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We present calculations of the change in phase speed of one train of water waves in 
the presence of another. We use a general method, based on Zakharov’s (1968) 
integral equation. It is shown that the change in phase speed of each wavetrain is 
directly proportional to the square of the amplitude of the other. This generalizes the 
work of Longuet-Higgins & Phillips (1962) who considered gravity waves only. 

In  the important case of gravity-capillary waves, we present the correct form of 
the Zakharov kernel. This is used to find the expressions for the changes in phase 
speed. These results are then checked using a perturbation method based on that of 
Longuet-Higgins & Phillips (1962). Agreement to 6 significant digits has been 
obtained between the calculations based on these two distinct methods. Full 
numerical results in the form of polar diagrams over a wide range of wavelengths, 
away from conditions of triad resonance, are provided. 

1. Introduction 
Longuet-Higgins & Phillips (1962) showed that the phase speed of one wavetrain 

on the surface of an ideal fluid is modified in the presence of another, and vice versa. 
This change is different from, but the same order as, that change predicted by Stokes 
(1847) due to the finite amplitude of the wave itself. 

These changes in phase speed can be traced to the fact that surface gravity waves 
interact in sets of four waves if the resonance conditions 

u1+ff,+ff3_fff, = 0, (1.1) 

k,+k,+k,+k,  = 0 (1.2) 

are met. Here g is the linearized wave frequency and k the wavenumber, related by 
the dispersion relation 

gf = glk,l (i = 1 ,  2, 3, 4),  (1.3) 

where g is the acceleration due to gravity. Most of the interactions lead to  energy 
transfer as is now well known (Phillips 1977, 53.8) but a subset of interactions leads 
only to  a phase change. Thus when all the wavenumbers are equal and all the wave 
frequencies are equal we obtain the Stokes correction. In addition, when the 
wavenumbers are equal in pairs (and hence the corresponding wave frequencies are 
also equal in pairs) we obtain the Longuet-Higgins & Phillips (1962) correction. 

The present study generalizes this earlier work in a number of important ways. 
In 92, we give a general method to find the change in phase speed. This is based on 
Zakharov’s (1968) equation and shows that we only need the Zakharov kernel 
T ( k ,  k, ,  k,, k3)  in order to obtain this change. In  fact if Ac2 is the change in phase 
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speed of wavetrain 2 due to the presence of wavetrain 1, then we find that AC, is 
independent of a, and directly proportional to at, where ai is the amplitude of wave- 
train i .  This generalizes the result of Longuet-Higgins & Phillips (1962). 

In $3, we compare our results in the case of gravity-only propagation with those 
of Longuet-Higgins & Phillips (1962). We find full agreement with their work, 
provided a small printing error is corrected. 

The important case of gravity-capillary waves is then considered. We find that the 
kernel T(k,  k,, k,, k3) given by Zakharov (1968) is incorrect. We give the correct 
form in $4. 

In $5 we give an alternative derivation of Ac, in the case of gravity-capillary 
waves, based on the perturbation analysis of Longuet-Higgins & Phillips ( 1962), 
although our method is slightly different. The two separate expressions for Ac, are 
found to yield identical numerical values. 

We give some simple expressions for Ac, in $6 for the case of collinear propagation. 
We consider separately the cases of gravity-only motion, surface tension only and 
motion under the combined effects of gravity and surface tension. We draw attention 
to the areas of triad resonance in which our results are not applicable. 

In $ 7, we give full numerical results in the form of polar diagrams over a wide range 
of wavelengths, for arbitrary angle of intersection of the wavetrains, and discuss 
their significance. Regions of possible triad interaction are indicated. 

Section 8 is devoted to a summary of our results. We provide the full corrected 
version of Zakharov’s kernel function T(k, k,, k,, k3) for gravity-capillary waves in 
the Appendix. 

2. General method 
In this section, we give a general method for calculating the change in phase speed 

of one train of water waves in the presence of another, using Zakharov’s (1968) 
integral equation. This is given by 

x 6(k + k, - k, - k,) x exp (i[a(k) + a(k,) - a(k,) - a(k,)]) dk, dk, dk,, (2.1) 

where B(k, t )  is related to the free surface {(x, t )  by 

<(X, t )  = &Jym(&r(B(k, t )  exp{i(k.x-a(k) t ) } + * }  dk. 

The complex conjugate is denoted by *, k is the wave vector x is the horizontal 
spatial vector and t is time. The linearized wave frequency u is related to k through 
the linear dispersion relation of the waves of interest. The kernel T(k, k,, k,, k3) is a 
real function of its variables, and is taken in the form symmetric in k,, k, that is 
uniquely defined (see $ 3  in Stiassnie & Shemer 1984). For strict resonance conditions, 
given by (l . l) ,  (1.2), T is also symmetric in its first two arguments k,  k,. 

Equation (2.1) describes the evolution of a weakly nonlinear wave field on a 
timescale given by E+P, where E is a small parameter describing the nonlinearity and 
P is a typical wave period. Inherent in the derivation is the assumption that the 
frequency difference A a  = a(k)  + a(k,) - u(kZ) - a(k3) is of order 2, but there is no 
necessity for the spectrum to be narrowbanded. 

We now consider the consequence of taking two weakly nonlinear wavetrains, 
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denoted by 1 and 2, to make up the free surface and look for simple phase-change 
solutions that might result. Thus we take 

B(k, t )  = B,(t)S(k-k,)+B,(t)S(k-k,)  (2.3) 

and substitute (2.3) into (2.1) to find 

dB1 - i- - T(k,, k,, k,, k1)IB1l2B1+CT(k1, k2,  k,, k2)+T(k1, k,, k2, kd11B212B1 (2.4) 

dB2 

dt 
and 

i- = T(k,, k,, k,, k,) IB2I2B2+V(k2, k,, k,, k,)+T(k,, k,, k,, k2)11B112B2. (2.5) dt 
I n  what follows we denote T(k,, k,,. k,, k,) by T, and T(k,, k,, k,, k,) by T,. The 

above-mentioned symmetry properties of T ( k ,  k,, k,, k,) allow us to write both of 
the expressions in the curly brackets of (2.4) and (2.5) as 2T(k,, k,, k,, k,), which we 
will denote by ZT,,,. We also denote (k,( as k, and cr(ki) as u,. 

The solution of the pair of ordinary differential equations (2.4) and (2.5) is given 

B,(t) = A ,  exp{-i(T,A~+2T1,,A~)t}, (2.6) 

B,(t) = A ,  exp{-i(T,A2,+2T1,,A:)t}, (2.7) 

We now substitute (2.3), (2.6) and (2.7) into (2.2). We can write the result in the 
form 

where the quantities a, and a, represent the amplitudes of the two wave-trains. They 
also define the constants A, and A,  as 

c(x, t )  = a ,  cos(k1 .x-52 , t )+a ,  cos (k , -x -Q , t ) ,  (2.8) 

Ai = 2n 2 a, (i = 1 ,  2 ) .  (GI 
The frequencies of the wavetrains are given by 

and 

52, = u ,+T ,A~+~T, , ,A~  

52, = c ~ + T , A ~ + ~ T , ~ , A ~ .  

(2.10) 

(2.11) 

The change in the frequency of each wavetrain is therefore made up of two parts. 
In  (2.11) for example, the first correction to CT, is given by T,Ai which is the well- 
known Stokes (1847) correction. This term is due to the nonlinearity of the wavetrain 
itself and is present even if the other wavetrain is absent. The second correction is 
given by ZT,,, A: and is entirely due to the presence of the other wave-train. It is the 
same order as the usual Stokes correction. 

The phase speed of this wavetrain can be given by 

c2 = Q, /k ,  (2.12) 

and so the change in phase speed of the weakly nonlinear wavetrain 2 due to the 
presence of wavetrain 1,  Ac,, is given by 

(2.13) 

(2.14) 
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(2.15) 

Thus we only need T,, , to evaluate Ac, and we have shown that this change in phase 
velocity is independent of the amplitude of wavetrain 2. This latter result was 
obtained for gravity waves only by Longuet-Higgins & Phillips (1962). We see now 
that it is true in general. 

In a similar way one can show that the change in phase speed of the weakly 
nonlinear wavetrain 1 due to the presence of wavetrain 2 is 

(2.16) 

3. Gravity waves 
In the case of gravity waves propagating on the surface of an ideal fluid of infinite 

depth, the linearized dispersion relation is given by (1.3). The Zakharov kernel 
function T ( k ,  k, ,  k,, k,) was originally given in Zakharov (1968) but it is more 
readily available in compact form in Crawford et al. (1981). 

As we have noted before, the quantity Ac2 has been calculated previously in this 
case by Longuet-Higgins & Phillips (1962), who obtained the expression 

Ac2 = K / 2 a 2  gi, (3.1) 

where K is given in their equation (2.8). 

(1975) and given explicitly by Cleaver (1980). In fact 
There is a misprint in their expression for K .  This has been noted by Willebrand 

I 4a, a2 sin2+ 
K' = a: a2 a, CT, [(a, - a,)lk, - k,( cos2 48 { 1 + 

(a,- a 2 I 2  - glk, - k2l 

I 4a, a, sin2 $ + (a, + a,)(k, + k,l sin2 g8 1 - { (a1 + f12)2-dki+k21 

+ al(kl - k ,  + 2k, cos2 a8 sin2@) + c , ( k ,  + k, )  cos 8 , (3.2) 1 
where the angles a, p and 8 are defined in figure 1. This can be traced to equation (3.15) 
of Longuet-Higgins (1962) which should read 

u,, - V(u,,  - uol) = a; a, a: CT, [ ( k ,  + 2k, cos2 a8 sin2 g8) sin $2 

+ k2 C O S ~  i8 sin (2$, - $2) - k,  sin4$ sin (2$, + $,)I. (3.3) 

In turn this modifies equation (2.5) of Longuet-Higgins & Phillips (1962) in the 
obvious manner which then leads to our (3.2) above. 

We have obtained numerical agreement between (2.15) and (3.1) for arbitrary 
values of 8, when (3.2) is used to define the quantity K .  

4. The function T(k ,  k, ,  k,, k, )  for gravity-capillary waves 
The linearized dispersion relation in this case is given by 

a 2  = gk  + Sk3, (4.1) 
where S is the surface tension coefficient divided by the density of the fluid. The 
kernel T(k, ,  k, ,  k,, k3) was given originally by Zakharov (1968) in this general case, 
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- k,  k, 
FIGURE 1.  Definition sketch for the angles a, p and 19. 

which differs from that of the previous section by a term proportional to S. This term 
in Zakharov's paper is incorrect. I n  fact we can now show that the third-order 
interaction coefficient Wo, (using the notation of Crawford et al. (1981)) should be 
modified to become 

2, 

+ ( k O *  k 2 )  ( k l ' k 3 )  + ( k O '  k3) (k1 'k2)1 '  (4.2) 

We give the full form of the function T ( k ,  k,, k,, k,) for gravity-capillary waves in 
the Appendix. We obtained (4.2) following the procedure given in $VIA of Yuen & 
Lake (1982). The work of Hogan (1985, 1986) is unaffected by this change because 
the two forms of the additional term are identical to the order of expansion used in 
those papers. 

5. Perturbation method 
The results of the previous section provide us with the correct form of the kernel 

T to be used in (2.15) for the quantity Ac, in the case of gravity-capillary waves. 
There is no published alternative derivation of this quantity. Holliday (1977) gives 
a recipe but does not give any results, either analytic or numerical. I n  this section 
therefore we present an independent method for deriving Ac, based on the work of 
Longuet-Higgins & Phillips (1962). 

The derivation and notation herein follow closely those of Longuet-Higgins (1962) 
and Longuet-Higgins & Phillips (1962). Thus we have an ideal fluid of infinite depth 
whose fluid velocity is given by u = Vrg. The motion is incompressible and so the 
velocity potential q~ satisfies 

VZqI = 0. (5.1) 

In  rectangular Cartesian coordinates (x, y, z ) ,  z is the vertical coordinate. We must 
satisfy the kinematic condition 

and Bernoulli's equation % S 
-+$uZ+gc-- = 0 
at R 

where R is the radius of curvature of the surface. 

on z = 5, (5 .3)  
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Both (5.2) and (5.3) can be expanded in a Taylor series about z = 0 to give 

and 

+ [ ( W C  --+--+< W) ("""5 -+--)+...I= a2v a5 0 onz=O. (5.5) 
ax ax ay ay axaxax azay ay 

We now substitute expansions for 9, u and 6 into (5.4) and (5.5) which represent 
the two wavetrains and their nonlinear interactions. We take 

Q) = ~ l o + P v o l + ~ 2 v 2 0 + ~ ~ v 1 1 + P 2 v 0 2 + - ~ - ~  (5.6) 

u = aulo + Puol + a2u2,, + a/3ul, + /32uo, + . . . , (5.7) 

5 = ~ 6 1 0 + P C o l + ~ 2 6 2 0 + ~ P Y l l + P 2 5 0 ~ +  * * a >  (5.8) 

where the independent variables a and /3 are proportional to the wave slopes. 
The terms to O(a)  are satisfied by 

where 7/Ft = k , . X - - c r i t  (i = 1 ,2 ) .  (5.10) 

We eventually want to consider terms at  O(a2P). In order to do this we must first 
consider O(a2) and O(aP). Thus to O ( a 2 ) ,  the equations can be solved by taking 

a: a: 3 4  al k: S eZkiz 
cos2$,:  9)20 = sin 2$,. 

= 2(g-2Sk3 2(g - 2Sk;) 
(5.11) 

In this way we recover the well-known results that vz0 = 0 when S = 0 and vz0, 
[20 are both singular when k; = g/2S (Wehausen & Laitone 1960, equations (27.12), 
(27.13)). 

To O(ap)  the equations are solved by taking 

Cl l  = c cos ($1- $2) - D cos ($1 + @ 2 ) ,  

cp 11 = A elkl-kzlr sin 

(5.12) 

(5.13) - $2) - B elkl+kzlz sin ($, + $2), 
where 

{[a1 k, - a2 k, + (a, El - v1 k,) cos 81 a1 a2 A =  
2"rl.- g 2 l 2  - (9 +Elk,- hI2) 14- k2ll 

X (g+Slkl-k2(2)-(al-az) [ ~ ~ + a ~ - 2 ~ ~ , ~ ,  COS~#]}, (5.14) 

{ - [a, k, + v, k, + (a, k, + a2 k,) cos 81 a1 a2 B =  
2 [ ( ~ l + ~ 2 ) 2 - ( g + S l k l + ~ 2 1 2 )  Ik+knll 

x (g+Xlk,+k212)+(a,+a2) [a;+a,2+2a,a2 sin2p]}, (5.15) 
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{[a, k1 - a, k, + (a, k, - a, k,) cos 81 a1 a2 C =  
2[(a1 - a,), - (9 + w 1 -  k212) Ik, - kzll 

X (a, + a,) + Ik, + k,l [g," + a: + 2a1 rr, sin2$9]}. (5.17) 

We are now at the final stage of the expansions. We seek expressions for C,, and 
F,,. These terms occur a t  O(a2/3) and they account for the interaction of the two 
wavetrains at this order. But we only seek the terms involving cosljl, in (5.4) and 
sin$, in (5.5).  This is because only these terms contribute to the wave-field 
components with wavenumber equal to k,, which in turn give rise to the phase shifts 
in 6. There will be other terms such as s in(2$1-~2)  but these have different 
wavenumbers and so will not produce pure phase shifts. These terms were considered 
in Longuet-Higgins (1962). Thus we shall ignore these terms in what follows and 
find 

(5.18) 

(5.19) and --- " 2 1  @21+ M sin $, = 0, 
at ax 

where L and M are lengthy expressions involving a,, a,, k,, k,, a,, a2 and the 
constants A ,  B, C and D. 

Let us now take 
C,, = 6t sin$,, qZ1 = yt ekzz cos@, (5.20) 

and substitute these into (5.18) and (5.19). We find 

and hence 
C = COl + go63 + C21 

provided 

(5.21) 

(5.22) 

(5.23) 

The quantity y is the well-known Stokes correction to the phase velocity of a wave 
due to its own cubic self-interaction (nonlinearity). In this case, it  is possible to show 
that 

(5.24) 

which verifies the second term on the right-hand side of (2.11). Thus the change in 
the phase velocity of wave 2 in the presence of wave 1 is given by 

(5.25) 
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K k ,  k ,  T i  2 k ,  i/4x%71 

0 (1, 0) (2, 0) 0.050661 0.050661 
10 (1, 0) (2, 0) -0.009710 -0.009710 
00 (1, 0) (2, 0) -0.010650 -0.010650 

10 (1, 0) (1, 1) -0.003086 -0.003086 
00 (1, 0) (1, 1) -0.002520 -0.002520 

0 (1, 0) (1, 1) 0.024998 0.024 998 

TABLE 1. Numerical confirmation of equality of and k ,  S / 4 a 2 ~ ,  

where the coefficient S is given by the expression 

U s = L{AIk , -k , l  [o-,k,-cr,~k,-k,J-cosa(c7,k,+cr, k , ) ]  
4g2 

+ m, + k2l [ q z  k, - gzlk, + k,l - cosP(g2 k, - g, k2)l 

+v1k2(g2 c0s0-r1)(C-D) 

fa, a, k,[cri k ,  + (rl a,(2k1 + k , )  cos 8 -&Yk: ki (sin2 8 + 3 cos' @I}, (5.26) 

where A ,  B,  C and D are given in (5.14)-(5.17). 
Note that we have to retain throughout the separate identities of the two 

boundary conditions, (5.4) and (5 .5) ,  instead of combining them as done by Longuet- 
Higgins & Phillips (1962). 

We should emphasize that each expression obtained here has been shown 
analytically to reduce to the corresponding one for S = 0 given by Longuet-Higgins 
(1962) or Longuet-Higgins & Phillips (1962) for arbitrary angle 8, when due account 
is taken of the misprint as outlined in our 93. 

We have also shown numerically that (5.25) and (5.26) does equal equation (2.15) 
when the modification suggested in (4.2) is applied. Thus our two separate 
expressioFs for Ac, are shown to be equal. We give some examples in table 1,  where 
S = a: a2 S and K = Sk:/g.  

6. Collinear wavetrains 
We now evaluate the change in phase velocity in four special cases. Thus we 

consider k, parallel and antiparallel to k, with k ,  > k ,  and k ,  < k, .  We consider flow 
under gravity only, under surface tension only and under the combined effects of 
gravity and surface tension. 

6.1. Gravity only 

We set S = 0 in (5.25). For k, parallel to k, and k ,  < k ,  (case (i)) we set 0 = a = 0 and 
/3 = x in figure 1 and find 

(6.1) 

If k ,  > k,, (case (ii)), then 0 = 0, a = P = x and we find 

Ac2 = a: k,  v,. 

Ac, = a; k, CT,. (6.2) 

For k ,  parallel to -k, and k ,  < k, (case (iii)) we take 8 = a! = x and = 0 to find 

Ac, = -a;k,g,, (6.3) 
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and if k, > Ic ,  (case (iv)) we take 0 = OL =/3 = 7c and find 

Ac, = -aik,a, .  (6.4) 

In  this way we recover the results in $3  of Longuet-Higgins & Phillips (1962). 

6.2. Surface tension only 
Here we set g = 0 and take U: = Sk: (i = 1, 2). In all cases it turns out that we can 
express the results in terms of the quantity 7 where 7' = k , / k , .  This property of pure 
capillary-wave interactions has been noted before by McGoldrick (1965). 

U Thus for case (i) we find 
Ac, = ;(al k , ) 2 L H ( 7 ) ,  (6.5) 

k, 
where 

- 27 + 727 - 787, + 32q3 + 27v4 - 24r5 - 32r6 + 487' - 187' 
(9 - 127 + 47, - 3r4 - 4v5 + 6$) 

. (6.6) H ( 7 )  = 

For case (ii), we obtain 

For the two antiparallel cases, the results are similar (but not the negative of (6.5) 
and (6.7)). In case (iii), we find 

(6.8) 
U 

Ac, = ;(a, I c , ) 2 L H (  -y),  
k,  

and for case (iv), 

It is clear that we need only consider the value of H ( 7 )  for - 1 < 7 < 1 in order to 
cover all four cases above. This is done in figure 2 where we plot H ( 7 )  in the range 
- 1 < 7 < 1. Note that H ( 7 )  is always negative and monotonically increases from 
H = -8 a t  7 = -1  to H = - 1  a t  7 = + l .  

Thus we find that whereas for gravity - only motion parallel propagation leads to 
an increase and antiparallel propagation to  a decrease in phase speed, the quantity 
Ac, is always negative for surface-tension-only motion. Nevertheless this is quite in 
keeping with the fact that the cubic self-interaction term y = when S = 0 but 
changes sign to y = -& when g = 0. 

We note that the complicated expression for H ( 7 )  was originally obtained directly 
from the gravity-free equations of motion and subsequently as a limit of the general 
equation (5.25), as well as from (2.15) to give an excellent check on its validity. Also 
it has been successfully used to verify computer calculations of the normal mode 
perturbations to fully nonlinear pure capillary waves (Hogan 1988). 

6.3. Gravity and surface tension 
The various expressions for Ac, in the combined case of gravity and surface-tension 
propagation are now derived for the four special cases. Let us take 

(6.10) 

where now U; = gkj+Sk,3 = SIc,3(1+Rj) (j = 1, 2). 
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- 1  -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 

FIGURE 2. The function H ( 7 )  as defined by (6.6) plotted in the range - 1 < 7 < 1, 
where 7% = k, /k , .  

Then we find for case (i) 

(6.11) 

where ( A C , ) ~ , ~  is the value of Ac, in the relevant gravity - only case evaluated at the 
same frequency u2 = uz(S = 0). For case (i) here this is given by (6.1). The functions 
I ( L  b), J(k1,  k2), K(kl, k2) and L(kl, k,) are given by 

I(k1, k,) = 9k,(k~-2k~)-3k~(4k1+k2) ( l+Rl) -8kl  k i ( l + R , )  ( l+R, ) ,  (6.12) 

J(k , ,  k,) = 27k;(ki-k?)+ 18k,(k:+k;) ( l + R l )  

+ 3 2 k ~ k , ( l + R 1 ) 2 ( 1 + R , ) + 6 0 k , k ; ( l + R 1 )  ( l + R , ) ,  (6.13) 

(6.14) K ( k l ,  k,) = k f ( l  +El) + 3ki ,  

L(k1, &) = 9k~(k~-~,2)+6k,2(k,+k~)(1+R~)+4k1k~(l+R,)(i+R,). (6.15) 

For case (ii), the result by symmetry, is 

where (Ac,),=, is now given in (6.2). 
For antiparallel propagation we find for case (iii) that 

(6.17) 
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where ( A C , ) ~ = ~  is given in (6.3) and for case (iv), by symmetry, 

(6.18) 

where ( A C , ) ~ - ~  is given in (6.4). 
Finally in this section we point out that it is not always possible to obtain a finite 

value for Ac2/(Ac2)s-o because of triad interactions. Specifically this is because either 
the coefficients A and C or B and D are infinite when 

where 

‘TI k B.2 = ‘T3 ,  

k ,  k k, = k,, 

‘T; = g(kt l+S(k , (3  (i = 1, 2, 3). 

(6.19) 

(6.20) 

(6.21) 

Similar singularities occur at these wavenumbers in the second-order part of 

Equations (6.19)-(6.21) were first shown to possess non-trivial solutions by 
McGoldrick (1965). Energy is continually transferred between the modes and so no 
steady solutions exist in general at those values of the resonant wavenumbers. When 
S = 0, no triad solutions are possible and so A ,  3, C, D and also T(k,  k,, k,, k3)  are 
always non-singular. Hence the results in $6.1 are always well behaved as is the 
general result when S = 0 for arbitrary angle 8 between wavevectors k,  and k,. When 
g = 0, triad solutions are possible but not for parallel propagation. Thus our results 
in 56.2 are non-singular but the general expression for (Ac2)g=o/(Ac2)s-,, is singular for 
some values of 0 (McGoldrick 1965, figures 2 and 3). The general expressions in $6.3 
will always be singular for any value of 0 < $ (McGoldrick, figure 1)  for certain 
values of k, and k,. 

T(kl k,, k,? k3). 

This situation is unavoidable and limits the application of our results. 
The results of this sub-section will find direct applicability to the general problem 

of instabilities of nonlinear gravity-capillary waves. 

7. Results and discussion 
7.1. Results 

The analytic formulae of the previous section are now supplemented by numerical 
results for realistic cases with arbitrary angle of intersection 8 to guide our 
understanding. 

We construct the quantity !d?li,,, given by 

This is a dimensionless function of the three parameters v = k , /k , ,  cos 0 = (k ,  - k2)/  
k, k, and K ,  where 0 < Y < 1 and 0 < 0 < x. We present our results in the form of 
polar diagrams showing lines of equal p,,, for four wavelengths A, = 200 cm, 5 cm, 
1 ern and 0.1 cm. We take the two wavenumber vectors to be 

and we set S = 74 cm3/s2. 
The result for A, = 200 cm is shown in figure 3(a,  b ) .  Figure 3(a) covers the range 
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-0.1 - 0.05 -0.01 0.01 0.05 
X 

0.1 

FIGURE 3. Lines of constant PI,, as defined in equation (7 .1)  for A, = 200 cm in the ranges: (a )  
O.lk,  < k, 6 k,; (6) 0.01k, 6 k, < O.lk, ,  where k,  = k,(l, 0) and k,  = k , (X ,  Y ) .  

0.1k1 < k, < k,, and figure 3 ( b )  covers 0.01k1 < k, < O.lk , .  The same arrangement 
holds in all other following figures. Since A, = 200 em is essentially a gravity wave 
and since A, > A, these two diagrams summarize the results for ‘pure’ gravity waves. 
Figure 4(a, 6 )  for A, = 5 ern (and again with A, > A,) is for cases dominated by 
gravity, but somewhat influenced by surface tension. The lines of constant p, , ,  are 
rotated more to the left than in figure 3(a ,  b) .  This implies an increase in hi when 
0 = 0 and a decrease when 0 = n. The case A, = 1 em, shown in figure 5(a ,  b) ,  is 
typical for situations where gravity and surface tension have a comparable role. Here 
the picture is considerably different from the previous figures. The shaded area for 
X ,  Y 2 0 represents the area where significant triad interaction takes place. This 
area is located around the triad resonance curves and is characterized by large values 
and gradients of In this area our quartet interaction solutions are not applicable, 
as was mentioned in $6. We note the fact that even some cases of parallel propagation 
are resonant, whereas every case in the left-hand side of figure 5 (a,  b )  is non-resonant. 
The final case in this series is for a ‘pure’ capillary wave, A, = 0.1 cm, in the presence 
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- 1.0 -0.5 -0.1 0.1 0.5 I .o 

-0.1 - 0.05 -0.01 0.01 0.0s 0.1 

x 

FIGURE 4. As in figure 3 but for A, = 5 cm 

of another wave. This other wave is in the capillary to gravity-capillary range, 
A, = 0.1-1 cm in figure 6(a) to A, = 1-10 cm in figure 6(b). 

Now the triad interaction area has moved off the parallel axis, in keeping with the 
fact that pure capillary waves resonate in non-parallel triads (McGoldrick 1965). In 
fact Aci < 0 is the case, for almost all non-resonant values of 6,  in keeping with the 
results of $2. 

7.2. Discussion 
The change in the phase speed of one wavetrain due to the presence of the other, 
divided by its own linearized speed is given by 

(7 .3)  
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- - 1.0 .0.1 0.1 0.5 
X 

1 .o 

I I I T 1  I f 
-0.1 -0.05 -0.01 0.01 0.05 0.1 

A 

FIQURE 5. As in figure 3 but for A,  = 1 cm. 

In  the sequel we focus on the effect the longer wave (no. 2)  has on the shorter one (no. 
l ) ,  which is more profound than the other way round. Substituting (6.21) into (7 .3)  
yields 

From figures 3-6 we see that the order of magnitude of pl, , is unity. Assuming that 
(k,a,)2 is limited by say 0.1, Acl / (u l /k l )  has an upper bound of the order of 0 . l p  
where ("' 1 +K(k,/k1)')i 

'= 6 l + K  (7.6) 

Some values of p, which depends on two parameters K and ( k l / k , )  are given in 
table 2. 

Thus one can see that for k l / k ,  = 100, A c l / ( r 1 / k l )  can be as large as 1 .  Note that 
taking kl/lc, = 100 means that we assume the existence of a uniform wavetrain (no. 
1) which is several hundred wavelengths long. The realization of such circumstances 
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k , /k ,  A,(cm) ... 200 5 1 0.1 

10 3.16 2.99 2.00 0.36 
100 10 9.45 5.00 0.59 

TABLE 2. Numerical values of ,u, equation (7.6) 

- 1.0 -0.5 -0.1 0.1 0.5 
X 

1 .o 

0.1 

0.05 
Y 

I I I I I I  

-0.1 -0.05 -0.01 0.01 0.05 0.1 
X 

FIQURE 6. As in figure 3 but for A, = 0.1 cm. 

is doubtful since strong modulations will probably enter and change the picture 
substantially. 

7.3. Application 

We conclude this section with a practical example, namely the two-dimensional 
scattering of gravity waves, as occurs when a two-dimensional obstacle is placed in 
a wave flume. For this case it is usually assumed that the reflected wave has the same 
frequency as that of the incident wave. Thus 0, = 0, (see (2.10), (2.11)), and one can 
show that the reflected wavenumber k(R) is related to the incident wavenumber k(') 
through 

(7.7) k(R) x - [ 1 +  3 ( k ( ' ) ~ ( ' ) ) ~ (  1 -RE)] k(I), 
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where R, is the reflection coefficient defined by the ratio of the reflected wave 
amplitude a(R) to incident wave amplitude a(1). From (7.7) we see that the length of 
the reflected wave can be significantly shorter than that of the incident wave, 
excluding the case of total reflection. 

We can generalize (7.7) to include capillarity. In  fact 

(k‘” 1 -RE) (7.8) 
[24 + 63K - 54X2 - 120K3] k(R) x - 

{ I +  8(1+3K) (1  +4K) (1 -2K) 

where now K = Slc(’)z/g. The singularity a t  K = corresponds to subharmonic 
resonance, a special case of triad interaction that we have already excluded from 
our analysis. When K = 0, that is for gravity waves, we recover (7.7). For 
0.5 < K < 0.702529, Ik(R)I < Ik(I)I and hence the reflected wave can be longer than 
the incident wave, with equality a t  K = 0.702529. For capillary waves, we take K 
infinite and find 

(7.9) k(R) - [ 1 + E(k(1) a(I) 2 ) (1  -RE)] k“).  

8. Summary 
We have shown that the Zakharov (1968) kernel function T ( k ,  k,, k,, k3 )  can be 

used to calculate the change in phase speed of one train of water waves in the 
presence of another, 

For gravity-capillary waves, we have derived the correct form of T ( k ,  k , ,  k,, k3) .  
The subsequent expression for Ac, has been checked against that resulting from a 
derivation based on the method of Longuet-Higgins & Phillips (1962). The 
agreement that is found gives confidence in the accuracy of both derivations. 

In  general our results show that surface-tension effects of sufficient size change 
the sign as well as the magnitudes of Ac, and Ac2, away from conditions of 
triad resonance. Some of these changes are significant enough to be measured 
experimentally. 
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Appendix 
We present here for the first time the correct form of the Zakharov kernel function 

T(ko,  k , ,  k2, k3)  for gravity-capillary waves. Using the simplified notation of 
Crawford et al. (1981), we write 

Then 
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The second-order interaction coefficients are defined as 

+ [k, -k ,  + kl k,] [y ".I}, kl k2 

where k, = JkJ and gi = a ( k i )  given by the linear dispersion equation (4.1). The third- 
order interaction coefficient 

w h , 1 , 2 , 3  = W ' ( k O ,  k l ,  kZ, k 3 )  

is defined as 
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