiscent of the Landau two-fluid model of superfluid Helium.

EP momentum balance for adiabatic GLM

The momentum conservation law for the EP theory is,

∂t m̄
L
i + ∂j T̄

j
i =

∂L̄
∂xi

∣∣∣∣
exp

, (3.5)

where m̄L = δ ¯̀/δūL is the Lagrangian-mean momentum density, the
stress tensor T̄ ji is given by

T̄ ji = m̄iū
Lj + δji

(
L̄ − D̃ ∂L̄

∂D̃

)

and ∂L̄/∂xi
∣∣
exp

denotes the derivative with respect to the explicit spa-

tial dependence that arises in the mean Lagrangian ¯̀ in (3.2) after
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averaging over the statistics of ξ. For the adiabatic GLM theory, this
stress tensor is given by

T̄ ji = D̃
(
ūLi − p̄i + (Ω× x)i

)
ūLj + δji D̃ (pξ/Dξ) . (3.6)

The momentum balance law for adiabatic GLM is specified, only after
∂L̄/∂xi

∣∣
exp

is specified, by giving the spatial dependence in (3.2) of the

wave properties and external potential in the Lagrangian density L̄.
This is the requirement for obtaining closure in the GLM theory.

Local EP potential vorticity conservation for adiabatic GLM

Invariance of the Lagrangian under diffeomorphisms (interpreted phys-
ically as Lagrangian particle relabeling) implies the local conservation
law for EP potential vorticity,

DL

Dt
q̄L = 0 , where q̄L =

1

D̃
∇s̄L · curl

( 1

D̃

δ ¯̀

δūL

)
.

For the adiabatic GLM case, the potential vorticity is given explicitly
as

q̄L =
1

D̃
∇s̄L · curl

(
ūL − p̄ + Ω× x

)
.

Note the relation of the potential vorticity to the Kelvin circulation
theorem. This is particularly apparent when the Kelvin theorem for
adiabatic GLM theory is re-cast in terms of surface integrals using
Stokes theorem, as

d

dt

∫∫

A

curl
(
ūL − p̄ + Ω× x

)
· n̂ dA =

∫∫

A

∇T̄L ×∇s̄L · n̂ dA ,

where the boundary of the surface A is the fluid loop, ∂A = c(uL).

GLM helicity

The EP helicity is given by

Λ̄L =

∫ ( 1

D̃

δ ¯̀

δūL

)
· curl

( 1

D̃

δ ¯̀

δūL

)
d3x .

The corresponding GLM helicity is not conserved in the adiabatic case,
although it is conserved in the GLM theory for the three dimensional
barotropic case. (The same is true, before averaging.)
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3.3 EP results for the GLM Boussinesq stratified fluid

The Eulerian expression of the averaged Lagrangian for a Boussinesq
stratified fluid is

¯̀(ūL, D̃, θ̄L) =

∫ {
D̃

[
1

2

∣∣∣ūL +
DLξ

Dt

∣∣∣
2

+ (R̄L + R`) ·
(
ūL +

DLξ

Dt

)

− Φ(xξ)− g z θ̄L
]
− pξ

(
D̃ − J

)}
d3x . (3.7)

This mean Lagrangian ¯̀≡
∫
L̄(ūL, D̃, θ̄L)d3x is a straight GLM de-

composition of the standard Lagrangian for Boussinesq stratified fluids,
followed by taking the Eulerian mean. The relative buoyancy θ is ad-
vected as a scalar in the Boussinesq approximation,

∂t θ + u · ∇θ = 0 ,

so we have already substituted θξ = θ̄L. The rotation frequency Ω
depends on position and is given by 2Ω(xξ) = (curl R)ξ. The rotation
potential is decomposed in standard GLM fashion as Rξ = R̄L + R`.
Finally, the pressure pξ is a Lagrange multiplier that imposes the the
constraint relation defining the conserved GLM density D̃ = DξJ , for
Dξ = 1.

Remark. The kinetic energy is the same here as in equa-
tion (3.2) for the adiabatic compressible fluid, and the rela-
tive buoyancy is perfectly analogous to the entropy per unit
mass. Moreover, the pressure constraint is also analogous
to internal energy. So, one should expect no substantial dif-
ference to occur in passing from the adiabatic GLM case to
the Boussinesq GLM equations.

Variational derivatives and EP equation for GLM Boussinesq

stratified fluid

The variational derivatives required for the EP equation (3.1) – with
entropy s̄L replaced by buoyancy θ̄L – are obtained from (ignoring
variational derivatives in ξ now and henceforth)

δ ¯̀ =

∫
d3x

[
D̃
(
ūL − p̄ + R̄L

)
· δūL − D̃ gz δθ̄L − ΠB δD̃

]
. (3.8)
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Here, the pseudomomentum is defined by p̄ = −(u`j +R`
j)∇ξj and the

Boussinesq potential ΠB is defined by

ΠB = πB + gz θ̄L + ūL · R̄L ,

where

πB = p̄L + Φ̄L(x)− 1

2
uξ · (uξ + 2R`) .

Here p̄L = pξ is the Lagrangian mean pressure, cf. equation (2.6) for the
potential in the adiabatic compressible case. We substitute these vari-
ational derivatives into the Euler-Poincaré (EP) equation (3.1), with
the analogous replacement s̄L → θ̄L, to find the following GLM motion
equation for a stratified Boussinesq fluid in Cartesian coordinates,

[DL

Dt

(
ūL − p̄

)
+
(
ūLk − p̄k

)
∇ūLk

]
+ 2Ω × ūL +∇πB + gθ̄Lẑ = 0 .(3.9)

Remarks.

• Stratified Boussinesq fluids and adiabatic compressible fluids ad-
mit very similar forms of the EP Averaging Lemma.

• The GLM Boussinesq motion equation (3.9) is very similar to the
corresponding adiabatic compressible equation (2.4). However,
it is different in an important way from the corresponding equa-
tions (8.7a) and (9.1) of Andrews & McIntyre [1978a], which both
contain only DLūL/Dt, instead of the combination of four terms
in square brackets written here. (This error was not repeated in
Bühler and McIntyre [1998] equation (9.4).) Without this correct
combination of four terms, the Kelvin circulation theorem cannot
be satisfied properly.

EP Kelvin circulation theorem for GLM Boussinesq stratified fluid

The EP framework provides the Kelvin-Noether theorem for
Boussinesq stratified fluid, in the form

d

dt

∮

c(ūL)

1

D̃

δ ¯̀

δūL
· dx = −

∮

c(ūL)

1

D̃

δ ¯̀

δθ̄L
dθ̄L .
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Hence, for the GLM Boussinesq stratified fluid one has,

d

dt

∮

c(ūL)

(
ūL − p̄ + R̄L(x)

)
· dx =

∮

c(ūL)

gz dθ̄L ,

where curl R̄L(x) = 2Ω(x). If the loop c(ūL) moving with the La-
grangian mean flow lies entirely on a level surface of θ̄L, then the right
hand side vanishes, and one recovers for this case the “generalized
Charney-Drazin theorem” for transient Boussinesq internal waves, in
analogy to the discussion in Andrews & McIntyre [1978a] for the adi-
abatic compressible case.

Momentum balance for GLM Boussinesq stratified fluid

For a mean Lagrangian density L̄, the EP theory yields the momentum
balance,

∂t m̄i + ∂j T̄
j
i =

∂L̄
∂xi

∣∣∣∣
exp

,

with terms defined in analogy with the compressible GLM case.

Local potential vorticity conservation for GLM Boussinesq strati-
fied fluid

Invariance of the Lagrangian under diffeomorphisms (interpreted phys-
ically as Lagrangian particle relabeling) implies the local conservation
law for EP potential vorticity,

DL

Dt
q̄L = 0 , where q̄L =

1

D̃
∇θ̄L · curl

( 1

D̃

δ ¯̀

δūL

)
.

For the GLM case, the potential vorticity is given explicitly as

q̄L =
1

D̃
∇θ̄L · curl

(
ūL − p̄ + R̄L(x)

)
.

Again, the EP framework explains the relation of the potential vorticity
to the Kelvin circulation theorem.

Other considerations in the EP framework for the GLM Boussinesq
stratified fluid closely follow the developments for the GLM adiabatic
fluid, modulo simple adjustments for replacing s̄L → θ̄L, in the mo-
mentum and energy balance laws, for example.
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3.4 Section summary

This section shows that passing from the Euler equations for ideal
compressible and incompressible fluids to the GLM equations admits
the EP Averaging Lemma. Namely, when the Lagrangian mean is
used for averaging, the EP equations for the averaged Lagrangian are
identical to the averaged EP equations. Because of the EP Averaging
Lemma, one finds that the Kelvin circulation theorem, the balances
for energy and momentum and the local conservation law for potential
vorticity arise as general features of all GLM-averaged EP fluid theories.
Concepts in GLM theory such as pseudomomentum and wave action
density also arise naturally as general features in the EP context.

Thus, the EP Averaging Lemma places the exact nonlinear GLM
theory into the realm of averaged Lagrangians for Eulerian fluid me-
chanics in the EP framework. This framework allows further structure-
preserving approximations of the GLM equations to be made using the
EP variational formulation.

Being derivable in the EP framework, the GLM theory also pos-
sesses other fundamental structure that is shared by all ideal fluid the-
ories in the EP framework. In particular, the EP framework leads
to the Lie-Poisson Hamiltonian formulation for GLM theory, as well
as to the potential-vorticity Casimirs associated with this Lie-Poisson
bracket. In turn, this structure leads to the energy-Casimir method
for characterizing equilibrium solutions of the GLM equations for ideal
fluids as critical points of a constrained energy and for establishing
their nonlinear Liapunov stability conditions. For an explanation of
this additional structure and many applications in fluids and plasmas,
see Holm, Marsden, Ratiu & Weinstein [1985].

All of these additional features are now available to the GLM theory
of fluid dynamics. However, we shall forego investigating these other
implications here and pass to the formulation of an approximate set
of Eulerian mean equations based on a small-amplitude approximation
of the GLM theory. We refer to Holm, Marsden & Ratiu [1998a,b] for
detailed descriptions, derivations and basic references to other works
concerning the underlying geometry associated with the EP framework
for ideal fluids with advected quantities.
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Remarks.

• The GLM equations may also be obtained by averaging in Hamil-
ton’s principle at constant fluid parcel label in the Lagrangian
description, then transforming the result to the Eulerian descrip-
tion and again using the EP theory. This approach was taken in
Gjaja & Holm [1996] in developing a self-consistent WMFI the-
ory for the Boussinesq stratified case. The same approach was
taken by Holm [1999] in developing nonlinear Taylor hypothesis
closures (THC) for both compressible and incompressible flows.
The equivalence of these other approaches to the present approach
is proven by the LAEP Theorem in Holm [2001].

• Regarding stability of the GLM solutions, see Andrews & McIn-
tyre [1978b] for discussion of a variational principle for linear evo-
lution of small disturbances of a Lagrangian-mean flow. In this re-
gard, see also the classical works mentioned earlier on Lagrangian
fluid stability analysis and WMFI theory.

4 Linearized Eulerian/Lagrangian fluctuation re-

lations

In principle, the GLM theory is more accurate than an Eulerian mean
theory, because its scalar advection relations hold exactly, and it pre-
serves the Euler-Poincaré (EP) structure of the original unapproxi-
mated equations. That is, being an EP theory, GLM preserves the
standard ideal fluid relations for energy, momentum and potential vor-
ticity, as well as possessing a Kelvin circulation theorem. However,
the results of any Lagrangian mean theory are often difficult to inter-
pret accurately in an Eulerian setting. In addition, the Lagrangian
mean statistics themselves are affected by the mean motion at finite-
amplitude Lagrangian displacement and, thus, cannot be taken as pre-
scribed quantities. Therefore, one sees the need for an Eulerian mean
counterpart to the GLM theory in the small-amplitude approximation.
A theory of this type was recently initiated in Bühler & McIntyre [1998]
in the context of the gravity wave parameterization problem.

In preparation for producing a variational complement to the small-
amplitude GLM theory, we shall first discuss the linearized Eule-
rian/Lagrangian fluctuation relations.
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4.1 Taylor series approximations of Eulerian fluctuations at
linear order in the Lagrangian displacement ξ

In the GLM theory, the displaced fluid velocity is given by

u(x + ξ, t) = ūL(x, t) + u`(x, t) ,

where

u`(x, t) =
∂

∂t
ξ + ūL · ∇ξ ≡ DLξ

Dt
.

A Taylor series approximation shows that the Eulerian velocity fluctu-
ation u ′ is related to the Lagrangian disturbance velocity u`, as well
as the fluctuating displacement ξ and the Eulerian mean velocity ū at
linear order in ξ by

u` = u ′ + ξ · ∇ū .

Therefore, we find the important relation at linear order,

u ′(x, t) =
∂

∂t
ξ + ū · ∇ξ − ξ · ∇ū . u ′−equation (4.1)

Likewise, for a scalar quantity χ, we have the linear-order relation,
χ` = χ ′ + ξ · ∇χ̄ . Consequently, we find,

χ ′ = − ξ · ∇χ̄ , χ ′−equation (4.2)

for an advected scalar χ (since χ` = 0 for an advected scalar). For a
conserved density, D, the linear-order Taylor approximation is

D` = D ′ + ξ · ∇D̄ = −D̄divξ .

Consequently, the Eulerian density fluctuation D ′ and Eulerian mean
density D̄ are related to the Lagrangian fluctuating displacement at
linear order in ξ for a conserved density D by

D ′ = −div (D̄ξ) . D ′−equation (4.3)

The u ′ and D ′ equations imply

(D̄u ′ +D ′ū) = ∂t (D̄ξ) − curl (ū × D̄ξ) .
Taking the divergence of this relation and using the D ′ equation then
implies the linearized continuity equation,

∂tD
′ = −div (D̄u ′ +D ′ū) . (4.4)
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Remarks.

• The u ′, χ ′ and D ′ equations are standard in Lagrangian stability
analysis. See Friedman & Schutz [1978a] for a historical survey
of the use of these linearized fluctuation relations, especially in
astrophysics.

• As a consequence of the linearized continuity equation, the Eule-
rian mean density D̄ satisfies the usual continuity equation

∂t D̄ + divD̄ū = 0 , (4.5)

in terms of the Eulerian mean velocity ū.

• The u ′ equation (4.1) may also be expressed in geometrical lan-
guage in terms of the ad-operator defined on the Lie algebra of
vector fields. Namely, as the linear relation u ′ = ∂t ξ + adūξ. In
this expression, the ad-operator is defined in terms of the com-
mutator operation for vector fields [· , ·] by

adūξ = [ū, ξ] = ū · ∇ξ − ξ · ∇ū = −£ξ ū ] ,

where superscript ( · ) ] denotes a vector field.

• In geometrical language, the Eulerian fluctuating component of
any advected quantity a is given at linear approximation in ξ by

a ′ = −£ξ ā ,

where ā is the Eulerian mean and £ξ denotes the Lie derivative
corresponding to the diffeomorphism generated by the vector field
ξ, the fluctuating displacement of the Lagrangian trajectory away
from its mean position x.

• In Appendix #2 (section 9) we explain in more detail the geo-
metric interpretations of these linear relations for the Eulerian
fluctuations of a scalar, a density and the fluid velocity in terms
of the Lagrangian fluctuation displacement.

• A strong connection exists between the present approach and the
GLM approach to WMFI discussed in Gjaja & Holm [1996]. In
that paper, attention concentrated on modeling the Lagrangian
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fluid trajectory displacement fluctuation ξ(x, t) as a WKB wave
packet. See Appendix #3 (section 10) for a list of available WMFI
theories based on asymptotic expansions and the WKB approxi-
mation in Hamilton’s principle. Here we shall use the linear rela-
tions for D ′ and u ′ to derive Eulerian mean fluid equations that
approximate the GLM fluid motion equations at second order in
the fluctuation displacement ξ.

Frozen-in Lagrangian fluctuations. Seen as equations for ξ, the lin-
earized fluctuation relations for D ′, χ ′ and u ′ only determine the La-
grangian fluctuating displacement up to adding an appropriate homo-
geneous solution determined by the initial conditions. Such homoge-
neous solutions are “frozen” into the mean motion, and for them D ′,
χ ′ and u ′ all vanish. For example, D̄ξ = ∇χ̄×∇ψ implies D ′ = 0 and
χ ′ = 0 for any function ψ. If, in addition, the function ψ satisfies the
advection relation for the mean flow, ∂t ψ + ū · ∇ψ = 0, then u ′ = 0,
as well. These homogeneous solutions are known from the traditional
theory of Lagrangian stability analysis for fluids. See, e.g., Friedman
& Schutz [1978a] for a clear discussion of them in this context.

Thus, homogeneous solutions of the linearized fluctuation relations
(the D ′, χ ′ and u ′ equations) cause no changes in the corresponding
Eulerian mean fluid quantities D̄, χ̄ and ū. That is, they generate sym-
metries of the Eulerian mean fluid quantities. In this way, the linearized
description distinguishes between passive Lagrangian fluctuations that
are frozen-in (i.e., move with the mean flow) and active Lagrangian
fluctuations that propagate through the fluid in a Lagrangian sense
(i.e., they move through the fluid from one fluid element to the next).
We shall assume that we may choose initial conditions for which the
frozen-in homogeneous contributions may be set equal to zero. Being
zero initially, they will remain so. Physically, this means we are choos-
ing the mean and current positions of each Lagrangian fluid element to
refer to the same Lagrangian coordinate. Fortunately, this has been our
convention from the outset, so no further changes are needed. Hence-
forth, the fluctuating Lagrangian displacement will be understood as
the inhomogeneous component of the solution. This inhomogeneous
(propagating) Lagrangian fluctuation component ξ will be determined
by a Green’s function method that obtains the inhomogeneous so-
lution for ξ uniquely from the u ′−equation. This solution will then
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imply D ′ and χ ′ from the other linearized fluctuation relations. We
shall give an explicit example next.

4.2 Green’s function relation ξ = G ∗ u ′

This subsection discusses the Green’s function relation ξ = G ∗ u ′ and
derives the corresponding DuHamel formula explicitly for the special
case of affine motion.

The inhomogeneous solution of the linear velocity fluctuation rela-
tion (4.1)

u ′ = ∂t ξ + adū ξ = ∂t ξ + ū · ∇ξ − ξ · ∇ū ,

may be solved in terms of a Green’s function G as

ξ = G ∗ u ′ ,

where G∗u ′ denotes the componentwise Green’s function convolution,

(G ∗ u ′ )i =

∫
Gi(x− y, t− τ )u ′i(y, τ ) d3y dτ , (no sum on i) .

Remark. The vector Green’s function with components
Gi introduces memory (depending on the history of ū) into
the solution for ξ from u ′ . Note that G is a deterministic
quantity.

The components of the vector Green’s functionGi, i = 1, 2, 3, satisfy
the deterministic dual equation,

∂tGi + (ad∗ūG)i = δ(x− y)δ(t− τ ) .

In tensor index notation, this dual equation is written as

∂tGi + ∂j(Giū
j) +Gj∂iū

j = δ(x− y)δ(t− τ ) , ∀ i = 1, 2, 3 .

In vector notation this equation may also be expressed as
[
∂t G + G div ū − ū× curlG +∇(G · ū)

]
i

= δ(x− y)δ(t− τ ) .

The linear expression on the left side contains several elements that are
familiar from the motion equation for fluids.
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Remark. Geometrically, the operation ad∗ is defined as
being the dual to the operation −ad under the L2 pairing,
namely,

〈
G, adū ξ

〉
= −

〈
ad∗ū G, ξ

〉
= −

〈
£ū G, ξ

〉
.

Thus, G ∈ g∗ is a one-form density – which is the geometri-
cal object dual under L2 pairing to vector fields. That is, the
Green’s functions Gi are components of a one-form density
(physically, G is a momentum density, if ξ is a velocity). In
Cartesian coordinates, (ad∗ū G)i is written as

(ad∗ū G)i = ∂j(Giū
j) +Gj∂iū

j .

We shall find these formulas convenient for interpreting the
geometrical meaning of the expressions arising in the ma-
nipulations to follow.

Example: Green’s function for affine mean motion

We shall derive the explicit Green’s function relation ξ = G∗u ′ for the
inhomogeneous solution of the u ′−equation in the special case that the
mean Lagrangian trajectory is given by the affine relation

x(t,x0) = F (t) · x0 + b(t)

so that ∇ū = Ḟ (t)F−1(t). In this special case, the u ′i−equation can be
written with an integrating factor as

F (t) · d
dt

∣∣∣
x0

(
F−1(t) · ξ

)
=
dξ

dt

∣∣∣
x0

− ḞF−1(t) · ξ = u ′ .

This implies an explicit DuHamel formula (implying memory, or
history dependence) in which the inhomogeneous solution is given by

ξ = G ∗ u ′ = F (t) ·
∫ t

0

F−1(τ ) · u ′(x(τ,x0), τ ) dτ .

This formula is reminiscent of the exponential integrating factor for
∇ū = const considered in Ristorcelli [2001] for deriving tensor eddy
viscosities in a turbulence model.
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The full solution for the fluctuation displacement is

ξ = G ∗ u ′ + ξ(0) ,

where ξ(0) is the homogeneous solution of the u ′−equation. The ho-
mogeneous solution for the affine case is simply

ξ(0)(x(t,x0), t) = F (t) · ξ(0)(x0) ,

as follows from

dξ(0)

dt

∣∣∣
x0

= Ḟ (t) · ξ(0)(x0) = ḞF−1(t) · ξ(0)(x, t) ,

where ξ(0)(x0) is the initial value of ξ(0)(x, t). This initial value may
be set to zero, if one assumes the current and mean positions of a
Lagrangian trajectory refer to the same Lagrangian coordinate.

In fact, the homogeneous solution of the u ′−equation in the gen-
eral case is the same as Cauchy’s solution for the vorticity equation
of an incompressible ideal fluid, namely,

ξ(0)(x, t) = F (t,x0) · ξ(0)(x0) ,

where F (t,x0) = ∂x(t,x0)/∂x0 is the deformation gradient, or Jaco-
bian, of the Lagrange-to-Euler map (t,x0)→ x.

5 Deriving g`m – the order O(|ξ|2) GLM equations

In this section, we shall obtain a set of Eulerian-mean equations that
approximate the GLM equations at second order in the displacement
ξ. Following ideas familiar in Lagrangian fluid stability analysis, we
shall derive these approximate equations from a variational principle
based on first taking the Eulerian mean of the second-variation of the
GLM Lagrangian and then using the EP formulation. Our strategy for
developing this order O(|ξ|2) approximate Eulerian mean counterpart
for GLM is as follows.

We base the structure-preserving approximations of the GLM the-
ory implemented here in the EP framework on a two-step procedure.
The first step linearizes the Eulerian/Lagrangian fluctuation relation.
(This linearization describes how small fluctuations of a given fluid
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quantity around its Eulerian mean are related to the fluctuating dis-
placement of a Lagrangian fluid parcel trajectory around its mean po-
sition.) The second step substitutes these linearized fluctuation rela-
tions into the second-variation of the Lagrangian in Hamilton’s prin-
ciple. The Eulerian mean is then applied. This produces an averaged
second-variation Hamilton’s principle whose coefficients are Eulerian
mean second moments of fluctuating Lagrangian displacements. Fi-
nally, variations are taken with respect to Eulerian mean fluid quanti-
ties and thereby one obtains the averaged motion equation in the EP
framework. Thus, the first step of this procedure is reminiscent of the
traditional approach in linear Lagrangian stability analysis for fluids.
This traditional approach also invokes the second-variation of a fluid
action principle with respect to Lagrangian displacements. However,
there is a difference – the procedure here involves fluctuating linear
displacements from a mean solution, not deterministic linear displace-
ments from a steady solution as in the traditional stability analysis.

The second-variation Lagrangian contains quadratic terms in ξ,
whose coefficients depend on the Eulerian mean fluid quantities. The
second step of our procedure begins by taking the Eulerian mean of
the second-variation Lagrangian over the quadratic moments of these
fluctuating displacements, ξ. We then take variations of this averaged
Lagrangian, with respect to the Eulerian mean fluid quantities, and
use the EP framework. (In Lagrangian stability analysis, first, one
does not average and, second, one takes variations with respect to the
Lagrangian displacements, not the steady solutions.) The resulting
EP equations express the back-reaction effects on the Eulerian mean
motion equation of the fluctuating displacements of the Lagrangian
trajectories in terms of their Eulerian second moments. This two-step
procedure is performed within the EP framework for right-invariant
Lagrangians that are defined on the tangent space of a group. For
fluids, this is the group of diffeomorphisms representing the fluid mo-
tions, including the Lagrangian fluctuating displacements themselves.
See Appendices #1 and #2 for further discussions of this point.

We summarize this two-step procedure in symbols, as follows.

Step 1

• Linearize the fluctuation relations to find equations (4.1) -
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(4.3),

D ′ = −divD̄ξ , χ ′ = − ξ · ∇χ̄ , u ′ = ∂t ξ + ū · ∇ξ − ξ · ∇ū .

• Substitute these relations into the second-variation La-
grangian, to form

` ′ ′ =

∫ [
∂t ξ ·A · ∂t ξ + ∂t ξ ·B · ξ + ξ · C · ξ

]
d3x ,

where A, B, C are matrix operators involving the
mean fluid quantities and their gradients, i.e., the set
{ū, D̄,∇ū,∇D̄}.

Step 2

• Take the Eulerian mean to form the total mean Lagrangian

¯̀ = ¯̀
0 + 1

2
` ′ ′ .

• Derive the g`m motion equation for barotropic compressible
fluids by computing the EP equation

d

dt

1

D̄

δ ¯̀

δū
+

1

D̄

δ ¯̀

δū j
∇ū j = ∇ δ ¯̀

δD̄
,

for the total mean Lagrangian ¯̀ by taking its variations

δ ¯̀ =

∫ [( δ ¯̀

δū

)
· δū +

( δ ¯̀

δD̄

)
δD̄

]
d3x .

These variational derivatives involve Eulerian means of quadratic
combinations of the Lagrangian fluctuating displacement ξ, and
its derivatives ∂t ξ and ∇ξ. For example, one combination that
appears is πj∇ξj , where π = 1

2
δ` ′ ′/δ(∂t ξ) = A · ∂t ξ + B · ξ is

the momentum canonically conjugate to ξ. These Lagrangian
quadratic statistical moments are unknown parameters in the
g`m equations that must be independently specified, or modeled,
in closing the equations. Thus, a number of modeling decisions
must be made in closing any g`m model.

In section 6, we shall discuss the various modeling parameters
required to produce a closed g`m model. This will be done in the
context of simplifying them and constructing a more manageable
class of closed equations – the alpha models – obtained by using
closures based on Taylor’s hypothesis of frozen-in turbulence.
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The equations derived from this two-step procedure – being the
small-amplitude approximation of the GLM equations – are called g`m
equations. They are derived within the EP framework. These new
equations describe the dynamics of Eulerian mean fluid quantities in-
fluenced by small amplitude fluctuations. Being EP equations, they
still retain the properties that result from particle relabeling symme-
try. In particular, the g`m equations retain the Kelvin-Noether circu-
lation theorem and its associated local conservation law for potential
vorticity.

5.1 Expanding the Lagrangian `(u,D) in Hamilton’s princi-
ple for barotropic fluids

Into the Lagrangian ` we substitute u = ū + εu ′ and D = D̄ + εD ′,
then truncate at quadratic order in u ′ and D ′ to find

` = `0 + ε` ′ +
ε2

2
` ′′ , with ′ =

d

dε

∣∣∣
ε=0

.

Variations of ` are given by

` ′ =
d

dε

∣∣∣
ε=0
`(ū + εu ′, D̄ + εD ′)

=
〈 δ`
δū

, u ′
〉

+
〈 δ`
δD̄

, D ′
〉
,

where 〈f , g〉 =
∫
f g d3x, is the L2 pairing. The quadratic functional

` ′′ is the second variation of the Lagrangian ` in the basis u ′ and D ′ .
That is,

` ′′ =
〈

(u ′ ,D ′ ) , D2`(ū, D̄) · (u ′ ,D ′ )
〉
. (5.1)

(This is the connection to linear Lagrangian fluid stability theory.)
Note that we treat ` ′′ genuinely as a second variation; so there are no
double-prime terms, such as u ′′.

The averaged Lagrangian at second order is then

¯̀ = ¯̀
0 + ε2

2
` ′′ , since ` ′ = 0 , for u ′ = 0 = D ′ .

Recall that the Eulerian mean satisfies the projection property, ¯̄u = ū,
and it commutes with the spatial gradient, ∇u = ∇ū. On substituting



D. D. Holm Mean fluctuation effects March 13, 2001 48

the linearized fluctuation relations for D ′, χ ′ and u ′ into ` ′′, we find
the expected quadratic form,

` ′′ =

∫ [
∂t ξ ·A · ∂t ξ + ∂t ξ ·B · ξ + ξ · C · ξ

]
d3x .

The A, B, C in this quadratic form are matrix operators involv-
ing the mean fluid quantities and their gradients, i.e., the set
{ū, D̄,∇ū,∇D̄}. Consequently, after taking variations, the contribu-
tion from the mean fluctuation Lagrangian ` ′′ to the mean momentum
in the corresponding EP equation will depend on second-gradients
of the mean fluid quantities. The Lagrangian ` ′′ is a functional of
the Eulerian mean quadratic moments of the Lagrangian fluctuation
displacements. Consequently, the resulting EP equation will also de-
pend parametrically on the second-order statistics of the Lagrangian
fluctuations.

Summary. Thus, in the EP framework for these g`m equa-
tions we must expand the Lagrangian to second order in ξ,
take its Eulerian mean, vary it with respect to ū and D̄, and
then model the second-order statistics of ξ in the resulting
EP motion equation for ū.

Our next steps are:

1. Compute the mean momentum of the fluctuations,

m ′′ =
δ

δū

(
1
2
` ′′
)
.

2. Write the EP g`m equations for total momentum

m̄ =
δ`

δū
, ¯̀ = ¯̀

0 +
(

1
2
` ′′
)
.

3. Obtain a Kelvin circulation theorem for g`m equations from their
corresponding EP equations and the Kelvin-Noether theorem for
these equations.

4. Derive the g`m energy balance by Legendre transforming ¯̀, the
averaged Lagrangian.
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5. Derive the g`m stress tensor T̄ ji in the g`m momentum bal-

ance law, ∂t m̄i + ∂j T̄
j
i = ∂L/∂xi

∣∣
exp

, including the “fluctuation

stresses” by invoking Noether’s theorem again.

6. Use the result in section 6 to interpret the Euler−αmodel stresses,
circulation and momentum in g`m terms.

5.2 The g`m approximations for a barotropic compressible
fluid

We shall now drop any dependence of the fluid internal energy on
specific entropy, here and in what follows. Thus, we shall treat only
the case of a barotropic, or isentropic, compressible fluid. We
shall evaluate the necessary variational derivatives of ¯̀ with respect to
ū and D̄ by using the relations (definitions) for u ′ and D ′ re-derived
in Appendix #2 in terms of the infinitesimal generator ξ(x, t).

Eulerian-mean Lagrangian at order O(|ξ|2)

To second order, the Eulerian-mean of the Lagrangian for a barotropic
(isentropic) compressible fluid is given by

¯̀(ū, D̄) = ¯̀
0 + 1

2
` ′′ =

∫ [
1
2
D̄|ū|2 − D̄e(D̄)

]
d3x (5.2)

+

∫ [
1
2
D̄|u ′|2 +D ′u ′ · ū− c2(D̄)

2D̄
D ′ 2

]
d3x .

For such a fluid, the equation of state defines c2(D̄) via

∂2

∂D̄2

(
D̄e(D̄)

)
=

∂

∂D̄
h(D̄) =

c2(D̄)

D̄
.

Note, before averaging, ` ′′ in equation (5.1) is the second variation of
the Lagrangian `(u,D) with respect to the Eulerian mean velocity and
density, evaluated at the mean fluid values, ū and D̄.

The variational derivatives of the mean fluctuational parts of ¯̀ are
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given by

δ(1
2
` ′′ ) =

∫
δū ·

[
D ′u ′ + ad∗ξ(D̄u ′ +D ′ū)

]

+ δD̄

[
1
2
|u ′|2 + ξ · ∇(u ′ · ū) (5.3)

− D ′ 2
∂

∂D̄

(c2(D̄)

2D̄

)
− ξ · ∇

(
D ′

c2(D̄)

D̄

) ]
d3x .

In these formulas, recall from (4.1) and (4.3) that D ′ = −div(D̄ξ) and

u ′(x, t) =
∂ξ

∂t
+ ū · ∇ξ − ξ · ∇ū = ∂t ξ − adξū .

Remarks.

• Boundary conditions are n̂·ū = 0 and n̂·ξ = 0 on the boundary.

• Recall this is the same ξ as in the GLM theory, so we will be
able to make direct comparisons between g`m and GLM after
assembling the EP equations for the order O(|ξ|2) approximate
theory.

• Note that after substituting the linearized approximations for the
fluctuations, the mean Lagrangian and its variational derivatives
now also depend on the gradients of mean fluid properties.

5.3 The mean fluctuation momentum

Using the geometrical notation of Appendices #1 and #2, we express
the mean fluctuational momentum in various equivalent forms as

m ′′ =
δ

δū

(
1
2
` ′′
)

= D ′u ′ + ad∗ξ(D̄u ′ +D ′ ū)

= D̄
(
ξ · ∇u ′ + u ′j∇ξj

)
+ ad∗ξD

′ ū

= D̄£ξ(u ′)[ + ad∗ξD
′ ū

≡ D̄
(
ūS − p̄

)
+ ad∗ξD

′ ū ,
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where superscript ‘flat’ ( · ) [ denotes a one-form and one defines

ūS ≡ ξ · ∇u ′ is Stokes mean drift velocity

p̄ ≡ −u ′j∇ξj is GLM pseudomentum

In Cartesian components the geometrical combinations £ξ(u ′)[ and

ad∗ξD
′ ū are expressed as

(
£ξ(u ′)[

)
i

= ξju ′i ,j + u ′jξ
j
,i =

(
ūS − p̄

)
i

and

(
ad∗ξD

′ ū
)
i

= ∂j
(
ūiD ′ξj

)
+ ūj D ′∂iξj .

These are recurring combinations of terms, reappearing throughout the
g`m theory.

g`m pseudomomentum

Before the second-variation Lagrangian for the g`m theory is averaged,
one finds the momentum canonically conjugate to ξ, given by, cf. the
linearized continuity equation (4.4),

π = δ ¯̀/δ(∂t ξ) = (D̄u ′ +D ′ ū) .

The corresponding pseudomomentum for the g`m theory is then given
by

p̃ = −πk∇ξk = −(D̄u ′k +D ′ ūk)∇ξk .

Thus, our earlier discussion indicates that a WMFI version of g`m
theory would possess a conserved wave action density given by

N = −πk∂φξk = −(D̄u ′k +D ′ ūk)∂φξk .
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Mean fluctuation momentum – incompressible case

The mean fluctuation momentum takes a simpler form in the incom-
pressible case. Recall D ′ = −div(D̄ξ). Consequently, divu = 0 (which
implies divū = 0 = divu ′) is consistent with setting D̄ = 1 in the mean
continuity equation

∂t D̄ = −div(D̄ū) .

Also setting D̄ = 1 in the density fluctuation gives,

D ′
∣∣∣
D̄=1

= −divξ .

Taking the divergence of the u ′ equation (4.1) then yields

divu ′ = 0 = ∂t (divξ) + ū · ∇(divξ) .

So div ξ = 0 is preserved, which means we may choose initial condi-
tions so that D ′ = 0. Thus, D ′ vanishes (after taking variations) in
the incompressible case, upon invoking the preserved initial conditions
D̄ = 1 and div ξ = 0.

Upon setting D ′ = 0 in the formulas for the incompressible case,
the mean momentum may be expressed equivalently as

m̄ =
δ`

δū

∣∣∣
D̄=1

= ū + ad∗ξu
′ = ū + £ξ(u ′) [

= ū + ξ · ∇u ′ + u ′j∇ξj
= ū + ūS − p̄

= ū− ξ × curl u ′ +∇(ξ · u ′ ) . (5.4)

Here the quantities ūS and p̄ are the same as in the GLM theory, when
rotation is absent.

Simplifications in the g`m Lagrangian for incompressible mean flow

For incompressible mean flow, the second order Eulerian mean g`m
Lagrangian (5.2) reduces to

¯̀(ū, D̄) =

∫ [
1
2
D̄
(
|ū|2 + |u ′|2

)
+ p̄(1− D̄)

]
d3x . (5.5)
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Here we have used the GLM density equation (2.2) and truncated at
second order, by enforcing D̄ = 1 with the pressure constraint. As
a result, the Eulerian mean velocity ū satisfying the usual continuity
equation (4.5) is incompressible. Thus, in the Lagrangian ¯̀ in this case,
the fluctuations contribute only to the mean g`m kinetic energy and
the Eulerian mean flow is incompressible.

5.4 g`m results arising in the EP framework

The motion equation for barotropic g`m

For the g`m theory in which ¯̀ ≡
∫
L̄(ū,∇ū, D̄,∇D̄; ξ(x, t)) d3x, the

EP framework yields the equations of motion,

∂t m̄i + ∂j(m̄iū
j) + m̄j∂iū

j = D̄
∂

∂xi
δ ¯̀

δD̄
and ∂t D̄ + divD̄ū = 0 .

Here the total mean momentum m̄i for g`m is defined by

m̄i =
δ ¯̀

δūi
=
∂L̄
∂ūi
− ∂k

∂L̄
∂ūi,k

= D̄
(
ūi + ūSi − p̄i

)
+
(
ad∗ξD

′ ū
)
i

(5.6)

= D̄ūi +D ′ u ′i +
(
ad∗ξ(D̄u ′ +D ′ ū)

)
i
,

where ūSi is the GLM Stokes correction and p̄i is the GLM pseudomo-
mentum given earlier. The variational derivative with respect to mean
density is obtained from

δ ¯̀

δD̄
=
∂L̄
∂D̄
− ∂k

∂L̄
∂D̄,k

.

Remarks:

• Note, the linear fluctuation relations modify the g`m total mean
momentum m̄i, which, however, appears in the nonlinearity of
the EP motion equation for the g`m theory.

• The combination of Lagrangian mean velocity ūL and pseudomo-
mentum p̄ appearing as ū + ūS − p̄ = ūL − p̄ in the total mean
momentum for g`m also appears in the same way in the GLM the-
ory. Here, however, the combination also adds to D̄−1 ad∗ξD

′ ū.
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Mean Kelvin circulation theorem for barotropic g`m

d

dt

∮

c(ū)

1

D̄

δ ¯̀

δū
=

∮

c(ū)

∇ δ ¯̀

δD̄
· dx = 0

where for g`m one has, in the compressible barotropic case,

1

D̄

δ ¯̀

δū
= ū + ūS − p̄ +

1

D̄
ad∗ξD

′ ū .

In contrast, for the incompressible case, divū = 0 and one again sets
D̄ = 1 and D ′ = 0 in this formula (after taking variations) thereby
dropping the last term. Thus, in the incompressible case, the contri-
butions to the circulation integrands are the same for both g`m and
GLM theories. However, the velocities of the fluid loops in the Kelvin
circulation theorems are different. They are ū for g`m and ūL for
GLM.

Remarks:

• When curl (ūS − p̄ + D̄−1 ad∗ξD
′ ū) vanishes, this is the Charney-

Drazin “nonacceleration theorem” for g`m for barotropic com-
pressible fluids. See Andrews & McIntyre [1978a] for their discus-
sion of the GLM case.

• The Eulerian mean vorticity due to the fluctuations in the incom-
pressible case is

curl (ūS − p̄) = − curl (ξ × ω ′ ) , where ω ′ = curlu ′

= ξ · ∇ω ′ − ω ′ · ∇ξ
= adξ ω ′ . (5.7)

For potential fluctuations, one sets ω ′ = 0.

Momentum balance for barotropic g`m

For a mean Lagrangian density L̄, the EP theory yields the momentum
balance,

∂t m̄i + ∂j T̄
j
i =

∂L̄
∂xi

∣∣∣∣
exp

,
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where the total mean momentum m̄i for barotropic g`m is evaluated
in equation (5.6). The stress tensor is defined in the EP theory for this
class of Lagrangians as

T̄ ji = m̄iū
j + δji

(
L̄ − D̄ ∂L̄

∂D̄
+ D̄∂k

∂L̄
∂D̄,k

)
− ūk,i

∂L̄
∂ūk,j

− D̄,i
∂L̄
∂D̄,j

. (5.8)

Explicitly evaluating the partial derivatives of ¯̀ for g`m gives,

T̄ ji = m̄iū
j + δji

[
p(D̄) +D ′u ′ · ū− c2(D̄)

D̄
D ′ 2

]
(5.9)

+ D̄δji

[
− ξ · ∇(u ′ · ū) + D ′ 2

∂

∂D̄

(c2(D̄)

2D̄

)
+ ξ · ∇

(
D ′

c2(D̄)

D̄

) ]

+ ūk,i (D
′ūk + D̄u ′k)ξ

j + D̄,i

(
ξju ′ · ū − c2(D̄)

D̄
D ′ξj

)
.

The momentum balance law is specified, only after ∂L̄/∂xi
∣∣
exp

is

known. This requires specifying the explicit spatial dependence in (5.2)
of the wave properties and external potential in the Lagrangian density
L̄ for g`m.

Remark. Thus, the form of the theory is fixed – it is the
EP theory. However, its manifestations and channels for ex-
pressing energy exchange are many. Even in the barotropic
case, for example, there are many different contributions
to the stress tensor from the Lagrangian fluctuations ξ.
These contributions are primarily isotropic, including the
term ∂L̄/∂xi

∣∣
exp

.
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Energy balance for barotropic g`m

A Legendre transformation gives the energy quantity for the g`m fluid
flow, namely,

Ē =
〈 δ ¯̀

δū
· ū
〉
− ¯̀(ū, D̄, ξ)

=

∫ [
1
2
D̄|ū|2 + D̄e(D̄) + 1

2
D̄|u ′|2 +D ′u ′ · ū +

c2(D̄)

2D̄
D ′ 2

]
d3x

−
∫ (

D̄|u ′|2 +D ′u ′ · ū −
(

ad∗ξ(D̄u ′ +D ′ ū)
)
· ū
)
d3x

=
[
E(ū, D̄) + 1

2
E ′ ′

]
−
∫ (

δ ¯̀

δ(∂t ξ)
· ∂t ξ

)
d3x .

We recognize the last integral term as
∫
π · ∂t ξ d3x, the total “pseu-

doenergy” for the g`m theory. Hence, just as for the GLM theory, but
now with correspondingly different definitions of terms, we find that
dĒ/dt = − d

dt

∫
π · ∂t ξ d3x, in g`m theory, since the mean total energy

must be conserved for a self-consistently coupled theory.

Remark. The quantity 1
2
E ′ ′ is the same as the approxi-

mately conserved expression from acoustics due to Blokhint-
sev [1945],

1
2
E ′ ′ =

∫ [
1
2
D̄|u ′|2 +D ′u ′ · ū +

c2(D̄)

2D̄
D ′ 2

]
d3x

as discussed in Andrews & McIntyre [1978b]. Of course, this
quantity is not the pseudoenergy for barotropic g`m theory.

5.5 Remarks about g`m closure and rapid distortion theory

• The g`m theory linearizes the u ′ equation, so it neglects the
nonlinear term div

(
u ′u ′ −u ′u ′

)
that appears in the u ′ equation

for Reynolds turbulence closure in the Eulerian mean setting.

• Based on ideas from Lagrangian stability analysis and closely
related to ideas from WMFI theory, the g`m equations are also
related to ideas from rapid distortion theory. See Cambon and
Scott [1999] for an interesting discussion of the close connections
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between rapid distortion theory and WKB stability theory. Some
of the relations between WKB stability and WMFI theory are also
briefly discussed in the EP framework in Appendix #3 (section
10).

• In principle, the Lagrangian statistics for the coefficients in the
nonlinear g`m equations may be closed at second moments, since
the fluctuations ξ and u ′ are both taken to satisfy linear equa-
tions. Thus, the linearity of the g`m equations would allow one to
derive a set of equations for second moments such as ξ × curl u ′

in the incompressible case and treat the combined system for the
motion and the Lagrangian statistics as an initial value prob-
lem. This could be done by computing ∂t(ξ × curlu ′) using the
linearized Euler motion equation for evolving u ′ and using the
u ′−equation for the evolution of ξ.

Of course, such a linear closure would not produce only linear
effects in the mean motion equation. The g`m effects arise from
second moments. The g`m effects appear multiplicatively in the
stress tensor and additively in the definition of the total mean
momentum. The latter appears also in the nonlinearity of the g`m
equations. Thus, although the the mean advection relations are
enforced only at linear order, the contributions of the fluctuations
to the g`m motion equation are both linear and nonlinear.

• We note that the g`m theory expresses wave properties in terms
of Lagrangian displacement statistics and gradients of mean flow
properties. This idea suggests we may consider substituting as-
pects of these relations between wave properties and mean gradi-
ents, before taking variations in Hamilton’s principle, by regard-
ing these wave, mean flow relations as a type of Taylor hypoth-
esis. We shall follow this idea further in section 6.

• The Green’s function relation ξ = G ∗ u ′ implies an explicit
DuHamel formula (with its memory, or history dependence) and
suggests that ξξ might be usefully computed as a diagnostic in
direct numerical simulations. We shall follow this suggestion in
the next subsection.
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5.6 Determining Lagrangian fluctuation statistics in DNS

In assessing and benchmarking the g`m model, one may obtain ξξ
by measuring u ′ and D ′ and then inverting their Eulerian relations
with displacement fluctuation ξ in direct numerical simulations. For
example, in compressible simulations, the density fluctuations satisfy
equation (4.3)

D ′(x, t) = −div(D̄ξ) .

The Helmholtz decomposition D̄ξ = ∇φ+curlA then implies the curl-
free part of D̄ξ as

D̄ξ = −∇∆−1D ′ .

The divergence-free part of D̄ξ (the homogeneous solution) is preserved
and, so, it may be set to zero as an initialization condition. For the
velocity fluctuations, we have the standard linearized relation (4.1)

u ′(x, t) =
∂ξ

∂t
+ ū · ∇ξ − ξ · ∇ū ,

whose inhomogeneous solution is found using the Green’s function in-
version,

ξ = G ∗ u ′ .

As discussed earlier in section 4, this also has a homogeneous solu-
tion satisfying dξ(0)/dt = ξ(0) · ∇ū. When this solution is initialized
at zero, the remaining inhomogeneous part of the solution for ξ may
be determined by the Green’s function method. Comparing the solu-
tions for ξ that are found from the D ′− and u ′−equations may also
be used as a check of the accuracy of the method, provided the numer-
ical scheme does not unduly excite the homogeneous solutions. If this
excitation does occur, then perhaps an occasional re-initialization may
be required to suppress the homogeneous solutions for the Lagrangian
fluctuation, ξ. This idea is reminiscent of the “slow manifold” concept,
introduced in Leith [1980] for atmospheric dynamics, which initializes
gravity wave amplitudes to zero. These gravity waves may need to be
periodically reset to zero, especially when updating the forecast with
new data. However, the homogeneous solutions in the present case do
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not grow unstably as the gravity waves do in atmospheric dynamics,
because these homogeneous solutions are not unstable. In fact, being
frozen into the motion, they cannot grow any larger than their initial
values.

In principle, performing this inversion would give us an Eulerian
diagnostic for determining the Lagrangian fluctuation statistics and
testing the basis for the derivation of the g`m equations, as outlined
below.

5.7 Protocol for using DNS to diagnose Lagrangian statistics
input for g`m in barotropic compressible fluid dynamics

For using DNS to diagnose the Lagrangian fluctuation statistics of g`m
in barotropic compressible fluid dynamics (or, shallow water dynamics),
one could proceed as follows.

1. Measure ū, u ′, D̄, D ′, with D ′ = 0 = u ′ in the DNS.

2. Recall u ′ = ∂t ξ − adūξ, so (componentwise)

ξi = (G ∗ u ′ )i =

∫
Gi(x− y, t− τ )u ′i(y, τ ) d3y dτ ,

with a deterministic vector Green’s function, whose components
Gi, i = 1, 2, 3, each satisfy

∂tGi + (ad∗ūG)i = δ(x− y)δ(t− τ ) .

3. In a local spatial domain, compute G, then compute ξ = G ∗ u ′.

4. Compute D ′ = −div(D̄ξ) from the result and compare with the
measured D ′. This checks the (D̃−weighted) curl-free part of the
first computation of ξ against the DNS “measurement.”

5. Compute D̄ξ = −∇∆−1D ′. This checks the two computations of
ξ against each other.

6. The result D̄ξ = −∇∆−1D ′ should be curl-free. Check this, by
computing curlD̄ξ.

7. Compute ξξ(x, t). Determine the spatial and temporal depen-
dence of its isotropic and anisotropic components.
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8. Compute ξu ′(x, t). This determines the relative dispersion tensor
for Lagrangian trajectories.

9. Compute m ′′ = D ′u ′ + ad∗ξ(D̄u ′ +D ′ ū), the mean momentum
due to the fluctuations.

10. Compare m̄fluct with −α2∆ū. (This would extract α2 in the
isotropic case. The original derivation of the alpha model in Holm,
Marsden & Ratiu [1998a,b] for the incompressible case assumes
that ξξ is homogeneous and isotropic. See section 6 for more
discussion of the alpha models.)

5.8 EP g`m equations for incompressible mean flow

The variational derivatives of the g`m Lagrangian (5.5) for incompress-
ible flow

¯̀(ū, D̄) =

∫ [
1
2
D̄
(
|ū|2 + |u ′|2

)
+ p̄(1 − D̄)

]
d3x , (5.10)

are given by, cf. equation (5.4),

δ ¯̀(ū, D̄) =

∫ [
δD̄
(

1
2

(
|ū|2 + |u ′|2

)
− p̄
)

+ δp̄ (1− D̄)

+ D̄ δū ·
(
ū − ξ × curl u ′ +∇(ξ · u ′ )

)
+ δū · u ′ div (D̄ξ)

]
d3x .

We define the g`m circulation velocity as,

v̄ ≡ ū− ξ × curl u ′ +∇(ξ · u ′ ) .
The corresponding EP motion equation (with∇·ū = 0) is expressed as,

∂

∂t
v̄ + ū · ∇v̄ + v̄j∇ūj +∇p̄ = 0 .

This is the EP equation for the Lagrangian (5.10). It also has the
equivalent form,

∂

∂t
v̄− ū × curl v̄ +∇

(
v̄ · ū + p̄

)
= 0 .

The Kelvin circulation theorem for the incompressible g`m equa-
tions is simply,

d

dt

∮

c(ū)

(
ū− ξ × curl u ′

)
· dx = 0 . (5.11)
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Remark. We recall that u ′ = ∂t ξ+ ū ·∇ξ− ξ ·∇ū. For the
case that ∇ · ū = 0 and ∇ · ξ = 0, this becomes u ′ = ∂t ξ −
curl

(
ū×ξ

)
. Thus, to close the g`m EP motion equation for

incompressible Eulerian mean flow, only one key element
from the Lagrangian statistics must be specified. Namely,
the quantity

ξ × ω ′ = ξ × curl u ′ = ξ × curl
(
∂t ξ − curl

(
ū× ξ

))
, (5.12)

must be specified in terms of ū, ∇ū and ∇∇ū. This specifi-
cation is one of the objectives of the discussions in the next
section.

6 Alpha models

6.1 Opening remarks

We have seen that the use of Taylor expansions in the linearized fluc-
tuation relations summons gradients of Eulerian mean fluid quantities
into the mean second-variation Lagrangian. In turn, these gradients
summon second-order spatial derivatives such as ∇∇ū into the g`m
motion equation that results from the EP variational principle.

Among other things, the g`m stress tensor (5.9) for a compress-
ible fluid shows the variety of channels available for energy exchange
to occur. These channels arise through the various combinations of
Eulerian mean gradients that appear in the stress tensor for the g`m
theory. The incompressible case is more straightforward because it has
fewer such channels. However, to achieve closure, even the incompress-
ible g`m case still requires an assumption to express the key element
of the Lagrangian statistics (5.12) in terms of ū, ∇ū and ∇∇ū. The
linearized fluctuation equations themselves (relating the Eulerian and
Lagrangian small disturbances) shall guide the formulation of such ap-
proximate closure assumptions.

Approach. The approach to the alpha-model equations is closely re-
lated to the g`m approach, but with one important difference. Namely,
the order is interchanged in the steps of making approximations and
varying the EP Lagrangian in Hamilton’s principle.
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To obtain the g`m equations:
We Expanded the Lagrangian, Took its Eulerian mean, then
Varied to obtain the equations of motion, and finally saw the need
to Approximate the closure. This could be done, in principle, by
using the u ′−equation for the tendency of ξ and the linearization
of the GLM equations for the tendency of u ′. We shall discuss a
more direct approach to closure.

To obtain the α−models:
We shall Expand the Lagrangian, Take its Eulerian mean,
Approximate in the Lagrangian (by taking a particular solution
of the u ′−equation as a Taylor hypothesis), and then
Vary to find a closed set of EP motion equations.

Remark. Because of the close relation between the ap-
proaches used in deriving these two sets of equations, one
might hope for a bridge between them. For example, the
g`m equations could potentially provide an Eulerian diag-
nostic for determining parameters in the alpha model from
DNS of the full Euler equations (or Navier-Stokes equa-
tions). The g`m equations form a systematic approximation
for the original GLM equations, within the EP framework.
Thus, perhaps the GLM equations could be used to help
answer questions that may arise at the other levels of ap-
proximation in this framework, particularly, in the alpha
models.

6.2 Taylor hypothesis closure (THC) approach

We shall use partial, or particular, solutions of the linearized velocity
fluctuation equation (4.1)

u ′ = ∂t ξ + ū · ∇ξ − ξ · ∇ū ,

to guide certain choices of Taylor hypotheses. The three Taylor
hypotheses we shall discuss for the u ′−equation are:3

THC#1 Neglect space and time derivatives of ξ, or, set ∂t ξ+ū·∇ξ =
0. In the incompressible case, this yields the original Euler-alpha

3These three Taylor hypothesis closures are for the g`m equations. Later, we shall
mention THC#4 – for the GLM equations.
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model of Holm, Marsden & Ratiu [1998a,b], in which one assumes
u ′ = − ξ · ∇ū.

THC#2 Assume that ξ is frozen-in as a one-form. In the incom-
pressible case, this yields the anisotropic alpha model of Marsden
& Shkoller [2001], with u ′ = −2ξ · ē, where ē = 1

2
(∇ū +∇ūT ) is

the mean strain rate tensor, and ∂t ξ + ū · ∇ξ = −∇ūT · ξ.
THC#3 Assume that ξ is frozen-in as a two-form in three dimensions.

Hence, set ∂t ξ + ū · ∇ξ = ξ · ∇ū − ξ div ū. This assumption
implies u ′ = − ξ div ū, which, of course, is only interesting in
the compressible case. For compressible flows, this choice lead
to similarities with the Green-Naghdi equation for shallow water
dynamics. The Green-Naghdi equation is discussed in Green &
Naghdi [1976]. See, e.g., Camassa, Holm & Levermore [1997] for
more references and an asymptotic treatment of these equations.

Remark about algebraic closure. Neglecting the partial
time derivative in the linearized velocity fluctuation equation
for u ′ leads to an “algebraic closure relation,” expressed as,

u ′ = ū · ∇ξ − ξ · ∇ū = curl (ξ × ū) ,

in the incompressible case. We note that substituting this al-
gebraic closure relation into the g`m Lagrangian (5.2) yields
the following contribution to the mean fluctuational momen-
tum,

m ′′ =
δ

δū

∫
1
2
|u ′|2 d3x = − ξ × curl curl (ξ × ū) .

So, in this incompressible case, the contribution of the fluc-
tuations to the mean total momentum (or pseudomomen-
tum) keeps the same g`m form as in equations (5.11) and
(5.12). However, this expression is not closed, because it still
remains to specify the evolution of the Lagrangian statis-
tics. This could perhaps be accomplished by imposing the
algebraic closure relation as a constraint in the Lagrangian.
The problem does not arise in using the Taylor hypotheses
THC#1–#3, above.
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The Taylor hypotheses THC#1–#3 are approximate relations be-
tween Eulerian and Lagrangian statistics (namely, they are relations
for u ′ as a function of ξ and its derivatives) that yield closures when
substituted into the averaged Lagrangian in Hamilton’s principle. We
shall first discuss the incompressible case, which is simpler, and then
we shall discuss the barotropic compressible case.

In both cases we shall illustrate the Taylor hypothesis closure
technique by substituting the first of these three Taylor hypotheses
into the g`m Lagrangian, before taking its variations. This approach
results via the EP framework in closed equations based on the g`m
equations that retain their Kelvin circulation theorem and conservation
properties. Among these closed equations for the incompressible case
are variants of the Euler-alpha model (or, averaged Euler equations)
that are also related to the theory of second grade fluids and have been
discussed as potential turbulence closure models when Navier-Stokes
viscous dissipation is introduced, as in Chen et al. [1998], [1999a,b,c].
We shall show how this approach also leads to a new generalization of
the Euler-alpha model that includes compressibility.

6.3 A brief history of the alpha models

The Euler-alpha equations for averaged incompressible ideal fluid mo-
tion were first derived in Holm, Marsden & Ratiu [1998a] in the context
of the Euler-Poincaré theory for fluid dynamics. That derivation pro-
ceeded essentially by choosing the kinetic energy to be the H1 norm of
the Eulerian fluid velocity, rather than the usual L2 norm. This choice
generalized the unidirectional shallow water equation of Camassa and
Holm [1993] from one dimension to three dimensions. The resulting
n-dimensional Euler-alpha equation is (with ∇ · u = 0, v ≡ u− α2∆u
and constant length scale α)

∂

∂t
v + u · ∇v + vj∇uj +∇p = 0 . (6.1)

This is the EP equation for the Lagrangian

` = 1
2

∫
|u|2 + α2|∇u|2 d3x , (6.2)

for a constant α and divergenceless fluid velocity u. Mathematically,
this equation describes geodesic motion on the volume-preserving dif-
feomorphism group of R3 relative to the H1 norm in a sense similar



D. D. Holm Mean fluctuation effects March 13, 2001 65

to the work of Arnold [1966] and Ebin and Marsden [1970] in which
the Euler equations are shown to describe geodesic motion on the same
diffeomorphism group relative to the L2 kinetic energy norm.

Remarkably, the H1−geodesic Euler-alpha equation was later rec-
ognized as being identical to the well-known invisicid second grade fluid
equations introduced by Rivlin and Ericksen [1955], although of course
these equations were derived from a completely different viewpoint.
The differences in their derivations imply corresponding differences in
the interpretations of the solutions of these equations in each of their
contexts. In particular, the constant parameter alpha (a length scale)
is interpreted differently in the two theories. In the Euler-alpha model,
the parameter alpha is associated with the flow regime and, in numer-
ical simulations, alpha separates active and passive degrees of
freedom, as shown in Chen et al. [1999c]. (Physically, alpha is the
smallest active length scale participating in the nonlinear interactions –
so scales smaller than alpha are swept along by the larger ones.) In con-
trast, for the theory of second grade fluids, alpha is a thermodynamic
material parameter.

Extensions of Euler−α. The works of Marsden & Shkoller [2001] and
Marsden, Ratiu & Shkoller [2001] used the EP framework to introduce
a certain type of filtering – called “fuzzying” – into the Lagrangian.
Applying the EP reduction theorem to the Lagrangian for “fuzzy flow”
yielded an alternative formal derivation of the incompressible Euler−α
model, as well as an anisotropic variant of it and the extension of that
variant to Riemannian manifolds. These works also showed short time
existence for solutions of the Euler−α model and these extensions, by
establishing for it the analog of the Ebin-Marsden theorem for the
incompressible Euler equations, proven in Ebin and Marsden [1970].
See also Shkoller [1998] for the corresponding existence result for the
original Euler-alpha model of Holm, Marsden & Ratiu [1998a].

While these references do make use of the EP reduction theorem,
they do not show that the reduced equations obtained from it would
also result from applying the “fuzzy flow” averaging method directly
to Euler’s equations. The EP Averaging Lemma guarantees this result,
however, when the GLM averaging method is applied. For example, to
the extent that the fuzzy averaging used in Marsden and Shkoller [2001]
fails to possess the projection property, the resulting EP equations will
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fail to coincide with fuzzy average of the original equations. Investiga-
tions of the relation between fuzzy averaging and GLM averaging are
underway.

THC# 4, a nonlinear GLM Taylor hypothesis. In Holm [1999],
a nonlinear GLM Taylor hypothesis was introduced and applied for
both compressible and incompressible flows. This Taylor hypothesis
THC#4 for GLM assumes that the Lagrangian displacement fluctua-
tion ξ is frozen as a Lagrangian vector field into the nonlinear GLM
flow. Namely, (note ūL rather than ū)

u` ≡ ∂t ξ + ūL · ∇ξ = ξ · ∇ūL . (6.3)

This THC#4 is substituted directly into the GLM averaged La-
grangian, e.g., (3.2), or (3.7), without linearizing the fluctuation rela-
tions. One may then vary the Lagrangian in the EP framework, with-
out making the small-amplitude approximation. This THC#4 treats
the fluctuating Lagrangian displacement ξ as a material property as-
sociated with the frozen-in GLM motion of a “cloud” of fluid parcels
initially displaced from one another by the initial value of ξ, which is
not taken to vanish in this case. Under the GLM dynamics, the as-
sumed nonlinear frozen-in relation for THC#4 implies additional flow
stresses as each fluid parcel convects this material property.

The Taylor hypothesis closure THC#4 may appear formally sim-
ilar to the others, especially to THC#1. However, THC#4 differs
fundamentally from the others by being imposed as a finite, rather
than a small-amplitude, approximation. Thus, THC#4 couples to the
graients of the full Lagrangian mean velocity, rather than to the gradi-
ents of its Eulerian mean small-amplitude approximation. Of course,
the other Taylor hypothesis closures THC#1–#3 could also be made at
the nonlinear GLM level, without first making the linearized fluctua-
tion hypotheses that lead to the g`m theory. It turns out that THC#1
leads to a trivial result in this case, and the other nonlinear Taylor
hypotheses have not yet been analyzed at the GLM level. The im-
plications and physical interpretations of the GLM results of THC#4
are discussed in Holm [1999]. This includes discussions of an inter-
esting duality between the Eulerian-mean and Lagrangian-mean fluid
velocities that arises for THC#4 in the GLM theory.
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6.4 Barotropic g`m, a closure model for barotropic g`m

In seeking its variational closure, we shall start with the small ampli-
tude g`m Lagrangian (5.2) for barotropic compressible flow at second
order,

¯̀ = ¯̀
0 + 1

2
` ′′ =

∫ [
1
2
D̄|ū|2 − D̄e(D̄)

)]
d3x (6.4)

+

∫ [
1
2
D̄|u ′|2 +D ′u ′ · ū− 1

2
c2(D̄)

D̄
D ′ 2

]
d3x .

Into this g`m Lagrangian we shall substitute the simplest available
hypothesis for closing the barotropic g`m system, namely4

u ′ = − ξ · ∇ū and D ′ = − ξ · ∇D̄ . (6.5)

This substitution yields the mean Lagrangian for the closed barotropic
g`m system (barotropic g`m )

¯̀ = ¯̀
0 + 1

2
` ′′ =

∫ [
1
2
D̄|ū|2 − D̄e(D̄)

)]
d3x (6.6)

+

∫ [
1
2
D̄ ξkξl ū, k ·ū, l + ξkξl ū·ū, k D̄, l − c2(D̄)

2D̄
ξkξl D̄, kD̄, l

]
d3x .

With the g`m closure hypothesis (6.5) no derivatives of the fluctuation
statistics appear in this mean Lagrangian.

Combining the closure hypothesis (6.5) with the u ′−equation (4.1)
implies (∂t + ū · ∇)ξ = 0, i.e., componentwise advection of ξ. Con-
sequently, the components of the quadratic Lagrangian moments are
simply carried along with the Eulerian mean flow, as

(∂t + ū · ∇) ξkξl = 0 .

This equation admits the isotropic solution

ξkξl = α2 δkl ,

where α is an advected scalar, (∂t + ū · ∇)α = 0, that has dimensions
of length. In turn, this advective relation for α also admits a constant

4For compressible flows, the other Taylor hypotheses THC#2 & THC#3 lead to similar
formulas to those given in this section. We shall not discuss those other cases here. The
implications of Taylor hypothesis THC#2 for incompressibleflows are analyzed in Marsden
and Shkoller [2001].
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solution, should we wish to simplify the dynamics of the Lagrangian
moments even further.

To develop the barotropic closure model g`m, we shall substitute
the variational derivatives of ¯̀ into the following EP equation, cf. equa-
tion (3.1),

∂

∂t

δ ¯̀

δūi
+

∂

∂xk

( δ ¯̀

δūi
ūk
)

+
δ ¯̀

δūk
∂ūk

∂xi
= D̄

∂

∂xi
δ ¯̀

δD̄
− δ ¯̀

δξkξl
∂ξkξl

∂xi
. (6.7)

The contribution of the last term arises from the scalar advection of
the components of ξkξl. The necessary variational derivatives may be
obtained from

δ ¯̀ =

∫ [(
(1− ∆̂)(D̄ū) + ξkξl ū, kD̄, l

)
· δū (6.8)

+Γk lδ( ξkξl ) − Π̄g`mδD̄

]
d3x ,

with homogeneous boundary conditions,

n̂ · ū = 0 and n̂ · ξξ = 0 on the boundary.

These are the physically meaningful conditions at fixed boundaries.
Weaker boundary conditions may also suffice in this case, namely,

n̂ · ū = 0 and n̂×
(
n̂ · ξξ · ∇

)
ū = 0 on the boundary.

Here the generalized Laplacian operator ∆̂ is defined by

∆̂ = ∂l ξkξl ∂k , (6.9)

and the g`m potential Π̄g`m is defined by

Π̄g`m = (1−∆̂)
(

1
2
|ū|2−h(D̄)

)
+ 1

2
ξkξl ū, k ·ū, l − 1

2
ξkξl D̄, kD̄, lh

′′(D̄) ,

where h ′(D̄) = c2(D̄)/D̄. The quantity Γk l denotes the variational
derivative of ¯̀ with respect to the mean Lagrangian statistical mo-
ments. Namely,

Γk l =
δ ¯̀

δ ξkξl
= 1

2
D̄ ū, k ·ū, l + ū·ū, k D̄, l − 1

2
D̄, kD̄, l h

′(D̄) .
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The EP motion equation (6.7) for barotropic g`m is, thus,

∂t m̄i + ∂j(m̄iū
j) + m̄j∂iū

j = D̄ ∂i Π̄g`m − Γk l ∂i ξkξl , (6.10)

where the total mean momentum for barotropic g`m is given by

m̄ =
δ ¯̀

δū
= (1− ∆̂)(D̄ū) + ξkξl ū, k D̄, l

= D̄ū− 1
2

[
∆̂(D̄ū) + D̄∆̂ū + ū ∆̂D̄

]
. (6.11)

This momentum may be expressed as an operator acting on the mean
fluid velocity,

m̄ =
[(
D̄ − 1

2
∆̂D̄

)
− 1

2

(
∆̂D̄·+D̄∆̂·

)]
ū ≡ Ôū , (6.12)

which defines the operator Ô. (The first parenthesis in the square
brackets contains a multiplier and the second one contains a symmetric
operator.)

To make a connection between the barotropic g`m motion equation
(6.10) and the original GLM motion equation (2.4), we shall define the
mean momentum as m̄ = D̄(ū − p̄) with pseudomomentum density

D̄p̄ ≡ 1
2

[
∆̂(D̄ū) + D̄∆̂ū + ū ∆̂D̄

]
.

This definition of pseudomomentum and the continuity equation for D̄
allows equation (6.10) to be rewritten as, cf. equation (2.4),

(∂t + ū · ∇)
(
ū − p̄

)
+
(
ūk − p̄k

)
∇ūk −∇ Π̄g`m + 1

D̄
Γkl∇ξkξl = 0 .

The closed barotropic g`m system consists of the EP motion equa-
tion (6.10) and two auxiliary equations. These are the continuity equa-

tion (4.5) for D̄ and the advection equation (4) for ξkξl, recalled as

∂t D̄ + divD̄ū = 0 and (∂t + ū · ∇) ξkξl = 0 . (6.13)

The dynamical properties of the closed barotropic g`m system may be
investigated using the EP framework. For these equations, we have the
Kelvin-Noether circulation theorem, as well as conservation laws for
potential vorticity, momentum and energy.
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Kelvin-Noether circulation theorem for barotropic g`m

In the EP framework, the Kelvin-Noether theorem implies the circula-
tion relation, cf. equation (3.2) for adiabatic GLM,

d

dt

∮

c(ū)

1

D̄
m̄ · dx = −

∮

c(ū)

1

D̄
Γk l dξkξl .

Thus, the advected Lagrangian statistical moments ξkξl play the same
role that specific entropy and relative buoyancy played in the adia-
batic and stratified GLM cases treated earlier. From Stokes theorem
and scalar advection of ξkξl, we also find local potential vorticity
conservation

(
∂t + ū · ∇

)
qk l = 0 , qk l =

1

D̄
∇
(
ξkξl

)
· curl

( 1

D̄
m̄
)
, ∀ k, l .

Momentum conservation for barotropic g`m

Because the Lagrangian ¯̀ in equation (6.6) is invariant under transla-
tions, Noether’s theorem yields the momentum conservation law (3.5),

∂t m̄i + ∂j T̄
j
i = 0 ,

where m̄ = δ ¯̀/δū is the g`m Eulerian-mean momentum density in
equation (6.12) and the Eulerian-mean stress tensor T̄ ji is written in
equation (3.6) in the form

T̄ ji = m̄iū
j + δji

(
L̄ − D̃ ∂L̄

∂D̃

)
.

For the g`m theory, this stress tensor is given in terms of mean fluid
quantities by

T̄ ji = m̄iū
j + δji P − D̄, i ξjξk

(
|ū|2 − h(D̄)

)
, k
− ūm, i ξjξk (D̄ūm), k .

Here P denotes the total g`m mean pressure,

P = (1−∆̂)p(D̄) + 1
2
D̄∆̂|ū|2 + 1

2
ξkξl D̄, l

(
|ū|2 + c2(D̄) + h(D̄)

)
, k
.

For an ideal γ−law gas, c2 = γ p(D̄)/D̄ and c2 + h = γc2/(γ − 1).
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Energy conservation for barotropic g`m

The Legendre transformation of the mean Lagrangian (6.6) yields the
conserved mean energy, also given by Noether’s theorem, as

H̄ =

∫
δ ¯̀

δū
· ū d3x− ¯̀(ū, D̄, ξkξl)

=

∫ [
1
2
D̄|ū|2 + D̄e(D̄) + 1

2
D̄ ξkξl ū, k ·ū, l +

c2(D̄)

2D̄
ξkξl D̄, kD̄, l

]
d3x

We note that we may write the latter two terms in the mean conserved
energy H̄, i.e., those due only to fluctuations, as

1
2
H ′ ′ =

∫ [
1
2
D̄|u ′|2 +

c2(D̄)

2D̄
D ′ 2

]
d3x 6= 1

2
E ′ ′ .

This expression does not recover the result of Blokhintsev [1945] men-
tioned earlier in equation (5.4). However, it has the advantage of being
a positive-definite mean fluctuational energy for the closed g`m system.

Lie-Poisson Hamiltonian formulation of barotropic g`m

Being an EP system, the barotropic g`m theory may be transformed
into Lie-Poisson Hamiltonian form, by following the procedure ex-
plained in Holm, Marsden & Ratiu [1998a]. This Hamiltonian formula-
tion begins by writing the Legendre-transformed energy in terms of the
momentum. We shall assume the operator Ô in momentum-velocity
relation (6.12) is invertible, so that one may solve for the velocity from

the momentum as ū = Ô−1m̄. Thus, the energy Hamiltonian for

H̄ =

∫ [
1
2
m̄ · Ô−1m̄ + D̄e(D̄) + c2(D̄)

2D̄
ξkξl D̄, kD̄, l

]
d3x .

The ideal barotropic g`m equations may now be treated in the Lie-
Poisson Hamiltonian framework, if so desired. The corresponding Lie-
Poisson bracket is of the standard type, defined on the dual of a certain
semidirect-product Lie algebra, as described, e.g., in Holm, Marsden,
Ratiu & Weinstein [1985]. See also Marsden & Ratiu [1999] for an in-
troduction to this now-standard theory and references to the literature.
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Barotropic g`m−α, a simplification of barotropic g`m for constant

isotropic Lagrangian statistics

The scalar advection equation (6.13) for the Lagrangian statistical mo-

ments admits the constant isotropic solution ξkξl = α2 δkl where α is a
constant length scale. The g`m Lagrangian (6.6) in this case simplifies
to, cf. the Lagrangian (6.2) for the incompressible Euler-alpha model,

¯̀ =

∫ [
1
2
D̄|ū|2 − D̄e(D̄)

)]
d3x (6.14)

+ α2

∫ [
1
2
D̄ |∇u|2 + 1

2
∇|ū|2 · ∇D̄ − c2(D̄)

2D̄
|∇D̄|2

]
d3x .

This is the Lagrangian for the compressible g`m− α model with con-
stant length scale α. For constant α, the generalized Laplacian ∆̂
in the previous equations reduces to ∆̂ → α2∆, where ∆ is the or-
dinary Laplacian. The result is a compressible generalization of
the Euler-alpha model. The equations of motion for this model are
(6.10), (6.12) and (6.13) with ξkξl = α2δkl and ∆̂→ α2∆ for constant
α.

Barotropic g`m models in a rotating frame

The EP setting is convenient for transforming the averaged Lagrangian
¯̀ into a rotating frame. One defines the rotation vector potential R
satisfying curl R = 2Ω(x), for a spatially dependent rotation frequency
Ω(x). The transformation begins by substituting into the original La-
grangian the linearized relation ū + u ′ = ū∗ + u ′ ∗ + R̄ + R ′, with
R ′ = R` − ξ · ∇R̄. One then averages and finally drops the asterisk in
( · )∗ to find, cf. equation (6.4),

¯̀ =

∫ [
1
2
D̄|ū + R̄|2 − D̄e(D̄)

)]
d3x (6.15)

+

∫ [
1
2
D̄|u ′|2 + 1

2
D̄|R ′|2 +D ′(u ′ + R ′) ·

(
ū + R̄

)
− 1

2

c2(D̄)

D̄
D ′ 2

]
d3x .

For a constant rotation frequency, R̄ = Ω × x and R ′ vanishes. In
this Lagrangian, the velocities ū and u ′ are measured in the rotating
frame. The analysis then proceeds as in the earlier sections in the EP
setting. See, e.g., equations (3.2), (3.7), (5.2), (6.6) and (6.7).
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Outlook.

• We shall discuss the effects of rotation and its interaction with
fluctuations elsewhere, and compare with Bühler and McIntyre
[1998] in the Boussinesq stratified flow context. In the simpler
shallow water context, one may use the Green’s function method
of section 4 to test the closure hypotheses in equation (6.5).
This will be reported in Holm, Tartakovsky, Wingate and Winter
[2001].

• The analysis of the one-dimensional barotropic g`m−α equations
(without rotation) will also be studied elsewhere, in Holm, Lowrie
and Wingate [2001].

• The proper choice of dissipation for this system deserves further
investigation. We propose to add dissipation as shear viscosity
in the form

∂t m̄i + ∂j T̄
j
i =

∂

∂xj

(
ν(D̄ −O)ui ,j

)
,

where O is the positive symmetric operator in equation (6.12).
This choice assures monotonic decay of the energy in (6.14).

7 Conclusions

Summary remarks.

• Remarkable opportunity. The EP Averaging Lemma implies
that the GLM-averaged Euler equations appear when the EP
variational principle is applied to the GLM-averaged Lagrangian.
This is part of a general theorem discussed in Holm [2001].

• Theme. We applied small-disturbance ideas that are also basic
for fluid stability analysis and rapid distortion theory in a vari-
ational approach that uses Lagrangian displacements and GLM
averaging in the Euler-Poincaré (EP) framework.

• Traditional stability analysis. The Lagrangian small-
disturbance approach is fundamental and has a tradition in stabil-
ity analysis – although the work here departs from that tradition,
because we also average the second-variation Lagrangian and we
vary with respect to different quantities than in stability analysis.
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• Linearized fluctuation relations. The approach used here
linearizes the expressions that relate the fluctuations of a given
fluid quantity around its Eulerian mean and the fluctuating dis-
placement of a Lagrangian fluid parcel trajectory around its mean
position. (These standard linearized fluctuation equations are ex-
pressed geometrically in terms of Lie derivatives in Appendix #2
in section 9.)

Use of the linearized fluctuation relations brings gradients of Eu-
lerian mean fluid quantities into the second-variation Lagrangian
for the EP variational principle that leads to the g`m equations.
We emphasized that the linear u ′−fluctuation relation provides
a useful ingredient for modeling the effects of fluctuations on the
mean. The effects of these fluctuations in the resulting EP equa-
tions, however, have both linear and nonlinear aspects. (We note
that their linear aspects may also be nonlocal.)

• Lagrangian statistics. GLM and its small-amplitude approxi-
mation g`m both shift the closure problem from Eulerian velocity
correlations to the statistics of Lagrangian displacements. How-
ever, these Lagrangian statistics are not readily available or easily
observable. We explored how these statistics might be inferred by
solving the linearized fluctuation equations using a Green’s func-
tion method. This Green’s function method also suggests some
opportunities for diagnosing the Lagrangian displacement statis-
tics in a DNS, or, perhaps, in data assimilation.

Experiments for measuring Lagrangian statistics are under devel-
opment. See, e.g., E. Bodenschatz et al. [2000].

• Green’s function diagnostic. The homogeneous and inho-
mogeneous parts of the solution in the Green’s function method
correspond to frozen-in, and propagating fluctuations.

We proposed an explicit method for using the Green’s function as-
sociated with the linearized fluctuation equations to diagnose the
propagating Lagrangian fluctuations in a direct numerical simu-
lation by using measurements of the Eulerian fluctuations, u ′ and
D ′, as input.

• Variational closure ideas. The GLM and g`m theories have the
same advantages of the EP mathematical structure and also the
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same disadvantages of not being closed. Three ideas for closure
assumptions are suggested by the second-order g`m equations:

(1) Not unexpectedly, these closure approximations depend on
gradients of Eulerian mean fluid quantities.

(2) The u ′− velocity fluctuation relation plays a central role in
modeling the necessary Taylor hypotheses.

(3) The closure approximations may be introduced into the EP
variational principle for the g`m equations, before its varia-
tions are taken.

• Alpha models. Alpha models are seen as closure models of
these g`m equations, obtained by ansatzes involving terms from
the linear u ′− and D ′− fluctuation equations. These ansatzes
are introduced into the EP variational principle for the g`m equa-
tions, before its variations are taken. Three of these models have
simple “frozen-in” evolution equations for determining ξξ. The
correlation ξξ, in turn, appears in the nonlinearity of the motion
equation for these alpha models.

• Nonlinear feedback. The linear approximation of the fluctua-
tion equations leads to a nonlinear feedback in the closed motion
equations that may tend to keep them within their range of valid-
ity. In particular, the mean fluctuation energy contains gradients
of the mean fluid quantities. Because of this energy penalty, large
mean gradients will tend not to develop in the course of the mean
dynamics.

• Bridge. The alpha model and some of its variants can also be a
motivation for further developing the g`m equations. There are
several variants of alpha-models arising from ansatzes in a Tay-
lor expansion approximation of terms in an averaged Lagrangian.
One could perhaps use the Green’s function method and g`m the-
ory to test some of these hypotheses, since they tend to have the
same ingredients as in the u ′−equation. In this sense, the g`m
theory may be available as a “bridge” between the alpha models
and the exact nonlinear GLM theory.

Of course, much remains to be done in this regard. However, the
g`m framework seems to offer a promising new opportunity for
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modeling the nonlinearity of fluid turbulence from a Lagrangian
perspective.

• Synopsis. This paper connects the GLM equations to the Eu-
ler alpha models through a new set of Eulerian mean g`m fluid
equations that are derived in the small amplitude limit of the
GLM equations. These equations comprise a one-point closure
approximation that is second-order in the Lagrangian fluctuation
statistics. In principle, these equations may be closed by using
the linearized dynamics of the original equations in combination
with the linearized fluctuation relations. However, because of the
complexity still remaining even at the intermediate g`m level, we
sought simpler closures by using these linearized fluctuation rela-
tions to guide our choices among the various Taylor hypotheses
for deriving variants of the Euler-alpha models and related mod-
els in a variational closure procedure. Following the original pro-
cedure discussed in Holm, Marsden & Ratiu [1998a] for deriving
the Euler-alpha model, one substitutes these linear versions of the
Taylor hypothesis into the Lagrangian before taking its Eulerian
mean and then its variations in the EP framework. This proce-
dure preserved the Kelvin-Noether circulation theorem, which we
regard as a basic geometrical property of all ideal fluid models.
This procedure also preserved the mean momentum and energy
balances. Finally, the procedure led to a barotropic compressible
generalization of the Euler-alpha models.

7.1 Summary

In this paper, we developed the geometric approach to dimension reduc-
tion especially for models of turbulence in weakly compressible fluids in
the context of GLM averaging. Our approach concentrated on reduc-
tion of the Lagrangian in Hamilton’s principle for adiabatic compress-
ible fluid dynamics by using a combination of compatible symmetries
and averaging in the EP framework. This approach is versatile enough
to include ocean circulation models for global climate modeling, as well
as fundamental research in turbulence. The present paper analyzes the
basic equations in the framework of the EP theory and thereby presents
them in a unified geometrical context for further application.

The EP Averaging Lemma establishes the equivalence of modeling
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using the GLM approach, either by directly averaging the equations
of motion, or by averaging the Lagrangian for these equations before
taking its variations.

We discussed EP formulations of both Lagrangian-mean, and
Eulerian-mean fluid equations for modeling turbulence.
We used various elements of the classical theory of turbulence, includ-
ing:
• Reynolds decomposition(s),
• Taylor hypothesis closures (THC),
• Hamilton’s principle,
• Averaged Lagrangians and
• Euler-Poincaré equations

to model and analyze the mean dynamical effects of fluctuations on 3D
exact Lagrangian-mean and approximate second-order Eulerian-mean
fluid motion.

Our starting point was the exact nonlinear Generalized Lagrangian
Mean (GLM) equations of Andrews & McIntyre [1978a] for a com-
pressible adiabatic fluid. We first recast the GLM equations as EP
equations resulting from the Lagrangian mean of Hamilton’s principle,
written in the Eulerian fluid description. This demonstrated the va-
lidity of the general principles underlying the EP Averaging Lemma.
We then used the small-amplitude approximation to linearize the re-
lations between Lagrangian disturbances and Eulerian fluctuations.
We substituted these linearizations into Hamilton’s principle for the
GLM equations and kept terms up to quadratic order before taking
the Eulerian mean. The EP equations resulting from this approxi-
mate Eulerian-mean Lagrangian produced a new set of g`m equations.
These comprise a second-order (one-point, weakly compressible) tur-
bulence closure model that captures some aspects of the influence of
the small scale dynamics on the large scale flow – while preserving the
mathematical structure of the original Euler equations.

We observed that g`m theory relates certain combined Eulerian
and Lagrangian aspects of wave properties through expressions also
involving gradients of mean flow properties. This observation suggested
we consider closure schemes that involve substituting approximations
or truncated versions of these relations between wave properties and
mean gradients into Hamilton’s principle, before taking its variations.
Thus, we regarded these approximated, or truncated, relations as a type
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of Taylor hypothesis closure. We tried one of the simpler variants
of this idea and found a new compressible generalization of the Euler-
alpha models, the g`m closure, whose solution behavior remains to be
studied.

Thus, introducing such Taylor-hypotheses into the second-order
Eulerian-mean closure approximation for the g`m theory led to vari-
ants of the Euler-alpha models, and a framework for exploring other
options. This included finding new variants of them for compressible
flows that we discussed in section 6.4.

Being derivable in the EP framework, the GLM theory, as well as its
second-order Eulerian-mean closure approximation, the new g`m the-
ory, and the new compressible g`m generalization of the Euler-alpha
equations, all possess the same fundamental structure and underlying
geometry that are shared by all other ideal fluid theories in the EP
framework. This geometrical structure ensures that these fluid the-
ories (both exact and approximate ones) each retains its own Kelvin
circulation theorem and the associated conservation law for potential
vorticity arising from it by Noether’s theorem, for particle relabeling
symmetry. The EP framework also implies balance laws for momentum
and energy exchanges between mean flow and wave properties.

The geometrical structure of the EP framework leads, in addi-
tion, to the Lie-Poisson Hamiltonian formulation for GLM theory, its
Eulerian-mean closure approximation and the variants of the Euler-
alpha models. This Hamiltonian formulation possesses potential-
vorticity Casimirs associated with its Lie-Poisson bracket. In turn, the
Lie-Poisson Hamiltonian structure leads to the energy-Casimir method
for characterizing equilibrium solutions as critical points of a con-
strained energy and for establishing their nonlinear Liapunov stability
conditions. All of these additional features are now available,for the
GLM theory, for its Eulerian-mean closure approximation, the g`m
theory, for the compressible g`m closure model, and also for the alpha
models and any new variants of them that may arise in the future.

The g`m theory provides a bridge that spans from the alpha models
to the exact nonlinear GLM theory. We hope this bridge will be useful
in answering questions that arise in the context of the alpha models
and other turbulence closure models.
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8 Appendix #1: The Euler-Poincaré theorems for

fluids with advected properties

8.1 Mathematical setting and statement of the EP theorem

The assumptions of the Euler-Poincaré theorem from Holm, Marsden
& Ratiu [1998a] are briefly listed below.

• There is a right representation of Lie group G on the vector
space V and G acts in the natural way on the right on TG× V ∗:
(vg, a)h = (vgh, ah).

• Assume that the function L : TG×V ∗ → R is right G–invariant.

• In particular, if a0 ∈ V ∗, define the Lagrangian La0 : TG → R
by La0(vg) = L(vg, a0). Then La0 is right invariant under the lift
to TG of the right action of Ga0 on G, where Ga0 is the isotropy
group of a0.

• Right G–invariance of L permits one to define ` : g× V ∗ → R by

`(vgg
−1, a0g

−1) = L(vg, a0).

Conversely, this relation defines for any ` : g × V ∗ → R a right
G–invariant function L : TG× V ∗ → R.

• For a curve g(t) ∈ G, let

u(t) ≡ ġ(t)g(t)−1 ∈ TG/G ∼= g

and define the curve a(t) as the unique solution of the linear
differential equation with time dependent coefficients

ȧ(t) = −a(t)u(t) (8.1)

where the action of u ∈ g on the initial condition a(0) = a0 ∈ V ∗
is denoted by concatenation from the right. The solution of (8.1)
can be written as the advective transport relation,

a(t) = a0g(t)−1 .

Theorem 8.1 (EP Theorem) The following are equivalent:
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i Hamilton’s variational principle

δ

∫ t2

t1

La0(g(t), ġ(t))dt = 0 (8.2)

holds, for variations δg(t) of g(t) vanishing at the endpoints.

ii g(t) satisfies the Euler–Lagrange equations for La0 on G.

iii The constrained variational principle

δ

∫ t2

t1

` (u(t), a(t))dt = 0 (8.3)

holds on g × V ∗, using variations of the form

δu =
∂η

∂t
+ adu η, δa = −a η, (8.4)

where η(t) ∈ g vanishes at the endpoints.

iv The Euler–Poincaré equations hold on g × V ∗

∂

∂t

δ`

δu
= −ad∗u

δ`

δu
+
δ`

δa
� a. (8.5)

Remarks.

• The EP motion equation and advection relations may also be
written equivalently using Lie derivative notation as

( ∂
∂t

+ £u

) δ`
δu
− δ`

δa
� a = 0 , and

( ∂
∂t

+ £u

)
a = 0 .

The equivalence here of £u and ad∗u arises because δ`/δu is a one-
form density and the equality ad∗uµ = £uµ holds for any one-form
density µ.

• In the Lie derivative notation, one proves the Kelvin-Noether
circulation theorem immediately as a corollary, by

d

dt

∮

c(u)

1

D

δ`

δu
=

∮

c(u)

( ∂
∂t

+ £u

) 1

D

δ`

δu
=

∮

c(u)

1

D

δ`

δa
� a ,

for any closed curve c(u) that moves with the fluid and advected
density D.
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8.2 Summary of the EP equations in geometric notation for
a barotropic ideal fluid

As proven in Holm, Marsden & Ratiu [1998a], the Euler-Lagrange equa-
tions of motion on (TG× V ∗) for a Lagrangian that is invariant under
the group G (where G is the diffeomorphism group for fluids) are equiv-
alent to the EP equations, expressed for a barotropic ideal fluid as

∂

∂t

δ`

δui
+

∂

∂xj

( δ`
δui

uj
)

+
δ`

δuj
∂uj

∂xi︸ ︷︷ ︸
≡
(

ad∗u
δ`
δu

)
i

− D
∂

∂xi

( δ`
δD

)

︸ ︷︷ ︸
≡
(
δ`
δD
�D
)
i

= 0 .

Here the density D ∈ V ∗ satisfies the advection relation,

∂D

∂t
= −div(Du) .

In EP geometric notation the last two equations are written equiv-
alently as

( ∂
∂t

+ ad∗u

) δ`
δu
− δ`

δD
�D = 0 , and

∂D

∂t
= −£uD ,

where £u denotes the Lie derivative with respect to velocity u, and the
operations ad∗ and � are defined using the L2 pairing 〈f, g〉 =

∫
fg d3x,

as

−
〈

ad∗u
δ`

δu
, ξ
〉

=
〈 δ`
δu
, aduξ

〉

aduξ = ξu− uξ = u · ∇ξ − ξ · ∇u = − adξu

−
〈 δ`
δD
�D, ξ

〉
=
〈 δ`
δD

,£ξD
〉

=
〈 δ`
δD

,div(Dξ)
〉
.

Remark.

• The EP equation may also be written using the Lie derivative as
( ∂
∂t

+ £u

) δ`
δu
− δ`

δD
�D = 0 , and

( ∂
∂t

+ £u

)
D = 0 .

This equivalence using either £u or ad∗u arises because δ`/δu is
a one-form density and the equality ad∗uµ = £uµ holds for any
one-form density µ.

See Appendix #2 (section 9) for more discussion of how this under-
lying geometry expresses itself in the linearized g`m approximation.
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9 Appendix #2: Geometric interpretations of the

linearized fluctuation formulas

In fluid dynamics the state space is the group of diffeomorphisms –
the smooth invertible maps that take the reference configuration of the
fluid with coordinates x0 into its current configuration x(t,x0) in the
container.

9.1 Lagrangian & Eulerian pictures

Lagrangian fluid trajectories are orbits under the action of the diffeo-
morphism group G = Diff parameterized by time t, thus,

x(t, x0) = g(t) · x0 , x0 = g−1(t) · x(t) , g ∈ Diff .

The corresponding velocity relations are

ẋ(t, x0) = ġ(t) · x0 = ġ g−1(t) · x = u(x, t) .

This formula relates the Lagrangian and Eulerian definitions of velocity.
For variations, one introduces another parameter ε, and denotes,

g(t, ε) :
∂g

∂t
= ġ(t, ε) ,

∂g

∂ε
= g ′(t, ε) .

Thus, the corresponding variational relations are

x ′(t, ε, x0) = g ′(t, ε) · x0 = g ′ g−1(t, ε) · x = ξ(x, t, ε) .

This formula relates the Lagrangian and Eulerian definitions of spatial
trajectory fluctuations.

Thus, at spatial position x and time t, a given Lagrangian trajectory
has two tangent vectors: the Eulerian velocity, u = ġ g−1, and the
Eulerian fluctuation/variation, ξ(x, t) = g ′ g−1.

These Lagrangian considerations lead to the following geometric
interpretations of the linearized relations for spatial trajectory fluctu-
ations in terms of the displacement fluctuation, ξ.
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9.2 The u ′− equation

Equality of cross derivatives in the difference

(ġ g−1) ′ − (g ′ g−1)˙

gives

u ′(x, t)− ∂ξ

∂t
= ξu − uξ = u · ∇ξ − ξ · ∇u = − adξu

This is the u ′− equation,

u ′(x, t) =
∂ξ

∂t
+ u · ∇ξ − ξ · ∇u = ∂t ξ − adξu ,

which relates Eulerian velocity variations u ′(x, t) and Lagrangian tra-
jectory variation tendencies ∂t ξ(x, t). This is a key equation for making
the g`m approximations in the GLM Lagrangian. The particular so-
lutions of the u ′− equation also play a role as sources of inspiration
for Taylor hypotheses in simplifying the g`m equations to obtain the
alpha models in section 6.

For a discussion of the linearized fluctuation relations from the view-
point of Lagrangian stability analysis with a similar geometric view-
point, see Friedman & Schutz [1978a, 1978b].

9.3 Advected quantities

For advected quantities the right action of the group, denoted as

a(t, ε) = a0g
−1(t, ε) ,

implies the Eulerian advection (˙ at fixed x)

ȧ(x) = − a0g
−1ġg−1 = −au = −£u a ,

and the Eulerian variation ( ′ at fixed x)

δa(x) = a ′(x) = − a0g
−1g ′g−1 = −a ξ = −£ξ a .

Remark. This is the general result, examples of which
were given earlier. For an advected scalar χ one finds
χ ′ = −£ξ χ = − ξ · ∇χ and for an advected density D̄ one



D. D. Holm Mean fluctuation effects March 13, 2001 90

finds D ′ = −£ξ D̄ = −div D̄ξ. We note that – from their
definitions in terms of Taylor series approximations – all of
these linearized fluctuation relations introduce gradients of
Eulerian mean fluid quantities.

Thus, the smooth invertible ε−dependence representing
variations in the g`m and GLM theories is generated by
the displacement vector field ξ, just as the time dependence
is generated by the fluid velocity.

10 Appendix #3: On WMFI Decomposition
(Lagrangian mean plus fluctuations)

The WKB wave packet form of ξ is given by (assuming ε� 1, α � 1)

xξ = x+α ξ(x, t) = x+α
(
aeiφ/ε+ cc

)
, a = a(εx, εt) , φ = φ(εx, εt)

The WMFI Expansion of the Fluid Lagrangian yields terms
at several orders of α and ε,

L(α,ε) = L(0,0)
︸ ︷︷ ︸

meanflow

+α2
[
L(2,0) + εL(2,1) + ε2L(2,2)

]

︸ ︷︷ ︸
WMFI

+ O(α4)︸ ︷︷ ︸
Wave−Wave

Thus there are several levels of approximation available from this
asymptotic expansion of Hamilton’s principle(s). We simply list
these as:

(1) Set α = 0 and vary mean flow (MF) quantities
⇒ Euler’s equations for mean flow when δL(0,0) = 0,
as Euler-Lagrange equations in EP form

(2) Vary only wave quantities, evaluate MF at δL(0,0) = 0
⇒ Linearized spectral stability equations,
cf. Andrews & McIntyre [1978b]

(3) Phase average, then vary only wave quantities, and evaluate MF
at δL(0,0) = 0
⇒ Whitham’s modulation equations, at order O(α2, α2ε)
⇒ WKB stability equations, at order O(α2ε2), see Lifshitz [1994]
and Bayly et al. [1996].
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(4) Phase average at constant Lagrangian coordinate, then vary only
MF quantities, and prescribe ξ
⇒ GLM theory.

(5) Phase average, then vary both wave and MF quantities,
⇒ WMFI equations.

Remark. Details of the self-consistent theories of
Lagrangian-mean WMFI at these various levels of approx-
imation are given in Gjaja & Holm [1996]. In particular,
the self-consistent WMFI equations are shown in Gjaja &
Holm [1996] to comprise a two-fluid theory, reminiscent of
Landau’s theory of superfluid Helium.

11 Appendix #4: GLM, g`m, and α−models of
ideal MHD

GLM ideal MHD

This appendix highlights some of the GLM, g`m, and α−models results
in the rest of the paper by setting up the corresponding results for ideal
MHD (MagnetoHydroDynamics).

In ideal MHD one begins by including the magnetic energy potential
energy in the averaged Lagrangian, ¯̀(ūL, D̃, s̄L) in (3.2),

Pmag =

∫
1
2
|Bξ|2 d3x .

The variation of this GLM-averaged magnetic potential energy gives

δPmag =

∫
Bξ · δBξ d3x =

∫
Bξ ·K−1 · δB̃ d3x+ terms in δξ .

Here we recalled that B̃ = K ·Bξ is a mean quantity and used Bξ =
K−1 · B̃.

Hence, the effect of GLM averaging in MHD is to introduce a mean
tensor permeability due to the fluctuations as

H̃ ≡ δPmag

δB̃
= Bξ · K−1 = − δ ¯̀

δB̃
.
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The EP equation for ideal barotropic MHD is given in Holm, Marsden
& Ratiu [1998a] in the present notation as

∂

∂t

δ ¯̀

δūL
+

∂

∂xk

( δ ¯̀

δūL
ūLk

)
+

δ ¯̀

δūLk
∇ūLk = D̃∇ δ ¯̀

δD̃
+ B̃× curl

δ ¯̀

δB̃
.

The effect of the magnetic field is to add a J̃× B̃ force, with

J̃ = curl
(
Bξ ·K−1

)
.

The auxiliary equations are the continuity equation (2.1) for D̃ and the

frozen-in flux rule (2.2) for B̃. That is,

∂t D̃ + divD̃ūL = 0 , ∂t B̃ = curl (ūL × B̃) with div B̃ = 0 .

Remarks.

• The GLM averaged EP variational principle yields the GLM aver-
aged equation for ideal isentropic MHD in Cartesian coordinates
as

DL

Dt

(
ūL − p̄

)
+
(
ūLk − p̄k

)
∇ūLk +∇Π = curl

(
Bξ · K−1

)
× B̃ .

Here the pseudomomentum vector, p̄, is defined to be p̄ ≡
−u`k∇ξk, as in equation (2.5). The mean potential Π has the
form of equation (2.6),

Π = e(Dξ) + (pξ/Dξ) + Φ̄L(x)− 1

2
|uξ|2 .

The computation of Π uses D̃ = DξJ from mass conservation and
the Eulerian mean of the thermodynamic First Law following a
fluid parcel in an isentropic compressible fluid, as in equation (2.7)

d e(Dξ, s̄L) = − 1

D̃
(pξ dJ ) +

1

D̃
(pξ/Dξ) dD̃ .

• The GLM averaging process preserves the transport structure of
the original ideal MHD equations. In particular, it also yields



D. D. Holm Mean fluctuation effects March 13, 2001 93

preserved linking numbers – magnetic helicity and cross he-
licity – involving the frozen-in averaged magnetic field and the
Lagrangian mean velocity. Thus, GLM averaging preserves not
the magnetic linking numbers themselves, but the property that
the GLM averaged dynamics has preserved linking numbers.

Ideal g`m MHD

The linearized Eulerian/Lagrangian fluctuation relation for a magnetic
field is

B ′ = −£ξ B̄ = curl ( ξ × B̄) = −ξ · ∇B̄ + B̄ · ∇ξ − B̄ div ξ .

Hence, the g`m ideal MHD energy variation may be computed as

δ

∫
1
2
|B ′|2 d3x = −

∫
δB̄ ·

(
ξ × curl ( ξ × B̄)

)
d3x .

The motion equation for a g`m theory of ideal MHD energy is obtained
by including this variational derivative in the J̄ × B̄ force for the EP
equation above, where,

J̄ = curl (B̄− (ξ ×B ′) , with B ′ = curl ( ξ × B̄) .

The latter is a familiar combination from Lagrangian MHD stability
analysis, see, e.g., Bernstein et al. [1958]. (This was kindly pointed
out to the author by E. Caramana.)

EP g`m equations for incompressible MHD

The total mean Lagrangian for the incompressible g`m MHD flow is

¯̀ =

∫ [
1
2
D̄
(
|ū|2 + |u ′|2

)
+ p̄(1 − D̄)− 1

2

(
|B̄|2 + |B ′|2

)]
d3x . (11.1)

The corresponding variational derivatives are given by, cf. equation
(5.11),

δ ¯̀(ū, D̄, B̄) =

∫ [
δD̄
(

1
2

(
|ū|2 + |u ′|2

)
− p̄
)

+ δp̄ (1− D̄)

+ D̄ δū ·
(
ū− ξ × curl u ′ +∇(ξ · u ′ )

)
+ δū · u ′ div (D̄ξ)

− δB̄ ·
(
B̄− ξ × curlB ′

)]
d3x .
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On setting D̄ = 1 and divξ = 0, we obtain the same g`m circulation
velocity as in subsection 5.8,

v̄ ≡ ū− ξ × curl u ′ +∇(ξ · u ′ ) .

The corresponding EP motion equation (with ∇ · ū = 0) is expressed
as,

∂

∂t
v̄ + ū · ∇v̄ + v̄j∇ūj +∇π̄ = (J̄ + J ′′)× B̄ , (11.2)

with J ′′ = −curl (ξ × curlB ′) and π̄ = p̄− 1
2

(
|ū|2 + |u ′|2

)
. This is the

EP equation for the g`m MHD Lagrangian (11.1). This equation also
has the equivalent form,

∂

∂t
v̄− ū× curl v̄ +∇

(
v̄ · ū + π̄

)
= (J̄ + J ′′)× B̄ .

The Kelvin circulation theorem for the incompressible g`m MHD
equations is,

d

dt

∮

c(ū)

(
ū− ξ × curlu ′

)
· dx =

∮

c(ū)

(
(J̄ + J ′′)× B̄

)
· dx . (11.3)

Thus, for incompressible g`m MHD the additional statistical ele-
ment required for closure is

J ′′ = − curl
(
ξ × curl ( ξ × B̄)

)
= − adξ

(
adξB̄

)
, (11.4)

where adξB̄ = ξ · ∇B̄− B̄ · ∇ξ.

EP equations for an incompressible MHD−α model

Dropping derivatives of ξ again in the linearized fluctuation relations
gives, cf. equation (6.5),

u ′ = − ξ · ∇ū , D ′ = − ξ · ∇D̄ and B ′ = − ξ · ∇B̄ .

Substituting these relations into the Lagrangian (11.1) for incompress-
ible g`m MHD leads again to equation (11.2) with the re-definitions,

v̄ = ū− ∆̂ ū , J ′′ = − curl ∆̂ B̄ , , ∆̂ = ∂ l ξkξl ∂k .
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The auxiliary equations are

div ū = 0 , ∂t B̄ = curl (ū × B̄) with div B̄ = 0 .

Other incompressible MHD−α closure options are available, corre-
sponding to other Taylor hypotheses for u ′ and approximations for B ′.
The present closure option is a straight-forward generalization of the
incompressible Euler−α model. As one may verify, the corresponding
conserved energy in this case is

Ē =
1

2

∫ [
|ū|2 + ξkξl ū, k · ū, l + |B̄|2 + ξkξl B̄, k · B̄, l

]
d3x . (11.5)

This is the H1 norm in both ū and B̄, when one chooses the subcase
ξkξl = α2δkl and α2 =constant. Thus, in this subcase, the presence of
α 6= 0 regularizes both the mean velocity and the mean magnetic field.

The incompressible g`m MHD case may be modified to include
compressibility by following the steps for the compressible case without
magnetic fields discussed in section 6.4.


