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ABSTRACT

The statistical properties of observed North Pacific sea surface temperature (SST) anomalies are simulated
by a simple mixed layer advection and diffusion model with stabilizing feedback and local stochastic forcing
by the atmosphere. An optimal fit of the model to the SST auto- and cross-spectra yields the effective temperature
advection velocities and diffusion coefficients in the mixed layer, the local feedback factors and the strength
and scales of the atmospheric forcing. The results obtained by model fitting are in general agreement with
independent direct estimates, where such data are available. The analysis supports previous models in which
the origin of midlatitude SST anomalies on time scales of months to a few years is attributed to stochastic

forcing by the atmosphere.

1. Introduction

The oceans exert a strong influence on climate
through the storage and transport of heat, and since
the essential ocean parameter which controls the trans-
fer of heat from the ocean to the atmosphere is the sea
surface temperature (SST), the nature of the processes
which determine the SST distribution in the ocean has
been much discussed in the climate literature. For
studies of climate variability, the main focus of interest
lies in the structure and origin of SST anomalies. It is
generally accepted that in the tropics SST anomalies
are generated through large scale ocean-atmosphere
feedback processes (cf. review by Anderson, 1983). In
midlatitudes, on the other hand, investigations suggest
that SST anomalies can be largely explained, at least
on time scales smaller than about 2-3 years and outside
regions affected by strong boundary currents, simply
as the integrated response of the oceanic mixed layer
to the external short time scale stochastic forcing as-
sociated with the natural internal “weather” variability
of the atmosphere. We shall be concerned here with
midlatitude SST anomalies of this kind.

From a statistical time series analysis of atmospheric
pressure fields and SST anomaly patterns in the North
Pacific, Davis (1976) demonstrated that midlatitude
SST anomalies generally follow the atmospheric pres-
sure fields, rather than vice versa. Frankignoul and
Hasselmann (1977) and Frankignoul (1979) showed
further that midlatitude SST anomalies can be de-
scribed by a Langevin equation (first-order Markov
process), in which the atmospheric forcing is repre-
sented on the SST time scale as a white noise process.

The theoretical red distribution of the SST response
spectra agreed well with observations, and where the
appropriate input data were available, both the hy-
pothesized white noise input and the predicted form
of the input-response cross-spectra were verified. In
basinwide studies, Reynolds (1978, 1979) was able to
confirm the model for most of the northern midlatitude
oceans. However, the model fit tended to degrade in
regions of strong currents. Haney (1980, 1985) pro-
vided further corroboration of these concepts by suc-
cessfully simulating the principal features of observed
SST anomaly fields in midlatitudes with a numerical
ocean model driven by observed ocean-atmosphere
heat flux and surface wind stress anomalies.

In the present paper we extend the local stochastic
forcing models of Frankignoul-Hasselmann and
Reynolds to include the effects of horizontal advection
and diffusion. Our motivation is twofold. First, the
degradation in the fit of the spatially decoupled local
response model in the vicinity of strong currents, to-
gether with estimates of the order of magnitudes of the
advection and diffusion terms, indicate that these pro-
cesses cannot generally be neglected. Second, in trying
to extract information’ on the dynamics of the mixed
layer from SST anomaly data, the limitation to spatially
decoupled local response models restricts the available
input data to the SST autovariance spectra. By gen-
eralizing the model to include spatial interactions it is
possible to use also the more extended information
contained in the SST cross-spectra to derive improved
parameter estimates and gain additional insight into
the structure of the horizontal transport processes.

The second aspect is perhaps the more interesting
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of the two. The improvement in the fit of the model
to the auto-spectra achieved by the inclusion of hori-
zontal transports is not dramatic: in most grid points,
a large percentage of the variance can be explained
already by a local model without transports. On the
other hand, by applying inverse modeling techniques
to the cross-spectra it is possible to derive extended
fields of effective horizontal transport quantities in the
mixed layer from SST anomaly data. An advantage of
this technique is that the transports are estimated with
respect to mixed-layer integrated variables, i.e., in the
form needed for SST modeling, within the same
framework as the other processes (local forcing and
feedback) which determine the midlatitude SST
anomaly field.

The advection fields derived from the SST anomaly
data are found to be generally consistent, within the
statistical error limits of the data, with surface current
distributions estimated from ship drift and other ob-
servations. The other parameters derived from the
model are also found to be in order of magnitude
agreement with independent estimates, where these are
available. The extended model therefore confirms the
previous view that midlatitude SST anomalies on time
scales of a few months to a few years are generated
primarily through the passive response of the ocean to
stochastic forcing arising from the natural internal
variability of the atmospheric circulation, rather
than through large-scale ocean—-atmosphere feedback
mechanisms. This is supported also by the work of
Frankignoul and Reynolds (1982), in which the local
stochastic model was extended by including advection
estimated from measurements, rather than from model
fitting,

It should be stressed, however, that our model is
idealized in several respects. We mention only two ob-
vious limitations: First, the effect of large scale, nonlocal
feedbacks between the atmosphere and the ocean is
ignored. Teleconnection signals will undoubtedly be
present on longer time scales, for example, through
coupling to El Nifio, but pronounced effects have not
been found in midlatitudes in the time scales of interest
here. Second, our analysis is based on stationary, rather
than cyclo-stationary statistics. The annual modulation
of all statistical fields and model parameters could have
been readily introduced into the analysis, at the cost
of some algebraic complexity and degradation of sta-
tistical significance. However, the purpose of the pres-
ent paper is to demonstrate that useful first-order es-
timates of annually averaged forcing functions, feed-
back coefficients and transport fields can be derived
alone from SST anomaly data using a rather simple
stochastic forcing model. The present model, which
represents already an extension of the still simpler
models of Frankignoul and Hasselmann (1977) and
Reynolds (1978, 1979), can clearly be elaborated still
further using the model hierarchy and statistical testing
methods described below.
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A similar stochastic model with horizontal transport
processes has been applied in the inverse modeling
mode by Lemke et al. (1980) to simulate the statistical
properties of Arctic and Antarctic sea ice anomalies.

In section 2 we describe the data used for our anal-
ysis. Sections 3-5 describe the model and model-fitting
technique, while section 6 is concerned with statistical
aspects of the model skill, error and significance. Re-
sults are presented in section 7 and are discussed in
section 8. Technical background on the derivation of
the covariance matrices of the data and model param-
eters is given in appendices A and B.

2. Dataset

The initial data consisted of time series of monthly
mean sea surface temperatures (SST) for the years
194775 on a 5° square grid of the North Pacific from
the NORPAX dataset (137 grid points). The mean an-
nual cycle was subtracted from each of these time series
to yield anomaly fields, which provided the basic data
set for our analysis.

Figures 1 and 2 show as example the SST anomaly
time series at 35°N, 170°E and the corresponding
variance spectrum {(on a logarithmic scale), computed
with two different frequency resolutions Av. The high
resolution spectrum (a) of Fig. 2 was obtained by av-
eraging the maximum resolution spectrum (Av = (1/
320)months)™" = 0.0375 cpy) over three neighboring
frequency bands, yielding a spectrum with 6 degrees
of freedom and Av = 0.1125 cpy. Spectrum (b) was
computed by the Tukey method as the average over
the individual variance spectra for ten separate 32-
month “chunks” of the 320 month record (20 degrees
of freedom, Av = 0.375 cpy). Figure 3 shows the cross-
spectrum (on a linear scale) of the time series of Fig.
1 correlated with the SST anomaly time series of the
eastern neighboring grid point, computed again by the
Tukey method.

We shall use statistically stable spectra (two sided)
of the type Fig. 2b and Fig. 3 throughout this paper.
This implies that we limit ourselves to the frequency
range between 0.375 cpy (32 month period) and 6 cpy.
Thus the longer multiyear time scales evident in Fig.
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FIG. 1. Time series of SST anomalies at 35°N,
170°E for the years 1947-73.
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FIG. 2. High (a) and low (b) resolution autospectrum
for the time series of Fig. 1.

1 are excluded from our analysis. A comparison with
the higher resolution spectrum (a) of Fig. 2 indicates
that in averaging over several frequency bands we do
not appear to be smoothing out details of the low fre-
quency structures in the spectral bands we have re-
tained. (This procedure would be more questionable
for SST spectra in the tropics, which have higher energy
levels at periods beyond 1-3 years.) The time scales
resolved in our spectra are consistent with the processes
we wish to study: the formation of SST anomalies in
the mixed layer by atmospheric forcing and local feed-
back, and the distortion of the anomaly fields by local
advection and diffusion processes.

In our model construction we use the autospectra
F;(w) and cross-spectra Fj(w) for all four nearest
neighbor grid points. Since the quadrature spectra and
the differences between auto- and co-spectra are not
significantly different from zero at high frequencies,
we excluded frequencies higher than 3.5 cpy from the
analysis. We further excluded the zero frequency band,
which lies below our low-frequency limit of (32
months)~!. The final dataset used to construct the
model consisted then of nine frequency points for each
auto- and cross-spectrum, yielding 9 + 4 X (9 X 2)
= 81 data values for all interior grid points (84 in total)
for which all four nearest neighbor cross-spectra could
be constructed.

3. The model

Following Frankignoul (1979) we assume that the
statistical behavior of SST anomalies 7 is governed by
a mixed-layer transport equation
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%+v-VT= —AT+DV?T+n,
where v represents the (annual mean) advection ve-
locity, integrated over the depth of the mixed layer, A
is a feedback parameter, D an (isotropic) diffusion coef-
ficient and 7 the (white noise) atmospheric forcing. The
forcing represents primarily fluctuations in the heat
flux across the ocean—atmosphere interface, but vari-
able turbulent entrainment effects are also included
formally in this term. The model parameters v, A, D
and the statistical properties of » are to be determined
from the data.

Since our input data are auto- and cross-spectra, we
first derive the relevant theoretical model spectra from
(3.1). Discretizing spatially in terms of centered differ-
ences, Eq. (3.1) may be written for each grid point j
for which all four nearest neighbors (denoted N, S, E
and W) exist:

o (T Tw) 45,2 (Tn = T = —AT,
2Ay

3.1)

o 2Ax
+D(Tw+ TE-2T,-+TN+ Ts—

2T
sz Ay2 )+nj. (32)
Equation (3.2) may be written more simply by col-
lecting the advection and diffusion terms into a single
transport term characterized by a (sparse) matrix A:

aT;
-—]+ >\17)+ EAjka= n;.
k

o (3.3)
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FiG. 3. Low resolution cross-spectrum between the time series of
Fig. 1 with its eastern neighboring grid point. (Note that for the imag-
inary part only three frequency points between 1 and 2 cpy are sig-
nificantly different from zero at the 1o level.)
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In the frequency domain Eq. (3.3) becomes (retain-
ing the same symbols for the Fourier transforms, with
w = 27wv):

(iw+ N\)Ti(w) + 2 Aj Ti(w) = ni{w). 3.4
k
The formal solution of (3.4) is given by
-1 nk(w)
Ti(w)= Z(S ),k( A’ (3.5
where the matrix $ is given by
Sjk(w) 5]/( + + A (36)

and & is the Kronecker symbol. From (3.5) it fol-
lows that the model response cross-spectra Fj(w)
= {(T(w))*Tx(w)) and the atmospheric forcing cross-
spectra Ny(w) =
parentheses denote ensemble means and the asterisk
indicates the complex conjugate) are related through

Nlm

N iw) Ay, +iw) (37)

,k(w) Z(S_l 5 (8™ Diom

For a discrete time series, the time derivative 37/d¢
is replaced throughout in the above expressions by the
(forward first order) finite difference expression

(Tt + A —T@))/ae

where ¢ is the time and At is the time increment. In
the discrete Fourier representation the term *iw has
to be replaced by the discretized equivalent (e
- 1.

4. The model hierarchy

We seek the simplest model which is able to repro-
duce the observed auto- and cross-spectra. For this
purpose we construct a hierarchy of models 1 to 4 con-
taining an increasing number of free parameters (cf.
Table 1).

The first two models contain no horizontal transport
terms and attempt to explain both auto- and cross-
spectra alone in terms of the spatial correlation struc-
ture of the stochastic forcing, with spatially dependent
white noise forcing level and feedback parameter X. In
model 1 the forcing is taken to be isotropic, while in
model 2 an elliptic correlation structure is assumed,
with principal axes in the north-south, east-west di-
rection. In both cases the dependence on the separation

TABLE 1. Definition of the model hierarchy (see also section 4).

Model .
number Model properties
1 isotropic atmospheric forcing
2 elliptic correlation of atmospheric forcing
3 model 2 + advection
4 model 3 + diffusion
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vector Ax = (r;, ;) between point pairs (j, k) is taken
as Gaussian:

(O =N, exp[ (R—22+—2)],

where R; = R, = R for model 1. A generalization of
the form (4.1) to an arbitrarily oriented ellipse yielded
no significant improvement over model 2.

The cross-spectrum of a white noise vector process
n; contains no quadrature component, since the spec-
trum is identically equal to its value at zero frequency,
where the quadrature spectrum, as an odd function,
must vanish. Thus models 1 and 2 are in principle
unable to simulate the observed quadrature spectra.
They are none the less useful as a reference to distin-
guish between those properties of the SST spectra which
can be attributed to the spatial structure of the forcing
alone and other features which can be explained only
by introducing advective transport processes.

Model 3 represents an extension of model 2 through
the inclusion of advection. Since this is an asymmetrical
transport operator, it generates quadrature terms in
the cross-spectra. Model 4, finally corresponds to the
full transport equation (3.1) including both advection
and isotropic diffusion. The diffusion term, as a sym-
metrical operator, affects mainly the co-spectra. It can
be distinguished from the influence of the spatial cor-
relation structure of the stochastic forcing through its
different frequency dependence. However, the modi-
fications induced by diffusion were found to be rela-
tively minor, and for this reason the model was not
generalized further to the case of an anisotropic dif-
fusion tensor.

To compute the SST cross-spectra for models 3 and
4 from Eq. (3.7), the matrix S containing the transport
matrix A has to be inverted. This was achieved using
the expansion:

.1)

Ay AuAy _
lw+ N T (lw+ N)iw+ )

(S™ =0 —

(4.2)

It was found in practice that the series could be ter-
minated afier the second term. Already in this ap-
proximation, however, successive application of the
matrix 87! in Eq. (3.7) involves computations of the
forcing cross-spectra at point pairs further separated
than the closest neighbors. For this reason the white-
noise correlation function is specified in Eq. (4.1) for
arbitrary pairs (J, k), rather than for only the closest
neighbors, which would have sufficed for models 1
and 2. )

5. Model fitting

For each grid point j a data vector f was formed
consisting of the autospectrum of a central point and
the real and imaginary components of the four cross-
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spectra between the central point and its nearest neigh-
bors (N, W, E and S), for all frequencies. Thus f*
= (fT(w;),* * +, 1T(w,)), where {T(w;) = (ReFjp(w;), - - +,
ReF, s(w;), ImF n(w;), * - +, ImF] 5(w;)), and T denotes
the transpose. The dimension of f is 81 (cf. section 2).
In the same way we define a model vector f, which is
given as a function of the model parameters.

The model is fitted to the data by minimizing the
quadratic form

e= AfTMAS (5.1)
with respect to the model parameters, where Af =
f — f and M is a suitably defined weighing matrix. We
choose M equal to the inverse of the covariance matrix
V = (8f5fT) of the data errors &6f, M = V™! (for definition
see Appendix A). This matrix has the well-known
property of minimizing the statistical errors of the
model parameters (maximum likelihood solution, cf.
Martin, 1971).

If the data are sufficiently well defined statistically,
the covariance matrix V can be estimated from the
observations. However, if a reasonable fit to the data
can be achieved by a model, a simpler method is to
compute theoretically V from the model. For model
significance tests (cf. next section) it is, in fact, more
appropriate to define V by the model rather than the
data. We shall regard V in the following as given by
the model.

The variability covariance matrix V for spectral es-
timates can be expressed in terms of the auto- and cross-
spectra by standard relations (cf. Jenkins and Watts,
1968, and Appendix A). Since the model spectra are
not known initially, the minimum of ¢, Eq. (5.1), is
determined iteratively. Starting from an initial first
guess for the parameters, which defines the initial co-
variance matrix of the data errors, a new set of param-
eters is obtained by minimizing the quadratic form e
and so on. The iteration generally converged rather
rapidly.

In computing the model cross-spectra in accordance
with (3.7), it was assumed that the fields were locally
statistically homogeneous and that the model param-
eters were constant over the neighboring grid points
involved in the fit for a given grid point. Although this
is not strictly valid, it simplifies the analysis consider-
ably by decoupling the model fits at different grid
points. The approximation is consistent with a local
description of the transport processes and incurs only
small errors if the grid scale is small compared with
typical spatial scales of the model parameters, as is
normally the case.

6. Model skill, error and significance

The quality of a model which has been optimally
fitted to data may be characterized by three quantities
which, though interrelated, describe different properties
of the model: :
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(1) The model skill
S~ f7

S=1—teeo
=7

provides a normalized measure (Spmax = 1) of how
closely the model vector f and data vector f lie to-
gether.

(2) The model error e [Eq. (5.1)] provides a nor-
malized measure of whether the model can be statis-
tically distinguished from a perfect model in which the
error is entirely due to data errors. For a perfect model
and Gaussian data errors, e is a x?-distributed random
variable with n — p degrees of freedom, where n is the
number of data values and p the number of model
parameters. If the error ¢ is larger than ¢, (the 95%
cutoff of the x2-distribution), the model will be rejected.

(3) The statistical significance of the model can be
inferred from the covariance matrix {dpdp") of the
model parameter errors dp arising from the data errors
of. For small errors, (5pdp’y is linearly related to the
covariance matrix V = <6f6fT>. (See Appendix B.)

Apart from the differences in the quadratic form the
skill is simply one minus the error (the choice of metric
for the skill is essentially arbitrary, but it is customary
to use the unit matrix).

The model significance is generally related to the
model skill in the sense that for a low-order model high
skill is normally also associated with small model errors.
However, an increase of skill through an increase in
complexity of a model is generally accompanied by a
decrease in the model significance, so that the simul-
taneous requirements of model skill and significance
generally involve some form of trade-off in model con-
struction (cf. Barnett and Hasselmann, 1979).

To understand the interrelation between model skill
(or error) and the statistical significance of the model
parameter estimates it is useful to consider not only
the overall model skill and error, but also the corre-
sponding quantities defined for subsets of the data. In
our case we consider the skill components S,, S, and
S, for the auto-, co- and quadrature-spectra. Different
model parameters are found to affect the skills for dif-
ferent data subsets quite differently. Generally, a model
parameter is well defined if it has a significant impact
on at least one skill component.

The dependence of the overall model error and in-
dividual error contributions, integrated over all grid
points, is shown as a function of the model order in
Fig. 4. With respect to the autospectra, the extension
of the model hierarchy beyond the original local forcing
and feedback model of Reynolds (1978, 1979) clearly
yields no net improvement. However, this model, in
its simplest extension to an isotropic forcing field, is
unable to explain the co- and quadrature-components
of the cross-spectra, as indicated by high error levels
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FIG. 4. Mean value of the error € as a function of the model number,
for the different subsets of the data (auto-, co- and quad-spectra)
averaged over all grid points and normalized by ¢,, the critical error
level at which the model is rejected.

of model | with respect to both of these datasets. The
generalization of model 1 to include anisotropic forc-
ing, model 2, significantly improves the simulation of
the cospectra, but has no impact on the quadrature
spectra, as expected. The introduction of advection,
model 3, reduces the error of the quadrature spectra,
without significantly affecting the errors in the other
spectra. The introduction of the diffusion coefficient,
finally has little impact on any of'the data errors. The
corresponding skill values are shown in Fig. 5.

The regional distribution of the three skill fields is
shown in Figs. 6~-8. Grid points at which the model is
rejected are indicated by open circles. The skill values
for the autospectra (model 1) are rather high (above
90% in the eastern North Pacific) and the model is
rejected at only 2 grid points. The skill values for the
covariance spectra using model 2, Fig. 7, are similarly
uniformly high, although the model is now rejected at
20 grid points. It appears at first sight surprising that,
in contrast to Fig. 4, the model error is found to be
significant for several points in regions of Fig. 7 for
which the skill is above 90%. This can be explained
simply by the fact that the number-of covariance spectra
which are available for model testing is four times the
number of autospectra, which makes it possible to de-
tect smaller model errors. As anticipated on the basis
of the nonsignificant mean error achieved already with
model 2 for these data (Fig. 4), the atmospheric forcing
and feedback parameters inferred from these models
are all statistically significant (Table 2). However, the
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fields of diffusion coefficients, determined for model
4, were found to be less significant. Figure 8 shows the
skill values for the quadrature-spectra, for model 3. As
expected from the relatively small (but statistically sig-
nificant) skill values for these data, and the significant
regionally averaged error for this case, the model is
now rejected at a large number of grid points (39 out
of 84), (i.e., the improvement achieved by including
advection is real, but there are also some real processes
still missing in the model). Although imperfect, the
model yields a statistically significant advection field
especially in the eastern North Pacific (see Fig. 12).

7. Parameter values

The regional distribution of the parameters p inferred
from the best fit model 4 are shown in Figs. 9-12 to-
gether with the mean parameter errors p. The mean
ratio dp/|p| is listed in Table 2. Lower order models
yielded almost identical parameters, except that the
relaxation times increased slightly when diffusion was
included.

The auto spectrum N of the atmospheric forcing (Fig.
9) is found to be largest in the midlatitudes and de-
creases towards the equator and the pole. There is also
a pronounced gradient from maximum values at the
western side of the basin to lower values in the east.
The spatial correlation scales (Fig. 10) of the atmo-
spheric forcing [Eq. (4.1)] show a marked east-west
elongation, and tend to be smaller where the forcing
is largest. The principal features of Figs. 9 and 10 are
consistent with the usual concept of atmospheric forc-
ing in midlatitudes being due to eastward traveling dis-
turbances, with strong air-sea temperature and hu-
midity contrasts occurring in the western regions of
the ocean where the principal air mass transformations
take place. The local relaxation time A~! (Fig. 11) lies
in the range 2-3 months and is consistent with previous
estimates by Reynolds (1978) for a decoupled model.

The model advection field v = (v, v,) exhibits some
scatter (Fig. 12), but resembles the overall structure of
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FIG. 5. Mean value of skill as a function of the model number for
the different subsets of the data averaged over all grid points.
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F1G. 6. Distribution of skili for modeling the autospectrum using model 1.
At two grid points indicated by open circles, the model is rejected.
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F1G. 7. Distribution of skill for modeling the real parts of the four nearest neighbor
cross-spectra using model 2. At 20 grid points (“0”’) the model is rejected.
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FIG. 8. Distribution of skill for modeling the imaginary part of the four nearest neighbor
cross-spectra using model 3. At 39 grid points (“0”) the model is rejected.
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TABLE 2. Mean relative error of parameters averaged over all grid
points for which at least model 4 is accepted. For definition of pa-
rameters see text.

Parameter p

| %
lp,m

the surface current field inferred from ship-drift ob-
servations (Fig. 13). The mean value of the advection
velocity is about 4 cm s~ which is also not unrealistic.
It should be noted that the model mean advection ve-
locity fields represent 27 year averages over 5° X 5°
squares and the depth of the mixed layer, so that fea-
tures such as the Kuroshio Current are necessarily
strongly smoothed. Nevertheless, some discrepancies
can be seen, for example, in the northwest corner of
the analysed region. These can perhaps be attributed
to the fact that the model defines only a net effective
advection velocity, including both the advection of
anomalous SST patterns by the mean ocean currents
and displacements of patterns through interactions with
the mean wind.

The diffusion coefficient D (Fig. 14) lies in the range
10 to 10* m? s™!, with lower values occurring towards
the northeast. The order of magnitude is consistent
with estimates based, for example, on dye-dispersion
measurements (Okubo, 1971) and the coefficient is
found to be always positive (which is not automatically
ensured by the analysis). However, as pointed out in
the previous section, the uncertainty of this parameter
is of the same order as the estimate itself, so that this
result may be regarded only as an order of magnitude
estimate.

ATHMOSPHERIC FORCING

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 17

8. Discussion

We have shown that for a large area of the North
Pacific the SST autospectra and cross-spectra between
nearest neighbors can be modeled on a 5° square grid
by a transport equation including advection and dif-
fusion, a linear feedback term and spatially anisotropic
white noise atmospheric forcing. In the case of auto-
spectra, the consideration of the spatial correlation
structures of the forcing and the advection and diffusion
transports is not necessary to obtain a valid model for
most grid points (Reynolds, 1979), and the model skill
is not improved significantly for these data when these
processes are included (cf. also Frankignoul and Reyn-
olds, 1982). When the dataset is extended to the cross-
spectra of neighboring grid point pairs, however, the
model fit is successively improved by including the
spatial structure of the forcing and the horizontal
transport terms. The spatial forcing structure has the
strongest impact on the cospectra, while the quadrature
spectra are determined primarily by the advection
terms. The inclusion of diffusion does not significantly
improve the model fit.

The main purpose of considering an extended
model, however, was not so much to improve the
model fit to the data, but to derive information from
SST anomaly data on the effective forcing, feedback
and horizontal transport processes in the mixed layer.
The parameter fields inferred from the model are found
to be reasonably consistent with independent direct
estimates, where these exist.

The spatial scales of the atmospheric forcing field
agree with the scales of transient midlatitude synoptic
disturbances (which must be regarded as the principal
short term atmospheric forcing according to the white-
noise forcing hypothesis). The level of the white noise
forcing (on SST anomaly time scales smaller than 2~

60°N

4LO°N

20°N

I

150°E

180°

150°W 120°W

FIG. 9. Distribution of atmospheric forcing white noise autospectrum in (°C yr~")¥(cpy)™".
The rms error is 8N = 0.5 (°C yr ' Y(cpy)™".
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F1G. 10. Distribution of the correlation length scales R,, R, of the model atmospheric forcing
(defined as the e-folding distances of the white noise forcing).
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FI1G. 11. Distribution of the relaxation time (months) of SST anomalies.
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FIG. 12. Distribution of the model advection velocity (cm s77).
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F1G. 13. Distribution of ship drift ocean surface currents in August.
Only directional information is shown (after Gorschkov, 1976).

3 years) corresponds to a transient rms heat flux am-
plitude of order 20-30 W m™2, assuming an atmo-
spheric correlation time scale of 5 days and an average
mixed layer depth of 70 m. If the white noise forcing
is interpreted alternatively as a fluctuating oceanic ad-
vection term, driven by anomalous wind fields, the
corresponding rms current velocity amplitude is esti-
mated as 5 cm s™!. Both estimates appear in reasonable
agreement with measurements.

The inferred mean advection velocities are also con-
sistent in magnitude and direction with the general
surface velocity distributions derived from ship drift
data. It should be noted, however, that the net advec-
tion velocities contain an unknown contribution from
the mean winds, which may be expected to generate
an effective advection term through the transport of

DIFFUSION

SST anomaly signals downwind. For the purposes of
SST modeling for climate studies, the net mixed layer
SST advection fields derived in this manner from the
SST anomaly data themselves may nevertheless pro-
vide a more appropriate effective advection field than
near surface current measurements.

The diffusion coefficient represents the least well de-
termined parameter of the model. It was at least found
to be positive everywhere (not automatically guaran-
teed by the model) and its order of magnitude (103-
10* m? s7!) is consistent with previous estimates from
diffusion experiments (Okubo, 1971).

The model fitting approach presented in this paper
cannot, of course, substitute for more detailed numer-
ical models of the coupled ocean atmosphere system.
This follows already from the fact that some of the

60°N-T
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20°N

180°

150°E
FIG. 14. Distribution of the model diffusion in units 10* m? s~'.
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residual errors, for example in the quadrature spectra,
still remained above the critical significance level.
However, the method does provide some insight into
the orders of magnitude and general interrelationship
between some of the stochastic and deterministic pro-
cesses controlling SST variability in the mixed layer in
midlatitudes, which can provide some guidance in the
construction of more sophisticated models.

APPENDIX A
Covariance Matrix of the Data

The covariance matrix V of the data vector f (the
set of auto- and cross-spectra defined in section 5) has
the form:

V(w
v=ca-xe-on=(" | ),
V(wy)
where the V(w;) represent (10 X 10) submatrices
\"/
V(w) = (V““T "”),
Vo' Vi
whose elements consist of the covariance matrices V,,
V,; of the real and imaginary part of f(w) separately
and the mixed products V.
We consider first the covariance matrix of the esti-
mated complex cross-spectra:
7 1 X
tk = ]_\} Ei F (A 1)
j=
for the grid points (i, k), where Fiy = {(z/)*z/) is the
cross spectral estimate for the “chunk” j and Fy is the
mean over all chunks.

The components of the complex covariance matrix
for the estimates F are defined by

(OF3dFyy = {(Fe— (Fa)YFy—{F))y
= (Fyy = (Fuy(Fp).
From Eq. (A1) we have

(A2)

FuFiy=s T P22

nm=1

Assuming that the z;” are Gaussian random variables,
the fourth moment can be decomposed into a sum of
products of second moments:

<ka17ﬂ> N2 E [<(zl")*zk ><(zjm)*zlm>
nm=1
+ @YWz 2™y + @M 2 2z
(A3)
The first term in (A3) is equal to (Fy){F;), cancel-
ling the last term in (A2), and the second term is iden-

tically zero, leaving only the last term as a contribution
to the complex covariance matrix:
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(8FudF, 1>— N Z @Yz 2" (Z™)*).

nm=1

If the chunks (n, m) are statistically independent,
the right-hand side reduces further to

S 1
(oFudFyry = N<(z,-")*z,"><zk"(z,-">*>

=—<F XFjy ==

for any chunk »n and where we have assumed that the
expectation values of the data can be approximated by
the model.

Decomposing the spectra into its real and imaginary
part:

uf}k,

Fu=ap+iby, Fu=dp+iby,

we have

1 - _
ap= 5 [Fa+ (Fi)*]

lk_' [ka (Ftk) ]a

and obtain then by straightforward algebra:
biibu)

(Sayday) = va(ailajk — bubj+ Gy —

(8budbyy = E‘N(_ailajk + bybj.+ Gy — biiby)
(baydbyy = Tv(anbjk + dpby+ Gubji+ G;iby).

APPENDIX B

Covariance Matrix of the Parameters

The optimal model is defined as the minimum of
the quadratic form
e=(f—f)TM(E-T),

and therefore satisfies the system of equations:

O¢
—=-20"M(f—-1)=0,
dp
where p denotes the set of model parameters and DT
is the transpose of the rectangular matrix:

ot
s

We split the model and the data vector into a sum
of the expectation value and a small deviation:

f=()+of, f=(@)+of,
with 6f = Dép from (B2).

(BI)

(B2)

- (B3)
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Inserting (B3) into (B1) and assuming that (f)
= (f), we obtain:

D™M(5f — Dép) = 0.
Solving for ép we have
p = (DTMD)"'DTMJf,

and the covariance matrix of the parameters is then
given by
(opép"y=(D"MD)"".
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