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ABSTRACT: Submesoscale lateral transport of Lagrangian particles in pycnocline conditions is investigated by means of

idealized numerical simulations with reduced-interaction models. Using a projection technique, the models are formulated

in terms of wave-mode and vortical-mode nonlinear interactions, and they range in complexity from full Boussinesq to

waves-only and vortical-modes-only (QG) models. We find that, on these scales, most of the dispersion is done by vortical

motions, but waves cannot be discounted because they play an important, albeit indirect, role. In particular, we show that

waves are instrumental in filling out the spectra of vortical-mode energy at smaller scales through nonresonant vortex–

wave–wave triad interactions. We demonstrate that a richer spectrum of vortical modes in the presence of waves enhances

the effective lateral diffusivity, relative to QG.Waves also transfer energy upscale to vertically sheared horizontal flows that

are a key ingredient for internal-wave shear dispersion. In the waves-only model, the dispersion rate is an order of mag-

nitude smaller and is attributed entirely to internal-wave shear dispersion.
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1. Introduction

Motivation for this study comes from several dye-tracer and

Lagrangian float release experiments conducted in the pycnocline

over the last three decades. Surprisingly, these observations,

made in widely disparate ocean environments with varying degrees

of mesoscale activity, consistently found O(1) m2 s21 effective lat-

eral diffusivities on scales from 100m to 10km. Experiments took

place in open-ocean environments, for example, theNorthAtlantic

TracerReleaseExperiment (NATRE) experiment (Ledwell et al.

1993), in quiescent LatMix 2011 Sargasso Sea summertime con-

ditions dominated by internal waves (Shcherbina et al. 2015; Lien

and Sanford 2019; Sundermeyer et al. 2020b), and in continental

shelf waters such as the Coastal Mixing and Optics (CMO) ex-

periment (Sundermeyer and Ledwell 2001; Ledwell et al. 2004;

Sundermeyer et al. 2005). Yet, despite a significant observational

effort, the dynamics responsible for the effective lateral dispersion

rate on these scales remain, by and large, not well understood.

Lateral dispersion in this regime, known as the submesoscale,

governs pollutant dispersal and the spreading of plankton and

fish colonies (Rypina et al. 2014), which strongly impact coastal

communities and marine ecosystems. On a fundamental level,

submesoscale lateral dispersion represents a pathway from

larger-scale stirring toward three-dimensionalmixing, important

for understanding how energy is cascaded from the mesoscale

toward dissipative isotropic scales (McWilliams 2008).

Submesoscale flow components in the stratified interior in-

clude internal waves and vortical modes. Idealized theoretical

and numerical studies (Holmes-Cerfon et al. 2011; Bühler et al.
2013) have shown that dispersion by internal waves alone is too

weak and cannot account for observed diffusivities. In their

analysis of relative dispersion in the Antarctic Circumpolar

Current, Balwada et al. (2021) find that superimposing near-

inertial oscillations onto numerically simulated particle trajec-

tories does not alter dispersion characteristics. These authors

demonstrate that the presence of energetic near-inertial waves is

incompatible with usage of commonly used dispersion metrics

(e.g., finite-size Lyapunov exponents and second-order structure

functions). Therefore, they conclude that waves can be safely

filtered out in dispersion studies, as is routinely done in obser-

vations (Essink et al. 2019). Our study will show that, while in-

ternalwavesmay not contribute directly, they play amore subtle

role than previously recognized in modifying submesoscale lat-

eral dispersion.

Vortical modes account for linear potential vorticity (PV) of

the flow (Müller et al. 1986). Examples of vortical-mode flows

at the submesoscale include submesoscale coherent vortices

and rotating stratified turbulence. Polzin and Ferrari (2004)

analyzed NATRE data and attributed to vortical modes the

submesoscale signal that could not be reconciled with linear

internal waves. This led them to conclude that vortical modes

were responsible for the observed O(1) m2 s21 diffusivity on

these scales. Numerical simulations by Sundermeyer and

Lelong (2005) tested the idea first proposed by Sundermeyer

(1998) that vortical modes in the ocean interior, created by

geostrophic adjustment of well-mixed fluid patches following

wave-breaking events, may account for O(1) lateral diffu-

sivities recorded during the CMO experiment (Sundermeyer

and Ledwell 2001). These simulations reproduced qualitative

characteristics of the dispersion observations, but could not

attain the energy levels recorded at the CMO site.

Several studies have attempted to understand whether dis-

persion in the ocean is local, i.e., governed by comparable

scales, or nonlocal and governed by larger scales (LaCasce

2008; Beron-Vera and LaCasce 2016). Local dynamics are
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associated with spectral kinetic energy slopes less than23 and

nonlocal dynamics with steeper spectra. The local/nonlocal

dispersion interpretation was originally developed for two-

dimensional turbulent flows (Kraichnan 1967) and later ap-

plied in the interpretation of quasi-2D geophysical flows, for

example (Salmon 1983; Rhines 1988). In the ocean, interpre-

tation of dispersion in terms of local/nonlocal statistics has

proven difficult, in part due to the presence of near-inertial

waves that can increase energy levels at small scales without

having much of an impact on the relative dispersion of drifter

pairs (Beron-Vera and LaCasce 2016; Essink et al. 2019;

Balwada et al. 2021).

The majority of submesoscale dispersion studies have been

conducted in the mixed layer with inertial oscillations, but

devoid of propagating internal waves. The objective of the

present numerical study is to identify the contributions

of waves and vortical modes to submesoscale lateral dis-

persion in the stratified interior, where wave and vortical-

mode energy levels are comparable. This is accomplished

by performing idealized simulations under identical con-

ditions with a set of reduced-interaction models (Remmel

2010; Hernández-Dueñas et al. 2014) that include subsets of
all possible classes of nonlinear interactions. The models

were first developed for shallow-water systems (Remmel

and Smith 2009) and extended to rotating stratified flows by

Remmel (2010) and Hernández-Dueñas et al. (2014). The
current study relies on the models described in Hernández-
Dueñas et al. (2014), which include the quasigeostrophic

(QG) model with only vortical-mode nonlinearities, a model

(P2G) with all interactions except wave–wave–wave inter-

actions, and the full Boussinesq (FB) model that retains all

possible classes of nonlinear interactions between the two

components. A wave turbulence model (GGG) is also in-

cluded (Remmel et al. 2010, 2014). The GGG model can be

viewed as an extension of weak wave turbulence. Whereas

weak wave turbulence models retain only resonant wave–

wave–wave interactions (Zakharov et al. 1992; Newell and

Rumpf 2011; Nazarenko 2011; McComas and Bretherton

1977; Lvov and Tabak 2004; Lvov et al. 2004, 2010), the

GGG model includes all wave triads, including the non-

resonant ones. The QG and GGG models are useful for

studying flow evolution when only vortical modes or wave

modes are separately present, whereas P2G and FB provide

information on energy exchanges between the two com-

ponents. We find that the presence of internal waves,

through their interaction with vortical modes, leads to

nonnegligible differences in lateral dispersion among the

different models. Moreover, the ability to isolate classes of

interactions between waves and vortical modes helps to

identify and explain the role of each component in disper-

sion behavior.

In this study, all models are spun up from rest with identical

forcing designed to represent parameterized wave-breaking

events occurring at random locations in the domain. These pa-

rameterized events are introduced through enhanced localized

vertical diffusivities that produce patches of well-mixed fluid.

The mixed patches are out of equilibrium with the surrounding

stably stratified fluid and undergo cyclogeostrophic adjustment,

resulting in the spinup of a vortex structure and a radiating wave

field (Lelong and Sundermeyer 2005; Sundermeyer and Lelong

2005). The models are continuously forced in this fashion until

the flows reach statistical equilibrium, atwhich point Lagrangian

particles are placed in the domain.

The broad range of temporal and spatial scales that must be

resolved simultaneously render these computations very

memory and time intensive. Available computational re-

sources limit the maximum wave frequency band N/f that can

be considered (parameters are defined in section 2a).

Therefore, applying conclusions of our study to oceanic regions

with larger N/f requires extrapolation to a dynamically similar

regime obtained by preserving nondimensional Rossby and

Burger numbers (e.g., Lelong and Dunkerton 1998).

The rest of the paper is organized as follows. The mathe-

matical foundations of intermediate models are given in

section 2. The numerical setup, specification of parameter

values, and forcing strategy are described in section 3. Section 4

provides detailed intermodel comparisons for understanding

the role of wave and vortical motions on lateral dispersion.

Section 5 interprets dispersion patterns in terms of physical

flow features, kinetic energy and transfer spectra. A discussion

of our results is provided in section 6.

2. Model equations

a. Boussinesq dynamics

The Boussinesq approximation to the compressible fluid

equations is commonly adopted to describe low-Mach-number,

nonhydrostatic motions such as the turbulent velocity and

density fluctuations present in the oceanic submesoscales.

The Boussinesq model filters high-frequency acoustic waves

while still retaining the influence of density fluctuations

through the buoyancy term in the statement of conservation

of momentum (Boussinesq 1877). Hence, the Boussinesq

framework is a practical choice to study the interactions

between moderate frequency inertia–gravity waves and so-

called balanced flows, which at lowest order are the motions

that exist in the absence of waves altogether and account for

linear PV.

Nonlinear exchanges between these two components are

often called wave–vortical interactions, in reference to the

vortical nature of balanced flows. Quantitative understanding

of wave–vortical interactions continues to be an important

research area. Several recent theoretical and numerical studies

have found that internal waves and balanced motions may in-

teract and exchange energy (e.g., Taylor and Straub 2016;

Barkan et al. 2017; Xie andVanneste 2015;Wagner and Young

2016; Thomas and Daniel 2020), thereby impacting the accu-

racy of regional and global ocean–atmosphere models (Torres

et al. 2018; Whalen et al. 2020).

Assuming alignment of the direction of gravity and the axis

of Earth’s rotation in the vertical ẑ direction, the unforced,

inviscid Boussinesq equations are given by

Du

Dt
1 f ẑ3u52

1

r
o

=p2 ẑ
g

r
o

r0 , (1a)
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Dr0

Dt
52w

dr

dz
, and (1b)

= � u5 0, (1c)

where u(x, t) is velocity, r(x, t)5 ro 1 r(z)1 r0(x, t) is density,
and p(x, t) is dynamic pressure. The constant ro and linear

function r(z)52Bz describe the fixed reference state, and the

constantB characterizes the density stratification. The Coriolis

frequency f is taken here to be a constant, consistent with

relatively small variations of f in a restricted latitude range at

midlatitudes. The linearized version of system (1) with triply

periodic boundary conditions is known to support propagating

inertia–gravity wave solutions, as well as nonpropagating so-

lutions sometimes referred to as ‘‘slow modes’’ or ‘‘vortical

modes.’’ These wave and vortical solutions may be conve-

niently expressed in terms of a scaled density u5 (Bro/g)
21/2r0,

which has dimensions of velocity, such that

Fs(x, t; k)5

 
u

u

!
5fs(k)ei[k�x2ss(k)t] , (2)

where the four vectors Fs(x, t; k), s 5 0, 1, 2 are parame-

terized by the wavevector k. The eigenvectors fs(k) can be

found in, for example, Bartello (1995), Smith and Waleffe

(2002), Majda (2003), and Hernández-Dueñas et al. (2014).
See the appendix for more details. The superscript 0 is used to

denote the vortical mode with zero-frequency s0(k) 5 0, and

the superscripts 6 denote the wave modes with frequencies

(eigenvalues)

s6(k)56
(N2k2

h 1 f 2k2
z)

1/2

k
, (3)

where k 5 jkj is the wavenumber corresponding to the wave-

vector k, and kh 5 (k2
x 1k2

y)
1/2

and kz are its horizontal and

vertical wavenumber, respectively. The constant buoyancy

frequency N is given by N 5 (gB/ro)
1/2, and the density fluc-

tuation can be rewritten as r0 5 Bu/N.

Completeness of the divergence-free eigenmodes fs(k) al-

lows for an equivalent k-space description of the dynamics in

(1) in a triply periodic domain, given by

›bsk (k, t)

›t
5 �

k1p1q50
�

sp ,sq50,6
C

skspsq
kpq bsp (p, t) bsq (q, t) expfi[ssk (k)

1ssp (p)1ssq (q)]tg (4)

where the overbar denotes complex conjugate. The fields u and

u are recovered from the expansion

 
u

u

!
(x, t)5�

k
�

sk50,6
bsk (k, t)fsk (k) expfi[k � x2ssk (k)t]g .

(5)

Note that (4) is shorthand notation for three coupled partial

differential equations, since sk takes on the values sk 5 0, 6;

three equations are sufficient (instead of four) because the

eigenvectorsfs(k) are divergence free. Fourier pseudospectral

codes solve (4) for the unknown amplitudes bs(k), taking

advantage of fast Fourier transforms to compute the nonlinear

term as a local product in x space rather than the convolution

sum in k space. The known interaction coefficients C
skspsq
kpq are

computed from the eigenmodes fs(k) and their complex con-

jugates (e.g., Remmel et al. 2014).

The reducedmodels studied herein result from a restriction of

the convolution sum in (4) to selected classes of interactions (sk sp
sq). Each such model automatically satisfies global energy con-

servation because each triad (k p q) separately satisfies the de-

tailed balance relation C
skspsq
kpq 1C

sqsksp
qkp 1C

spsqsk
pqk 5 0 (Kraichnan

1973). Restriction of the convolution sum in Fourier space

corresponds to a projection onto the corresponding selected

wave–vortical interactions in physical space, and the models are

‘‘reduced’’ in the sense of the projection. For more details, see

Remmel (2010) and Hernández-Dueñas et al. (2014) for the

Boussinesq system and Remmel and Smith (2009) for the shal-

low water equations. After the projection in physical space, each

reduced model is a system of partial differential equations with

modified nonlinear terms.

Two of the reduced models eliminate wave–vortical inter-

actions. On the one hand, the quasigeostrophic (QG) model

consists of vortical-mode interactions in the absence of waves.

On the other hand, a waves-only model considers the inter-

actions between three inertia–gravity waves in the absence of

vortical modes. The latter model was named GGG as an ac-

ronym for three (inertia)–gravity waves. These two ‘‘extreme’’

cases are quite different, since the QG model supports an in-

verse cascade of vortical-mode energy, while the GGG model

mainly supports a forward cascade of wave energy in strongly

stratified flows. A third reduced model includes all interactions

except three-wave interactions, and hence highlights how

wave–vortical interactions modify QG dynamics, and the

spurious effects introduced by exclusion of three-wave inter-

actions. By comparison with Boussinesq dynamics given by (1)

or equivalently (4), numerical simulations with the reduced

models help to clarify the different contributions of vortical,

wave and mixed wave–vortical interactions in influencing both

dynamics and stirring in the ocean submesoscales.

b. The quasigeostrophic approximation

The quasigeostrophic (QG) approximation to (1) describes

the nonlinear dynamics of the vortical mode in the absence of

inertia–gravity waves. The QG model was conceived for mid-

latitude, large-scale motions in the atmosphere and oceans,

evolving on time scales that are long relative to the wave periods

associatedwith eigenvalues (3) (Charney 1948, 1971).Among its

many foundational aspects, the QG approximation provides a

theoretically tractable and numerically inexpensive framework

for understanding the baroclinic instability, potential vorticity

dynamics, and geostrophic turbulence (Charney 1948, 1971;

Pedlosky 1982; Gill 1982; Vallis 2017).

In the geophysical fluid dynamics literature, QG is usually

derived from a distinguished asymptotic limiting process

(Majda 2003). Main assumptions are that Fr ; Ro 5 � / 0,

where the Rossby number Ro } 1/f and the Froude number

Fr } 1/N are nondimensional parameters characterizing the

relative strengths of rotation and stratification. Formally, the

QG model may also be derived by projection of the dynamics
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(4) onto the subset of vorticalmode interactions (sk sp sq)5 (0 0 0)

and exclusion of all other triad interaction types (Smith and

Waleffe 2002). A mathematical proof based on fast wave av-

eraging has rigorously established the decoupling of waves and

vortical modes for � / 0 (Embid and Majda 1996, 1998); see

also Babin et al. (1997, 2000).

From (4), QG dynamics may be written in Fourier space as

›b0(k, t)

›t
5 �

k1p1q50

C000
kpq b

0(p, t) b0(q, t), (6)

with

 
u

u

!
(x, t)5�

k

b0(k, t)f0(k) exp(ik � x) , (7)

where we have used the fact that vortical modes have zero

frequency s0 5 0. Although derived as an asymptotic de-

scription of scales larger than the Rossby deformation radius

(approximately 50 km in the ocean at midlatitudes), QG serves

as a ‘‘null hypothesis,’’ providing an important referencemodel

to qualitatively and quantitatively assess the importance of

wave–vortical interactions.

c. The wave turbulence approximation (GGG)

A different reference point is provided by three-wave in-

teractions, whose dynamics are given by

›bsk (k, t)

›t
5 �

k1p1q50
�

sp ,sq56
C

skspsq
kpq bsp (p, t)bsq (q, t) expfi[ssk (k)

1ssp (p)1ssq (q)]tg , (8) 
u

u

!
(x, t)5�

k
�

sk56
bsk (k, t)fsk (k) expfi[k � x2ssk(k)t]g . (9)

Equation (8) is shorthand notation for the two equations for

b1(k, t) and b2(k, t), and the acronym GGG stands for in-

teractions among three gravity waves. Dynamics given by

GGG can be viewed as a nonperturbative extension of wave

turbulence (WT) theory, which would further restrict the

triad interactions in (8) to satisfy the resonance condition

ssk (k)1ssp (p)1ssq (q)5 0 (Zakharov et al. 1992; Newell

and Rumpf 2011; Nazarenko 2011). Wave turbulence the-

ory has been used as a model to understand the ocean in-

ternal wave spectrum (McComas and Bretherton 1977;

Garrett and Munk 1979; Lvov and Tabak 2004; Lvov et al.

2004, 2010).

By including all three-wave interactions, (8) captures

additional physics beyond WT theory, including the for-

mation of vertically sheared horizontal flows (Smith and

Waleffe 2002; Remmel et al. 2010, 2014; Lvov et al. 2012;

Gamba et al. 2020), which are given the acronym VSHF.

These are horizontal layers of uniform flow separated by

vertical shear, corresponding to energy accumulation in the

kh 5 0 wave modes.

Using numerical simulations with random forcing at small

scales, Smith and Waleffe (2002) demonstrated that VSHF may

dominate the large-scale flow structure in strongly stratified

turbulence on long time scales. The generation of VSHF is a

phenomenon associated with nonresonant three-wave inter-

actions, because the coupling coefficient C
skspsq
kpq is identically

zero when kh 5 0 in a resonant three-wave triad (Lelong and

Riley 1991). For more information about VSHF, see Smith and

Waleffe (2002), Waite and Bartello (2006), Laval et al. (2003),

Remmel et al. (2010, 2014), Lvov et al. (2012), Fitzgerald and

Farrell (2018a,b), and Gamba et al. (2020). Since vertical

shear will tend to separate particles in the horizontal direction,

the VSHF are expected to play a role in horizontal dispersion.

Three-wave interactions are also important for transport in the

vertical direction.

d. Dynamics in the absence of three-wave
interactions (P2G)

The remainingmodel studied in this work is the projection of

(1) onto the set of triad interactions that includes at least one

vortical mode, given in k space by the equations

›b0(k, t)

›t
5 �

k1p1q50
�

sp ,sq50,6
C

0spsq
kpq bsp (p, t)bsq (q, t) expfi[ssp (p)

1ssq (q)]tg , (10)

›b6(k, t)

›t
5 �

k1p1q50
�

sq50,6
C

60sq
kpq b0(p, t) bsq (q, t) expfi[s6(k)

1ssq (q)]tg1 �
k1p1q50

�
sp50,6

C
6sp0

kpq bsp (p, t) b0(q, t)

3 expfi[s6(k)1ssp (p)]tg , (11)

where (11) is shorthand for the two equations for b1(k, t) and

b2(k, t) and the fields u and u are recovered from the expansion

in (5). This model was named P2G in Remmel (2010) to indi-

cate that triad interactions may contain up to two gravity waves

(hence 2G).

The dynamics of P2G allow for wave–vortical interactions to

modify purely QG dynamics. In previous studies using 2p-

periodic domains with aspect ratio 1 and Fr 5 Ro ’ 0.1, the

wave–vortical interactions were shown to be responsible for

asymmetry between cyclones and anticyclones, which asym-

metry is absent in QG dynamics alone (Hernández-Dueñas
et al. 2014). Furthermore, the size of P2G large-scale vortices

was observed to be smaller than the vortices of QG (Remmel

and Smith 2009; Hernández-Dueñas et al. 2014), and hence

closer to the size of vortices generated by full dynamics. The

smaller size of P2G and Boussinesq vortices is linked to a

modification of the QG inverse cascade by wave–vortical

interactions.

Here we investigate how such dynamical effects of wave–

vortical interactions change scalar transport, and in particular

the effective horizontal diffusivities, in a numerical setup and

parameter regime that is relevant to the ocean submesoscales.

3. Numerical setup

a. Limited N/f regime

Correctly simulating submesoscale lateral dispersion re-

quires including simultaneously length scales that span
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several orders of magnitude over periods of several days, with

sufficiently small time steps to resolve the buoyancy fre-

quency. To circumvent this computational hurdle, our

simulations are performed in a regime dynamically similar

to typical midlatitude upper-ocean conditions but numer-

ically more tractable. We accomplish this by increasing

the Coriolis frequency f while decreasing the horizontal

scale L by the same factor. Buoyancy frequency N and

vertical length scale h remain fixed. Therefore, h/L is in-

creased while N/f is decreased to preserve the Burger

number Bu 5 [Nh/(fL)]2 and the underlying dynamics of

the flow. This technique has proven particularly useful in a

number of studies similar to this one where model spinups

from rest can take hundreds of inertial periods (Lelong and

Sundermeyer 2005; Sundermeyer and Lelong 2005; Brunner-

Suzuki et al. 2012, 2014). Sensitivity studies have shown

that for simulation times comparable to the ones presented

here, results are not significantly impacted by the value of

N/f (Lelong and Dunkerton 1998). The results presented in

the next section were all obtained with horizontal lengths

scaled down by a factor of 10, and f increased by a factor

of 10. While all of our simulations are performed with

N/f5 10, a rescaling of horizontal and time scales will enable

us to relate our results to a realistic upper-ocean regime

(section 5d).

b. Model parameters and definitions

All simulations are performed in a domain D 5 (0, Lx) 3
(0, Ly)3 (0, Lz), whereLx5Ly5 500 m and Lz 5 50m, with

aspect ratio Lz/Lx 5 1/10. The Coriolis frequency is f 5
9.47 3 1024 s21 and the Brunt–Väisäla frequency is N 5
9.47 3 1023 s21. The characteristic time scale is the inertial

period, t5 2p/f5 6634.8 s5 1.84 h. The density background

with constant stratification ro 2 Bz is given by the reference

value ro 5 1024 kgm23, and the density stratification B 5
0.0094 kgm24. The entire list of parameters and definitions

is given in Table 1. The models use hyperviscosity at the

smallest scales and hypoviscosity at the largest scales to

control energy. Details of their implementation are included

in the appendix.

c. Forcing

The flows in the four models are spun up from rest in

identical fashion, with sustained forcing designed to mimic

intermittent wave breaking in the ocean. Density anoma-

lies, introduced periodically in the domain at random lo-

cations by means of a local enhanced diffusivity k(x, y, z),

represent the parameterized end-states of wave-breaking

events at the stage following isopycnal overturning, when

localized mixing has occurred. Each wave-breaking event

is assumed to produce a perfectly mixed patch of fluid.

These patches are out of equilibrium with the background

density and undergo cyclogeostrophic adjustment, pro-

ducing S-vortex structures composed of a central anticy-

clone flanked above and below by two weaker cyclones

(Morel and McWilliams 1997). In addition to the spinup of

vortices, each adjustment event also excites a radiating

internal wave field.

This method of forcing was first implemented by Sundermeyer

and Lelong (2005) to spin up realistic vortical and wave fields in

triply periodic domains characteristic of pycnocline conditions, in

the absence of wind and tidal forces. Following Sundermeyer and

Lelong (2005), each anomaly is computed as the solution of an

initial/boundary value problem

8>><
>>:

›

›
s

r0f 5
›

›z

(
k
z

›

›
z

[r(z)1 r0f ]

)
,

r0f js50
5 0:

(12)

Here r0f is the density fluctuation so that rf 5 ro 1 r(z)1 r0f , and
we impose periodic boundary conditions on r0f . Furthermore,

the coefficient kz is a Gaussian function given by

k
z
(x, y, z)5 9:423 1022 m2 s21 exp

�
2
(x2 x

o
)
2 1 (y2 y

o
)
2

2r2h

2
(z2 z

o
)2

2r2z

�
, (13)

where rh 5 12.5 m, rz 5 2.5 m, and (xo, yo, zo) is the center

of the anomaly chosen at random locations. Each wave-

breaking event is parameterized by the injection of the

density anomalies r0f at random locations every 0.4 iner-

tial periods. The center (xo, yo, zo) is always located on the

grid and each coordinate is chosen randomly from a uni-

form distribution. See Figs. 1 and 4 of Sundermeyer and

Lelong (2005) for visualizations of the density anomaly

forcing r0f .
The final state generates a well-mixed region centered about

(xo, yo, zo) where the density is nearly constant. Using the

characteristic scales rh and rz, the Burger number based on the

forcing is

Bu5
r2zDN

2

f 2r2h
5

r2zN
2

f 2r2h
5 4: (14)

The ratio rz/rh governs the amount of energy converted to

vortical and wave fields during adjustment. Choosing Bu of

O(1) ensures that the adjustment of each density anomaly

produces comparable wave and vortical-mode energies.

We note that, by construction, the forcing described by (12)

does not project onto the kh 5 0 modes corresponding to

vertically sheared horizontal flows (VSHF). Therefore, all

VSHF energy present in our simulations must result from

nonlinear interactions. VSHF are of particular interest here

TABLE 1. Parameter values.

Parameter Symbol Value

Horizontal dimension Lx 5 Ly 500m

Vertical dimension Lz 50m

Coriolis parameter F f 5 9.47 3 1024 s21

Brunt–Väisäla frequency N 9.47 3 1023 s21

Characteristic time t 5 2p/f 6634.8 s 5 1.84 h

Density background ro 2 Bz ro 5 1024 kgm23;

B 5 0.0094 kgm24
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because, coupled with vertical diffusivity, they can enhance

lateral dispersion and increase effective horizontal diffusivity

(e.g., Young et al. 1982).

d. Spinup to statistical equilibrium

The quasi-steady state of the flow entails a delicate balance

between forcing, energy fluxes and hypo-/hyperviscous forces.

The vortical and wave energies are defined as the corre-

sponding quantities given by the vortical and wave projections

of the solution, respectively, as done in (A1) in the appendix.

Vortical and wave energies as a function of time for the

four models are shown in Fig. 1. All models equilibrate to

quasi-statistical steady state after 200 inertial periods and are

run for an additional 60 inertial periods. Steady-state vortical

energies (top panel) in Boussinesq, P2G, and QG models are

comparable. Wave energy (bottom panel) in the P2G model

is slightly higher than in the Boussinesq system, and signifi-

cantly higher in the GGG model than in the other cases. The

latter may be explained by the accumulation of energy in the

vertically sheared horizontal flows (VSHF modes), via off-

resonant interactions. In P2G, the three-wave interactions

are absent, reducing both the generation of VSHF and the

forward transfer of wave energy. VSHF modes will be dis-

cussed in more detail in sections 5b and 5c.

A 3D view of the steady-state Boussinesq flow at t 5 200

inertial periods is shown in Fig. 2. The vortices are visualized by

plotting isosurfaces (red) of linear PV given by

PV5

�
Br

o

g

�1/2

(f ẑ � =u2Nẑ �v), (15)

where v 5 = 3 u is the relative vorticity. The isosurfaces in

Fig. 2 correspond to the value PV5 0.53 1025 kgm23m21 s21,

and the nearby velocity field is indicated by cyan arrows. The 3D

view of the fluid reveals the horizontal and vertical distribution

of the vortices, with flattened vortices staggered throughout the

water column. Also shown at the bottom and at the walls are

contours of the linear PV, giving us a hint of the vertical struc-

ture. The color bar (kgm24 s21) corresponds to the PV contours

at the walls. Outside the box, an inset shows a zoomed-in vortex

along with the neighboring velocity field.

e. Lagrangian particles and effective lateral diffusivity

Following equilibration of all models to statistically steady-

state, Lagrangian particles were injected into each model and

tracked in time for 10t, where t is the inertial period. To reduce

sensitivity to the initial conditions, we tracked particles starting

from initial times t 5 {200, 210, 220, 230, 240, 250}t, corre-

sponding to six different initial flow fields (see Fig. 1). In all

cases, particles were placed in the entire domain, every 4 grid

points in the horizontal direction and 2 grid points in the ver-

tical direction (total number of particles Np 5 131 072). The

sensitivity of our results to the number of particles was inves-

tigated, and Np was ultimately chosen because it showed good

convergence with cases for which particles were placed at every

grid point.

Our main result is about the effective lateral diffusiv-

ity, which can be inferred from the pairwise separation of

Lagrangian particles in time. Here, we define the lateral

diffusivity as

k
H
5

1

2

d

dt
R(t) , (16)

where

R(t)5
1

N
p
2 1

�
Np

i51

[(x
i
2 x

com
)2 1 (y

i
2 y

com
)2] (17)

represents the average spread of particles about their hori-

zontal center of mass {xcom(t), ycom(t)}. The factor of 1/2 is due

to the fact that we are dealing with relative and not absolute

diffusivity (e.g., LaCasce 2008).

The spread R(t) can also be expressed as the sum over all

unique particle pairs

R(t)5
1

2N
p
(N

p
2 1)

�
i 6¼ j

[x
i
(t)2 x

j
(t)]2 1 [y

i
(t)2 y

j
(t)]2 . (18)

The formulation in terms of particle pairs is useful for com-

puting scale-dependent diffusivities. Particles are first sepa-

rated by initial vertical position, then particle pairs are binned

according to their initial horizontal separation. The dispersion

Rn at the horizontal scale corresponding to the nth bin is

computed by averaging over all particle pairs in that bin and is

averaged over all vertical levels. The dispersion of particle

pairs in the nth bin is

R
n
(t)5

1

2N
s
(N

s
2 1)

�
i 6¼ j

[x
i
(t)2 x

j
(t)]2 1 [y

i
(t)2 y

j
(t)]2 , (19)

where Ns represents the number of particles in the nth bin. In

our simulations, we use 32 vertical levels with Ns 5 4096 par-

ticles in each level. The corresponding diffusivity is then

FIG. 1. Volume-averaged (top) vortical and (bottom) wave en-

ergy density (m2 s22) vs time from 0 to 250 inertial periods. The

time (x axis) is given in seconds and inertial periods in the top and

bottom panels, respectively.
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k
hn
5
1

2

dR
n
(t)

dt
. (20)

4. Results

In this section, we contrast the evolution of Lagrangian

particle trajectories in the Boussinesq (FB), P2G, QG, and

GGG models described in section 2, and present the charac-

teristics of lateral dispersion in the four models.

a. Qualitative observations for particle dispersion

To obtain a qualitative picture of lateral dispersion of par-

ticles in the Boussinesq system and reducedmodels, we present

the trajectories of a few particles initially located in the center

of the domain (Fig. 3). Particles are tracked during the time

interval t 2 [200, 210]t and distinguished from each other using

random colors. One can observe from the GGG plot (lower

right) that waves-only flows are not efficient at dispersing in the

horizontal plane. Particles oscillate with inertial period about

their initial position, but they do not spread. The smooth tra-

jectories in the QG model (lower left) exhibit the signature of

large vortices that tend to trap particles, thereby reducing their

spread. In contrast, the presence of both wave and vortical

modes in FB and P2G (top panels) results in increased hori-

zontal dispersion.

Particle trajectories in P2G and FB contain small oscillations

due to the presence of waves and appear fuzzy in comparison

with QG. In the case of P2G, long filaments are evident instead

of the tightly wound trajectories associated with isolated

vortex cores.

b. Scale dependence of the relative diffusivity

The scale-dependent relative diffusivity kH is computed

from the pairwise relative separation of the particles, described

in section 3e, with 32 vertical levels and 14 bins. Ensemble-

averaged diffusivities and the corresponding standard error

bars over the six different realizations for FB, P2G, andQGare

plotted in Fig. 4. The diffusivity for GGG is an order of mag-

nitude smaller and thus not shown. The FB, P2G, and QG

model diffusivities all exhibit some scale dependence in the

0–100-m range. Beyond 100m, the diffusivities are mostly

scale-independent and asymptote to values that can be related

to the absolute diffusivity, the so-called diffusive regime

(LaCasce 2008; Beron-Vera and LaCasce 2016). Maximum

values of kH (m2 s21) are 4.23 1022 for P2G, 3.63 1022 for FB,

and 3.4 3 1022 for QG.

One can see that QG with vortical modes only gives an

underestimate for kH associated with FB, where latter can be

considered as the ‘‘truthmodel.’’ On the other hand, there is an

overestimate of approximately 17% in the P2G model, which

includes the effects of wave–vortex interactions, but excludes

three-wave interactions. These results point to the importance

of including both vortical and wave motions in establishing

correct diffusivity estimates. In particular, we will show that a

key factor is the forward transfer of energy to the vortical mode

by interaction with waves. Note that only off-resonant inter-

actions can transfer energy from the wave field to the vortical

mode (Lelong 1989; Bartello 1995). The impact of each class of

nonlinear interactions is examined in more detail in section 5.

c. Dispersion of purely Lagrangian versus
diffusive particles

We also performed a set of simulations with vertically dif-

fusive particles, i.e., particles whose Lagrangian trajectories

are altered slightly at each time step by the addition of a weak

random-noise component in the vertical direction. In these

simulations, particle displacements are designed to mimic the

behavior of a diffusive dye. Figure 5 contrasts the dispersion of

nondiffusive and vertically diffusive particles as a function of

time in the full Boussinesq FB and waves-only GGG models

(QG and P2G models are not shown because their behavior is

qualitatively similar to that of FB). Corresponding diffusivities

are proportional to the slopes of R(t), as shown in (16).

FIG. 2. A 3D view of the isosurface with linear potential vorticity value PV 5 0.5 3 1025 kgm24 s21 for the Boussinesq model (red

isosurface). Also shown are the velocity field (cyan arrows) near the vortices and PV contours at the bottom and two of the sidewalls. The

color bar (kg m24 s21) corresponds to the PV contours at the walls. Outside the box, an insert shows a zoomed-in vortex with the

corresponding velocity field around it. The red isosurface corresponds to anticyclones.
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The difference in the rate of particle dispersion with and

without noise is quite pronounced in the GGG model (right

panel). In the absence of noise, the particles retain their

initial vertical position. Their trajectories are nearly circu-

lar with near-inertial period, as seen in the lower-right

panel of Fig. 3. The small oscillations in the no-noise case

(blue line in right panel) are indicative of this behavior and

the effective horizontal diffusivity kH, proportional to the

slope of the horizontal dispersion, is negligible. With the

addition of noise (red dashed line in right panel), the par-

ticles diffuse vertically, then they are subjected to internal-

wave shear dispersion (Young et al. 1982; see section 5c for

interpretation details). The combined effect of vertical

diffusion and shear enhances horizontal displacements and

the estimate for the effective horizontal diffusivity from

(16) is kH 5 2.1 3 1023 m2 s21 for GGG with noise. In

contrast, the addition of noise does not appreciably change

the rate of dispersion in FB (left panel), wherein kH 5
0.037 3 1022 m2 s21 is an order of magnitude larger than in

GGG. Note that the value of kH in Boussinesq obtained

from the slope of R(t) matches the value of kH in the scale-

independent range of Fig. 4. While internal-wave shear

dispersion may be present, we conjecture that more effi-

cient dispersion mechanisms linked to the presence of

vortical modes dominate dispersion patterns in the full

Boussinesq system, as will next be explained.

5. Interpretation in terms of flow fields

Physical flow features and vortical/wave kinetic energy

spectra are now examined in order to explain the differences

in the dispersion patterns of the four models. The goal is to

FIG. 3. Horizontal trajectories of particles marked by different colors, at time t 5 10t after particle injection.

For visualization purposes, only trajectories of a few particles originally located in a strip of domain centered about

x 5 250m, z 5 25m are shown.
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identify the impact of waves, vortical modes, and their in-

teractions on lateral dispersion.

a. Linear potential vorticity fields

The QG, P2G, and full Boussinesq models allow for inverse

energy transfer to large-scale vortices through vortical-mode

interactions. In our simulations, this inverse transfer is arrested

by hypoviscosity confined to act on the largest scales in the do-

main. The statistically steady vortex fields are compared by ex-

amining linear PV contours in the horizontal plane at fixed time

and height z 5 25m, shown in Fig. 6. In the Boussinesq model

(top left), the fluid motion is dominated by a few large-scale,

anticyclonic vortices (bright yellow), along with some medium-

scale cyclonic vortices (dark blue). Inertia–gravity waves and

fine-grained features are visible in between the vortex cores, but

do not appear to disrupt the strongest and largest anticyclones.

In the P2G reduced model (top left), wherein three-wave in-

teractions are removed from the Boussinesq system, vortex

cores are less well defined and disorganized small-scale structure

is present. In contrast, the QG model (bottom) shows tight

vortices and filaments with smoother contours and is devoid of

fine-grained structure.

The PV centroid can help to quantify the above qualitative

statements, defined as

PV-Cent(t)5

�
k 6¼ 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
h 1

f 2

N2
k2
z

r
jPV

k
j2

�
k 6¼ 0

jPV
k
j2 , (21)

where PVk is the Fourier coefficient of (15) at wavevector k.

The stretching factor (f/N)2 is motivated by the dynamical

equation for linear PV (Vallis 2017), and accounts for the small

aspect ratio. In strongly rotating fluids, (21) is a quantity as-

sociated with the wavenumber of emerging PV vortices, with

corresponding length scale

L
PV

5
2p

PV-Cent
. (22)

In our setup, the value ofLPV reflects both the size of the large-

scale vortices and the amount of vortical mode energy at

intermediate-to-small scales, where the latter is not associated

with coherent structures. At time t 5 200t (200 inertial pe-

riods),LPV for FB, P2G, andQG takes the approximate values

30, 15, and 49m, respectively, consistent with the physical fields

in Fig. 6 and the spectra presented in the next section.

b. Kinetic energy spectra

Further insight into the differences between the models is

provided by examining energy spectra. Here we focus on

FIG. 4. Ensemble-averaged relative diffusivity with standard

error vs horizontal scale for FB (blue), P2G (red), and QG (yel-

low). The computation is carried out according to the description in

section 3e. Only pairs separated by, at most, 1/3 of the periodic

domain are used.

FIG. 5. Horizontal dispersion R(t) [(16)], for particles without noise (blue) and with noise

(dashed red) in (left) FB and (right) GGG, ensemble-averaged over six different realizations.

There is a relatively small difference between the two cases for the full Boussinesq model. For

the GGG model with only three-wave interactions, the no-noise particles show negligible

dispersion, consistent with the small horizontal oscillations seen in the bottom-right panel of

Fig. 3. In contrast, the random-walk displacements introduced by the noise produceweak linear

growth of the variance R(t). Note the order-of-magnitude difference between FB and GGG

dispersions.
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kinetic energy (Fig. 7) to inform the discussion on particle

transport, though complementary information can be extract-

ed from potential energy.

The left panel of Fig. 7 shows kinetic energy spectra as a

function of horizontal wavenumber kh, averaged over vertical

wavenumber kz, and projected onto wave and vortical compo-

nents. Similarly, the right panel indicates the spectral depen-

dence on vertical wavenumber kz, averaged over horizontal

wavenumber kh. Horizontal wavelength lh and vertical wave-

length lz inmeters are displayed on the top left axis and top right

axis, respectively, and we remind the reader that oceanic values

for wavelengths may be extrapolated from multiplication by a

factor of 10. The forcing spectra are also shown (dotted lines on

each panel), where the forcing energy saturates through random

injections of density anomalies as described in section 3c. Notice

that the impact of the anomaly forcing is strongest for horizontal

scales 50 , lh , 100m and vertical scales 10 , lz 15m.

For small scales in our numerical setup and parameter re-

gime, both panels of Fig. 7 show the dominance of wave-mode

kinetic energy (dashed lines) over vortical-mode kinetic en-

ergy (solid lines). When waves are present (FB, P2G, and

GGG), one sees that the horizontal wave spectra are surpris-

ingly robust in the forward transfer range 10 , kh , 70 (8 ,
lh , 100m), with rough scaling k22:5

h (dashed lines on the

left panel).

At large horizontal scales lh . 100m, the GGG wave

energy is dramatically elevated owing to inverse transfer into

large-scale VSHF modes (see Fig. 8). Integrated over the

time period 0 # t # t, the total VSHF energy is approxi-

mately 1.2 3 1028 m2 s22 for FB, 3.8 3 1029 m2 s22 for P2G,

and 3.4 3 1027 m2 s22 for GGG, clearly indicating domi-

nance of VSHF in GGG relative to the other models. Further

spectral analysis shows that the GGG VSHF are most pro-

nounced at large horizontal scales and intermediate vertical

FIG. 6. Horizontal contours of the linear potential vorticity (kgm24 s21) given by (15) at height z5 25m and time

t 5 200t for (top left) Boussinesq, (top right) P2G, and (bottom) QG. Linear PV associated with anticyclones is

yellow, and that associated with cyclones is blue.
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scales, consistent with the GGG layering observed on the

bottom panel of Fig. 8.

The wave kinetic energy is also dominant for vertical

wavenumbers kz . 3 corresponding to wavelengths lz , 10m

(dashed lines on the right panel of Fig. 7). For these interme-

diate vertical scales, a notable feature of the figure is the

striking amplitude difference between the truth model FB

(blue dashes) and the waves-only model GGG (red dashes).

Thus, one can see that wave–vortical energy exchanges are

especially important for establishing accurate wave-energy

levels in vertical small scales. Furthermore, from the GGG

kinetic energy spectra, it is clear that wave–wave–wave inter-

actions support a robust forward cascade of kinetic energy.

On the other hand, when the vortical mode is present (FB,

P2G, andQG), the vortical-mode kinetic energy dominates at

large horizontal scales lh * 100m and large vertical scales

FIG. 7. Kinetic energy (E0
h,kin and E6

h,kin) as a function of nondimensional (left) horizontal and (right) vertical

wavenumber. In each panel, the energy is split into vortical (solid lines) and wave (dashed lines) for the FB (blue),

P2G (green), QG (black), and GGG (red) models. The forcing spectra of density anomalies (dotted lines) are also

shown. Horizontal and vertical nondimensional wavenumbers are scaled with Dkh and Dkz, respectively (see the

appendix for details). The wavelength (m) is also provided along the upper axes.

FIG. 8. Vertical slices of meridional velocity y (m s21) for (top) Boussinesq and (bottom)

waves-only GGG at t5 200t. As compared with Boussinesq, GGG has a well-defined layered

structure, indicative of strong vertical shear on scales of 10m. This is consistent with the

presence of internal-wave shear dispersion, seen in Fig. 5.
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lz * 25m (solid lines on both panels of Fig. 7). Large-scale,

linear PV vortices are generated by vortical-mode triad in-

teractions, as visualized in Fig. 6. Relative to QG, the hori-

zontal slices in Fig. 6 corresponding to FB and P2G exhibit

smaller-scale PV structures and the appearance of a granular

background that is mostly absent in QG. These small-scale

features are attributed to the presence of waves in FB and

P2G, manifested in high-amplitude wave spectra at small

scales, as well as higher-amplitude vortical-mode spectra at

small scales (Fig. 7).

Through wave–vortical interactions, the waves in FB and

P2G have the effect of increasing vortical-mode kinetic energy

at small scales (blue and green solid lines in both panels of

Fig. 7), relative to QG (black solid lines). One can see that the

vortical-mode spectra for FB, P2G and QG are closely aligned

for scales kh, 10, but then diverge for kh. 10. The QGmodel

maintains a steep slope for all horizontal wavenumbers kh . 4,

while the FB and P2Gmodels develop shallower vortical mode

spectra for kh . 10. The steep vortical-mode spectrum of QG

(black solid) is associated with stirring by large-scale vortices.

The shallower vortical-mode spectra for kh. 10 in FB and P2G

are linked with an additional contribution to stirring by

smaller-scale structures that are not present in QG, and this

effect is especially pronounced in the case of P2G.

Of the three models with vortical modes, P2G has the

highest vortical-mode energy in small scales (green solid lines

on both panels of Fig. 7), consistent with the small-scale fea-

tures observed in the horizontal slice of P2G PV (the P2G

panel of Fig. 6). Further understanding is provided by analysis

of kinetic energy transfer in vortical–wave–wave (VWW) tri-

ads, which exist only in the FB and P2Gmodels. Here the dash

inVWWspecifies that we aremeasuring the energy transferred

into the vortical mode V from interactions between two waves

WW, as confirmed in Fig. 9 (blue for FB and green for P2G). To

focus on energy transfer into small horizontal scales, Fig. 9

displays variance-preserving VWW transfer spectra as a func-

tion of horizontal wavenumber kh, and scaled by kh (e.g.,

Thomson and Emery 2014). An analogous plot (not shown)

produces similar behavior of VWW transfer spectra as a

function of vertical wavenumber kz. One can see that VWW

energy transfer into small-scale vortical modes is strongest in

P2G, in agreement with the higher level of small-scale vortical

energy in Figs. 6 and 7. SinceWWW interactions do not exist in

P2G, the VWW interactions must absorb more forward energy

transfer, as compared with FB containing both VWW and

WWW.Note that, in contrast to the subclass of resonant VWW

interactions, nonresonant VWW interactions can transfer en-

ergy from waves into the vortical mode, as demonstrated here.

In exactly resonant interactions involving one vortical mode

and two waves, Lelong (1989) and Bartello (1995) showed that

the vortical mode acts as a catalyst for energy exchange be-

tween the waves. In other words, for VWW interactions, exact

resonances conserve linear PV, but nonresonances do not.

c. Vertically sheared horizontal flows and wave-induced

shear dispersion

Vertically sheared horizontal flows (e.g., Smith and Waleffe

2002; Fitzgerald and Farrell 2018a,b) correspond to the kh 5 0

wave modes and are of special interest in determining whether

the mechanism of internal-wave shear dispersion contributes

significantly to horizontal diffusivity. Vertical cross sections of

meridional velocity y are displayed in Fig. 8 for the Boussinesq

and GGG models (t 5 200 inertial periods). The presence of

layers in GGG shows that VSHF are a dominant component in

the waves-only model, with corresponding shear on vertical

scales of approximately 10m.

The strongVSHF signature inGGG confirms our conjecture

that the enhanced horizontal dispersion of noisy particles is

due to the combined action of vertical diffusivity and internal-

wave vertical shear (Fig. 5). Consider neighboring particles at a

fixed value of height z. When a small, random vertical dis-

placement of particles is introduced at each time step by a

vertical noise term, such particles may find themselves in close-

by regions of oppositely signed horizontal velocity. Thus, they

will immediately be separated in the horizontal direction, re-

sulting in horizontal dispersion.

In contrast, Fig. 8 does not indicate strong horizontal

layering in the Boussinesq model. There is less transfer to

VSHF in Boussinesq relative to GGG because the inclusion

of wave–vortex interactions provides additional forward-

cascading pathways. Thus the addition of small-amplitude

vertical noise to particle trajectories leads to a relatively small

effect on the horizontal dispersion measured in Fig. 5.

d. Implications for the N/f 5 100 regime

Our simulations are idealized in many ways, including pe-

riodic boundary conditions, limited N/f, and model forcing by

density anomalies in the absence of other forcing mechanisms

(tides, wind, topography, etc.). These idealizations help to

isolate fundamentals of the wave–vortical interactions that are

not accessible in the real ocean. On the other hand, their value

for understanding the ocean is gained by connection to oceanic

space and time scales, as much as possible.

Results obtained withN/f5 10 are related to the N/f5 100

upper-ocean regime by multiplying horizontal and tempo-

ral scales by 10. Hence, the diffusivities plotted in Fig. 4

correspond to scales up to 1.7 km and range in value in the

scale-independent regime from 0.346 0.007m2 s21 for QG to

0.42 6 0.01m2 s21 for P2G, with the FB value in between at

0.366 0.007m2 s21. Considering FB to represent the truth, we

FIG. 9. Variance-preserving kinetic energy transfer spectra

khT
kin
o,6,6/E as computed in (A10) for the vortical–wave–wave triad

interactions, as a function of horizontal wavenumber, for the

Boussinesq and P2G models. The transfer spectra are averaged

over 20 inertial periods and scaled by the steady-state energy E of

each model.
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find that the excess of small-scale vortical motions in the P2G

model overestimates the diffusivity while the vortical-mode

deficit in QG underestimates it. For comparison, comparable

values ranging from 0.2 to 3m2 s21 (linked to uncertainties in

the background strain rate and time dependence) were re-

ported by Sundermeyer et al. (2020b) during the LatMix 2011

summertime experiment in the Sargasso Sea.

6. Discussion and conclusions

We have examined the role of waves and vortical modes

in influencing horizontal diffusivity onO(1) km scales in the

ocean, by performing a suite of idealized simulations using

reduced-interaction models. These models have proven

informative for isolating the different contributions to lat-

eral dispersion of waves, vortical modes, and wave–vortical

interactions.

Our study focused on flows with significant wave energy

(Bu5 4) that are characteristic of much of the ocean away from

strong mesoscale activity. In this regime, our simulations have

demonstrated that while vortical motions are primarily respon-

sible for the Lagrangian particle dispersion patterns, the impact

of waves cannot be discounted. While it has been shown that

waves have little or no impact on dispersion (Balwada et al.

2021), we find that they play an indirect but nonnegligible role

since their presence helps establish the spectral distribution of

steady-state vortical-mode fields. In flows devoid ofwaves (QG),

the large-scale vortices are too dominant relative to the truth

model (Boussinesq), while in the absence of wave triads (P2G),

the vortical flow has toomuch small-scale structure. In both P2G

and Boussinesq models, the small-scale vortical flow remains

unorganized with no evidence of vortex core formation.

Furthermore, our study provides an explanation for the

development of a forward cascade and enhanced dissipation in

the balanced flow, in the presence of significant wave energy, as

reported in Thomas and Daniel (2021). Whereas resonant

VWW interactions cannot transfer energy between wave and

vortical-mode fields (Lelong 1989; Bartello 1995), it is the

subclass of nonresonant VWW that is responsible for energy

exchanges from the waves to smaller-scale vortical modes. In

addition, the class of three-wave interactions is instrumental in

setting correct dissipation rates, as seen for example in the

lower wave energy levels in Boussinesq than in P2G (see

Fig. 1). The indirect role of internal waves on lateral dispersion

through their influence in shaping the vortical-mode spectrum

is generally consistent with the conclusions of Sinha et al.

(2019). These authors report that filtering out inertia–gravity

waves significantly underestimates the lateral dispersion at

submesoscales, with little impact on mesoscale dispersion. Our

results are also in agreement with Polzin and Ferrari (2004),

who concluded that vortical mode stirring was the likely source

of submesoscale dispersion observed in NATRE.

Acomparisonof diffusivities computed frompurelyLagrangian

and diffusive (noisy) particle trajectories demonstrates that, in

waves-only GGG flows, the effective diffusivity is due solely to

internal-wave shear dispersion via the formation of VSHF flows.

However, this mechanism by itself is inefficient and leads to

comparatively weak effective diffusivities. In the other models

with waves (P2G and FB), different triad interactions dominate

the energy transfers, notably the VWW triads that are responsible

for downscale energy transfer from waves to vortical modes.

The diverging slopes of vortical-mode kinetic energy spectra

at small scales in Fig. 7 (left panel) suggests that an interpretation

of our results in terms of local or nonlocal behavior may be

subtle. At large horizontal scales, the kinetic energy spectra in all

models have the same steep slope (excludingGGG,which has no

vortical modes). In QG, the slope does not change appreciably

from its large-scale behavior and remains greater than23 for all

wavenumbers kh . 4. In contrast, for FB (P2G), the spectrum

becomes noticeably shallower with slope close to (less than)23

for kh. 10. The change in slope at kh’ 10 in FB and P2Gmakes

it difficult to distinguish whether the stirring of small scales is

predominantly by large scales (nonlocal), or predominantly by

comparable scales (local). In fact, it is likely that both mecha-

nisms are important.Wenote that the diffusivities in Fig. 4 do not

exhibit the power-law scale dependence for r ’ 10–100m pre-

dicted by Bennett (1984) for local and nonlocal regimes. The

latter is perhaps not surprising, at least for FB and P2G, since

Bennett’s theory was developed for flows without waves.

Diffusivity due to spurious generation of PV was found in

Boussinesq numerical simulations initialized with a broadband

internal wave field (Bühler et al. 2013) and a Garrett–Munk

spectrum (Sundermeyer et al. 2020a). In these two studies fo-

cused exclusively on waves, the generation of vortical modes

(PV) by dissipative forces was found to dominate the disper-

sion. Unphysical production of PV at the grid scale in large-

eddy simulations is also reported by Bodner and Fox-Kemper

(2020). Addressing the impact of this possible additional

source of diffusivity is beyond the scope of the present study

but it will be investigated in the future with a detailed PV

budget analysis.

Last, we recognize that the range of spatial scales considered in

this idealized study is limited. Future directions will include per-

forming simulations in larger domains capable of encompassing a

greater range of scales, maintaining the resolution and gradually

increasing the internal-wave frequency band N/f to include a

broader internal wave spectrum in order to assess the impact of

this parameter. Another promising line of research extends the

constant-stratification wave/vortex decomposition used in the

present study to cases with arbitrary stratification (Early et al.

2021).Numerical implementation of this generalizedwave–vortex

decomposition will allow extension of the simulations presented

here, to vertically bounded domains with arbitrary stratification

and inclusion of wind and tidal forcing.
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APPENDIX

Definition of Energy Spectra and Hypo- and
Hyperviscosity

a. Definition of energy spectra

Each vector function (u, u) with divergence-free velocity can

be decomposed as in (5). Based on that decomposition, we can

define the projection of the solution into the vortical and wave

modes respectively as

0
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where f̂ 5F (f ) is the discrete Fourier transform.

Here, the eigenfunctions are given by
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where ssk(k) is given by (3), s 5 js6(k)j, k2
h 5k2

x 1k2
y,

and k2 5k2
x 1k2

y 1 k2
z.

The horizontal and vertical shells in Fourier space at horizontal

wavenumber ~khth and vertical wavenumber ~kz are the sets
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where Dkh 5 2p/Lh, Lh 5 500m, Dkz 5 2p/Lz, and Lz 5 50m.

The spectra as a function of horizontal and vertical wave-

number are computed as the graphs in log–log scale of the fol-

lowing quantities. The vortical kinetic energy as a function of

horizontal [E0
h,kin(

~kh)] and vertical [E
0
y,kin(

~kz)] wavenumbers, and

the wave kinetic energy as a function of horizontal [E6
h,kin(

~kh)]

and vertical [E6
y,kin(

~kz)] are defined respectively as
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Similarly, the spectra of the potential energy are defined as
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b. Energy transfer spectra

In the absence of hypo- and hyperviscosity, the kinetic en-

ergy ekin 5 (1/2)u2 1 (1/2)y2 1 (1/2)w2 satisfies the equation

›
1

2
kuk2L2(x)

›t

52hû, F [= � (uu)]i
L2 2 hŷ, F [= � (yu)]i

L2

2 hŵ, F [= � (wu)]i
L2 2Nhŵ, ûi

L2 , (A9)

where h, iL2 is the L2 normalized inner product in Fourier

space. The first three terms in (A9) correspond to energy
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transfer terms and can be associated to triads as follows.

Given a triad (s1, s2, s3) where each sj corresponds to either a

vortical (0) or wave (6) mode, the kinetic energy transfer from

(s2, s3) interactions into the s1 mode at wavenumber k is

quantified as

Tkin
(s1,s2,s3)

(k)52ûs1 (k)F [= � (us2us3 )](k)

2 ŷs1 (k)F [= � (ys2u)s3 ](k)
2 ŵs1 (k)F [= � (ws2us3 )](k) , (A10)

where the superscripts indicate the projections in (A1).

c. Hypo- and hyperviscosity

The hyperviscosity and hyperdiffusion terms of the form

2(2n1/dh D2
h 2 n1/dz ›2z)

d
u and 2

b

N
(2n1/dh D2

h 2 n1/dz ›2z)
d
r0

(A11)

have been applied to (1a) and (1b), respectively, to maintain

stability and to provide a sink of energy within a localized

dissipation range at small scales. Here the order of the hy-

perviscosity is d 5 8. The hyperviscosity coefficients are com-

puted based on resolution as

n
h
5

1

tk2d
h,max

5 6:343 1025 m16 s21 and

n
z
5

1

tk2d
z,max

5 4:163 10216 m16 s21 . (A12)

where kh,max 5 84(2p/500m) and kz,max 5 42(2p/500m) are

the maximum horizontal and vertical wavenumbers used after

dealising.

On the other hand, a hypoviscosity is also applied, arresting

the inverse transfer of energy to the largest scales and thereby

allowing the system to reach a statistically steady state at long

times (e.g., Danilov and Gurarie 2004). The hypoviscosity and

hypodiffusion terms of the form

2(2n
21/d2
h,2 D2

h 2 n
21/d2
z,2 ›2z)

2d2
u and

2
b

N
(2n

21/d2
h,2 D2

h 2 n
21/d2
z,2 ›2z)

2d2
r0 (A13)

are also applied to (1a) and (1b) with d2 5 4. Similarly to the

hyperviscosity case, the hypoviscosity are computed based on

resolution as

n
h,2

5
10k

d2
h,min

t
5 9:373 10219 m28 s21 and

n
z,2

5
10k

d2
z,min

t
5 9:373 10211 m28 s21 , (A14)

where kh,min 5 2p/500m and kz,min 5 2p/50m are the smallest

horizontal and vertical wavenumbers.

The hyperviscosity (A11) and hypoviscosity (A13) are active

in relatively narrow wavenumber bands at opposite ends of the

energy spectrum, and thus maximize the range of simulation

wavenumbers dominated by nonlinear effects in statistically

steady state.

REFERENCES

Babin, A., A. Mahalov, B. Nicolaenko, and Y. Zhou, 1997: On the

asymptotic regimes and the strongly stratified limit of rotating

boussinesq equations. Theor. Comput. Fluid Dyn., 9, 223–251,

https://doi.org/10.1007/s001620050042.

——,——, and——, 2000:Global regularity of 3D rotatingNavier-

Stokes equations for resonant domains. Appl. Math. Lett., 13,

51–57, https://doi.org/10.1016/S0893-9659(99)00208-6.

Balwada, D., J. H. LaCasce, K. G. Speer, and R. Ferrari, 2021:

Relative dispersion in the Antarctic Circumpolar Current.

J. Phys. Oceanogr., 51, 553–574, https://doi.org/10.1175/JPO-

D-19-0243.1.

Barkan, R., K. Winters, and J. McWilliams, 2017: Stimulated im-

balance and the enhancement of eddy kinetic energy dissipa-

tion by internal waves. J. Phys. Oceanogr., 47, 181–198, https://

doi.org/10.1175/JPO-D-16-0117.1.

Bartello, P., 1995: Geostrophic adjustment and inverse cascades in

rotating stratified turbulence. J.Atmos. Sci., 52, 4410–4428, https://

doi.org/10.1175/1520-0469(1995)052,4410:GAAICI.2.0.CO;2.

Bennett, A. F., 1984: Relative dispersion: Local and nonlocal dy-

namics. J. Atmos. Sci., 41, 1881–1886, https://doi.org/10.1175/

1520-0469(1984)041,1881:RDLAND.2.0.CO;2.

Beron-Vera, F., and J. LaCasce, 2016: Statistics of simulated and

observed pair separations in the Gulf of Mexico. J. Phys.

Oceanogr., 46, 2183–2199, https://doi.org/10.1175/JPO-D-15-

0127.1.

Bodner, A. S., and B. Fox-Kemper, 2020: A breakdown in potential

vorticity estimation delineates the submesoscale-to-turbulence

boundary in large eddy simulations. J. Adv. Model. Earth Syst.,

12, e2020MS002049, https://doi.org/10.1029/2020MS002049.

Boussinesq, J., 1877: Essai sur la théorie des eaux courantes. C. R.

Acad. Sci., 23, 1–64.

Brunner-Suzuki, A.-M. E. G., M. Sundermeyer, and M.-P. Lelong,

2012: Vortex stability in a large-scale internal wave shear.

J. Phys. Oceanogr., 42, 1668–1683, https://doi.org/10.1175/

JPO-D-11-0137.1.

——,M. A. Sundermeyer, andM.-P. Lelong, 2014: Upscale energy

transfer by the vortical mode and internal waves. J. Phys.

Oceanogr., 44, 2446–2469, https://doi.org/10.1175/JPO-D-12-

0149.1.

Bühler, O., N. Grisouard, and M. Holmes-Cerfon, 2013: Strong

particle dispersion byweakly dissipative random internalwaves.

J. Fluid Mech., 719, R4, https://doi.org/10.1017/jfm.2013.71.

Charney, J. G., 1948: On the scale of atmospheric motions.Geofys.

Publ., 17 (2), 1–17.

——, 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 1087–1095,
https://doi.org/10.1175/1520-0469(1971)028,1087:GT.2.0.CO;2.

Danilov, S., and D. Gurarie, 2004: Scaling, spectra and zonal jets in

beta-plane turbulence. Phys. Fluids, 16, 2592–2603, https://

doi.org/10.1063/1.1752928.

Early, J. J., M. P. Lelong, and M. A. Sundermeyer, 2021: A gen-

eralized wave-vortex decomposition for rotating Boussinesq

flows with arbitrary stratification. J. Fluid Mech., 912, A32,

https://doi.org/10.1017/jfm.2020.995.

Embid, P. F., and A. J. Majda, 1996: Averaging over fast gravity

waves for geophysical flows with arbitrary potential vorticity.

Commun. Partial Differ. Equations, 21, 619–658, https://

doi.org/10.1080/03605309608821200.

——, and ——, 1998: Low Froude number limiting dynamics for

stably stratified flow with small or finite Rossby numbers.

NOVEMBER 2021 HERNÁNDEZ -DUEÑAS ET AL . 3509

Brought to you by provisional account | Unauthenticated | Downloaded 10/10/22 09:41 AM UTC

https://domicile.ifremer.fr/10.1007/,DanaInfo=doi.org,SSL+s001620050042
https://domicile.ifremer.fr/10.1016/,DanaInfo=doi.org,SSL+S0893-9659(99)00208-6
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO-D-19-0243.1
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO-D-19-0243.1
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO-D-16-0117.1
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO-D-16-0117.1
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+1520-0469(1995)052<4410:GAAICI>2.0.CO;2
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+1520-0469(1995)052<4410:GAAICI>2.0.CO;2
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+1520-0469(1984)041<1881:RDLAND>2.0.CO;2
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+1520-0469(1984)041<1881:RDLAND>2.0.CO;2
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO-D-15-0127.1
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO-D-15-0127.1
https://domicile.ifremer.fr/10.1029/,DanaInfo=doi.org,SSL+2020MS002049
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO-D-11-0137.1
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO-D-11-0137.1
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO-D-12-0149.1
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO-D-12-0149.1
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+jfm.2013.71
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+1520-0469(1971)028<1087:GT>2.0.CO;2
https://domicile.ifremer.fr/10.1063/,DanaInfo=doi.org,SSL+1.1752928
https://domicile.ifremer.fr/10.1063/,DanaInfo=doi.org,SSL+1.1752928
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+jfm.2020.995
https://domicile.ifremer.fr/10.1080/,DanaInfo=doi.org,SSL+03605309608821200
https://domicile.ifremer.fr/10.1080/,DanaInfo=doi.org,SSL+03605309608821200


Geophys. Astrophys. Fluid Dyn., 87, 1–50, https://doi.org/

10.1080/03091929808208993.

Essink, S., V. Hormann, L. Centurioni, and A. Mahadevan, 2019:

Canwe detect submesoscale motions in drifter pair dispersion.

J. Phys. Oceanogr., 49, 2237–2254, https://doi.org/10.1175/

JPO-D-18-0181.1.

Fitzgerald, J. G., and B. F. Farrell, 2018a: Statistical state dynamics

of vertically sheared horizontal flows in two-dimensional

stratified turbulence. J. Fluid Mech., 854, 544–590, https://

doi.org/10.1017/jfm.2018.560.

——, and ——, 2018b: Vertically sheared horizontal flow-forming

instability in stratified turbulence: Analytical linear stability

analysis of statistical state dynamics equilibria. J. Atmos. Sci.,

75, 4201–4227, https://doi.org/10.1175/JAS-D-18-0075.1.

Gamba, I., L. Smith, and M.-B. Tran, 2020: On the wave turbulence

theory for stratified flows in the ocean. Math. Models Methods

Appl. Sci., 30, 105–137, https://doi.org/10.1142/S0218202520500037.

Garrett, C. J. R., and W. Munk, 1979: Internal waves in the ocean.

Annu. Rev. Fluid Mech., 11, 339–369, https://doi.org/10.1146/

annurev.fl.11.010179.002011.

Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press,

680 pp.

Hernández-Dueñas, G., L. M. Smith, and S. N. Stechmann, 2014:

Investigation of Boussinesq dynamics using intermediate

models based on wave–vortical interactions. J. Fluid Mech.,

747, 247–287, https://doi.org/10.1017/jfm.2014.138.

Holmes-Cerfon, M., O. Bühler, and R. Ferrari, 2011: Particle

dispersion by random waves in the rotating Boussinesq sys-

tem. J. Fluid Mech., 670, 150–175, https://doi.org/10.1017/

S0022112010005240.

Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence.

Phys. Fluids, 10, 1417–1423, https://doi.org/10.1063/1.1762301.

——, 1973: Helical turbulence and absolute equilibrium. J. Fluid

Mech., 59, 745–752, https://doi.org/10.1017/S0022112073001837.
LaCasce, J. H., 2008: Statistics from Lagrangian observations. Prog.

Oceanogr., 77, 1–29, https://doi.org/10.1016/j.pocean.2008.02.002.

Laval, J., J. McWilliams, and B. Dubrulle, 2003: Forced stratified

turbulence: Successive transitions with Reynolds number.Phys.

Rev. E, 68, 036308, https://doi.org/10.1103/PhysRevE.68.036308.

Ledwell, J. R., A. Watson, and C. Law, 1993: Evidence for mixing

across the pycnocline from an open ocean tracer release

experiment. Nature, 364, 701–703, https://doi.org/10.1038/

364701a0.

——,T.F.Duda,M.A.Sundermeyer, andH.E. Seim, 2004:Mixing in a

coastal environment: 1. A view from dye dispersion. J. Geophys.

Res., 109, C10013, https://doi.org/10.1029/2003JC002194.

Lelong,M.-P., 1989:Weakly nonlinear internal wave/vortical mode

interactions in stably-stratified flows. Ph.D. thesis, University

of Washington, 101 pp.

——, and J. J. Riley, 1991: Internal wave-vortical mode interac-

tions in strongly stratified flows. J. Fluid Mech., 232, 1–19,

https://doi.org/10.1017/S0022112091003609.

——, and T. J. Dunkerton, 1998: Inertia-gravity wave breaking in

three dimensions. Part I: Convectively stable waves. J. Atmos.

Sci., 55, 2473–2488, https://doi.org/10.1175/1520-0469(1998)

055,2473:IGWBIT.2.0.CO;2.

——, andM. A. Sundermeyer, 2005: Geostrophic adjustment of an

isolated diapycnal mixing event and its implications for small-

scale lateral dispersion. J. Phys. Oceanogr., 35, 2352–2367,

https://doi.org/10.1175/JPO2835.1.

Lien, R.-C., and T. Sanford, 2019: Small-scale potential vorticity in

the upper-ocean thermocline. J. Phys. Oceanogr., 49, 1845–

1872, https://doi.org/10.1175/JPO-D-18-0052.1.

Lvov, Y. V., and E. G. Tabak, 2004: AHamiltonian formulation for

long internal waves. Physica D, 195, 106–122, https://doi.org/

10.1016/j.physd.2004.03.010.

——, K. L. Polzin, and E. G. Tabak, 2004: Energy spectra of the

ocean’s internal wave field: Theory and observations. Phys. Rev.

Lett., 92, 128501, https://doi.org/10.1103/PhysRevLett.92.128501.

——, ——, ——, and N. Yokoyama, 2010: Oceanic internal-wave

field: Theory of scale-invariant spectra. J. Phys. Oceanogr., 40,

2605–2623, https://doi.org/10.1175/2010JPO4132.1.

——, K. Polzin, and N. Yokoyama, 2012: Resonant and near-

resonant internal wave interactions. J. Phys. Oceanogr., 42,

669–691, https://doi.org/10.1175/2011JPO4129.1.

Majda, A., 2003: Introduction to PDEs andWaves for the Atmosphere

and Ocean. Courant Lecture Notes in Mathematics, Vol. 9, New

York University Courant Institute of Mathematical Sciences,

234 pp.

McComas, C. H., and F. P. Bretherton, 1977: Resonant interaction

of oceanic internal waves. J. Geophys. Res., 82, 1397–1412,

https://doi.org/10.1029/JC082i009p01397.

McWilliams, J. C., 2008: Fluid dynamics at the margin of rotational

control. Environ. Fluid Mech., 8, 441–449, https://doi.org/

10.1007/s10652-008-9081-8.

Morel, Y., and J. C. McWilliams, 1997: Evolution of isolated interior

vortices in the ocean. J. Phys. Oceanogr., 27, 727–748, https://

doi.org/10.1175/1520-0485(1997)027,0727:EOIIVI.2.0.CO;2.

Müller, P.,G.Holloway, F.Henyey, andN.Pomphrey, 1986:Nonlinear

interactions among internal gravitywaves.Rev.Geophys.,24, 493–

536, https://doi.org/10.1029/RG024i003p00493.

Nazarenko, S., 2011: Wave Turbulence. Lecture Notes in Physics,

Vol. 825, Springer, 279 pp., https://doi.org/10.1007/978-3-642-

15942-8.

Newell, A. C., and B. Rumpf, 2011: Wave turbulence. Annu. Rev.

Fluid Mech., 43, 59–78, https://doi.org/10.1146/annurev-fluid-

122109-160807.

Pedlosky, J., 1982: Geophysical Fluid Dynamics. Vol. 1. Springer,

636 pp.

Polzin, K., and R. Ferrari, 2004: Isopycnal dispersion in NATRE.

J. Phys. Oceanogr., 34, 247–257, https://doi.org/10.1175/1520-

0485(2004)034,0247:IDIN.2.0.CO;2.

Remmel, M., 2010: New models for the rotating shallow water and

Boussinesq equations by subsets of mode interactions. Ph.D.

thesis, University of Wisconsin–Madison, 158 pp.

——, and L. Smith, 2009: New intermediate models for rotating

shallow water and an investigation of the preference for anti-

cyclones. J. Fluid Mech., 635, 321–359, https://doi.org/10.1017/

S0022112009007897.

——, J. Sukhatme, and L.M. Smith, 2010: Nonlinear inertia-gravity

wave-mode interactions in three dimensional rotating strati-

fied flows. Commun. Math. Sci., 8, 357–376, https://doi.org/

10.4310/CMS.2010.v8.n2.a4.

——, ——, and ——, 2014: Nonlinear gravity-wave interactions in

stratified turbulence. Theor. Comput. Fluid Dyn., 28, 131–145,

https://doi.org/10.1007/s00162-013-0305-2.

Rhines, P. B., 1988: Mixing and large-scale ocean dynamics. Small-

Scale Turbulence and Mixing in the Ocean. J. Nihoul and

B. Jamart, Eds., Elsevier Oceanography Series, Vol. 46, Elsevier,

263–284, https://doi.org/10.1016/S0422-9894(08)70552-X.

Rypina, I., J. Llopiz, L. Pratt, and M. Lozier, 2014: Dispersal pathways

ofAmerican eel larvae from the Sargasso Sea.Limnol. Oceanogr.,

59, 1704–1714, https://doi.org/10.4319/lo.2014.59.5.1704.
Salmon, R., 1983: Baroclinic instability and geostrophic turbu-

lence. Geophys. Astrophys. Fluid Dyn., 15, 167–211, https://

doi.org/10.1080/03091928008241178.

3510 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 51

Brought to you by provisional account | Unauthenticated | Downloaded 10/10/22 09:41 AM UTC

https://domicile.ifremer.fr/10.1080/,DanaInfo=doi.org,SSL+03091929808208993
https://domicile.ifremer.fr/10.1080/,DanaInfo=doi.org,SSL+03091929808208993
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO-D-18-0181.1
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO-D-18-0181.1
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+jfm.2018.560
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+jfm.2018.560
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JAS-D-18-0075.1
https://domicile.ifremer.fr/10.1142/,DanaInfo=doi.org,SSL+S0218202520500037
https://domicile.ifremer.fr/10.1146/,DanaInfo=doi.org,SSL+annurev.fl.11.010179.002011
https://domicile.ifremer.fr/10.1146/,DanaInfo=doi.org,SSL+annurev.fl.11.010179.002011
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+jfm.2014.138
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+S0022112010005240
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+S0022112010005240
https://domicile.ifremer.fr/10.1063/,DanaInfo=doi.org,SSL+1.1762301
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+S0022112073001837
https://domicile.ifremer.fr/10.1016/,DanaInfo=doi.org,SSL+j.pocean.2008.02.002
https://domicile.ifremer.fr/10.1103/,DanaInfo=doi.org,SSL+PhysRevE.68.036308
https://domicile.ifremer.fr/10.1038/,DanaInfo=doi.org,SSL+364701a0
https://domicile.ifremer.fr/10.1038/,DanaInfo=doi.org,SSL+364701a0
https://domicile.ifremer.fr/10.1029/,DanaInfo=doi.org,SSL+2003JC002194
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+S0022112091003609
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+1520-0469(1998)055<2473:IGWBIT>2.0.CO;2
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+1520-0469(1998)055<2473:IGWBIT>2.0.CO;2
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO2835.1
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO-D-18-0052.1
https://domicile.ifremer.fr/10.1016/,DanaInfo=doi.org,SSL+j.physd.2004.03.010
https://domicile.ifremer.fr/10.1016/,DanaInfo=doi.org,SSL+j.physd.2004.03.010
https://domicile.ifremer.fr/10.1103/,DanaInfo=doi.org,SSL+PhysRevLett.92.128501
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+2010JPO4132.1
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+2011JPO4129.1
https://domicile.ifremer.fr/10.1029/,DanaInfo=doi.org,SSL+JC082i009p01397
https://domicile.ifremer.fr/10.1007/,DanaInfo=doi.org,SSL+s10652-008-9081-8
https://domicile.ifremer.fr/10.1007/,DanaInfo=doi.org,SSL+s10652-008-9081-8
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+1520-0485(1997)027<0727:EOIIVI>2.0.CO;2
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+1520-0485(1997)027<0727:EOIIVI>2.0.CO;2
https://domicile.ifremer.fr/10.1029/,DanaInfo=doi.org,SSL+RG024i003p00493
https://domicile.ifremer.fr/10.1007/,DanaInfo=doi.org,SSL+978-3-642-15942-8
https://domicile.ifremer.fr/10.1007/,DanaInfo=doi.org,SSL+978-3-642-15942-8
https://domicile.ifremer.fr/10.1146/,DanaInfo=doi.org,SSL+annurev-fluid-122109-160807
https://domicile.ifremer.fr/10.1146/,DanaInfo=doi.org,SSL+annurev-fluid-122109-160807
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+1520-0485(2004)034<0247:IDIN>2.0.CO;2
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+1520-0485(2004)034<0247:IDIN>2.0.CO;2
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+S0022112009007897
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+S0022112009007897
https://domicile.ifremer.fr/10.4310/,DanaInfo=doi.org,SSL+CMS.2010.v8.n2.a4
https://domicile.ifremer.fr/10.4310/,DanaInfo=doi.org,SSL+CMS.2010.v8.n2.a4
https://domicile.ifremer.fr/10.1007/,DanaInfo=doi.org,SSL+s00162-013-0305-2
https://domicile.ifremer.fr/10.1016/,DanaInfo=doi.org,SSL+S0422-9894(08)70552-X
https://domicile.ifremer.fr/10.4319/,DanaInfo=doi.org,SSL+lo.2014.59.5.1704
https://domicile.ifremer.fr/10.1080/,DanaInfo=doi.org,SSL+03091928008241178
https://domicile.ifremer.fr/10.1080/,DanaInfo=doi.org,SSL+03091928008241178


Shcherbina, A. Y., and Coauthors, 2015: The LatMix summer

campaign: Submesoscale stirring in the upper ocean. Bull.

Amer. Meteor. Soc., 96, 1257–1279, https://doi.org/10.1175/

BAMS-D-14-00015.1.

Sinha, A., D. Balwada, N. Tarshish, and R. Abernathey, 2019:

Modulation of lateral transport by submesoscale flows and

inertia-gravity waves. J. Adv. Model. Earth Syst., 11, 1039–

1065, https://doi.org/10.1029/2018MS001508.

Smith, L., and F. Waleffe, 2002: Generation of slow large scales in

forced rotating stratified turbulence. J. Fluid Mech., 451, 145–

168, https://doi.org/10.1017/S0022112001006309.

Sundermeyer, M. A., 1998: Studies of lateral dispersion in the

ocean. Ph.D. thesis, Massachusetts Institute of Technology/

Woods Hole Oceanographic Institution Joint Program, 215

pp., https://doi.org/10.1575/1912/8852.

——, and J. R. Ledwell, 2001: Lateral dispersion over the conti-

nental shelf: Analysis of dye-release experiments. J. Geophys.

Res., 106, 9603–9621, https://doi.org/10.1029/2000JC900138.

——, and M.-P. Lelong, 2005: Numerical simulations of lateral dis-

persion by the relaxation of diapycnal mixing events. J. Phys.

Oceanogr., 35, 2368–2386, https://doi.org/10.1175/JPO2834.1.

——, J. R. Ledwell, N. S. Oakey, and B. J. W. Greenan, 2005:

Stirring by small-scale vortices caused by patchy mixing.

J. Phys. Oceanogr., 35, 1245–1262, https://doi.org/10.1175/

JPO2713.1.

——, M.-P. Lelong, E. L. Kunze, J. J. Early, and C. Wortham,

2020a: Pathways from internal-wave driven processes to vor-

tical mode and submesoscale dispersion. Ocean Sciences

Meeting, San Diego CA, Amer. Geophys. Union, Abstract

PS41A-07, https://agu.confex.com/agu/osm20/meetingapp.cgi/

Paper/654509.

——,D.Birch, J.R. Ledwell,M.D. Levine, S.D. Pierce, andB. T.K.

Cervantes, 2020b: Dispersion in the open ocean seasonal pyc-

nocline at scales of 1–10 km and 1–6 days. J. Phys. Oceanogr.,

50, 415–437, https://doi.org/10.1175/JPO-D-19-0019.1.

Taylor, S., and D. Straub, 2016: Forced near-inertial motion and

dissipation of low-frequency kinetic energy in a wind-driven

channel flow. J. Phys. Oceanogr., 46, 79–93, https://doi.org/

10.1175/JPO-D-15-0060.1.

Thomas, J., and D. Daniel, 2020: Turbulent exchanges between

near-inertial waves and balanced flows. J. Fluid Mech., 902,

A7, https://doi.org/10.1017/jfm.2020.510.

——, and ——, 2021: Forward flux and enhanced dissipation of

geostrophic balanced energy. J. Fluid Mech., 911, A60, https://

doi.org/10.1017/jfm.2020.1026.

Thomson, R., and W. Emery, 2014: Data Analysis Methods in

Physical Oceanography. 3rd ed. Elsevier, 716 pp.

Torres, H. S., P. Klein, D. Menemenlis, B. Qiu, Z. Su, J. Wang,

S. Chen, and L.-L. Fu, 2018: Partitioning ocean motions

into balanced motions and internal gravity waves: A

modeling study in anticipation of future space missions.

J. Geophys. Res. Oceans, 123, 8084–8105, https://doi.org/

10.1029/2018JC014438.

Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics:

Fundamentals and Large-Scale Circulation. 2nd ed. Cambridge

University Press, 946 pp., https://doi.org/10.1017/9781107588417.

Wagner, G. L., andW.R. Young, 2016: A three-componentmodel for

the coupled evolution of near-inertial waves, quasi-geostrophic

flow and the near-inertial second harmonic. J. Fluid Mech., 802,

806–837, https://doi.org/10.1017/jfm.2016.487.

Waite,M. L., and P. Bartello, 2006: The transition fromgeostrophic

to stratified turbulence. J. Fluid Mech., 568, 89–108, https://
doi.org/10.1017/S0022112006002060.

Whalen, C. B., C. de Lavergne, A. C. Naveira Garabato, J. M.

Klymak, J. A. MacKinnon, and K. L. Sheen, 2020: Internal

wave-driven mixing: Governing processes and consequences

for climate. Nat. Rev. Earth Environ., 1, 606–621, https://

doi.org/10.1038/s43017-020-0097-z.

Xie, J.-H., and J. Vanneste, 2015: A generalized-lagrangian-mean

model of the interactions between near-inertial waves and

mean flow. J. Fluid Mech., 774, 143–169, https://doi.org/

10.1017/jfm.2015.251.

Young, W. R., P. B. Rhines, and C. J. R. Garrett, 1982: Shear-flow

dispersion, internal waves and horizontal mixing in the ocean.

J. Phys. Oceanogr., 12, 515–527, https://doi.org/10.1175/1520-

0485(1982)012,0515:SFDIWA.2.0.CO;2.

Zakharov, V. E., V. S. Lvov, and G. Falkovich, 1992: Kolmogorov

Spectra of Turbulence 1. Wave Turbulence. Springer, 264 pp.

NOVEMBER 2021 HERNÁNDEZ -DUEÑAS ET AL . 3511

Brought to you by provisional account | Unauthenticated | Downloaded 10/10/22 09:41 AM UTC

https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+BAMS-D-14-00015.1
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+BAMS-D-14-00015.1
https://domicile.ifremer.fr/10.1029/,DanaInfo=doi.org,SSL+2018MS001508
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+S0022112001006309
https://domicile.ifremer.fr/10.1575/1912/,DanaInfo=doi.org,SSL+8852
https://domicile.ifremer.fr/10.1029/,DanaInfo=doi.org,SSL+2000JC900138
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO2834.1
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO2713.1
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO2713.1
https://domicile.ifremer.fr/agu/osm20/meetingapp.cgi/Paper/,DanaInfo=agu.confex.com,SSL+654509
https://domicile.ifremer.fr/agu/osm20/meetingapp.cgi/Paper/,DanaInfo=agu.confex.com,SSL+654509
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO-D-19-0019.1
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO-D-15-0060.1
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+JPO-D-15-0060.1
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+jfm.2020.510
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+jfm.2020.1026
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+jfm.2020.1026
https://domicile.ifremer.fr/10.1029/,DanaInfo=doi.org,SSL+2018JC014438
https://domicile.ifremer.fr/10.1029/,DanaInfo=doi.org,SSL+2018JC014438
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+9781107588417
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+jfm.2016.487
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+S0022112006002060
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+S0022112006002060
https://domicile.ifremer.fr/10.1038/,DanaInfo=doi.org,SSL+s43017-020-0097-z
https://domicile.ifremer.fr/10.1038/,DanaInfo=doi.org,SSL+s43017-020-0097-z
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+jfm.2015.251
https://domicile.ifremer.fr/10.1017/,DanaInfo=doi.org,SSL+jfm.2015.251
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+1520-0485(1982)012<0515:SFDIWA>2.0.CO;2
https://domicile.ifremer.fr/10.1175/,DanaInfo=doi.org,SSL+1520-0485(1982)012<0515:SFDIWA>2.0.CO;2

