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ABSTRACT

Interaction of eddies with seafloor topography can exert enormous, systematic forces on the ocean circulation.
This interaction has been considered previously under idealized circumstances. Theoretical results are here
simplified and extended toward practical application in large-scale ocean circulation models. Among the sug-
gestions is that coarse resolution models can “correct” a depth-independent part of the velocity field toward a
velocity given by —z X VfLH, where z is the vertical unit vector, fis Coriolis force, L is a length scale O (10
km), and H is the total depth. Absence of this tendency may be implicated in a number of systematic defects

that appear in present ocean models.

1. Topographic form drag

Exchange of momentum between the ocean and the
underlying earth may be one of the strongest, yet least
well understood, forces acting on the ocean. Misrep-
resentation of this force (or omission thereof) can be
implicated in a number of systematic defects that ap-
pear in large-scale ocean models. Purposes are a) to
obtain a theoretical account of the force and b) to sug-
gest simple ways to correct ocean models.

Vertical transfer of horizontal momentum is readily
effected by differences of pressure acting on sloping
bottoms. Expressed in spherical geometry, this leads
to “mountain torque,” which has been most studied
in the context of atmospheric circulations, coupling
the angular momenta of the atmosphere and the solid
earth. Thus, it has been identified that atmospheric
circulation models may suffer certain systematic defects
due to omission of a component of topographic drag
due to gravity wave excitation. The subject has not
received as much attention in oceanography, perhaps
because most oceans are interrupted by continental
barriers. An exception is the Antarctic Circumpolar
Current, for which Munk and Palmen (1951) already
drew attention to the inferred role of topographic form
drag. Even for an enclosed ocean basin, a corresponding
question arises with respect to the relative angular mo-
mentum due to circulation within the basin. Both in
the ocean and in the atmosphere, the effect of topog-
raphy upon circulation may be very significant—per-
haps more so in the ocean, where it is also less well
understood (Holloway and Muller 1989).
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The topographic force may be separated into two
parts: that is, gravity wave drag and vortex drag.

Gravity wave drag is due to resonant excitation of
gravity waves within a wavenumber band from f/ U to
N/ U, where f is Coriolis parameter, N is a character-
istic stability frequency, and U is a free-stream velocity
characterizing a “mean” flow above some boundary
layer (Gill 1982, section 8.7-10). Because this exci-
tation of gravity waves is not explicitly resolved in gen-
eral circulation models, it has been parameterized for
atmospheric models (Palmer et al. 1986; McFarlane
1987). It appears, however, that the corresponding
gravity wave drag in the abyssal ocean may not be so
significant because N/ fis not large and U is small.
Thus, only a narrow band of topographic variance at
relatively high wavenumber is able to contribute to the
gravity wave drag. It is interesting to speculate that
gravity wave drag may be more important to coastal
oceans where N/ fis larger, U is larger, and there may
be strong topographic variability, especially near the
shelf break. However, in the present study, we turn to
the second contribution: the vortex drag, which (as
will be shown) turns out not to be a “drag” at all but
rather may be one of the stronger forces driving ocean
circulations.

At the outset, let us make a quick estimate of the
possible amplitude of the vortex drag. Here and in what
follows, we use Cartesian geometry for simplicity. Final
expressions will be given in coordinate-free notation
for application, for example, in spherical geometry. The
horizontal force that topography exerts on an overlying
fluid due to the pressure term (ignoring friction) is

f dApVH. (1)
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To estimate the possible amplitude of stress (average
force per unit area), we can simply multiply p’(1/
L’)H’ where p’is a pressure deviation (on geopotential
surface), L’ is a length scale for either pressure or depth
fluctuation, and H" is a variation of total depth. Here
p’/L’ can be estimated from geostrophy as pfv’, where
p is density, fis Coriolis, and v’ is a characteristic ve-
locity. If, for example, we choose v’ = 0.03 m s™! and
H’ = 300 m, then
pfo’H' ~ (10%)(107%)(0.03)(300) ~ 1 Pa, (2)

which is an enormous stress (should it occur over large
areas on average). Typical wind stress is smaller by
about an order of magnitude. Moreover, we might
readily choose H’ greater than 300 m, while v’ = 0.03
m s~ is only a moderate velocity. Yet, for many large-
scale ocean models, H’ of 300 m may not even be
resolved while v’ of 0.03 m s™' may be omitted alto-
gether (especially as these velocities are likely to be
associated with mesoscale eddies that may be lost to
subgrid scales or only marginally resolved). Thus, ef-
fects that may be entirely absent for ocean models
can—in principle—exert forces on the actual ocean
that may be an order of magnitude larger than any
“usual” forces. In reality, this does not happen. ( There
would be nothing to balance the topographic force!)
Evidently what does happen is that p and VH are not
very well correlated. Yet, if that correlation is small
(of order 0.1), the resulting force is still fully as large
as any other mean forcing. Clearly, whatever physical
dynamics governs the small correlation between p and
VH, the same dynamics must be considered to be of
order unity with respect to other forcings. Outright
omission or haphazard relegation to some manner of
“drag” parameterization threatens the fidelity of ocean
models. Figuratively, one might say that a sort of
“wind” blows on the bottom of the ocean—a wind
that may be as strong as the surface wind but is ne-
glected or grossly corrupted by large-scale ocean mod-
els. Efforts to correct this defect are clearly a priority.
This paper will offer one suggestion along the way.

What to do? A natural and most common answer
is higher resolution. How much higher? Although the
length scales that dominate pVH may well occur in
the larger scales of mesoscale eddies ( Treguier 1989;
Treguier and McWilliams 1990), a question remains
as to how many free eddy interactions across a range
of scales are necessary to realize the dynamically faith-
ful correlation. Marginally resolved eddies that barely
survive in the dissipative “tail”” of an ocean model can-
not be expected to perform faithfully. Moreover, in the
case of climate research where the domain is global
and the time scales of oceanic concern are decades and
longer, adequate eddy resolution (whatever adequate
might mean ) poses an enormous computational cost—
at direct debit to other climate questions one may wish
to address.
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Alternatives to higher resolution include 1) process-
oriented numerical experiments (limited domains at
high resolution), from which one might seek to dis-
cover an empirical parameterization, or 2) theoretical
effort. Here we pursue the theoretical effort.

2. Idealized (quasigeostrophic) theory

Our goal is to address the urgent practical question
of how to make realistic large-scale ocean models work
better. In the approach to this goal, we shall be obliged
to take leaps for which there is little careful guidance.
We commence from a more idealized problem that we
may examine with greater dynamical confidence. Then
we take the leaps.

Consider a barotropic, quasigeostrophic ocean, either
in the geometry of a reentrant zonal channel or with
periodicity both in x (east) and y (north). Motion is
defined by the vorticity equation

HC+z2-VYXV(i+h+8y)=F,— Dy, (3)

where ¢ = z-V X u = V% is the vertical component
of relative vorticity, z is the vertical unit vector, V is
the horizontal gradient operator, V2> = V-V and ¢ is
the velocity streamfunction. A total depth of fluid H(x,
¥) has been taken as H = Hy(1 — (h(x, y) + BY)/f),
where h(x, y) may describe a roughness of the seafloor
while a larger-scale bottom slope is included with 8y,
the S-plane representation of Coriolis parameter f(in
this barotropic formulation ). Here F; and D, represent
external torques (wind curl, say) and any explicit dis-
sipation operator that one might include.

Complete prescription requires also an irrotational
component of flow, U, such that ¢ = V™2{ — Uy. Evo-
lution of U is given by

0,U + {Yd:h} = Fy — Dy, 4)
where braces denote area average over the flow domain,
Fy represents external forcing of x-directed momen-
tum, and D represents any explicit dissipation or drag
assumed. Because y is proportional to pressure, one
sees that {yd,4} is the flux of x-directed momentum
due to pressure-slope correlations at the seafloor. From
the view of subgrid-scale (SGS) modeling, we might
seek prognostic equations for large-scale variables such
as U, while parameterizing those contributions to
{Y0,h} from interactions of smaller-scale eddies with
smaller-scale topography. The scale that will separate
large from small will depend upon each modeler’s in-
terests and computing resource, Our goal here is to try
to permit “large” to be as large as possible.

Interest to parameterize {/d,h} is at least twofold.
Theoretical methods exist that allow one to make a
direct assault on this term. And importantly, a seem-
ingly strange outcome emerges. The specific analysis
yielding {yd,2} has already been given (although in-
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completely) in Holloway ( 1987, hereafter H87), and
will not be repeated here. That result is
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where we have supposed that variables # and ¢ have
been Fourier transformed onto wave vectors k = (k,,
k,). The net force is given by the sum over k of the
imaginary part of the correlation Cy = {/_y. Quantities
within the brackets include vy, the Fourier represen-
tation of Dy, and wy, = k(U — B/k?), the frequency
of propagation of a linear wave at wave vector k, in-
cluding Doppler shift by the mean flow U. Here m and
vy are given by expressions (see H87) involving sums
of Z, and H, over all wave vectors p, where Zy
= {x§xand Hy = hh_y.

The aforementioned incompleteness of H87 in-
volved inconsistently truncating certain terms to obtain
an explicit expression for Cy at (5). A more thorough
calculation has been carried out with supporting nu-
merical experiments as reported by Zou and Holloway
(1992). Although differences are found, for example,
in energetics of Z, corrections to (5) appear to be
slight and do not affect the point to be made here.

In part, the result at (5) may be understood in a
phenomenological way. One observes that the first term
within the brackets is a drag (opposed in sign to U),
given only that 5, and vy tend to be positive expressions
(see H87). The drag is unsymmetric with respect to
the sign of U because of the role of U in w,. When U
< 0, the mean flow is in the same sense as intrinsic
wave propagation, U — 8/k? is large and drag is small.
When U > 0, there will be k for which U — 8/k? is
small and the drag contribution will be relatively large.
Thus, we recover a view of unsymmetric drag (as
Haidvogel and Brink 1986). That view is extended at
(5) to recognize that some drag still occurs for U < 0.

The unexpected part of (5) is the second term in
square brackets. This is a contribution that takes the
sign of wy and hence may not oppose U at all. Indeed,
for sufficiently large U, wy will itself tend to take the
sign of U, so that the term is an antidrag: propelling
the mean flow. This seems strange, and clearly contra-
dicts modeling practice!

A greater challenge arises if we ask how we could
“correct” modeling practice following (5). The spectral
information in (5) would itself need to be somehow
parameterized, while the idealizations behind (5) may
be so far from the physics of practical large-scale ocean
models that the result is irrelevant. Nonetheless, the
result (5) should not be ignored. Quite the contrary, I
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suggest that large-scale ocean models exhibit strong,
systematic infidelities because of misrepresentation of
(5). Infidelity is seen, for example, in underdevelop-
ment of poleward eastern boundary current systems,
underdevelopment of equatorward western boundary
undercurrents, latitudinal overshoot of the Gulf Stream
or Kuroshio, overdevelopment of transport by the
Antarctic Circumpolar Current, lack of westward ten-
dency along the Antarctic continental margin, and lack
of eastward tendency along continental margins on the
Arctic Ocean. Among other failures, it remains that
(5) does not lend itself readily to practical incorporation
into large-scale models. However, (5) does point to-
ward a more fundamental view that may lend itself to
modeling use.

3. Unprejudiced ocean circulation

We are stuck. With a good deal of effort we can
obtain results such as (5) that can be shown to have
modest skill when compared with direct simulations
(including such influences as forcing and dissipation).
However, the circumstances for which such solutions
are tractable entail drastic idealizations: statistical ho-
mogeneity, quasigeostrophy, barotropy. If the goal is
to contribute practically toward realistic ocean models,
we appear to have a very long way to go. Nor is the
direction clear. Let us instead take a detour that, at
first, may seem very strange. The reader will be asked
to suspend disbelief for just a little while. Then we will
rejoin our earlier path strengthened with a clearer vision
where this is leading.

Recalling the preceding section, we pause to ask:
Why is the topographic stress so determined to drive
the ocean in a certain direction? Consider a thought
experiment. Take an ocean basin, hence #(x, ). Ran-
domiy (as blindfolded ) toss eddies into the basin. As-
sume we know nothing about any mean forcing applied
to the basin. Then the objective is to predict what mean
circulation will arise. It might appear that, since we do
not know what the initial conditions are nor do we
know what forcing (if any) is applied, we cannot predict
any mean circulation at all. (Each realization of the
experiment will have a circulation, of course; but we
have no information about that circulation.) So is the
answer none? That turns out to be mistaken, as we
will see. We surely know something about eddies, ran-
dom as they may be. An amount of eddy energy has
been tossed into the basin, for example. We may have
some statistical information, say about the length scales
of eddies. Although we do not have specific information
about phase relations among the eddies, it turns out
that we can make a much better estimate of the mean
state resuiting from interactions among the random
eddies.

The answer is nearly as simple as the case of a box
of marbles, initially segregated with red marbles to left,
blue to the right, then subjected to agitation. When
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one observes a rightward transport (on average) of red
marbles, this result seems quite unremarkable. The
distribution of marbles in the box is only becoming
more uniform, that is, more “random,” naturally.
However, the ocean problem seems more difficuit be-
cause of a conflicting intuition. We might suppose that
an ocean that is full of eddies but lacks any mean mo-
tion is already about as random as possible. Having
random eddies spontaneously organize definite, pre-
dictable flows (giving up eddy energy to those mean
flows) may seem like generating order from chaos,
contrary to the marbles experiment. It is the second
intuition about random eddies that is wrong, as the
following calculation illustrates.

Consider the discussion of quasigeostrophic flow but
simplified further to omit external forcing and dissi-
pation, including large-scale flow U within y and large-
scale B8y as part of 4. Thus,

af+z-Vy X V({+h)=0. (6)

Let ¢ and 4 be projected onto some set of basis func-
tions chosen to suit geometry and boundary conditions.
With computability in mind, suppose we retain some
finite set of basis functions, possibly a large number
(depending on the size of one’s computer).

Now let us take into account that we do know some-
thing about the eddies. We may suppose we know the
total energy

=1 [aajoyp: (7

of the eddy field at + = 0. We may have information

about eddy length scales or spectra. This might be ex-

pressed in terms of total enstrophy

Q=%fdA(§'+ h)2. (8)
[We suppose at 1 = 0 that { and / are uncorrelated (in
ensemble mean) due to our blindfold in the thought
experiment. Thus, at £ = 0, 2Q = {{*} + {h?}. Length-
scale information might be given, for example, as 1>
= {IV¢1?}/ {7}

Special attention to E and € is motivated for two
reasons. First, these quantities are invariants of the ad-
vective motion (6) within closed or reentrant domains.
Second, these invariants are respected by numerical
advection algorithms in many ocean models. Thus,
with dynamics simplified to contain only advection,
as (6), we can say that what knowledge we have is
given only by E, @, and 4. See Note added in proof.

Returning to the thought experiment, what shall we
predict for the ensemble (over many random trials)
mean flow (¢)? The problem is probabilistic. Defining
a phase space spanned by the expansion coefficients of
¥ on a set of basis functions, say, or by discrete values
of ¥ at points on a finite-difference mesh, the state of
the model ocean is given by a state vector Y (simply
the collection of dependent variables). Presumably,
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Y (¢) describes some complicated trajectory for each
realization of the experiment. Our interest, however,
is in the probability distribution for possible Y. Let dp
= p(Y )dY be the probability for finding the state of a
model within phase element dY of state Y. Then the
entropy (or negative of “information”) describing p(Y)
is

S = —f dYp logp. 9)

Given E and © and h(x, y), maximization of (9) sub-
ject to (7) and (8) yields

(er/az = V(Y = h, (10):

where «; and a; are Lagrangian multipliers determined
from E and Q for given A(x, y) and specification of
the set of basis functions (or finite-difference grid). The
result (10) was already obtained by Salmon et al.
(1976) using a more complicated but more encom-
passing derivation. A brief argument for (10) is in-
cluded in the Appendix. As well, (10) may be seen as
an extension from Fofonoff (1954 ) with this difference:
Whereas Fofonoff observed that (10) provides a so-
lution among arbitrarily many possible solutions, en-
tropy consideration indicates that this is the solution
to be most expected if only eddies tend to conserve
energy and enstrophy.

The most important remark is that we do not predict
{(¥> = 0. On the contrary, even when we commence
from {¥) = 0 as in our thought experiment, eddy—
topography interactions “spontaneously” organize ()
according to (10). The maximum entropy solution
(10) describes a mean flow that expresses the minimal
information content consistent with what we do
know—F and @ in this case. Any other solution for
{¥), in particular (¢ = 0, would purport to describe
more information than is actually given. The “extra”
information for which there is no actual basis is ap-
propriately called “prejudice”; hence, (10) describes
the “unprejudiced ocean circulations.”

What does this contrived thought experiment with
its information theoretic “stuff” have to do with the
calculation of topographic stress in the previous sec-
tion? And how is this to help with the practical problem
of correcting actual ocean models?

First, the present discussion and that in the previous
section are brought back together. The theory leading
to (5) describes a part of the statistical dynamical ten-
dency toward the state given by (10). It is shown (as
in Carnevale et al. 1981) that statistical closure theories
such as underlie (5) have the property that nonlinear
interaction terms satisfy dS/dt = 0, driving the system
toward (10). The topographic stress in (5) and much
of the complicated derivation leading to (5) centers on
estimating how rapidly the system is driven toward
(10). The key is entropy, not just as an information
theoretical idea but as the guiding principle for physical



SEPTEMBER 1992

evolution of complex systems (Levine and Tribus 1979,
and references therein).

Second, we see that this problem really is nearly as
simple as the box of marbles. The more complicated
variational calculation leading to (10) may be regarded
as a technical detail due to the specific form of con-
straints (7) and (8). We are not surprised in the case
of the marbles to observe a rightward transport of red-
ness after commencing “rattling.” Likewise, the oc-
currence of strong topographic stress, tending toward
(10), ought not surprise us in the ocean. As an exercise
in computational virtuosity, one might undertake a
supercomputing simulation of the rattling of very many
marbles in a very big box. Our goal instead is to apply
insight from statistical dynamics to reduce the com-
putational burden in ocean modeling, avoiding a su-
percomputer effort that would serve mainly to rattle a
big box of marbles (or ocean eddies).

Third is a remark. Our nominal subject is the to-
pographic stress (1). Solution (10) clearly depends
upon A(x, y). However, it is not the case that approach
toward ( 10) requires topographic stress. So long as eddy
advection tends to conserve E and €, the evolution will
be toward (10) by any mechanism at all-—such as lat-
eral eddy transport, for example. Tendency toward (10)
is what determines the sense of (5). However, the pri-
mary result is (10), which we will use in the following
section to parameterize not only topographic stress but
also more general eddy-eddy interactions.

Fourth, compare the practice of SGS parameteriza-
tion in ocean models with the thought experiment pre-
viously described. In each case we know that unseen
eddies are present. In the thought experiment, eddies
generate a predictable mean flow. In the model SGS,
we try to anticipate how eddies affect the larger-scale
resolved flow. In practice, nearly every SGS has the
tendency (if left to itself) to bring a model toward rest.
In particular, if one imagined a model whose resolved
flow was at rest, then the SGS leaves that resolved flow
at rest. That is, in absence of nonzero mean flow, our
guess at what eddies should do in the mean is: nothing!
This is the very same wrong guess that we might have
made in the thought experiment. It is the wrong guess
that we do make in actual ocean models!

The following section discusses (speculatively) sug-
gestions for SGS parameterization that surely will turn
out not to be “right” but are not so conspicuously
wrong as the more familiar tendency toward rest in
usual SGS practice.

4. Guessing a better SGS

Our goal here is to proceed so far as possible without
prejudice; that is, to attempt to proceed consistently
with an entropy maximizing tendency. The difficulty
is that the circumstances for which maximum entropy
solutions are obtainable are far from oceanic reality.
Reality is characterized by forcing and dissipation. The
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sun shines, wind blows, it rains, etc. However, the
analogy with the box of marbles is apt. Although a
segregation (red marbles to left, blue to the right) is
far from maximum entropy (due to initial conditions),
the ensuing tendency for rightward transport of redness
appears “naturally.” If we only observed (perhaps from
numerical experiments) that red marbles tend to go to
the right, then began to try to think of a strange force
that somehow detects the color of marbles, applying a
rightward push to red marbles, we would be quite mis-
led. The mechanism here is a statistical mechanism,
driven by the difference between initial conditions and
maximum entropy.

Extending the marbles analogy further, we might
imagine installing a gate at the right side of the box
that would be color sensitive. Each time a red marble
arrived at the gate, it would be removed and reinserted
at the left. Now the box of marbles never does come
to uniform color (in the mean), while the mean gra-
dient of color depends on details such as how big is
the gate, how vigorously we rattle the box, and so on.
In this case there would be an enduring rightward flux
of redness. Careful theoretical estimation of that right-
ward flux could be very demanding. Effectively, that
is just the calculation mentioned in section 2, where
the topographic stress arises because the system is not
at maximum entropy. However, that careful calcula-
tion is 1) difficult and 2) quite restrictive in the idealized
conditions for which it applies. What we now seek are
shortcuts that are 1) easier and 2) more widely appli-
cable.

Let us consider a number of apparent restrictions
along with suggested ways to relax those restrictions.

First, the foregoing calculations are barotropic, the
ocean is not. In fact, even in the original work of
Salmon et al. (1976), a baroclinic (two-layer) deri-
vation was given. Summarized simply, the result was
that the maximum entropy state for motions on scales
larger than the first deformation radius is barotropic.
Large-scale baroclinicity of the actual ocean is a direct
consequence of the nature of wind and buoyancy forc-
ings applied at the surface of the ocean. Thus, if we
seek to model the global ocean on grids that are coarser
than the first deformation radius, then the SGS eddy
tendency should be toward barotropy. For large-scale,
long-time issues such as global climate, such coarse
resolution is valuable. On the other hand, if one is mo-
tivated to model smaller scales, an SGS tendency to-
ward increasing entropy should still be feit. The gen-
eralization in the case of a continuously stratified fluid
is that flow structures should tend toward aspect ratio
(vertical /horizontal extent) approximating /N, where
N is stability frequency due to stratification. In partic-
ular, topographic influences tend to be increasingly
bottom trapped for shorter length scales.

Second, the calculations are Qquasigeostrophic.
Comments: To the extent that we seek to represent the
aggregate effects of SGS eddy advection, this may be a
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reasonable “approximation” over much of the extra-
tropical ocean. Later we will see that the mean flow
resulting from (10) should satisfy geostrophic balance
rather well. The right side of (10), given by h = f6H/
H,, becomes small as f— 0 approaching the equator.
Also, the mean flow from ( 10) tends to follow isobaths
so that finite amplitude topographic effects are not too
disturbing. Of course one does recognize that higher-
order dynamics occurs, ultimately leading to diabatic
mixing. Ocean models, particularly those that address
the time scales of climate change, must finally param-
eterize such higher-order interactions. For the present
paper, we simply set aside such questions under the
category “other.”

Third, finite amplitude topography is a concern. As
remarked, the flow tends to be along isobaths, so that
quasigeostrophy is not too badly disturbed. However,
quasigeostrophy presents us with certain ambiguities
that affect practical application. There is a reference
depth, Hy, whereas the depth of the ocean ranges from
H = 0 at the shoreline to great depth in the abyss.
There is a further ambiguity concerning the “stuff>
called streamfunction. Does ¢ describe a velocity
streamfunction or a transport streamfunction for
depth-integrated motion? To the order that quasigeos-
trophy obtains, interpretation of ¢ is arbitrary. When
applied to actual circumstances of finite variation of
H, the consequences can be enormous. We will return
to this point. For the moment, we observe only that if
we took ¥ to describe a transport streamfunction, then
made application in the real ocean, we should en-
counter velocity magnitudes (| = [Vy|/H that di-
verge as H — 0. With practicality in mind, we are
motivated to read ¥ as velocity streamfunction. See
Note added in proof.

Fourth, there are Lagrange multipliers a; and a5 to
estimate in (10). This would appear to require that we
have region-specific estimates of £ and Q as well as
some idea about a dynamical truncation scale. Here
we have really run afoul of the unphysical idealizations
behind (10). However, we are also a little bit lucky.
Actually we do not need «; and «; separately; only the
ratio «; /a; = 1/A? is needed, where ) has the dimen-
sion of length.

Does A turn out to have a value of length that makes
sense? From (10) we can estimate a mean flow speed
lul =~ N?|Vh| ~ \*fS/H,, where S is a bottom slope.
With f=10"%s"1,S=10"3, and Hy, = 3 X 103 m,
say, values of \ like 3 X 10* m (30 km) yield equilib-
rium mean flow speeds like 3 X 1072 m s~'. By no
means does this make A = 30 km “right.” The obser-
vation is that choices of A from several kilometers to
a few tens of kilometers yield equilibrium flows that
are not “crazy.” We do not need A of subatomic or
supragalactic scales. However, of the various research
topics that are certainly going to need more work (in
part experience at application ), foremost may be the
question: What is A? Plausibly, A may reflect the shorter

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 22

length-scale range of the mesoscale eddies. These are
scales at which dissipative processes ( energy-enstrophy
cascade) are forcing the energy spectrum away from a
more random equipartition form (Kraichnan 1967).
It is encouraging that the spatial variation of A will be
much less than the separate variations of E or €, say.
A suggestion for the present is to treat \ as a “fudge
factor” (of just the sort that afflict eddy viscosity), for
which a nominal value, say A = 10 km, might make a
first guess. Clearly this invites “refinement.” One sup-
poses that A may have some dependence on latitude,
perhaps tending to follow deformation radius scaling

g’'H/ f although without such strong divergence to-
ward f— 0. On the other hand, models already suffer
a plethora of fudge factors before admitting spatial
variation of A.

Fifth, a simplification appears. If the appropriate
value for A is indeed only as large as O (10 km) while
our interest may be at larger scales O (100 km) or
greater, as for global climate interest, then we can also
drop V?in (10). We need not invert the elliptic operator
on the left side of (10), and our theory of ocean cir-
culation reduces to {¢) = A*h. This might not be
“right,” but it may well be the “simplest-ever” theory
of ocean circulation! Besides, it might be right—in part.
(Clearly efforts to look at (') at smaller scales—such
as individual seamounts, near the shelf break, or near
other topographic features (as in Cannon et al. 1991)—
may bring back V2. However, at such smaller scales,
baroclinicity also should be considered. Let us here
defer these questions to future research.)

Sixth, we may try to simplify further. As observed,
A is a fudge factor. As well, the choice of reference
depth Hj will be arbitrary to some extent—especially
when one considers large domains. However, it is only
the ratio A2/ H, that appears. Since both numerator
and denominator contain elements of arbitrariness, we
might replace the ratio with a single length scale L’,
say, where L’ is evidently of O (10 km) or larger. Then,
since it is only Vy that is physically significant, and
observing that depth varies over length scales smaller
than planetary radius, we can approximate the occur-
rence of & in (10) by —fH/ Hp. The result is that our
maximally simplified theory of the equilibrium velocity
streamfunction is

y* = —fL'H. (11)

Seventh, suppose that our object of interest is the
depth-integrated transport streamfunction ®, such that
Hu = z X V@ rather than a velocity streamfunction
Y. Again we get lucky. Variation of ¢* will tend to be
dominated by variation of H, with much weaker de-
pendence on f. In this case we can approximate the
equilibrium transport streamfunction by

o* = — f(LH?, (12)

where L ~ L’/2 remains an adjustable length scale of
O (10 km).
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Having simplified the expressions for maximum en-
tropy equilibria to (11) or (12), the idea will be that
SGS should occur in ocean models in ways that move
the model solution toward (11) or (12). Most impor-
tant, SGS should not move ocean models toward rest.
The SGS is just the analog of the rightward redness
flux in the box of marbles. If we can make reasonable
representations of this “redness flux” for ocean models,
we can spare ourselves the enormous computational
burden of explicitly “rattling the box.”

5. Implementation

There are a wide variety of ocean models. This sec-
tion offers illustrative suggestions for some of the more
familiar model forms.

Most familiar may be prognostic models in which
the velocity field u is obtained among dependent vari-
ables. Except for depth-integrated formulations, u will
vary in all three spatial dimensions. Defining maximum
entropy u* =z X Vy* from (11), SGS is expected to
occur on account of the difference field u* — u. If model
resolution is coarse relative to first deformation radius,
then u* is independent of depth; however, the SGS
following u* — u will be depth dependent. How shall
SGS depend upon u* — u? Without clearer guidance,
one is disposed toward simplicity. Perhaps the most
immediate idea is to append a relaxation term (u*
— u)/ 7 to the right side of momentum tendency equa-
tions. We are then obliged to specify 7, which could
have spatial and temporal variation. If done in this
way, then the choice of 7 should plausibly be guided
by eddy advection time scales of perhaps a few tens of
days for the entropy adjustment process, perhaps
longer.

In fact, more detailed theories such as leading to (5)
would suggest that the tendency to relax u* — u should
be more rapid at shorter length scales. Moreover, the
prognostic model may already include an explicit rep-
resentation of eddy viscosity, say AV?u. (If instead the
eddy viscosity is buried within a nonconservative ad-
vection scheme or otherwise results from some filtering
algorithm, then great care should be given to the effects
of such “numerical diffusion” with respect to physical
motivation.) When the explicit eddy viscosity is avail-
able, we see straightaway why the viscosity is “wrong™:
it tends toward rest. The immediate “fix” is to replace
eddy viscosity by a form centered on u*, that is, AV>(u
— u*). This is more scale selective than in the preceding
suggestion, and also obviates the need to specify some
7. Of course there is still Austauch 4 to be specified,
but that will be required either explicitly or implicitly
in any case. Hence, this second approach has the further
advantage of requiring fewer ad hoc specifications.

Other operators that occur in prognostic models may
include a “hyperviscosity”” V*. The preceding remarks
apply if only V* is caused not to act upon u but rather
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to act upon u — u*. This operator is simply more scale
selective than V2, Choice between the two forms often
hinges upon whether the model intends to be eddy re-
solving or not, with V* preferred in eddy-resolving
models since it is less dissipative for those eddy struc-
tures rather larger than the grid scale. (Let me comment
that the term “eddy resolving” can be misleading. A
model with sufficient resolution, hence reduced damp-
ing, may permit eddies to exist—often only on the rag-
ged edge of viscous extinction. By no means is one
assured that such eddies are performing dynamicaily
faithfully; they are just there. Of course, for some suf-
ficiently high resolution, we suppose that numerical
models approach actual ocean dynamics, only we do
not know how high that resolution must be. Ultimately,
at enormous supercomputing cost, we can numerically
rattle the box of marbles.) For the present, let us sup-
pose that modelers have already selected their opera-
tors. The important remark is that the operators should
apply to u — u* rather than u.

Models might not be formulated in momentum
variables, but rather in vorticity /divergence, say. A
maximum entropy vorticity {* = V4J* can be defined
from (11), whereafter the preceding remarks in con-
nection with momenta apply to vorticity. However,
the “theory” that is based in quasigeostrophy remains
mute with respect to horizontal velocity divergence.

A simple approach to model SGS is seen when a
model formulation already separates velocity variables
into baroclinic and barotropic parts, the latter given
by solving a prognostic equation for evolution of a
transport streamfunction ®. In this case (at resolution
coarser than first deformation radius) the baroclinic
momentum field is unaffected and we revise the SGS
only insofar as it affects ®. This might take the form
of an appended relaxation (®* — ®)/r or might be
more scale selective under V2, say.

Certain questions will occur. One might observe, for
example, that an operator upon u — u* will likely exert
the strongest tendency in the upper water column
where u may be largest and least guided by H. On the
other hand, insofar as the nominal topic is topographic
stress and u* is just proportional to z X VfH, it may
be distressing that the effect is not strongest near the
bottom. What needs be emphasized here is that the
influence of topography (“Neptune effect™!) is being
felt by the entire ocean as a statistical dynamical system.
Circulations (11) or (12) approximate a maximum
entropy system given a) eddies and b) topography.

One might inquire also about SGS insofar as a model
may predict temperature ( T) or salinity (.S) fields. Pre-

! “Neptune effect” has been adopted as shorthand for referring to
the statistical dynamical tendency of eddy-topography interaction
to induce mean circulation. The term appeared in a cartoon (Hol-
loway 1986b) that addressed why coastal currents might flow against
wind, pressure head, or other apparent driving.
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viously we have revised eddy viscosity to be centered
on u — u*. Is something similar implied for 7 and .5?
So long as our concern is at scales larger than first de-
formation radius, the answer is simple: T and S should
relax toward horizontal uniformity, consistent with the
barotropic character of u*, Old-fashioned eddy diffu-
sion of 7"and S appears to have been a good idea after
all. At smaller scales for which maximum entropy flows
should exhibit baroclinic structure, density fields will
require geostrophic adjustment.

Whereas the preceding discussion has addressed
prognostic modeling, most of the comments carry over
to inverse modeling and to mixed prognostic-diag-
nostic modeling. Indeed, our whole approach is based
upon information theoretical constructs. If we knew
nothing about the oceans except the shapes of ocean
basins and some idea that eddies exist, then our best
guess at ocean circulation should be (11) or (12). If
we know anything else, like approximately how the
wind blows, where the sun shines more brightly, where
the air is cold, or where rivers discharge, then we can
apply this knowledge—as in the forcing of prognostic
ocean models. The result pulls our theoretical ocean
* away from (11) or (12), hence to some lower entropy
state—which is just what the application of knowledge
should do. Moreover, if we have made various direct
observations of aspects of the ocean circulation, then
we apply this knowledge in the inverse or diagnostic
modeling. Application of direct knowledge about the
ocean pulls our solution to lower entropy as is appro-
priate. The problem is that current inverse-diagnostic
models do not commence from ( 11) or (12) but rather
from rest (before insertion of any data at all). In this
sense the models are strongly prejudiced.

The field least constrained by inverse calculations is
the barotropic component of flow. Initial guesses at
this component may be based upon ad hoc principles
such as integrating Sverdrup balance along f/H con-
tours from the eastern boundary (setting aside such
nuisance issues as f/ H contours actually commencing
where the equator runs into the eastern shoreline, or
the tendency for most f/H to close within the ocean
basin). What is suggested here, depending upon the
formulation of the inverse model, is either that the ini-
tial guess be given by (11) or (12) or that a penalty be
assigned to the “distance” between the inverse solution
and (11)or (12). In the case where distance from (11)
or (12) is penalized, a question will arise as to what
weight is assigned to this penalty. Whereas penalties
on data mismatches may be estimated objectively
(based on observed variability about mean data), the
penalty weight for departure from statistical mechanical
equilibrium must be more subjectively assigned. Al-
though the maximum entropy method (unforced,
nondissipative case) can provide information on higher
moments, hence fluctuations about the mean, the real-
ity is that those higher moments are so influenced by
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nonconservative processes that they appear to provide
no useful guidance with respect to penalizing departure
from (11) or (12).

An interesting opportunity occurs in assimilative
models following the adjoint method, as in Tziperman
and Thacker ( 1989). While a goal of such assimilation
is to fit optimally a model solution to observations that
are distributed throughout space and over time, the
method also permits optimal adjustment of internal
“control” parameters of the model. Whereas we have
seen already that length scales L or L’ are left as fudge
factors, the possibility appears under adjoint assimi-
lation to evaluate such fudge factors from direct ob-
servation, much as one makes adjoint evaluation of
eddy viscosity. Or one may use this approach to answer
whether the Neptune effect is a good idea at all. If there
is a coefficient such as 1 /7 where the Neptune tendency
has been appended to the dynamical model, then ad-
joint evaluation of 1/7 tells us if the model is improved.
If we find very small 1/, the effect should be left out.

6. Does it “work”?

This question will not be answered in this paper.
Only experience in large-scale ocean models will make
clear the value or lack thereof from the preceding sug-
gestions. Idealized test cases certainly can be, and have
been, set up in which one determines that a theory
leading to (10) “works.” Moreover, extended to forced-
dissipative motions in model oceans with only plane-
tary 8, the tendency toward maximum-entropy solu-
tions is exhibited, for example, by Griffa and Salmon
(1989). However, the question is how relevant such
tendency is with respect to correcting “‘realistic”’ ocean
models. Because of the great deal of higher physics in-
cluded in more realistic ocean models, it is hard to
foresee what effects any change in parameterization
will have. In fact, a number of colleagues who are in-
volved in executing large ocean models have expressed
interest to test the effects of including a Neptune effect
parameterization. Some steps have been taken toward
specific implementations. Outcomes are not yet in
hand, though, and it should not be the place here to
presage those colleagues’ results.

Let us, however, indulge in some brief speculation
in advance of the tests. Although it is difficult to foresee
how complicated models will respond to any revised
tendency terms in the models, what we can easily do
is simply look at the equilibrium flows. Figure 1 shows
u* for the case of the extensively observed, extensively
modeled North Atlantic. It should be borne in mind
that Fig. 1 takes no account of such influences as wind,
sun, or rain. Rather, Fig. 1 shows the state to which
the SGS acting alone would draw an ocean model. The
practical question is whether Fig. 1 is more or less
plausible than the state of rest in terms of SGS ten-
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FIG. 1. Unprejudiced circulation is shown for the North Atlantic. Although overall magnitude of the flow depends
upon uncertain length scales A [cf. (10)] or L’ [cf. (11)], the relative strengths of flows may be seen.

dency. That is, would appending a tendency toward
Fig. 1 help ocean models work better?

The motion field shown in Fig. 1 should be regarded
as nearly depth independent. The calculation from
gridded 5’ topography (dataset “ETOPOS5”) has been
subsampled to produce this figure, and the vector field
is not otherwise smoothed. Thus, apparent “noise” in
the vector field should be ignored. An impression at
larger scales is all that is intended. If one sought to
interpret smaller scales, (1) more care would be needed
in data presentation, and (ii) depth trapping due to
stratification would need to be considered. For the
present we ask only: Does the big picture “make sense”?
If yes, then successive refinements are invited.

The lengths of vectors in Fig. 1 indicate relative flow
strengths. Because of dependence upon length scale L,
absolute magnitudes are not assigned. Speeds from a
few to a few tens of centimeters per second would result
from plausible L. It should be borne in mind that

Fig. 1 depicts a part of a tendency term rather than the
prediction of flows per se.

What about Fig. 1? At once we notice that the Gulf
Stream is going the wrong way. However, the Gulf
Stream is usually understood—with some skill—to be
an aspect of the directly forced, wind-driven ocean cir-
culation. More quantitative details have depended
upon numerical modeling. Without identifying partic-
ular model calculations that get particular details “more
right” or “more wrong,” I believe it is the case that
realistically forced primitive equation ocean models
systematically corrupt the Gulf Stream, insofar as the
stream tends to hug the western margin to high latitudes
around the Grand Banks and Flemish Cap before sep-
arating. From the view of climate interactions, con-
sequences are bad indeed as the ocean models expose
very warm water in regions where an atmospheric
model should not expect such conditions. So, what is
wrong? Any number of things can be “fiddled.” Wind
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fields or surface buoyancy flux fields may need to be
adjusted. Maybe eddy viscosities are not right. Inevi-
tably, higher resolution is suggested. Yet it is difficult
to see that great progress in the ““separation problem™
has resulted to date. (Ultimately we should imagine
that sufficient resolution will get things right, but we
cannot say how much more resolution will be sufficient.
It can be remarked that in limited-area models with
prescribed inflow / outflow conditions, the situation can
be corrected, for example, by imposing a sufficiently
strong southward undercurrent.) Figure 1 suggests an-
other approach: forcing the model by the difference
between modeled flow and Fig. 1. Will that “work™?
It should just have to be tried to see. Plausibly a swift,
narrow force “in the face” of the Gulf Stream may
likely “trip” the stream.

A further manifestation of the Gulf Stream problem
is that models appear not to develop adequate slope
water penetration. This is the colder, fresher water that
advances southward along the shelf break /upper slope
region of the New England margin. Again it seems
likely that the missing Neptune effect may account for
this weakness of penetration. Corresponding defects
are seen in Pacific Ocean models for which the north-
ward Kuroshio penetrates too far against a weak
Oyashio, whereas the Neptune effect should strengthen
the Oyashio. From the view of ocean-atmosphere cli-
mate modeling, even minor infidelities affecting the
Kuroshio-Oyashio confluence can have major impacts
on heat exchange.

At greater depth in the North Atlantic, one observes
equatorward flow along the western boundary (Hogg
1983). This may be due to high-latitude sinking con-
tributing to global thermohaline circulation in the
manner expected by Stommel and Aarons (1960). The
problem again is to get the numbers “right” from large
numerical models. Even when deep waters are being
formed in the higher North Atlantic/Greenland-Nor-
wegian Sea, the pathway for that water to enter the
global ocean circulation appears to be ineffective in the
models. Consequences of this defect can be seen in
weak penetrations of transient tracers (C'4, freons) and
global errors in middle-to-deep oxygen/phosphate ra-
tios due to poor development of North Atlantic Deep
Water. This raises a further concern. Although we un-
derstand that deep sinking at high latitude may drive
equatorward flow along western boundaries, how much
is such sinking the cause of the western boundary flows
and how much is sinking only a way to “paint” prop-
erty signatures onto a flow that would be there anyway?
How much are the observed flows actually falling under
a gravity head versus how much are high-latitude
properties being scavenged?

At the eastern margin of the North Atlantic we ob-
serve poleward flow, a feature ubiquitous in eastern
" boundary undercurrents (Neshyba et al. 1989). A host
of explanations have been offered concerning these
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ubiquitous features. To that host we add the Neptune
effect. Models, within their bounds of resolution, may
tend to get the poleward flow in the right direction at
higher latitudes, but often mistake the sense of sub-
surface flow on the eastern limb of subtropical gyres.
This happens in the North Atlantic off northwest Af-
rica. Moreover, where model flows do obtain the right
sense, transports often are too weak. In part this surely
depends upon resolution. However, with respect to ba-
sin-scale geochemical budgets, results can be seriously
afflicted. It may be encouraging that, by “correcting”
the streamfunctions at (11) or (12), models could more
nearly get eastern boundary transports “right” even
when resolution is much too coarse to detect the to-
pography of the continental margin. Of course this
speculation, like those previously mentioned, must re-
main just as speculation awaiting actual modeling ex-
perience.

Two further remarks might be made from Fig. 1.
Although the figure tends to be dominated (realisti-
cally?) by strong flows on continental margins while
the abyssal flows are less clear (in part from discrete
sampling), there is a tendency in each abyssal basin
for flow of a cyclonic sense. Second, a poleward ten-
dency over the western flank of the Mid-Atlantic Ridge
should play some role in guiding property transports
associated with Antarctic Bottom Water penetration.

When one’s theory of ocean circulation is so sim-
ple—and cheap!—as at (11) or (12), one can readily
go anywhere in the World Ocean to prepare figures
such as Fig. 1 at computational cost no more than the
cost of rendering the graphics. Consideration for page
space dissuades here printing the Whole World Ocean
according to Max (entropy). Let us only append some
brief comments. Among eastern boundary undercur-
rents that sometimes prove troublesome for large-scale
ocean models are (1) the California Undercurrent, (it)
poleward flow off southwest Africa, and (iii) the pole-
ward Chilean Undercurrent.

With regard to western boundary currents, attention
can be given to the western rim of the Argentine Basin
insofar as one observes the northward entrance of Ant-
arctic Bottom Water, whereas numerical models may
suggest a less effective spreading of this water mass.

Two regions that bear special remark are a) the Ant-
arctic, where it may yet be an observational question
of how much flow over the continental margin tends
westward, and b) the Arctic. The high Arctic tends to
be dominated by polar high pressure as exhibited also
in anticyclonic rotation of the ice pack. Model studies
tend to carry this anticyclonic forcing into a general
tendency toward anticyclonic circulation, particularly
within the Canada Basin. Observations are sparse.
However, a weight of indirect inference plus some di-
rect observations (Aagaard 1981, 1989) point toward
cyclonic circulation around the peripheries of both the
Canadian and Eurasian basins, with a transpolar flow
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along the Lomonosov Ridge in just the manner one
anticipates from the Neptune effect.

A final remark about circulations concerns lakes.
There are extensive observations, lore, and explanatory
literature that address the tendency for larger lakes in
the Northern Hemisphere to exhibit cyclonic circula-
tion (Emery and Csanady 1973; Wunsch 1973). Of
course, smaller and shallower lakes will respond more
directly to applied forcing. However, to the extent that
a background cyclonic tendency is exhibited, one nat-
urally anticipates the Neptune effect just as soon as
any dynamical system exhibits more than a few degrees
of freedom that are not simply “slaves” to direct forc-
ing/dissipation.

7. Secondary circulation, upwelling

There is an aside, mentioned by H87, recalled here.
Theoretical underpinnings for the Neptune effect have
been obtained under quasigeostrophy, extended in ad
hoc fashion to circumstances that do not meet the qua-
sigeostrophic idealization. To the extent that one might
incur small “corrections” to quasigeostrophic results,
this may not be so dangerous. However, one aspect of
special consequence as regards climate or marine pro-
ductivity issues is a tendency toward up/downwelling
at continental margins. This ageostrophic flow is linked
to the larger-scale, quasigeostrophic flow. What we have
seen is that the ocean “tries” to organize itself with a
sense of cyclonic circulation around the basin periph-
eries. Indeed, among the historical “rules” of ocean
circulation is a dictum that in the Northern Hemi-
sphere flow is parallel to the coast with land on the
right side of an observer facing downstream (Bigelow
1927, Huntsman 1924; Iselin 1955). What are the
consequences of such flow in terms of vertical recir-
culation?

To whatever extent approximate geostrophy holds,
this will tend to inhibit mean on/offshore motion in
the middepth water column, insofar as mean on/off-
shore flows imply significant longshore pressure gra-
dient. As well, longshore wind stress, driving on/off-
shore surface Ekman transport, plays its role in coastal
up/downwelling. Both the longshore pressure gradient
and the wind stress can be of either sign, without ap-
parently favoring either onshore or offshore flow.

What about Ekman transport near the benthic
boundary? If large-scale flows exhibit cyclonic (Nep-
tune) sense around basin perimeters, benthic Ekman
transport is offshore. A preferred sense of transport is
established. As the deeper water column usually ex-
hibits the highest nutrient burden, this transport is of
the sign to tend to exhaust the coastal ocean of nu-
trients. (In the Arctic, this also affects the shelf-zone
ice budgets that depend upon heat and salt from At-
lantic layer water that occurs below shelf-break depth.)
If upwelling favorable winds drive surface Ekman
transport offshore, this aggravates the problem of set-
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ting up a compensating onshore mean flow at mid-
depth. The Neptune effect appears to get us in trouble
here, flying in the face of the manifest productivity of
coastal oceans (and of Arctic ice climatology).

On the contrary, it may be just the Neptune effect
that resolves the seeming dilemma. The topographic
stress (1) is given by pVH. Integrating by parts, the
stress is reexpressed as —HVp while the total force
includes contributions from pH evaluated along the
boundaries of the domain of integration. Defining
longshore coordinate x and offshore coordinate y with
velocity components # and v, a tendency toward geo-
strophic balance will tend to yield fv = d,p. The remark
is that we expect (averaged over a long time) a positive
correlation between v and d,p. With H increasing in
the positive y (offshore) direction, and /> 0, we expect
the stress (1) to accelerate flow in the positive x direc-
tion, hence Had,p < 0, hence Hv < 0. That is, there
would appear to be a net onshore volume transport.
Whereas frictional effects in benthic Ekman transport
suggested a preferred offshore sense, here we find a
preferred onshore sense. Moreover, the onshore volume
transport is not supported by motions at middepth,
since mean v at middepths should, by geostrophy, im-
ply mean longshore pressure gradient. Whether there
is a longshore pressure gradient (and of what sign) will
be determined by a myriad of forcings. However,
deeper in the water column, pressure gradients may be
supported against topographic features so that little or
no overall longshore pressure gradient accumulates
over larger longshore distance. In this way it is the
deeper water column that is forced onshore by Nep-
tune, tending to compensate offshore benthic Ekman
transport. While the sign of wind stress and of longshore
pressure gradient will vary for different coastlines at
different times, it appears that the topographic stress
contribution will be systematically of the sense to force
onshore flow in the deeper water column, upwelling
the nutrients (and Arctic heat and sait) to close the
dilemma set out previously.

The preceding argument has involved further leaps,
extending a theory obtained under quasigeostrophic
dynamics to address the ageostrophic secondary cir-
culation in coastal zone dynamics with large-amplitude
topography. These leaps are, I hope, plausibly moti-
vated. It may be that high-resolution 3D primitive
equation modeling and/or process-oriented field ob-
servations can be brought to bear in some more thor-
ough account. Certainly it is the case that observations
of nutrient-rich, oxygen-depleted waters near canyon
heads are at least consistent with the sense of Neptune
forcing as discussed previously. More thorough testing,
isolating different mechanisms, remains to be done.

8. Comments

A host of objections can, and should, be raised. It is
outside the mainstream of oceanography to bring in
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an idea like maximizing the system entropy. Casting
about for ad hoc variational principles, we could come
up with any number of hypotheses. However, we have
repeatedly considered the illustration of the box of
marbles in order to emphasize that maximizing entropy
is not some “foreign” idea. Tendency toward increasing
entropy is all around us, as our own existence is living
evidence. This tendency is powerful, so much so that
one might not be surprised when more conventional
(deterministic) ocean dynamics are simply over-
whelmed. A number of specific geophysical examples
are reviewed by Salmon (1982) or Holloway (1986a).

Nonetheless, the question arises if one cannot see
the results of previous sections from more familiar
points of view. For example, it was remarked previously
that asymmetric form drag in the presence of oscillatory
forcing can lead to rectified flow (Brink 1986; Haid-
vogel and Brink 1986; Samelson and Allen 1987).

What about potential vorticity mixing? At mid-
depths, maps of /N2 show regions of weak gradients
as well as regions with steep gradients (Keffer 1985).
Potential vorticity mixing can generate mean flow
(Rhines and Holland 1979) that may compensate
changes in bottom topography. However, this cannot
be done by altering just the stratification field because,
if one weakens potential vorticity gradients in some
depth range, they will usually be strengthened in an-
other depth range. To remove the topographic “signal”
one is obliged to resort to the relative vorticity contri-
bution. Can that do the job? Depth changes 6H / H are
order unity, implying mean-flow Rossby numbers U/
fL of order unity. Although such mean-flow Rossby
numbers can occur in very small and special areas, the
O(1) depth changes 6H/H cover scales from tens of
kilometers to basin scale. To obtain mean Rossby
numbers of order unity over such broad areas would
require mean flows of order 10 m s™! or more over
large regions. The ocean is not remotely so energetic.
One may remark, however, that a tendency toward po-
tential vorticity mixing has the same sense as the un-
prejudiced circulation.

A related hypothesis, advanced by Bretherton and
Haidvogel (1976), is based upon selective decay of po-
tential enstrophy 1 (¢ + /)? relative to decay of energy
1|Vy|2. If dissipative processes remove enstrophy
more effectively than energy, the tendency is toward a
state of minimum enstrophy constrained by A(x, y)
and prescribed energy. The result is a unique, steady
flow given by (as — V)¢ = h. This is (10) except that
just the one Lagrange multiplier a3 appears due to the
energy constraint. In fact, «; is the limiting case of «; /
o, when enstrophy takes its minimum attainable value.
The minimum enstrophy solution is a special case of
the family of maximum entropy solutions. From a
utilitarian point of view, with either o5 or «,/ a, treated
as fudge factor, the motivation behind (10) could be
called ‘“academic.” On the side of fundamentals
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though, one could address the rapidity of approach to
maximum entropy relative to the time scale for selec-
tive decay, or that the maximum entropy mean flow
coexists with a vigorous transient eddy field whereas
the minimum enstrophy flow is the complete, steady
flow. However, since one ultimately appeals only to
tendency toward such conditions, this distinction may
not have much practical significance.

There are other mechanisms. In particular, rectified
tidal flows around banks are a consideration (Zim-
merman 1978; Loder 1980). A question occurs: How
much would those rectified flows be present even if the
tides were not? Benthic mixing on sloping boundaries
in a stratified, rotating fluid can force mean along-iso-
bath flow (Garrett 1990). This catalog of mechanisms
can be elaborated further. Sorting among the mecha-
nisms in terms of their relative efficacy and parameter
dependences will be an ongoing effort,

Quite another line of objection often arises. It can
be said, and rightly so, that statistical dynamics de-
scribes isolated systems, whereas the role of direct forc-
ing in ocean circulations is manifestly important. A
companion objection is raised on the side of infor-
mation theory: that the derivation of (10) is based upon
presumption of no knowledge about ocean circulation
apart from inviscid invariants of the motion. Of course,
the oceans are forced and we do know something about
that forcing. However, the present paper should not be
read as a proposal to ignore what we know about the
forcing of the oceans. Surely we should apply that
knowledge as best we can, for example, in the forcing
of ocean models. What the present paper says is that
we do not know what the subgrid-scale eddies are doing,.
Haphazardly, we can sweep up all the eddies and call
them eddy viscosity. Then we unwittingly conjecture
that eddies try to drag flows toward a state of rest. De-
monstrably, this is just not so. On the other hand, a
complete account of what the eddies are doing is not
available to our present understanding. Attempting to
overcome in part this limitation, we have turned to
statistical dynamics/information theory to ask in what
“direction” eddies should tend to drag the flows. The
answer we get is certainly “fuzzy”; clearly we are taking
one step to be succeeded by steps to come as we refine
our sense of direction. However, lacking courage to
explore these steps is tantamount to a positive assertion
on the side of eddy viscosity, that is, asserting that ed-
dies move flows toward rest.

9. Summary

It is clear that eddy-topography interaction can, in
principle, cause enormous, systematic forces to act in
the ocean. The reality is not so clear. However, these
forces (of whatever strength) are represented haphaz-
ardly if at all by large-scale ocean models. Finer eddy
resolution is expected to help, though how fine the res-
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olution and at what computational burden remain
open questions. The statistical dynamical problem has
been considered under idealized circumstances, while
the extension from idealized theory to practical appli-
cation involves a number of dangerous leaps. It does
appear that a number of systematic defects in large-
scale model output are of a sense such that correction
for eddy-topography interaction may significantly im-
prove the output. But large-scale ocean models are
complicated, and guessing the response to any change
invites speculation. It is hoped that the material set out
here will provide motivation to experiment with these
Neptune parameterizations.
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APPENDIX

Equation (10) was obtained by Salmon et al. (1976).
That original derivation can be seen as complicated
(but also more comprehensive than the calculation that
follows). It has been suggested that the following brief
calculation may provide a useful view of (10). See also
Salmon (1982).

Consider (6) within a closed domain (or other simple
domain such as a reentrant channel). Define eigen-
functions V¢, + q2¢, = 0 with ¢, satisfying the
boundary conditions. Expand ¥ = 2¢,(t)¢, and h
= Y h,¢,. Conserved quadratics (7) and (8) are given
by E= $Z qil¥nl*and Q@ = $Z| — git, + hal*
Motion in the phase space defined by {{,} satisfies
the Liouville property 2 3(34,)/ 3¢, = O where 9, is
obtained from (6). It remains to seek the maximum
of entropy S = ~ [ dY plogp subject to ( E) = E, {(Q)
= Qo and (1) = 1 where angle braces denote expec-
tation and the third condition assures normalization
of the probability p. Introducing Lagrange multipliers
ay, a,, and u to meet the three constraints, set

8 de(plogp +a1Ep+ axQp + up) =0,

hence
10gp+ 1 +C¥|E+a29+[.l.=0
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or
p=exp{—1—pu}exp{—a;E — a2}
exp{—1 = p} exp{— 2 {gi(a: + az:g7)|¥nl?
— 200q5 Reynhy + 02| hy1?}}
{exp{—1 — p} exp{— 2 {2 — adqi/
(ar + g3) } Bl *}
X exp{—2 {qala; + a2g7)|¥n — ¥ul®}
=T exp{—2 {gi(o + c2q?)|¥n — ¥ul?},

where ¥,, = aoh,/ (o + azq?) and Lagrange multiplier
« has been absorbed into the normalization coefficient
I'. Then {Y,,) = ¥,. From ¥, and the definitions of
eigenfunctions ¢,, one has (a,/a, — V*){¢) = A, that
is, (10).

Note added in proof: Since this paper was accepted for publication,
on-going discussions with colleagues have continued to raise impor-
tant issues. I'm grateful to Paola Cessi and Bill Young for their concern
that entropy maximization should be constrained by more than just
energy (7 ) and enstrophy (8 ) preservation. In fact the ideal dynamics
(6) should preserve any function of { + A, integrated over the domain,
although discrete representation destroys most of these invariants.
Nevertheless, circulation [ dA{ is an invariant of particular interest
which is violated by the Neptune parameterization suggested here.
It is not clear what to do about this, apart from flagging the question
as caution to reader. My speculation is that circulation will be much
influenced by processes near, and inshore of| the shelf break region,
and not of principle concern for the present paper. Based only on
simplicity, | have been inclined to overlook this issue for the present
purpose; it should remain a concern though.

Secondly, Michael Eby has further explored tests (to be reported)
of the proposed parameterization. In the course of these tests, it has
become clear that adopting a velocity streamfunction interpretation
of ¥ is not compelled (in actual numerical models) on the basis of
avoiding singular | u| = | Vy/| / H for vanishing H. Adopting a transport
streamfunction interpretation, replacing (12) by * = —fL2H, may
yield superior model results.

il

il
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