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[1] Previously, studies on the dynamic structure of the spectrum in the wave development
process have considered only the physical mechanism of the transmission of energy from
wind to wave or have considered purely mathematical methodologies. Few studies have
examined the statistical mechanism of the dynamic relationship between sea surface
movement, wind motion, and the time-varying spectrum of the sea surface movement. In
the present paper, we investigate the statistical structure of the sea surface movement
and the wind motion in developing wind waves and propose a spectral model to estimate
the time-varying spectral density function. The validity of the proposed model is
demonstrated through numerical experiments to evaluate the forecasting accuracy. The
proposed model is used to examine the degree of the influence by wind motion, which
affects the spectral density function. In the present study, we analyzed the time series
record in the wave development process measured in Uchiura (Funka) Bay, Hokkaido,
Japan. The basic results are summarized as follows: (1) the nonstationary statistical
structure presented herein yields one of the effective classes by which to explain the
dynamic mechanism between the time-varying spectral density function of sea surface
movement and wind motion, and (2) in our numerical experiments the spectral model
allowed effective forecasting, especially in the case of high wind speed. INDEX TERMS:

4263 Oceanography: General: Ocean prediction; 4203 Oceanography: General: Analytical modeling; 3210

Mathematical Geophysics: Modeling; KEYWORDS: wave spectrum, wave development process, forecasting,
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1. Introduction

[2] Numerous studies concerning the dynamic mecha-
nism of the spectrum of the sea surface movement in the
wave development process have been based on the physical
structure of energy transmission from wind to wave. Such
studies are based on the research of Phillips and Miles [e.g.,
see Phillips, 1957; Miles, 1957]. In the present paper, our
primary interest is the statistical mechanism explaining how
wind motion affects the spectral density function in the
above mentioned situation. Here, we must consider the
relationship among wind motion, sea surface movement,
and the dynamic change of the spectral density function.
Our goal in the present paper is to propose a statistical
model to forecast the change of the time-varying spectral

density function in the wave developing process. In addi-
tion, by applying the proposed model, we analyze the
influence of wind forcing upon the dynamic spectrum in
this process.
[3] When we estimate the spectral density function of the

sea surface movement, we often use a nonparametric
method such as Periodgram or the Blackman-Tukey method
[e.g., see Priestley, 1981]. Such methods have an advantage
in that they can estimate the spectral density function
without assuming any time series models for the measured
data. However, forecasting the change in the spectral
density is necessary, the above methods of estimation are
not applicable, because they contain no time-varying com-
ponents. However, considering a method which is based on
a parametric model allows better accuracies for both esti-
mation and forecasting, because such a model can take
physical factors (e.g., wind direction and speed) into con-
sideration. Therefore we develop a parametric model to
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estimate and forecast the change of the time-varying spec-
tral density function.
[4] The present paper proceeds as follows. In the next

section, we describe the physical background regarding the
area of sea investigated and the method of measurement and
measured data set used in the present analyses. In section 3,
we propose a nonstationary spectral model to forecast the
time-varying spectral density function in the wave devel-
opment process. In order to examine the validity of the
proposed model, we evaluate the forecasting performance
via numerical experiments. The results and analyses thereof
are presented in section 4. The final section presents the
conclusions of the present study.

2. Physical Backgrounds of the Sea Surface
Movement Generated in Funka Bay

[5] In this section, we describe the background of the area
of sea investigated in the present study. In the present paper,
we analyze the sea surface movement of Uchiura Bay (in
the following, we use the common name, Funka Bay),
Hokkaido, Japan. Figure 1 shows a map of Funka Bay.
Basic research has revealed that in winter, strong seasonal
wind blows frequently from the northwest. As a result, the
development of wind waves is highly probable. We intend
to investigate the dynamic relationship of this phenomenon.
However, the dynamic relationship between wind motion
and the development of waves is complicated. Our research
began from the on-the-spot investigation of sea surface
motion and wind motion. For the present investigation,
we used the instruments of the Ushio-Maru, the training
ship of Hokkaido University. We measured observations of
the sea surface movement using a microwave-type wave
height meter, and the changes in wind direction and speed at

a height of approximately 15 meters from the sea surface
were measured using an ultrasonic anemometer. The obser-
vations were recorded as analog signals which were digi-
tized via A/D (Analog/Digital) transformation, where the
time interval of sampling was 0.2 s.
[6] Figure 2 shows an example of the time series records

obtained in the above mentioned measurement, when waves
were developing in this bay. These records were recorded
on 2 December 1999 at the sampling point 42�170N and
140�400E. From the top, the changes in the relative
sea surface level (m), wind direction (deg.) and wind speed
(m/s) are shown. Here, the origin of the sea surface level is
the mean level recorded over the past 10 min. In addition,
the origin of the wind direction corresponds to true north,
and a positive value indicates the eastward direction. The
total time interval of this measurement was 90 min and the
sample size was 27000. First, let us examine the wind
motion. The wind direction changes from 260 deg.
to 330 deg., roughly, with a short-term oscillation of
2 � 3 min. Using a map of the area around Hokkaido,
the fetches in the above two wind directions are estimated as
17.2 miles and 19.4 miles, respectively. From the chart of
wave hindcasting based on Wilson’s Type IV, we deter-
mined that the difference between the energies of the waves
generated under these fetches is insufficient, under the

Figure 1. Map of Funka Bay and location of the sampling
point.

Figure 2. Time series records measured in Funka-Bay:
(a) relative sea surface level (m), (b) wind direction (deg.),
and (c) wind speed (m/s).
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condition that the wind speed is constant. Hence the records
shown in Figure 2 can be regarded as an aspect of the
development of the wind wave, under the situation that the
fetch is almost constant. The sampling point is located at
approximately the center of this bay, and the flow of wind
over the fetch passes over the sampling point (see Figure 1).
Furthermore, confirmation by topographicalmap ensures that
no geographical obstacles to the flow of air by wind exist
(e.g., mountains) around the fetch. Therefore we can regard
these records as observations in the pure wave development
process. Next, we focus on the change of relative sea surface
level. Over a period of 90min, the amplitude of the sea surface
movement increases almost monotonously from 0.5meters to
2.0 meters, which confirms that this time series data shows an
aspect of the wave development process. For example, the
amplitude increase approximately 1.5 meters in the range
from t = 20000 to t = 25000. It this case, the amplitude
increases at the rate of 0.1m/min., and after 5 min, the
increment becomes 0.5 meters.

3. A Statistical Model for Forecasting the
Time-Varying Spectrum in the Wave
Development Process

[7] In this section, we present a statistical model by which
to forecast the change of the time-varying spectrum. First,
we investigate the statistical features of measured data for
the sea surface movement during the wave development.
Next, we present the basic concept of the spectral model
proposed herein. Finally, the parameter vector of this model
is considered so that wind motion is reflected in order to
improve forecasting accuracy.

3.1. Statistical Structure of the Sea Surface Movement
in the Developing Wind Wave and Estimation of the
Spectral Density Function

[8] In the following, as a preliminary analysis to consider
our spectral model, we investigate the statistical structure of
the sea surface movement in the wave development process.
We begin our analysis using short-term movement. Figure 3
illustrates an example of the time series record for 200 s
revealing the change in relative sea surface level shown in
Figure 2. Since neither the average level nor the amplitude

appear to change drastically over time, we regard this time
series to be stationary and estimate an autocorrelation
function and a partial autocorrelation function, which are
well-known methods for identifying a time series model by
Box and Jenkins’ [1970] approach. These functions are
shown in Figures 4a and 4b, respectively, in which dotted
lines indicate the limits of the confidence interval. As time
lag increases, the former result decays slowly and the latter
dumps rapidly. According to the identification procedure
proposed by Box and Jenkins, these features may suggest
the possibility that this time series, {Zt}, follows a stationary
autoregressive model

Zt ¼
Xq
j¼1

ajZt�j þ dt ð1Þ

where t is a discrete time parameter, q is the order, aj ( j =
1,. . .,q) are unknown constant parameters and dt is a random
variable which follows a white noise process with E(dt) = 0,
E(dtds) = 0(t 6¼ s) and E(dtds) = sd

2(t = s). In addition, the
theoretical spectral density function based on equation (1) is
given by [e.g., see Brockwell and Davis, 1991]

f lð Þ ¼ s2d
1þ a1e�i2pl þ 	 	 	 þ aqe�i2qpl
�� ��2 ð2Þ

where l is the frequency. If the assumption that equation (1)
is reasonable as a model of the sea surface movement is

Figure 3. An example of the short-term change in the sea
surface level (200 s).

Figure 4. (a) Autocorrelation function and (b) partial
autocorrelation function.
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valid, then equations (1) and (2) hold. However, since we do
not know the true model of the movement, equation (2)
should be examined in order to determine whether this
function is reasonable as the spectral density function of the
sea surface movement in this aspect. Therefore, using N
samples {Z1,. . .,ZN}, let us investigate the degree of
agreement between the estimator of f (l) (denoted as f̂ (l))
and the nonparametric estimator by the Blackman-Tukey
method

P̂ lð Þ ¼
XN�1

k¼�Nþ1

w kð ÞĈ kð Þe�i2pkl ð3Þ

where Ĉ(k) = 1/N�t = k+1
N (Zt ��Z)(Zt-k ��Z ), �Z = 1/N�t = 1

N Zt,
and w(k) is a window function. For the window function
w(k), we use Hanning window (i.e., w�1 = w1 = 0.25,
w0 = 0.5). The construction of f̂ (l) will be described in the
next subsection. An example of estimations of f̂ (l) and
P̂(l) obtained using the time series data of Figure 3 is
shown in Figure 5, where the asterisk indicates P̂(l) and the
circle indicates f̂ (l). These estimations appear to be in
rather good agreement, which suggests that we can regard
equation (2) as a basic structure of the spectrum.
[9] The above result reveals the possibility that a linear

time series model (1) can be applied reasonably to explain
the sea surface movement for a few minutes. In other words,
this result indicates that the movement in this aspect does
not exhibit strong nonlinearity. However, whether equations
(1) and (2) can be applied to estimate the spectrum using the
measured data for 90 min is unclear. The physical property
of the wave motion in the wave development process can be
expected to change over time because of the supply of
energy by the wind. However, in contrast with this predic-
tion, the parameter of equation (1) is constant. Therefore
whether regarding this parameter as a constant is reasonable
must be investigated. First, let us investigate the relationship
between the estimated spectrum and the local time interval.
Figure 6 shows the overlay of estimated values by f̂ (l)
obtained at t = 24500 in Figure 2, under four conditions;
N = 500 (100 s), N = 1000 (200 s), N = 3000 (600 s) and
N = 10000 (2000 s). When N is relatively small, the
estimated spectrum is slightly different from the other
spectra with regard to dominant frequency and maximum

value. For example, when N = 500, the dominant frequency
is approximately 0.045 (which corresponds to a period of
4.4 s). Whereas when N = 10000, the dominant frequency is
approximately 0.05 (4 s). In addition, the maximum value of
the estimated spectrum for N = 500 is approximately half of
that estimated forN = 10000. From these results, the structure
of the spectrum in the wave development process is assumed
to change over time, and in this sense, the statistical structure
of the sea surface movement in this process has nonstatio-
narity, even for a short time interval, such as 5 min. Next, we
investigate whether the structure of spectrum changes over
the time point t. Figure 7 shows an overlay of estimates by
f̂ (l) obtained at different times. Figure 7a shows the change
in the spectrum for every 300 s, and Figure 7b shows that
for every 1000 s. Note here that the sample size N is 1000.
In Figure 7a, the estimated spectrum appears to change
unstably. Figure 7b indicates the following tendencies: 1)
the dominant frequency becomes smaller from 0.05 (4 s) to
0.045 (4.4 s), roughly. (2) The maximum value of the
estimated spectrum becomes larger(the spectrum changes
more than six times). On the basis of these results, the
stationarity of the sea surface movement in the wave
development process is not necessarily maintainable even
over a short time interval, such as 300 s.
[10] From the above observations, it is evaluated that the

autoregressive model is applicable to explain the sea surface
movement which generates under various conditions during
the wave developing process, by taking account of time-
varying structure on the parameter.

3.2. Basic Concept of the Spectral Model

[11] In this section, we present the basic concept of our
spectral model. Let {Xt} be the nonstationary process
followed by the sea surface movement. On the basis of
the results in the previous subsection, we assume that {Xt}
follows an autoregressive process with the pth-order time-
varying coefficients

Xt ¼
Xp
j¼1

bj;tXt�j þ et; ð4Þ

where bj,t ( j = 1,. . ., p) are unknown coefficients which
change over time t, and {et} is a white noise process with

Figure 5. An overlay of P̂(l) and f̂ (l)(asterisk, P̂(l);
circle, ~f (l)).

Figure 6. Relationship between f̂ (l) and the sample size
(N = 500, 1000, 3000, and 10,000).
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E(et) = 0, E(etes) = 0(t 6¼ s) and E(etes) = st
2(t = s), where st

2

is an unknown coefficient. The rates of change of the above
coefficients are expected to be slow. Therefore these
coefficients are assumed not to change significantly at any
time point over a certain time interval. In other words, we
regard bj,t and st

2 as constant for any t in the local time
interval [t � M + 1, t], where M is a positive constant. Note
here that the value of M is unknown, because this value
depends on the degree of nonstationarity of {Xt}. In the
following, we introduce another time parameter n, such that
n = k (k = 1,. . .,N ) corresponding to t = kM and focus on the
changes in the above parameters with respect to n. In
addition, the order p is unknown and is assumed to be
constant over t and n. The method used to select the values
of M and p will be shown later. From equation (4), the
theoretical spectral density function at the time parameter n
is given by

f l; nð Þ ¼ s2n
1þ b1;ne�i2pl þ 	 	 	 þ bp;ne�i2ppl
�� ��2 ð5Þ

Note here that for the estimation of parameters (b1,n,. . .,bp,n,
sn
2), we use M samples {Xt; t2 [(n � 1)M + 1, nM ]}. These

parameters are assumed to have correlations with one
another. For example, when b1,n changes significantly over

n, b2,n will follow the change, although a time delay may
exist. In other words, the following two possibilities exist
for the change of parameter: (1) when n is fixed,
{b1,n,. . .,bp,n} and sn

2 are correlated to one another, and
(2) the behavior of each parameter with respect to n has
significant autocorrelation. Taking these possibilities into
consideration, we explain the relationship among these
parameters via the following linear equations

bi;n ¼
Xp
j¼1

a
1ð Þ
ij bj;n�1 þ 	 	 	 þ

Xp
j¼1

a
Kð Þ
ij bj;n�K þ a

1ð Þ
i; pþ1s

2
n�1 þ 	 	 	

þ a
Kð Þ
i; pþ1s

2
n�K þ zi;n

for i = 1,. . .,p, and

s2n ¼
Xp
j¼1

a
1ð Þ
pþ1; jbj;n�1 þ 	 	 	 þ

Xp
j¼1

a
Kð Þ
pþ1; jbj;n�K þ a

1ð Þ
pþ1; pþ1s

2
n�1 þ 	 	 	

þ a
Kð Þ
pþ1; pþ1s

2
n�K þ zpþ1;n

where {aij
(k)}(i = 1,. . .,p + 1, j = 1,. . .,p, k = 1,. . .,K) are

unknown coefficients, zi,n(i = 1,. . .,p + 1) are random
variables which follow white noise processes with E(zi,n) =
0, E(zi,nzi,n) = si,i

2 and E(zi,nzj,n) = 0(i 6¼ j). These
relationships can be rewritten in the following form

b1;n

..

.

bp;n

s2n

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼
a

1ð Þ
ij

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

b1;n�1

..

.

bp;n�1

s2n�1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

þ 	 	 	

þ
a

Kð Þ
ij

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

b1;n�K

..

.

bp;n�K

s2n�K

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

þ

z1;n

..

.

zp;n

zpþ1;n

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

This suggests that the state of parameters at n is expressed
by a linear combination from the standpoints of frequency
and time. Here, we set the parameter vector Qn =
(b1,n,. . .,bp,n, sn

2)0 (where the symbol 0 indicates transposi-
tion). Then, the above relationship shows that Qn follows the
following multivariate autoregressive model of the Kth
order

Qn ¼ A1Qn�1 þ A2Qn�2 þ 	 	 	 þ AKQn�K þ Dn

Dn � WN 0;
P

ð Þ
ð6Þ

where {Ak = (aij
(k))} (k = 1,. . .,K ) are unknown coefficient

matrices and Dn = (z1,n,. . .,zp,n,zp+1,n)
0 is the white noise

vector satisfying E(Dn) = 0 and E(DnDn
0) = diag

(s1,1
2 ,. . .,sp+1, p+1

2 ). The method used to select K will be
described later.

Figure 7. Change in the spectrum for each fixed time
interval: (a) 300 s and (b) 1000 s.
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[12] The identification of equation (6) requires estimation
of the unknown coefficient matrices A1,. . .,AK by numerical
calculation, after the value of K has been selected. When
{Ql;l = 1,. . .,n} has stationarity as a process with respect to
n, we can construct the Yule-Walker estimator for unknown
Ak, and the solution can be computed by applying Whittle’s
algorithm (see Appendix A). In order to forecast future
values Qn+ l (l = 1,. . .,L), we use a linear predictor ~Qn+ l,
which is defined by

~Qnþl ¼ ~A1znþl�1 þ ~A2znþl�2 þ 	 	 	 þ ~AKznþl�K ð7Þ

where zn+l-m = Qn+l-k (l � k), = ~Qn+ l-k (otherwise), and Ãi is
the estimator of a coefficient matrix. Using equation (7), we
can obtain values for {~bj,n+l} and ~sn+ l

2 by the calculation of
~Qn+1, . . .~Qn + L. Thus the predictor of f (l, n) at l steps ahead
can be defined as

~f l; nþ lð Þ ¼
~s2nþl

1þ ~b1;nþle
�i2pl þ 	 	 	 þ ~bp;nþle

�i2ppl
�� ��2 ð8Þ

[13] Finally, we show the method used to select the
unknown time interval M and the orders p and K; the
selection of which affects the forecast accuracy of ~Qn + l,
because the number of parameters to be estimated and the
number of samples to be used for estimation differ depend-
ing on their values. Therefore the accuracy of the estimation
of {Ai} may be negatively affected. We select these values
such that the sum of squared forecasting errors over the
frequency l, say S = S(p(l), K(l ), M(l )), given as

S ¼
Xn�l

j¼1

Z
l

f̂ l; j M lð Þj Þð
�

�~f l; jð j p lð Þ;K lð Þ;M lð Þ
��2

dl

is minimized for every forecast step l, where p(l ), K(l ) and
M(l ) are the values of p, K and M under l, respectively, f̂ (l,
jjM(l )) is the nonparametric estimator equation (3) and ~f (l,
j| p(l ), K(l ),M(l )) is the forecasted value by equation (8) for
the given values of p (l ), K(l ) and M(l ). Note here that the
values estimated by f̂ (l, j|M(l )) are obtained using the data
{Xt;t2[( j � 1)M(l ) + 1, jM(l )]}.

3.3. Dynamic Structure of the Parameter Taking
Into Account Wind Motion

[14] At this stage, our model does not have the statistical
structure needed in order to explain the affect of wind
motion on the spectrum. In the following, we consider the
structure of the parameter vector so that the proposed model
can forecast future changes in the spectral density function
by taking into account the wind direction and wind speed.
[15] The behaviors of Qn = (b1,n,. . .,bp,n,sn

2)0 are explained
by the wind motion and the time histories of the parameter
vector. For this purpose, we investigate the behaviors of
parameters with respect to n, and the relationship between
these behaviors and the wind motion. First, we look at the
behaviors of estimated parameter values, obtained by piece-
wise estimation. Figures 8a and 8b show an example of the
behavior of the estimated values of sn

2 and b1,n (denoted as
ŝn
2 and b̂1,n), respectively, when an autoregressive model of

the second order is fitted to the sea surface data shown in

Figure 2. In order to obtain these series, we fix the value of the
local time interval M as 500 (100 s) and then fit equation (1)
to the time series data obtained by updating the series after
every 200 samples (40 s). In Figure 8a, ŝn

2 has a clear
tendency to increase and therefore it has a nonstationary
statistical structure. In equation (5), we interpret sn

2 as a
parameter which affects the magnitude of the spectrum. This
increase is assumed to be due to the supply of energy supplied
by wind forcing. Similarly, Figure 8b indicates that the
behavior of b̂1,n also exhibits nonstationarity with respect to
n, because clear change is evident in the tendency of this
behavior. bj,n affects the dominant frequency and the change
is also caused by the wave development. Therefore the
change in the wind direction and speed, WDn and WSn,
should be accounted for in order to explain the behaviors of
bj,n and sn

2.
[16] Next, we consider the method used to forecast the

change in these parameters. On the basis of the above
results, the model equation (6) cannot be applied directly
to the change of Qn, because these vectors exhibit non-
stationarity. Thus, according to the Box-Jenkins approach,
rather than focusing on Qn, we focus on the differenced
series,r Qn = Qn � Qn�1. In order to investigate the response
structure between wind motion and {r Qn}, we use a cross-
correlation function. Figures 9a and 9b show an example of
cross-correlation functions between (1) {rb̂1,n} and
{rŴSn} and (2) {rŝn

2} and {rŴDn}, respectively. Note

Figure 8. Behaviors of estimates: (a) ŝn
2 and (b) b̂1,n.
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here that for {rŴSn} and {rŴDn}, we used the mean value
over the past 100 s. From these figures, significant correlation
is found to exist between wind motion and behavior of
parameters. Notably, both the wind direction and speed
respond to the change in the parameter, after a delay of
approximately 200 s (which corresponds to Lag = 5), which
supports the hypothesis that the forecasting accuracy using
the time series model equation (6) can be improved by
including {rWSn} and {rWDn}. On the basis of the above
results, we define the extended state vector as

Qn ¼ rWDn;rWSn; rbj;n; j ¼ 1; . . . ; p
 �

;rs2n
� �0 ð9Þ

and assume that this vector satisfies the multivariate auto-
regressive model equation (6).

4. Validity of the Model From the Standpoint of
Forecasting Accuracy: A Case Study

[17] Examining the validity of the proposed model
requires evaluation of the forecasting accuracy of the
spectral density function. From the results in subsection
3.1, we determined that the stationarity of the sea surface
movement does not hold, even in the time interval of 5 min.

In the following case study, we investigate the feature in
forecasting the change in the spectrum over 5 min. First, we
show an example of multistep forecasting of the time-
varying spectral density function in the wave development
process. We then evaluate the forecasting performance of
this model by numerical experiments.

4.1. An Example of Forecasting the Time-Varying
Spectrum

[18] First, examples of bird’s eye views of the estimated
spectrum and the forecasted spectrum up to 10 steps ahead
(in which one step corresponds to 40 s) are shown in
Figures 10a and 10b. Figure 10a shows estimates of the
time-varying spectral density function obtained using mea-
sured data and Figure 10b shows the result of forecasting
using the proposed model. Note that the method used to
estimate the spectrum is defined in the next subsection.
Both results appear to have the following tendencies: (1) the
maximum value of the spectrum becomes larger with each
forecasting step and in both figures generally increases. This
occurs because the wave energy increases in the wave
development process because of the supply of wind energy:
(2) the dominant frequency gradually becomes smaller.
Although, the dominant frequency of the forecasted spec-
trum also changes with the same tendency as that described
above, the forecasted spectrum is slightly larger than that of

Figure 9. Cross-correlation function: (a) {rb̂1,n} and
{rŴSn} and (b) {rŝn

2} and {rŴDn}.

Figure 10. Bird’s eye views of the change in the time-
varying spectrum: (a) estimates and (b) forecasts.
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the estimated spectrum. This is because the wave period
becomes longer as the wave develops.

4.2. Numerical Experiment on to Examine Forecasting
Accuracy

[19] When we forecast the change in the dynamic spec-
trum, the forecasting accuracy may change depending on
the time at which forecasting starts. Therefore investigation
as to whether our model can generally provide good
forecasting accuracies is necessary. This analysis is per-
formed via numerical experiments. In our experiments, we
compare the forecasting performance numerically among

the several methods which are expected to yield reasonable
forecasts.
[20] The numerical experiment is conducted as follows.

In the first stage, we randomly select a time t = T0, and then
obtain the forecasted spectral density function at t = T0 +
TsL (L = 1,. . .,10), where Ts is a constant time interval. In the
following experiments, we fix the value of Ts as 200, such
that one step corresponds to 40s. For the comparison of
performance, we define the following predictors:
[21] (A) Examination as to whether our assumption that

the sea surface movement in the wave development process
has nonstationarity is reasonable is necessary. We therefore
define

~fA l; nþ lð Þ ¼ f̂L l; nð Þ

where n is the discrete time parameter introduced in
subsection 3.2 and f̂ L(l, n) is defined by the nonparametric
estimator equation (3). In order to estimate f̂ L(l, n), we use
the time series data in the local time interval, {Xt;t 2
[(n� 1)M(l ) + 1, nM(l )]}. Note here that the value of M(l )
is optimized by minimizing S, as defined in subsection 3.2.
If the statistical structure of the sea surface movement in the
wave development process maintains stationarity, then this
predictor gives the best performance.
[22] (B) In addition, investigation of the contribution to

the effective forecasting of the spectrum due to the wind is
necessary. We therefore define another predictor ~f B(l, n + l )
using the method presented in subsection 3.2. Here, the state
vector is defined as Qn = (b1,n,. . .,bp,n,sn

2)0, which indicates
that the behaviors of the time-varying parameters are
independent of wind direction and speed. If no large differ-

Figure 11. Performances of the three predictors:
(a) SSE(L), (b) SME(L), and (c) SFE(L).

Table 1. Distribution of R for Each Class of Wind Speed

Wind Speed R

10�11 m/s 605
11�12 m/s 614
12�13 m/s 1189
13�14 m/s 2227
14�15 m/s 865

Total 5500

Figure 12. SSE(L) given by the three predictors: green,
~f A(l, n + l ); blue, ~f B(l, n + l ); and pink, ~f C (l, n + l ).

Table 2. Mean Value of SSE(L) Over 10 Steps for Each Class of

Wind Speed

Class 10�11 m/s 11�12 m/s 12�13 m/s 13�14 m/s 14�15 m/s

�rAC(1/�rAC) 1.71(0.58) 2.18(0.46) 1.93(0.52) 2.90(0.35) 3.24(0.31)

�rAB(1/�rAB) 1.70(0.59) 2.06(0.49) 1.67(0.60) 2.42(0.41) 2.38(0.42)

�rBC(1/�rBC) 1.01(0.99) 1.07(0.93) 1.15(0.87) 1.20(0.84) 1.39(0.72)
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ences in forecasting performances exist between ~f B(l, n + l )
and that of the method presented in subsection 3.3, ~f C (l,
n + l), the change in the wind is judged to provide no
contribution to the improvement of forecasting accuracy.

[23] In the second stage, we evaluate the accuracy of the
forecasted spectrum. Here, several criteria must be defined
in order to evaluate the forecasting performance. One
criterion is the sum of squared errors:

SSE Lð Þ ¼ 1

R

XR
k¼1

Z
l

~g kð Þ
h

l; T0 þ TsLð Þ � ĝ
kð Þ
L : l; T0 þ TsLð Þ

i2
dl;

L ¼ 1; . . . ; 10

where L is the forecast step, k is the experimental time,
ĝL
(k)(l, T0 + TsL) is the estimate of the spectral density

function which has been estimated locally at t = T0 + TsL
using the nonparametric estimator equation (3), and ĝ(k)(l,
n + l) is the forecasted spectrum at the same time point,
using the above predictors. Note that, for the estimation of
ĝL

(k)(l, T0 + TsL), we used the measured data in the local
time interval [T0 + TsL � T *(L), T0 + TsL], where T *(L) is
the unknown local time interval at step L. The value of
T *(L) is determined such that the sum of squared residuals
after fitting equation (1) is minimized (see Appendix B).
SSE(L) evaluates the degree of difference between f̂ L

(k)(l, n
+ l ) and f̂ (k)(l, n + l ) over the frequency. However, the
maximum value and the dominant frequency of the
spectrum used to minimize SSE(l ) may not be optimized.
Therefore we define criteria by which to examine the degree
of agreement for the dominant frequency and the maximum
value of the spectral density function,

SFE Lð Þ ¼ 1

R

XR
k¼1

~l kð Þ
max T0 þ TsLð Þ

h
�l̂ kð Þ

L;max T0 þ TsLð Þ
i2

Figure 13. Cross-correlation functions for different cases
of mean wind speed: (a) {rb̂1,n} and {rŴSn} and (b)
{rŝn

2} and {rŴSn}.

Figure 14. SME(L) given by the three predictors: green,
~f A(l, n + l ); blue, ~f B(l, n + l ); and pink, ~f C (l, n + l ).

Table 3. Mean Value of SME(L) Over 10 Steps for Each Class of

Wind Speed

Class 10�11 m/s 11�12 m/s 12�13 m/s 13�14 m/s 14�15 m/s

�rAC(1/�rAC) 2.00(0.50) 2.94(0.34) 2.20(0.46) 2.95(0.34) 3.13(0.32)

�rAB(1/�rAB) 2.01(0.50) 2.01(0.50) 1.45(0.69) 2.17(0.46) 2.17(0.46)

�rBC(1/�rBC) 1.01(0.99) 1.51(0.66) 1.45(0.69) 1.37(0.73) 1.47(0.68)

Figure 15. SFE(L) given by the three predictors: green,
~f A(l, n + l ); blue, ~f B(l, n + l ); and pink, ~f C (l, n + l).
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and

SME Lð Þ ¼ 1

R

XR
k¼1

max
l

~g kð Þ l; T0 þ TsLð Þ
� ��

�max
l

ĝ
kð Þ
L l;T0 þ TsLð Þ

� ��2

where ~lmax
(k) (T0 + TsL) = arg maxl ~g(k)(l, T0 + TsL) and

l̂L,max
(k) (T0 + TsL) = arg maxl ~gL

(k)(l, T0 + TsL). The best
predictor is expected to yield the smallest values over all
forecasting steps.

4.3. Accuracy in Forecasting the Time-Varying
Spectrum Using the Spectral Model

4.3.1. Total Tendencies of SSE(L), SFE(L), and SME(L)
[24] We first consider the total tendencies in the changes

of SSE(L), SFE(L), and SME(L). Figures 11a–11c show the
changes in these criteria. Here, ‘‘Step’’ indicates the fore-
casting step l, and green, blue and pink lines correspond to
the results obtained by ~f A(l, n + l ), ~f B(l, n + l ), and ~f C (l,
n + l)), respectively. The number of repetitions R is 5500. In
addition, we set the maximum limit in the choice of orders p
and K as 8, so as not to give an excessive number of
parameters for estimation.
[25] From the above mentioned figures, we find that the

changes in SSE(L) and SME(L) have the following tenden-
cies: (1) these predictors increase as the forecasting step
increases (2) the values of these predictors as obtained by
~f B(l, n + l ) and ~f C (l, n + l ) are less than roughly 30�60
percent of the value given by ~f A(l, n + l ) and (3) the
value of the predictor as obtained by ~f C (l, n + l ) is roughly
70�90 percent of the value given by ~f B(l, n + l ). In
addition, SFE(L) generally has the same tendency as the
above two predictors, although the performance by ~f C (l,
n + l) changes unstably with respect to n to some extent.
Therefore we assume that the statistical structure of the sea
surface movement changes clearly, even over the short time
interval of approximately 400 s, because the class of
nonstationary statistical structure (i.e., ~f B(l, n + l) and
~f C (l, n + l)) becomes more reasonable for forecasting the
time-varying spectrum than the class based on the locally
stationarity (i.e., ~f A(l, n + l )). In particular, in SSE(L) and
SME(L), the difference between ~f A(l, n + l ) and the other
two predictors tends to become larger as the forecasting step
increases. This tendency can be interpreted such that the
nonstationary model structure based on equation (4) gives
one of the classes by which to express the change in the
statistical structure of the sea surface movement. In addi-
tion, equation (7) yields one of the effective predictors for
{Qn}, because the performance of multistep forecasting
becomes better than that of ~f A(l, n + l ). On the other hand,
from tendency 3, we find out that the predictor taking into
account the wind motion improves the performance. In
Figures 11a and 11b, we also find that the difference
between the performances of ~f B(l, n + l ) and ~f C (l, n + l )

becomes larger as the forecasting step increases, although
the difference is not as large as in the above case. On the
basis of these results, we conclude that the predictor given
by equation (7) becomes more effective in multistep fore-
casting by including the change in wind motion. We
interpret that the validity of the predictor equation (7)
indicates that the dynamic structure of this predictor can
explain the dynamic response structure between the wind
motion and the sea surface movement to some extent.
4.3.2. General Tendency in Forecasting the
Time-Varying Spectrum of the Sea Surface Movement
Generated Under Various Classes of Wind Speed
[26] We now evaluate the forecasting accuracy when the

above three predictors are applied to measured data of the sea
surface movement generated under various classes of wind
speed. In this case, the range of the distribution of wind speed
is 10m/s�15m/s. According to Beaufort scale, the following
three classes of wind speed, 10 m/s�11 m/s, 11 m/s�14 m/s
and 14 m/s�15 m/s, respectively belong to fresh breeze,
strong breeze and near gale, and physical properties of the
waves which are generated under these wind classes are
different with one another. However, since it is not neces-
sarily guaranteed that this classification is strictly reason-
able for our research sea area, in the following experiments,
we define a class of wind speed for every 1 m/s increment.
We grouped the numerical results of SSE(L), SFE(L), and
SME(L) as obtained in the previous experiment into five
classes according to the value of wind speed just before the
forecast start time. The distribution of the repetition time
R for each of the above mentioned classes is shown in
Table 1. For every class of wind speed, we obtained the
mean value of each criteria for use as a summary statistic.
[27] First, we examine SSE(L). Figure 12 shows the

performances of the three predictors for each class of wind
speed. In addition, as a summary statistic, the mean values
of the relative ratios, rAC (L) = SSEA(L)/SSEC (L), rAB(L) =
SSEA(L)/SSEB(L) and rBC (L) = SSEB(L)/SSEC (L), over 10
steps,

�rAC ¼ 1

10

X10
L¼1

rAC Lð Þ; �rAB ¼ 1

10

X10
L¼1

rAB Lð Þ;

�rBC ¼ 1

10

X10
L¼1

rBC Lð Þ

and their reciprocals are shown in Table 2. In Figure 12,
green, blue and pink lines correspond to the results
obtained using ~f A(l, n + l ), ~f B(l, n + l ) and ~f C (l, n + l ),
respectively. According to the results for 1/�rAC and 1/�rAB in
Table 2, the values of SSE(L) obtained by ~f B(l, n + l ) and
~f C (l, n + l ), which are based on the nonstationary
structure, give roughly 30�60 percent of that obtained by
~f A(l, n + l ), although the percentage varies with the class
of wind speed, suggesting that the nonstationary statistical
structure positively affects forecasting of the time-varying
spectrum for all classes of wind speed. In addition, the
result for �rBC shows that 1) in the classes of 10 m/s�12 m/s,
no significant difference in forecasting performance is
found between the predictors ~f B(l, n + l ) and ~f C (l, n + l ).
The values 1/�rBC for these classes are 0.99 and 0.94. 2) in
the classes of 12 m/s�15 m/s, ~f C (l, n + l ) gives better
performance than ~f B(l, n + l ), because SSE(L) obtained by
~f C (l, n + l ) is roughly 70�90 percent of that obtained by

Table 4. Mean Value of SFE(L) Over 10 Steps for Each Class of

Wind Speed

Class 10�11 m/s 11�12 m/s 12�13 m/s 13�14 m/s 14�15 m/s

�rAC(1/�rAC) 1.41(0.71) 1.26(0.79) 1.90(0.53) 2.30(0.44) 2.41(0.41)

�rAB(1/�rAB) 1.33(0.75) 1.05(0.95) 1.79(0.56) 1.58(0.63) 1.48(0.68)

�rBC(1/�rBC) 1.04(0.96) 1.21(0.83) 1.12(0.89) 1.45(0.69) 1.59(0.63)
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~f B (l, n + l ), and 3 ) the value of 1/�rBC becomes smaller. Thus
we find that ~f C (l, n + l ) becomes a more effective predictor
from the standpoint of SSE(L), as the wind speed increases.
[28] In order to examine why ~f C (l, n + l ) becomes

effective as the wind speed increases, let us once more
investigate the response structure between the parameter in
equation (4) and wind speed. Figures 13a and 13b display
the cross-correlation functions between (1) {rb̂1,n} and
{rŴSn} and (2) {rŝn

2} and {rŴSn}, respectively, for
different cases of wind speed. Here, triangles indicate
the estimated spectrum using the sea surface movement
generated under the mean wind speed of 8.9 m/s, and
circles indicate that using the movement under the mean
wind speed of 13.6 m/s. In both figures, we find that the
latter cross correlation takes larger values than that the
former cross correlation, indicating that, as the wind speed
increases, the wind motion has a stronger impact on the
change in the parameters in equation (4). Therefore, as the
wind speed increases, multistep forecasting of {Qn} using
the predictor equation (7) becomes more effective, and as a
result, ~f C (l, n + l ) yields better forecasting performance
than ~f A(l, n + l ) or ~f B(l, n + l ).
[29] Next, we focus on SME(L). Figure 14 shows the

change in SME(L) and Table 3 shows the results for �rAC,
�rAB and �rBC and their reciprocals. We can ensure that the
value of SME(L) obtained by ~f A(l, n + l ) tends to
increase as the wind speed increases, which indicates that
the magnitude of the spectral density function estimated
using measured sea surface data is increasing, because
~f A(l, n + l ) is constant over any l. Basically, the result
shows the same tendencies as SSE(L). According to Table
3, we find that the SME(L)’s obtained by ~f B(l, n + l ) and
~f C (l, n + l ) are roughly 30�70 percent of that obtained
by ~f A(l, n + l ). Furthermore, the SME(L) obtained by
~f C (l, n + l ) is roughly 60�70 percent of that obtained by
~f B(l, n + l ), although no large differences exist among the
three predictors for wind speeds of 10 m/s�12m/s.
In this case, �rBC is small even for lower wind speeds,
and 1/�rBC is approximately 70 percent for the classes of
11 m/s�15 m/s. This implies that our model can provide a
large positive effect to forecast maximum values of the
time-varying spectrum.
[30] Finally, we investigate the effectiveness of the

proposed predictors for forecasting dominant frequencies.
Figure 15 shows the results for SFE(L) and Table 4 shows
the values of �rAC, �rAB and �rBC and their reciprocals. The
general tendencies of the results are basically identical to
the above two criteria. These results are summarized as
follows: 1) the nonstationary structure considered in our
model gives better forecasting accuracy for dominating
frequency than for the class of stationarity, because the
values of 1/�rAC and 1/�rAB are distributed in the range from
40 to 95 percent. 2) ~f C (l, n + l ) can further improve
the performance by ~f B(l, n + l ) up to approximately
60 percent by taking into account the change in wind,
although this is not necessarily effective for classes such
as 10 m/s�11 m/s.

5. Summary and Discussion

[31] On the basis of the numerical results obtained in the
previous section, let us consider the physical background on

the relationship among the change of wind speed, the
motion of wind wave and its nonstationary spectrum. In
Table 2, for example, we may divide the values of �rBC (1/
�rBC) into 3 classes; for the scaling of wind speed, we can
classify 10m/s�12m/s, 12m/s�14m/s and 14m/s�15m/s.
Also, this classification is similar to that by Beaufaut scale,
to some extent. This leads to a result that as wind wave
develops, the accuracy in forecasting wave motion becomes
better. It is possible to explain this result essentially from a
physical standpoint. Suppose that, when wind wave devel-
ops, the kinetic energy by wind motion E, which is a
function of the wind speed vw, is completely transmitted
to the potential energy of the water particles. Since E is
proportional to vw

2, the instantaneous change of E (i.e., |dE/
dvw|) is proportional to vw. Hence, as vw increases, the
instantaneous change of E becomes more sensitive to the
change of vw, and as the result, the cross correlation between
the change of wind speed and the behavior of wind wave
becomes larger (Figures 13a and 13b illustrate this fact).
Also, it suggests that as wind speed increases, the accuracies
in forecasting wave motion and the change of its nonsta-
tionary spectrum can be improved by using a statistical
model of autoregressive type, because the information of
cross correlation between the time histories of wave motion
and wind speed is used in estimating parameters of this
model.
[32] Thus we can mention that the nonstationary spectral

model presented here, which takes account of the structure
of cross correlation between the change of wind speed and
the sea surface movement, can give reasonable forecasting
on the whole, and the forecasting accuracy can be improved
further in the case of high wind speed.

Appendix A: Method for Estimation of the
Multivariate Autoregressive Model

[33] We assume the process {Ql; l = 1...,n} is stationary
and let M be the mean vector of Ql. In equation (6), post-
multiplying Q

0
n � j ( j = 0,...,K ) and taking the expectations

yields the following K + 1 equations

� ¼ � 0ð Þ �
XK
j¼1

Aj� �jð Þ

and

� ið Þ ¼
XK
j¼1

Aj� i� jð Þ; i ¼ 1; . . . ;K

where �(i) is the autocovariance matrix of Qn. By replacing
�(i) (i = 0,. . .,K ) by the estimator of the autocovariance
matrix, E[(Qn + i � M)(Qn � M)0], viz.

�̂ ið Þ ¼
1=n

Pn�h
l¼1 Qlþi � �Qn

� �
Ql � �Qn
� �0

0 � h � n� 1

�̂0 �ið Þ �nþ 1 � h < 0

8<
:

where �Qn = 1/n �l = 1
n

Ql. We can obtain A1,. . .,AK and � by
the solution of the above K + 1 equations. The solution can
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be computed by applying Whittle’s algorithm [e.g., see
Brockwell and Davis, 1996; Brockwell and Davis, 1991].

Appendix B: Estimation of ĝL(L, T0 + TsL)

[34] First, the local time interval T(L), which we can
regard {Xt} in the time interval [T0 + TsL � T(L) + 1,T0 +
TsL] to be a stationary time series, must be estimated. We
choose the value of it, say T *(L), such that the sum of
squared residual errors of Xt when the autoregressive model
equation (1) is fitted,

SSR T Lð Þð Þ ¼ 1

T Lð Þ
XT0þTsL

t¼T0þTsL�T Lð Þþ1

Xt � X̂t

� �2

is minimized with respect to T(L), where X̂ t is the estimated
model using the data over the time interval [T0 + TsL � T(L)
+ 1,T0 + TsL]. For the estimation of the model, we
determined the order by Akaike Information Criterion (AIC)
and estimated the parameters using the least squares
method. Thus ĝL(l, T0 + TsL) is estimated by (3), using
the data in [T0 + TsL � T *(L) + 1,T0 + TsL].
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