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ABSTRACT

The physics of wind input in the Wave Ocean Model (WAM) cycle 4 is based on scaling with the friction
velocity u

*
. This implies that in the case of fetch-limited wind-wave growth, universal scaling laws should

follow if fetch and wave variance are scaled by means of u
*

. For operational applications, such as at the European
Centre for Medium-Range Weather Forecasts, the scaling of the WAM model with u

*
is well satisfied. Recently,

however, it was found that this scaling is violated for very short waves at small fetches and durations, for which
the model is run with very small grid spacings, a very small time step, and a large cutoff frequency. This
violation of u

*
scaling, which is a serious problem for implementation on a small lake, was found to be caused

by a too severe limit on the increments of the wave spectrum per time step. In this article, an alternative
formulation for the limitation of spectral component growth is suggested, which does not violate u

*
scaling and,

in addition, gives rise to excellent results over a large range of scaled quantities. At the same time, growth
curves for wave height and peak frequency hardly depend on the time step.

1. Introduction

The Wave Ocean Model (WAM) (for a detailed de-
scription see Komen et al. 1994; WAMDI 1988) solves
the energy balance equation for the wave spectrum F.
Leaving out the advection terms, the evolution equation
for F reads

]F
5 S, (1)

]t

where S is a source term consisting of wind input, non-
linear interactions, and dissipation. The energy balance
of the wave spectrum is evaluated in detail up to a high-
frequency cutoff frequency f c. (In operational appli-
cations, the frequency range is normally between 0.04
and 0.4 Hz.) The high-frequency adjustment timescales
are considerably shorter than the evolution timescales
of the energy-containing frequency bands near the peak
of the spectrum. In this study we are interested in them
mainly in terms of modeling applications. Thus, in the
high-frequency region, it is sufficient to determine the
quasi-equilibrium level to which the spectrum adjusts
in response to the more slowly changing low-frequency
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waves. The time history of the short-time scale adjust-
ment process, itself, does not need to be determined.

In WAM this was achieved by using a semi-implicit
numerical integration scheme in which the time step
matches the timescale of the low-frequency waves. If
the source function S has a stable fixed point, then the
semi-implicit scheme can be shown to be numerically
stable (Janssen et al. 1997). This is provided that we
retain the full functional derivative of the source term
S with respect to the spectrum F, which is a two-di-
mensional matrix. In practice, we retain only the di-
agonal part of the functional derivative matrix. As a
consequence, however, numerical stability is not guar-
anteed. To ensure numerical stability, a growth spectrum
limit was added to WAM. Initially this growth limiter
was independent of the integration time step. This re-
sulted in a sensitive time-step dependence on the nu-
merical results (Tolman 1992). Removal of the time-
step dependence was achieved by proposing a time-step-
dependent wave-growth limiter. This limiter was intro-
duced in cycle 4 of WAM, which, in September 1991,
became the operational wave forecasting model at the
European Centre for Medium-Range Weather Forecasts
(ECMWF). For operationally feasible resolutions (Dx
. 50 km), satisfactory results were obtained. In this
article, however, it will be shown that for very high
resolution—relevant for applications in lakes, for ex-
ample—the WAM cycle 4 limiter violates the well-
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known fetch-limited growth law for significant wave
height.

In this article, a revised formulation of the cycle 4
limiter will be introduced. In addition, the reasons why
it was chosen to depend on the friction velocity will be
explained. Also, the new limiter, which is far less re-
strictive than the previous one, will be applied to the
case of high spatial resolution (up to 1 km). Addition-
ally, an experiment with a global application of WAM
is performed. Although in the high resolution case the
new limiter gives dramatic improvements, in the global
application differences are seen only occasionally in
rapidly varying circumstances near the coasts.

2. The semi-implicit integration scheme

WAM uses a semi-implicit scheme whose time step
is matched to the evolution of the lower-frequency
waves. For low-frequency waves, this integration meth-
od yields essentially the same results as a simple for-
ward integration scheme (but it is of second order rather
than first order), while for high-frequency waves, it
yields the slowly changing quasi-equilibrium spectrum.

The semi-implicit difference equations are given by

1
F 5 F 1 D t[(1 2 a)S 1 aS ], a 5 , (2)n11 n n n11 2

where Dt is the time step and the index n refers to the
time level. Unfortunately, Sn11 5 S(Fn11) depends non-
linearly on the spectrum. Hence, we cannot solve di-
rectly for Fn11. Therefore, Sn11 was expanded around
Fn; that is, a change DFn 5 Fn11 2 Fn will lead to a
modified source DSn 5 Sn11 2 Sn, which can be ex-
panded by

]S(x)
DS (x) 5 DF (y) dy 1 · · · ,n E n[ ]]F(y) F5Fy n

x, y [ (r, f , u),

where f is the frequency and u is the direction of a
plane wave, which is located around position r. In a
discretized form (N degrees of freedom), the functional
derivative ]S/]F reduces to an N 3 N dimensional ma-
trix, and the integral reduces to a finite sum. In practice,
only the diagonal term is retained, and only when it is
negative:

]S
S 5 S 1 min , 0 (F 2 F ) 1 · · · , (3)n11 n n11 n1 2]F

in which case one can solve (2) directly for Fn11:

DtSnF 5 F 1 . (4)n11 n 1 2 min[aDt(]S/]F ), 0]

The positive diagonal term is omitted for reasons of
stability, which may be clear from (4).

3. Scale invariance

WAM is based on scaling with friction velocity u*.
This comes from the belief that as long as viscosity is
not important the physics of ocean waves obeys a scale
invariance. For instance, in the case of a fully developed
wind sea it is expected that the significant wave height
Hs will be four times as large when the wind forcing,
that is, u* (rather than U10), is doubled. Therefore, Hs

can be factored into a dimensionless quantity , aH*s
dimension-carrying factor containing u*, and the grav-
itational acceleration g 5 9.81 m s22:

2u*H 5 H* , (5)s s 1 2g

in which, according to Pierson and Moskowitz (1964),
; 130.H*s

Such a decomposition can be made for any physical
quantity. For the wave spectrum F 5 F(r, f, u), position
r, frequency f, and time t, a dimensional analysis leads
directly to

5 2u u g* *F 5 F* , r 5 r* , f 5 f * ,
31 2 1 2 1 2g g u*

u*
and t 5 t* . (6)1 2g

The laws of ocean-wave evolution can be written in
terms of dimensionless quantities only. For a specific
application, this means that when we double all fre-
quencies, halve all timescales and u*, and divide all
length scales by a factor of 4, the system remains equiv-
alent, from a scaled point of view. Therefore, the evo-
lution of will be identical, which results in four timesH*s
as many low waves.

This should also be true for WAM. It is also true that
a proper rescaling of the time and space discretization
must lead to an identical finite difference scheme.

4. The limitation on wave growth

a. Numerical versus physical limitation

In practice, it turned out that the resulting numerical
scheme incorporated by (2) using approximation (3) was
not always stable at high frequencies near the model
cutoff, and, as a safeguard, a limit on the increments of
F was imposed. The limiter introduced in the original
version of the model was given by

|DF|max 5 6.4 3 1027 g2f 25. (7)

This limiter ensured that WAM remained numerically
stable. However, as was shown by Tolman (1992), re-
sults for initial wave growth appeared to be quite sen-
sitive to the choice of the time step. In contrast to re-
ducing the model time step for initial wave growth, as
was suggested by Tolman, it was found that the time
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dependence could also be considerably reduced by
choosing a limiter that is proportional to the time step:

27 2 25|DF | 5 6.4 3 10 g f Dt/t , t 5 1200 s. (8)max

This limiter was introduced in the transition from cycle
3 to cycle 4 of WAM. The consequence of making the
limiter proportional to the time step is that it will remain
in the source term when the limit Dt → 0 is taken.
Therefore, in light of this, (8) is not just a numerical
feature; it becomes part of the physics. Usually it is
effective only for initial wave growth, in which the en-
ergy-containing part of the spectrum extends into the
diagnostic high-frequency tail of the model spectrum,
beyond the cutoff limiting the prognostic range of the
model spectrum. Therefore, for initial wave growth, the
limiter compensates for the lack of physics in the di-
agnostic part of the spectrum.

b. Violation of scale invariance

For large-scale applications, such as the operational
WAM at ECMWF (0.58 grid spacing), limiter (8) leads
to satisfying results. The time-step dependence is largely
reduced, and wave heights seem to scale according to
the u* scaling discussed in the previous section. How-
ever, this limiter does not have the correct u* scaling
properties. This can be seen most easily by rewriting
(8) into dimensionless quantities:

u*
27 25|DF*| 5 6.4 3 10 f * Dt* , (9)max 1 2gt

in which the explicit appearance of u* violates the scale
invariance. For instance, the ECMWF implementation
(DX 5 55 km, Dt 5 15 min) leads, for U10 5 25 m s21

(u* ; 1.22 m s21), to a comparable dimensionless sit-
uation as a WAM implementation on Lake George (a
lake about 20 km 3 10 km near Canberra, Australia)
(Young and Verhagen 1997), with DX 5 1.3 km, Dt 5
2 min (Hersbach 1998), and U10 5 4 m s21 (u* ; 0.19
m s21). Therefore, in this case the finite-difference
schemes should be very similar; in particular, |DF*|max

should be comparable. However, the Lake George lim-
iter (9), is more than six times as strict as the ECMWF
implementation, which appears to result in a severe un-
derprediction of wave height (about a factor of 2).

Therefore, in order to successfully implement WAM
in small-scale applications, the limiter needs to be re-
defined in such a way that u* scaling is restored. In
addition, the limiter should give rise only to a small
time-step dependence, which is why limiter (7) is not
a good candidate.

c. Restoration of scale invariance

In the first WAM cycles, the limiter expressed the
condition that the incremental change in the spectrum
should not exceed a certain fraction of the Phillips

(1958) universal equilibrium f 25 spectrum. Later, it was
found that for the intermediate spectral range beyond
the energy-containing part of the spectrum this shape is
not correct; the Toba spectrum is more appropriate. This
has an f 24 tail that scales with the friction velocity:

Feq 5 aTgu* f 24. (10)

The Toba spectral shape agrees with the WAM spectrum
as implemented in cycle 4.

To obtain a correctly scaled limiter, the u* dependence
of the high-frequency spectral level is considered and
the constant timescale t in (8) is replaced by a timescale
defined by the model physics or numerics. This could
be a relevant timescale of the wave spectrum (in which
case the inverse of the mean frequency would be a can-
didate) or a relevant timescale of the numerical fre-
quency grid—which would suggest the inverse of f c

(the cutoff frequency) as a natural choice. It was found
that f mean gives a somewhat smaller dependence on the
time step for duration-limited growth curves but that f c

gave more consistent results for fetch-limited growth
curves at very small dimensionless fetches. Therefore,
it is proposed that we replace (8) with

|DF|max 5 3.0 3 1027 gũ* f 24f cDt, (11)

in which ũ* 5 max(u*, / f ) and 5 5.6 3 1023gf* f*PM PM

is the dimensionless Pierson–Moskowitz peak frequen-
cy. The inclusion of a minimum to u* anticipates wind-
less situations. In this case, the limiter would reduce to
zero, which means that swell dissipation would be pro-
hibited. The validity of this minimum was checked by
performing two windless runs: one with the minimum
and one without. The run without the minimum showed
no swell dissipation; the run with the minimum did. In
addition, the limiter was never activated for the latter
case. This gives us some confidence that 5 / fu* gf*min PM

is a good choice. The scaling factor in (11) was chosen
such that the limiter was restrictive as little as possible.
On the basis of an extensive number of WAM runs for
various temporal and spatial resolutions and for various
frequency ranges and wind speeds, the value of 3.0 3
1027 was found to be suitable. In particular, WAM could
now be successfully implemented for Lake George
(Young and Verhagen 1997; Hersbach 1998). Limiter
(11) is scale invariant because its scaled form depends
only on scaled quantities:

f *PM27 24|DF*| 5 3.0 3 10 max 1, f * f *Dt*.max c1 2f *

It is noted that, in principle, several other limiter choices
are possible. For example, one could choose a limiter
that depends on f cDt. This, in contrast to (11), hasÏ
the advantage that the limitation does not enter the phys-
ics when the limit Dt → 0 is made. The drawback,
however, is that this appears to reintroduce a large time-
step dependence on the initial wave growth, while (11)
shows a much weaker sensitivity to the time step. In
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testing the WAM model with limiter (11), it turned out
that in certain circumstances numerical oscillations de-
veloped in the high-frequency part of the spectrum and
in the friction velocity. These oscillations were sup-
pressed by replacing the value a 5 ½ for the implicit
parameter a in (2) by a 5 1. Although this reduced the
order of the scheme from 2 to 1, it was found to have
a negligible impact on the integration. (The upwind ad-
vection scheme of the model is also only of first order.)

5. Experiments

a. Fetch-limited growth

The essence of the promising performance of the new
limiter (11) is given by the difference between Figs. 1
and 2. Figure 1 shows fetch-limited growth curves (i.e.,
dimensionless energy e* 5 g2E/ and dimensionless4u*

peak frequency 5 u* f p/g, versus dimensionless fetchf*p
X* 5 gX/ ) for three different wind speeds (U10 5 10,2u*

20, 30 m s21) on the basis of the improved limiter (11).
A grid consisting of 20 points in the downwind direction
and one point in the direction perpendicular to the wind
was used. Each grid point was chosen to be its own
neighbor, in the latter direction, which mimics exactly
the situation of an infinite coast line. Starting from a
very low energy–containing initial spectrum, the model
was integrated in time until a time-independent situation
was reached. Three different spatial resolutions and fre-
quency grids were used. In the first case (full lines), a
grid resolution of 20 km was chosen, together with a
frequency range from 0.04 to 0.4 Hz (corresponding to
the normal operational WAM model). In the second case
(dot–dashed curves), a much smaller grid resolution of
1 km was chosen. In these short fetches, the dominant
part of the wave energy is found in the high frequencies,
and therefore, a frequency range between 0.1 and 1 Hz
was chosen. Finally, the dashed curves represent runs
with a grid resolution of 167 km—that is, 1.58, which
was the grid distance used, until 1996, for the global
model at the ECMWF. For the large wind speed U10 5
30 m s21, the peak frequency reaches approximately
0.04 Hz. Therefore, a frequency range of 0.03–0.3 Hz
was taken. The integration time for the three grids was
4 days for the 167-km grid, 1 day for the 20-km grid,
and 6 h for the 1-km grid.

It is seen in Fig. 1 that all fetch curves join together
to become one curve that very smoothly stretches over
the entire fetch range 2 3 103 , X* , 2 3 108, that
is, over five orders of magnitude. The only departures
seen in these curves occur in the leveling at the begin-
ning of the curves, which is caused by the first off-land
point only. No significant dependence on the time step
was found. Therefore, rather large time steps were used:
30 min for DX 5 167 km, 15 min for DX 5 20 km,
and 2 min for DX 5 1 km.

The curves are reasonably close to the dotted curve,
which represents an interpolation between the growth

curves obtained by Kahma and Calkoen (1992) (on the
basis of their composite dataset using a wave-state-de-
pendent drag coefficient) for the moderate fetch range
and the infinite fetch saturation values of Pierson and
Moskowitz (1964):

3 6 20.96e* 5 1.1 3 10 (1 1 9.51 3 10 /X*) (12)

and
23 7 0.29f * 5 5.6 3 10 (1 1 1.45 3 10 /X*) .p

If the strength of the WAM wind input source term was
decreased by 10%, the match between curves (12) and
the ‘‘WAM’’ curves would be excellent. Figure 2 shows
results for exactly the same calculations but now using
the original limiter (8). The deviation from a dimen-
sionless fetch curve is seen to be dramatic for the small-
scale grids. The curves for a grid distance of 1 km are
much too low (by a factor as low as 10) because the
limiter (8) is much too restrictive, as indicated in the
bottom panel in Fig. 2. The violation in u* scaling is
seen most clearly in the difference between the U10 5
30 m s21 run for a grid resolution of 20 km and the U10

5 10 m s21 run for a grid resolution of 1 km. Both runs
correspond to the same dimensionless fetch range X*
; 105–106. Although for the new limiter (11) both
curves are very close, the original limiter (8) curves are
widely separated.

So far, nondimensional quantities have been com-
pared. In practice, one is interested in unscaled quan-
tities. Since the wave energy scales with , a small4u*

deviation in u* implies a large change in E. To inves-
tigate whether the improved limiter has a real impact
on unscaled wave heights as well and is not simply an
effect of a modification in u* (which in WAM cycle 4
depends on the sea state), Fig. 3 shows a plot of the
significant wave height versus the fetch. The left panel
shows the results for runs with a grid resolution of 20
km and a wind speed of U10 5 30 m s21. The right
panel shows the corresponding results for a grid reso-
lution of 1 km and U10 5 10 m s21. Both runs correspond
to comparable dimensionless fetch ranges, and the
growth curves should therefore be similar in shape. This
is approximately true for the new limiter, although the
curve for the 20-km run is somewhat flatter than the
1-km run. This is because the peak frequency for U10

5 30 m s21 approaches the minimum frequency of 0.04
Hz for the fetch range of this run. If a lower minimum
frequency were used, the resemblance between the 1-
and 20-km curves would become excellent. In contrast,
the wave heights of the 1-km run for the original in-
tegration scheme are about 50% too low. Thus it is seen
that the scaling violation of the old limiter has serious
implications for small spatial scales.

b. Duration-limited growth

The impact of limiter (11) on duration-limited
growth is illustrated in Figs. 4 and 5. These figures
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FIG. 1. Fetch-limited growth curves in dimensionless quantities, obtained with the newly pro-
posed integration scheme and limiter (11). Runs for three different resolutions, 167, 20, and 1 km,
were performed, each for three different wind speeds U10 5 10, 20, and 30 m s21. The experimental
curve (dotted) is defined by (12).

show, for the old (Fig. 4) and new limiter (Fig. 5), the
duration-limited evolution of the significant wave
height, peak frequency, and friction velocity for a 25
m s21 wind speed. Also shown are the number of spec-

tral bins at which the limiter was active (counted over
the 25 frequencies times 12 directions; usually the ac-
tivations occur in the higher-frequency bins located
around the wind direction). Runs were performed for
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FIG. 2. Fetch-limited growth curves in dimensionless quantities, obtained with the default WAM
cycle 4 integration scheme. Runs for three different resolutions, 167, 20, and 1 km, were performed,
each for three different wind speeds U10 5 10, 20, and 30 m s21. The experimental curve (dotted)
is defined by (12).

time steps of 1200, 600, and 1 s. The 1-s runs can be
regarded as the limit DT → 0, in which (|DF|max /DT )
becomes part of the source term S. For both cases it
is seen that for significant wave height and peak fre-

quency the convergence to this limit is quite fast. Only
for the 1200-s run is there a noticeable difference. The
run with DT 5 600 s is already very close to the con-
tinuity limit. The convergence for friction velocity



890 VOLUME 16J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

FIG. 3. Fetch-limited growth curves in unscaled quantities. (a) Re-
sults for runs with a grid resolution of 20 km and a wind speed of
30 m s21. (b) Results for a resolution of 1 km and U 10 5 10 m s21.

FIG. 4. Duration-limited evolution for wave height, peak frequency, and friction velocity, using
the default WAM cycle 4 model, that is, the semi-implicit scheme (2) with a 5 ½.

(which depends on the sea state in cycle 4 of WAM)
is slower.

In addition, runs were performed that were based on
limiters that did not contribute to S for DT → 0, such
as (7) or a limiter that is proportional to DT. In allÏ
of these cases, a much larger dependence on the time
step was found (not displayed). The reason for this may
be that the time-step dependence is reduced mainly after
the number of spectral bins, at which the limiter is ac-
tive, has converged. This number can be zero, which is

the case for limiters that vanish in the limit Dt → 0.
However, in certain situations (such as initial wave
growth) the time step at which this point is reached may
be quite small, resulting in a large dependence in the
operationally feasible range of time steps. The solution
to get around this problem is to reduce the time step
whenever that is necessary (Tolman 1992). Alternative-
ly, this number may be larger than zero, which can be
the case for a limiter that does enter the physics, such
as limiter (11). Convergence to that number (which val-
ue depends on the situation and therefore on time) is
achieved for time steps that are quite large. For limiter
(11) this is indeed true, as can be seen in the lower right
panel of Fig. 5: the curves for all time steps used are
right on top of each other.

Also shown in Figs. 4 and 5 (solid lines) are the
results of a run with a time step of 1 s in which no limit
on maximal wave growth per time step was applied.
This run can be regarded as the limit DT → 0, without
the inclusion of an extra term in S. From this run the
impact of the limiter can be revealed. For the original
limiter, the effect appears to be very large. The initial
wave growth is highly suppressed and results in a time
lag for later times. This is also illustrated in the lower
right panel of Fig. 4, which shows that limiter (8) is
very active.
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FIG. 5. Duration-limited evolution for wave height, peak frequency, and friction velocity, using
the newly proposed scheme, that is, a 5 1 in (2) and limiter (11).

FIG. 6. Scatterplot of the significant wave height resulting from a
10-day global run of WAM at ECMWF on the basis of the original
scheme vs the significant wave height obtained using the improved
scheme.

On the other hand, the impact of the newly proposed
limiter (11) is very modest. Only the first few hours’
wave growth is somewhat slower. Only at this initial
stage is limiter (11) active (but much less so than the
original limiter), as can be seen in the lower right panel
of Fig. 5. There is practically no time lag. The difference
between both curves may be well within the experi-
mentally known accuracy.

c. The WAM model at ECMWF

Finally, we investigated whether these errors have
significant implications for the scales relevant for nor-
mal operational wave forecasting. WAM was run with
limiter (11) on analyzed winds for a 10-day period (start-
ing at 12 h GMT, 5 December 1995), and the results
were compared to the WAM version that was opera-
tional at ECMWF on 5 December 1995. Both versions
had 12 directions, 25 frequencies (between 0.04 and 0.4
Hz), and a spatial resolution of 1.58. The propagation
time step was 30 min, and the integration time step was
15 min. Figure 6, which displays a scatter diagram for
wave height, and Fig. 7, which shows a wave-height
difference field, indicate that differences are indeed oc-
casionally found. However, the differences are local
(e.g., the fetch-limited case near the East Coast of the
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FIG. 7. Difference plot between the significant wave height resulting from a 10-day global run of WAM at ECMWF (starting at 12 h
GMT on 5 December 1995) on the basis of the original scheme and the significant wave height obtained using the improved scheme.

United States), although they can be as much as 2 m in
wave height.

6. Conclusions

To summarize, a new limiter, (11), that is consistent
with friction velocity scaling was introduced to the
WAM integration scheme. Using a fully implicit inte-
gration scheme (2) with a 5 1, results were obtained
that are free of numerical noise and that scale correctly,
independent of grid resolution and the time step, even
in extreme conditions of very small dimensionless fetch-
es.

The WAM model, using limiter (11), has been suc-
cessfully implemented for Lake George [Hersbach
(1998); for a description of the experimental setup up,
see Young and Verhagen (1997)]. The necessary updates
to WAM can be obtained by contacting the correspond-
ing author.
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