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The fourth-order evolution equation for deep-water
gravity-capillary waves

By S. J. Hogan
Mathematical Institute, University of Oxford, St Giles, Oxford 0X1 3LB, U.K.

(Communicated by M. S. Longuet-Higgins, F.R.S. — Received 14 June 1985)

The stability of a train of nonlinear gravity-capillary waves on the surface
of an ideal fluid of infinite depth is considered. An evolution equation is
derived for the wave envelope, which is correct to fourth order in the wave
steepness. The derivation is made from the Zakharov equation under the
assumption of a narrow band of waves, and including the full form of the
interaction coefficient for gravity-capillary waves. It is assumed that
conditions are away from subharmonic resonant wavelengths.

Just as was found by K. B. Dysthe (Proc. R. Soc. Lond. A 369 (1979))
for pure gravity waves, the main difference from the third-order evolution
equation is, as far as stability is concerned, the introduction of a mean
flow response. There is a band of waves that remains stable to fourth
order. In general the mean flow effects for pure capillary waves are of
opposite sign to those of pure gravity waves.

The second-order corrections to first-order stability properties are
shown to depend on the interaction between the mean flow and the
envelope frequency-dispersion term in the governing equation.

The results are shown to be in agreement with some recent computations
of the full problem for sufficiently small values of the wave steepness.

1. INTRODUCTION

The problem of the stability of a wave train on water has attracted a great deal
of interest ever since a uniform train of gravity waves was shown to be unstable
in the (inevitable) presence of side bands (Benjamin & Feir 1967). This and other
analyses were analytic and involved an assumption of weak nonlinearity or very
long and slow perturbations. For small amplitudes, the nonlinear Schrédinger
equation (Benney & Newell 1967; Zakharov 1968) was derived to describe the
evolution of a wave train. This equation is correct to third order in the wave
steepness. It was not until the work of Longuet-Higgins (1978«, b) on the normal
mode perturbations of the fully nonlinear problem.that the Schrodinger equation
was found to give an inadequate description for all but the smallest wave steepness.
Later Dysthe (1979) made a perturbation analysis and derived the evolution
equation to fourth order in the amplitude of the wave potential. This produced
a dramatic improvement in agreement with Longuet-Higgins (1978a,b). But
curiously, of the several extra terms that were included, only one, corresponding
to the mean flow response to radiation stress non-uniformity in the modulated
nonlinear wave, actually influences the stability characteristics. These other terms
are nevertheless relevant in other areas of nonlinear wave propagation (Lo & Mei
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1985), in particular the asymmetric development over long times. But the
nonlinear Schrédinger equation in three dimensions is known to be unsuitable in
another, more serious, aspect, namely that energy can leak to arbitrarily high
modes outside its range of validity (Martin & Yuen 1980). The fourth-order
equation does not possess this problem to such an extent. Nevertheless energy can
leak out to a finite range of higher modes.

Zakharov (1968) derived the third-order nonlinear Schrodinger equation from
an integral equation of considerable complexity, under the assumption of a narrow
spectrum. In fact it was only necessary to include second-order terms in the
bandwidth. Taking this procedure a step further, Stiassnie (1984) has shown that
the fourth-order evolution equation in the wave amplitude is directly obtainable
from Zakharov’s integral equation by assuming a narrow spectrum and retaining
terms up to third order in the bandwidth. Incidentally, Stiassnie (1984) refers to
the fourth-order evolution equation as ‘the modified nonlinear Schrédinger
equation’ and Dysthe (1979) hints at this description. Following Janssen (1983),
the expression ‘fourth-order evolution equation’ is preferred here. This is because
it is quite possible to modify the Schrédinger equation even further by adding fifth
and higher order terms. But then the adjective could not specify the precise
equation being used.

In §2, Stiassnie (1984) is followed and the fourth-order evolution equation is
derived for a train of gravity-capillary waves on the surface of an ideal fluid of
infinite depth, starting with Zakharov’s integral equation. It is necessary to use
the full form of the interaction coefficient. Previous authors have omitted a term
directly proportional to surface tension. In §3, it is shown that as far as the wave
stability is concerned, a simplified fourth-order equation is a sufficient description,
as shown by Dysthe (1979) for pure gravity waves. In general the new stability
properties at this order are of opposite sign for pure capillary waves to the case
of pure gravity waves. The corrections are shown to depend on the interaction
between the mean flow and the frequency dispersion of the wave envelope.
Comparison is made with some recent computations of the full problem.

2. DERIVATION OF THE FOURTH-ORDER EQUATION

)= [[[7 Tk o ) B2 ) B 0 B Ok 0300+ b~

x exp {i[w(k) +w(k,) —w(k,) —w(k,)] ¢} dk, dk,dk;, (2.1)
where B(k,t) is related to the free surface %(x,t) by

n(x,t) = 211tf (21:(}‘) {B(k,t) exp{i(k-x—w(k)t)}+c.c.} dk. (2.2)

The complex conjugate is denoted by c.c., k = (k,) is the wave vector, x = (x,y)
is the horizontal space vector, z is the vertical coordinate, and the origin of
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coordinates is in the undisturbed surface. In addition, w(k) = (g|k|+S|k[?}: is
the linear dispersion relation for gravity-capillary waves, ¢ is the acceleration due
to gravity and § is the surface tension coefficient divided by the density of the
bulk fluid. 7T'(k, k,, k,, k;) is a real function and was first given for free surface
gravity-capillary waves by Zakharov (1968). An earlier paper by the same author
(Zakharov 1967) gave the form of the function for surface gravity waves and
ion-sound waves.

Equation (2.1) has been used with considerable success in the study of the
stability of progressive gravity waves by Crawford et al. (1980), Crawford et al.
(1981), Stiassnie & Shemer (1984) and others and for standing gravity waves by
Okamura (1984). These authors quote Zakharov (1968) but curiously omit that
part of T'(k, k,, k,, k,) directly proportional to 8. Thus in the Appendix of Crawford
et al.(1981) a modification is required in the third-order interaction coefficient
Wo, 1, 2,3 Which should be replaced by

39 (ko ke oy o)t
3212 [an(ley) (k) w(key) (i)

4
Wo,L,z,s = Wo, 1,2,37

ky k) (k, k;) (2.3)

with the second-order interaction coefficients unchanged.

As pointed out by Zakharov (1968), there are potential difficulties in applying
(2.1) to gravity-capillary waves. This is because unlike gravity waves, these waves,
as well as pure capillary waves, can satisfy equations of the sort

w(k) = w(k1)+w(k2),} (2.4)
k = kl +k2

(see McGoldrick (1965) for a full discussion of these triad solutions). This is
precisely the condition that will give a zero denominator in one of the terms of
T(k,k,, ky, k;) corresponding to the second-order interaction. But if the wave
packet is sufficiently narrow, that is |k—k,| < k, for some k,, then (2.4) can not
be satisfied. Zakharov (1968) then proceeded to derive the nonlinear Schrodinger
equation (which is correct to third order in the wave steepness) from (2.1) under
the assumption of a narrow spectrum of waves (he went to second order in spectral
width). He then considered the stability properties of gravity-capillary waves by
using this equation. Stiassnie (1984) derived the fourth-order evolution equation
from (2.1) for gravity waves by going to third order in spectral width.

In this section the fourth-order evolution equation for a group of gravity-
capillary waves is derived from (2.1) in the manner of Stiassnie (1984). Thus we
consider a narrow spectrum centred on k, = (k,, 0) and set

Ri=k,+z (i=1,23), x=0A), (2.5)

where the measure of the spectral width is given by |x|/k, = o(1).
We define a new function A(y,t) as

A(x,t) = B(k,t) exp{—i[w(k)—w,]t}, (2.6)
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where w, = w(k,), and substitute this into (2.1) and (2.2) to obtain

i 94 0 — ol — ] A, )

o]
= fff T(ky+x, kot 21, Ro+ X5, Ry + X5)
—0o0

x A*(xy) A(xs) A(Xs) OG0+ 21— X2 — X3) Axy dxz dXs (2.7)
and
(x.0) =i[ W, ]é {ei(kox—wot)Jw [1+L(1'K)]A( t) eit'=d +cc}
T8 = on | 2901+ %) ik, (1+x) | % AT
(2.8)
where k = Ski/g. (2.9)
We can rewrite (2.8) as
7(x,t) = Re{a(x,t) e!*o®=wo D}, (2.10)
where
__L 2w0 i [ L( ) iyx
a(x,t) = o [_g(1+K)] f_oo [1+4k (1+K)] Ay, t)er*dy. (2.11)

In (2.7), we express [w(k)—w,] as a Taylor series expansion in powers of | x|/k,.

We find

w(k)—w0=1(ﬂg—)) { (1+30)+-X (M) A 143x)

2 (1 +¢ o\ 1+x )Y,
X (1—K)(1+6K+K2):|_&/1_2(3+2K+3K2) ;_;_(ﬁ)
+8kg[ TETE wm\ 1w )0 ) @12

We substitute (2.12) into (2.7), multiply both sides by

2w, P x (1—«)
[g<1+x)]l [”4_1%(1“)}

and take the inverse Fourier transform to find, by using equation (2.11),

1 - 2
iat+§[ g ﬂi(1+3x) q,+ T1FOH3T)

ko(1+«) 4ky(1+«) w
+(1+3K)a _i(1—«) (1+6k+«7) (3 + 2« + 3«?)
2k, ‘W SEE(L+x)? oo gg2(lta) o

[ 2w, ] fff [1+ X2+X3 X1) (I—K)]
g(1+« o (1+«)
(Ro+ X2+ Xs— Xl’ko+l1’ko+12’ko+13)
X A*(xy) A(x,) A(xs) exp{iQy+ 25— xy) %} dy; dy, dys. (2.13)
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To evaluate the integral on the right side of (2.13) we need the Taylor expansion
of T' for gravity-capillary waves, correct to first-order in the spectral width. Using
the form quoted by Crawford et al. (1981) as amended by our equation (2.3) we
find

Tky+ 25+ X3 — X1 Ro+ 21, Ro+ X2, Ro - 25)
_ K} [ (8+«+2«?) + 3(xXa+ X3) (B— kK +9k%—4k®—4k?)
© 8n? |4(1+«) (1—2k) 8k, (14x)? (1 —2k)?

(Xs—x)°  (a—x1)° (lez)]
- - 0 : 2.14
A AR e 12|+ (2.14)

By using this form of 7', we find by using (2.11) that the right side of (2.13)
becomes on integration

ik§ (1—«) (8+K+2«?)

g [k3(8+/<+2/<2) lalta— -
16w, (1—2«) 2 (1+4«)(1—2«) z
. (8—K+9k2—4k>—4k*) ] k2
972 2g |20
3ik? (L +7) (1—2c) la] ype al, (2.15)
where
ff A*(Xl A(x,) exp{i(a—2y) %} dyy Ay (2.16)
- |X1 12‘
In a manner identical to Stiassnie (1984), this can be shown to reduce to
9(1+K)] j” 0 (x—£)
I= 2m = (la|?) ———5; dé&. 2.17
e R I LCT= 217

We can relate I to the mean flow potential ¢(z,y, 2, {), which arises naturally out
of the kinematic condition at the nonlinear free surface, which does not explicitly
depend on k. An analysis identical to that by Dysthe (1979), based on the kinematic
condition (his equation (2.3)), shows that

_ 0
¢ =iwo7-(lal®) on z=0. (2.18)

This is the same form as that obtained when surface tension is neglected (Dysthe
(1979) equation (4.2), Stiassnie (1984)). It is possible, to show further, that
(Stiassnie 1984)
_W [* 0 (€ x)
al?) d = 2.1
Thus [ is directly proportlonal to @,.

We now collect (2.13), (2.17) and (2.19) together with the expression (2.15) to
find the fourth-order evolution equation. If we then make the scaling transformation
t=1t/w,y (x,y)= @,y ky ¢=w,¢'/2k} and a =a’'/k, and then drop the
primes, we find

2i(a, + ¢z a,) +pa,, +q9a,,—y la|?a

= —isa,,, —ira,,, —iuwata} +iv|alPa,+ad,, (2.20)
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where ¢, is the group velocity given by
= % (1436)

%= 2k, (1+4)

and the other constants are given by

_ 3P+ 6x—1 _ 1+3«

T Tai+cE 0 T 20wk
T=_(1—K)(1+6K+K2) s_3+2K+3K2
8(1+«)3 T 4142
8+« + 2«2 (1—«) (8+«k+2«?)

VT8 —20)(1+k) T 16(1—2k) (1+K)?°

_ 34k +4k°— 9 +k—8)
8(1+4)% (1—2«)?

Equation (2.20) is the fourth-order evolution equation for deep-water gravity-
capillary waves, in terms of the complex wave amplitude a(x,t). When k = 0, it is
not directly comparable with Dysthe’s (1979) result (his equation (2.19)) without
deriving an expression for @ in terms of the complex potential amplitude ¥ correct
to second order (see Appendix).

Stiassnie (1984) quotes « = —3 when « = 0 in his equation (14), which is in terms
of the wave amplitude. We obtain % = } in this case. Stiassnie’s equation (14) is
identical to Dysthe’s equation (2.19), with the sign change in the third term on
the right side as noted by Janssen (1983), even though the two amplitudes are
different at second order (see Appendix for details).

For pure capillary waves we require « infinite and (2.20) becomes

2i(a,+3a,)+3a,,+3a,,+ilal’a
= —Yia,,, — ki, — it +3ilal? a,+ad,. (2.21)

By ignoring the right side of (2.20), we recover the third-order envelope equation
for gravity-capillary waves on water of infinite depth. In this way we can obtain
the result of Djordjevic & Redekopp (1977), equation (2.20).

A similar treatment of (2.21), which additionally ignores the y derivatives,
recovers the result of Matsuuchi (1974) for the third-order evolution equation of
pure capillary waves on water of infinite depth.

This analysis breaks down at « = } where y and v are singular. In fact higher
order analysis produces further breakdowns at k = 1/n, where n is an integer
greater than 1. These wavelengths correspond to harmonic resonance where the
wave and one of its harmonics both travel at the same speed. In that case an
evolution equation is required for both amplitudes. See, for example, the work by
McGoldrick (1970) on the case k = 1. This is a special case of (2.4) with k, = &,
(see also Ma 1982).

In general, Zakharov’s integral equation (2.1) fails to completely describe the
evolution of B(k,t), the spectral component of the wave envelope, when the
dominant interactions are triad-like in nature. If P denotes a typical wave period,
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(2.1) is valid for interactions whose timescale is (ak)~2 P. Other interactions similar
to those described by (2.4) occur over the shorter timescale (ak)™* P. It is necessary
to reconsider the problem to include these interactions, beginning with Zakharov’s
(1968) equation (1.15). The relative importance of the triad- and quartet-like
interactions is a function of the wave steepness and the parameter . Our equation
(2.1) is valid for quartet-like interactions and for small steepness. Equation (2.20)
is valid with the additional assumption of a narrow band of waves.

3. STABILITY OF A NONLINEAR WAVETRAIN

Dysthe (1979) pointed out that as far as stability properties were concerned, it
is sufficient to deal with a shortened version of (2.20); other terms do not
contribute. A similar situation holds here, but we shall not simplify the equations
a priori. The neglected terms, corresponding to setting r, s, u and v to zero, are,
however, important in other aspects of wave propagatlon as shown by Lo & Mei
(198s).

It is straightforward to show that one solution to (2.20), together with Laplace’s
equation for ¢, is given by

$=0, a= @ exp{—1iia2yt}, - (3.1)
where a, is the wave steepness. Note that the phase of this solutlon is different

depending on the sign of 2« —1.
Following Dysthe (1979), we perturb this solution by taking

a = a1 +a ) exp {1( —iaz yt)}. - (3.2)

We substitute (3.2) into (2.20) and find - ‘
La’+ (u—v) aia,+ M6 =0, (3.3)
L0 — (u+v)aa,—Ma' +2a2ya’ =—¢, . (3.4)

where .the operators L and M are defined by
0 0 o od
L= (at+c 63 )+ "o G (3.5)
02 0?

In addition, we have the linearized form of equation (2.18)
¢, = 2ada,. (3.7

We seek solutions of (3.3), (3.4) and (3.7) of the form exp {i(Ax + uy — 2t)} for a’
and @ and of the form exp { Kz +i(Ax + py — Qt)} for ¢, where K* = A2+ p?, to satisfy
Laplace’s equation for ¢. Equation (3.7) gives us the magnitude of ¢ in terms of
A, K, a, and the magnitude of a’. We use this in (3.4) and eventually obtain the
dispersion relation

[L— (u—v) a2 Al [L+ (u+v) a2 A] = M[M—2a3(y — 22/ K)], (3.8)
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where L =2(Q—c, A)+A(rA%+ sp?), (3.9)
M=—(pX24qu?). (3.10)
A consistent solution of (3.8) is given by
L = —vAad +{M[M—2a2(y—A%/K)]}. (3.11)

We note that the first term is independent of u. Nevertheless the stability
characteristics only depend on quantities within the square root and hence only
on the terms ag, on the right side of equation (2.20), as stated at the beginning
of this section.

To examine the stability of the wavetrain, let us first consider perturbations in
the x direction only, that is, take 4 = 0. Then we shall have instability when

2yt 2
A< (——7) g+ (3.12)
P Pr
As in the rest of this section, we can recover Dysthe’s (1979) results for pure gravity
waves by setting « = 0. For pure capillary waves, (3.12) reduces to

A < Jgag+4at. (3.13)

We note from (3.12) that instability to this order is impossible in a range of k where
p and y are both negative. Inspection of the relevant expressions gives this range
as J—l<k<i (3.14)
The lower value corresponds to the minimum group velocity and the upper value
to the first Wilton (1915) ripple, where the wave has the same phase velocity as
its first harmonic. Zakharov (1968) showed that instability was impossible in this
range at third order. Lighthill (1965) shows that this range corresponds to an
elliptic dispersion equation. Outside the range, it is hyperbolic.

At marginal stability, there is equality on the right side of equation (3.12), and
we can show that in this case

1
Q=q¢, [(—%")@%] a,. (3.15a)
When « is infinite, this becomes
Q =14/3a,+2a2 (3.15b)
and for small ¥ we find
Q = (143%k) v/2a,—2(1+10«) a. (3.15¢)
The maximum growth rate d,, is given by
1
Oy = '%' [1 —j—/ (lpl') ao] a2, (3.160)
which reduces to
8 = & [1+4@)a,)a2 (3.16b)

for pure capillary waves and to

Om = 3[(1+3x)—2(1 +B«) a,] af (3.16¢)
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when k is small. This occurs at a wavenumber given by A, where

A, = [(%’)ﬁi—;ﬂ ay, (3.17a)
which becomes, for « infinite,
Am = 5%t ad (3.17b)
and for small «,
Ay = 2(14+8k)a,—3(1+8k) al. (3.17¢)
The value of the real part of Q corresponding to A, is given by
ReQ,, = cg[<lp’—’)%+i—‘;’] a. (3.18a)
For pure capillary waves, this becomes
ReQ, = @)ta,+3a2 (3.18b)
and for small «,
ReQ = (1+%%«)a,—3(1+10«)a?. (3.18¢)

Naturally each of equations (3.15a), (3.16a), (3.17a) and (3.18a) do not hold in
the region of « given in (3.14). In each expression the key elements are the sign
of the product py at O(a,) and the inverse of p at O(a2). The former can be shown
to be equivalent to Lighthill’s criterion and the latter is the generalized mean flow
response.

If we set k = 0 in each of equations (3.15¢)—(3.18¢), we recover Dysthe’s (1979)
results. In each case the effect of the variations of the mean flow on the wave
stability are of opposite sign from the pure capillary case. The results to O(a,) can
be shown to be identical to those obtained by Matsuuchi (1974) when « is infinite.
The recent work of Barakat (1984) does not concur with the present results or
those of Matsuuchi. This is because his equation (2.13) is incorrect. On the left
side the term 7", should be replaced by

T{(1+H2) 3, —3(1 + B2V H,, H, i,

Lake & Yuen (1977) made a series of experiments and measured Re 2, (their
figure 1). The waves they used were approximately 20 cm in length with a
frequency of around 3 Hz. This corresponds to taking x & 0.01. Substitution of
this value into (3.18¢) shows that it increases the value of Re 2,, when x = 0, over
the range of steepness used by the authors. From Dysthe’s figure 3, this indicates
a slightly better agreement with their results, but still different from the
experimental results.

When we allow for perturbations at any angle to the wave, that is, take x # 0,
we find the growth rate is now given by

8 = 4 {M(2a3(y— A/ K)— M} (3.19)

With no mean-flow term A%/ K, and if k < 33— 1, the unstable perturbations have
wavenumbers between the hyperbola M = 2a27y and the asymptotes —pA% = qu?.
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If k > 4, the unstable wavenumbers lie on the interior of the ellipse M = 2a2+y. For
small amplitudes, unstable wavenumbers lie close to the origin. As before the rest
of the range of k does not give instability. The maximum growth rate occurs for
all wavevectors on the conic M = a2y. If we include the mean flow term A2/K, all
these regions of instability are modified slightly. But the maximum growth rate
remains the same as for 4 = 0 and occurs at the same wavenumber.

We have an independent check on our results for 4 =0 and very long
wavelength perturbations. From equation (3.11),

Q = ¢, A—tAad +iday(—ipy)t. (3.20)
o T1AaGo( —3p

If we now let £ (w, k) be the averaged Lagrangian of the waves, then Lighthill
(1965, 1967) has shown that the perturbations of a wavetrain satisfy the dispersion
equation (9)2 ry (Q) rL  nP

1) 22 T\X) ot o

. =0, (3.21)

where w = w(a, k) is now the fully nonlinear form of the dispersion relation.
Lighthill (1965) gives an exact expression for & for pure capillary waves. It is

w2 S2k3
Bow

L=, =28— (3.22)

For gravity-capillary waves he gives the approximate expression
9| (1=2¢) (ﬁ_ _ )2
L= k2[(2/<2+/<+8) PR |
(24K°—116k* —T4x3 + 351k — 110k + 64) (w_2_ )3 ~ ] '
25+ +8)° (3x—1) po 1K) Fee] (3.28)
Using (3.21) and (3.22), we can show that
o

5 = Ml—fed) tivta,, (3.24)

+

which is the form of (3.20) when « is infinite. A much lengthier calculation by using
(3.21) and (3.23) recovers the full equation (3.20). Thus we have a completely
independent check on the quantities v, p and y as derived in §2.

Recent calculations by Zhang & Melville (1985) support our conclusions in this
section. They calculated stability boundaries in ‘the (A, u)-plane for gravity-
capillary waves with k = 3 and k =7 over a wide range of wave steepness. For the
quartet-like interactions they found that the elliptical region of instability became
annular as the steepness increased and subsequently disappeared or became
absorbed into the triad region.

For a, = 0.05 the position of the stability boundary agrees closely with our
equation (3.12) for two-dimensional perturbations for both values of « (see table
1 for details). Zhang & Melville (1985) give no information on growth rates for these
interactions. For perturbations normal to the wavefronts, our calculations predict
no departure from the weakly nonhnear result. This is in agreement with the
computations.
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Ma (1984) and Chen & Saffman (1985) have made computer calculations on the
stability of pure capillary waves. It has proved difficult to compare our results with
the former paper because some of the figures are not annotated. The latter paper
is, however, more detailed. Both sets of results show that the maximum growth
rate for two-dimensional disturbances to pure capillary waves is described almost
exactly by the weakly nonlinear theory, even for large values of the wave steepness.
The wavelength at which this occurs is also in striking agreement. Thus in their
table 1, for a, = (0.094 25, 0.18850, 0.28274, 0.37699) they find 10° 6,, = (0.54,2.2,
4.9,8.6)and A, = (0.04,0.08, 0.12, 0.14). Weakly nonlinear theory gives A, = Eal
and s0 103 8,, = (0.56, 2.2, 5.0, 8.9) and also A, = a,/v/6 = (0.04,0.08,0.12,0.16).
The reason for such close agreement at large amplitudes remains unclear. The
maximum growth rate for three-dimensional disturbances is derived from triad
interactions and therefore is not comparable with our results.

TABLE 1. VALUES OF PERTURBATION WAVENUMBER A CORRESPONDING TO ONSET OF
STABILITY OF GRAVITY-CAPILLARY WAVES OF STEEPNESS a, = 0.05

source k=3 k=1
equation (3.12) (to O(a,)) 0.036 0.030
equation (3.12) (to O(a3)) 0.040 0.034
full calculation 0.042 0.037

(Zhang & Melville 1985)

Equations (3.16b) and (3.17b), here appear to overestimate the results of the
exact computations. Nevertheless at high values of a,, this also occurs when
comparing with Zhang & Melville (1985). So it appears that the starting value of
steepness used by Chen & Saffman (198s), that is a, = 0.09425, is too high for
comparison with the theory for this value of , and more terms are needed in the
expansions. For « =0, Dysthe (1979) found agreement up to a, = 0.2. This
provides clear evidence that the usefulness of (2.20) is a function of both a, and k.

4. CONCLUSIONS

In general the conclusions are similar to those of Dysthe (1979), namely that
the fourth-order evolution equation can be simplified greatly if we only wish to
consider stability. The physical picture also remains the same.

The full equation (2.20) was derived from Zakharov’s equation (2.1), together
with the full form of the interaction coefficient, under the assumption that the wave
packet under consideration is sufficiently narrow. A broad spectrum would admit
triad-like resonances, which act on a shorter time scale than is consistent with the
fourth-order equation. N

A band of stable gravity-capillary waves, known to exist at third order, is shown
to exist at this higher order too. The effect of the mean flow variations is generally
to decrease key quantities relating to the stability of long gravity waves whereas
for short capillary waves these quantities are increased. .

Nevertheless there is still an energy leakage to higher modes that lie outside the
range of validity of the evolution equation when k < (F5—1) It is possibly the



370 S. J. Hogan

case that the full Zakharov integral equation should be used here, just as it was
by Crawford et al. (1981) for pure gravity waves. Presumably, as in that paper,
energy leakage would be confined. When « > 4, the recent numerical work of Zhang
& Melville (1985) indicates that the elliptic region becomes annular at finite
amplitude. As the steepness increases, the width of the region appears to grow
smaller and possibly vanish at high values of a,.

Physically we see two types of interaction influencing the results given here.
First, as is well known (Lighthill 1965), the relative signs of the envelope frequency
dispersion term (pa,,) and the nonlinear term (—y|a|*a) govern the overall
stability of the solution. There exists a band of stable waves, where the product
py is positive. Secondly, the corrections to the stability properties that occur at
higher order can now be seen to arise from an interaction between the mean flow
term (ag,) and the frequency dispersion term (pa,,). This is clear from (3.15a),
(3.17a) and (3.18a). The correction to the maximum growth-rate equation (3.16a)
is of higher order and is more complicated, involving all three terms. Since the
frequency-dispersion term for gravity waves is of opposite sign for capillary waves,
50 too are the corrections to the stability properties.

Put another way, for gravity waves the detuned nonlinear terms are of the form
A(| A2+ ¢,) and they must balance the dispersion term —34,, (see Dysthe (1979),
equation (4.1)). In this way a resonant quartet is maintained and energy
transferred to growing sidebands. For capillary waves, the nonlinearity is of the
form a(}| a|*—¢,) and the dispersion is represented by —3a,,. Clearly the detuning
arising from the mean flow has the opposite sign.

Finally, significance has been attached to the term iv|a[*a, of (2.20). From
(3.20) we see that it provides the real O(a3) correction to the frequency of very long
plane perturbations to the waveform.

This work was done while the author held the C.E.G.B. Research Fellowship in
Applied Mathematics at St Catherine’s College, Oxford.

The author is grateful to Dr P. A. E. M. Janssen and Dr M. Stiassnie for
correspondence.
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APPENDIX

Although Stiassnie (1984) obtains v = —% when x = 0 for (2.20) in this paper,
this appears to be a misprint in both his equations (10) and (14). Thus working
backwards from his equation (10) as printed, with k, = 1, we find

|a|?a+Yia%ak—3i|al?a,
[e o]
mfﬂ [1+3(xe X3+ 3%2) +5(Xe + Xa) + O 2 */45)]
-

+ A*(t,) A(xz) A(Xs) exp{ille+2:— ) %} dxy dydys. (A1)
On the other hand, if we substitute his equation (9) into equation (8), we find
the term in square brackets in (A 1) has become

(143X X5 — X1) T 3(X2 + Xs) T O 2 [P3)].
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This is precisely what is obtained if the right-hand side of Stiassnie’s equation
(10) contained the (scaled) terms

la|?a—3%ia%ak—3i|ala,.

Another proof of the correct sign has been provided by Janssen (personal
communication). It is given here for completeness. Equation (2) of Janssen (1983)
is the fourth-order evolution equation, in terms of the dimensionless complex
potential amplitude, ¥, which can be written in the form

MY =|VPPV+T,, (A 2)
(0 10 102 102
where M= 21(a+§a)—zé;§+§—a—?ﬁ (A 3)

and 7T represents the fourth-order terms.
For pure gravity waves, the dimensionless elevation a is related to ¥ by (Janssen
1983, equation (19))

o= i(P—Li¥). (A 4)
Thus Ma=i|PEOHIY| VLT, +P(| PP,]+iT, (A 5)
since M) =YY +P(P]), (A 6)

with higher order terms. From (A 4) we can show that
| PR = —i[|alfa—}iaa¥ +ilala,) (A7)

with higher order terms. This we substitute in (A 5). The second and third terms
on the right side of (A 5) being of fourth order only need the substitution ¥ = —ia.
Thus we find

Ma =|al*a—ia?ak+iT, (A 8)
and the relevant terms from 7} are readily seen to be
iT,=...... +lia%ak—3ilal’a,+.... (A9)
Thus on combining (A 8) and (A 9) we find
Ma = |a|*a—LiataX—3ilal?a,+.... (A 10)

This is in exact agreement with (2.20) when « = 0.
The fact that v =3 when x =0 has recently been confirmed by Stiassnie
(personal communication).
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