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 11 
Abstract 12 

 13 

Nonlinear effects in Lagrangian sea surface motions are important to understanding 14 

variability in wave-induced mass transport, wave-driven diffusion processes, and the 15 

interpretation of measurements obtained with moored or free drifting buoys.  In this study 16 

we evaluate the Lagrangian vertical and horizontal motions of a particle at the surface in 17 

a natural, random sea state using second-order, finite-depth wave theory.  In deep water, 18 

the predicted low-frequency (infragravity) surface height fluctuations are much larger 19 

than Eulerian bound-wave motions and of opposite sign. Comparison to surface elevation 20 

bispectra observed with a moored buoy in steady, high-wind conditions shows good 21 

agreement, and confirms that – in contrast to the Eulerian sea surface motion with 22 

predominant phase-coupling between the spectral peak and double-frequency harmonic 23 

components – nonlinearity in Lagrangian wave observations is dominated by phase-24 

coupled infragravity motions.  Sea surface skewness estimates obtained from moored 25 

buoys in deep and shallow sites, over a wide range of wind-sea and swell conditions, are 26 

in good agreement with second-order theory predictions. Theory and field data analysis 27 

of surface drift motions in deep water reveal energetic (O(10 cm/s)) infragravity velocity 28 

fluctuations that are several orders of magnitude larger and 180 degrees out of phase with 29 

the Eulerian infragravity motions.  These large fluctuations in Stokes drift may be 30 

important in upper ocean diffusion processes. 31 

 32 
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1.    Introduction  33 

Nonlinearity of ocean surface waves affects the geometrical properties of the sea surface 34 

and is important for understanding wave-induced transport and drift characteristics.  35 

Second-order nonlinear effects include the familiar enhanced steepness of wave crests 36 

(Stokes, 1847) and mean water level variations on the scale of wave groups (Longuet-37 

Higgins and Stewart, 1962).  The associated deviations from Gaussian sea surface 38 

statistics and variations in the wave-induced surface drift (commonly known as “Stokes 39 

drift”) are important in the interpretation of remote sensing data, in particular the precise 40 

measurement of sea level with satellite altimeters (e.g., Srokosz, 1986; Rodriguez, 1988) 41 

and radar observations of surface currents (e.g. Longuet-Higgins, 1986). Whereas the 42 

weakly nonlinear theory for a two-dimensional, random sea surface is well established 43 

(e.g., Phillips, 1960; Hasselmann, 1962), it is not well understood  how nonlinearity is 44 

manifested in Lagrangian measurement records, such as obtained by moored and free-45 

drifting surface-following instruments.  Moreover, accurate field observations are scarce 46 

owing to the difficulty of obtaining non-intrusive in-situ measurements of wave motion at 47 

the sea surface and the cost and limited availability of high-resolution airborne 48 

topographic mappers.   49 

The most widely available wave-resolved sea surface observations are from 50 

moored surface-following buoys that measure surface height fluctuations with an internal 51 

sensor package equipped with accelerometers or a Global Positioning System (GPS) 52 

receiver.  Recent advances in compact and inexpensive sensor packages have enabled the 53 

development of small drifting buoys that measure both surface wave and drift properties 54 

(Herbers et al., 2012; Thomson, 2012; Pearman et al., 2014).  Whereas the accuracy of 55 
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the buoy sensors is reasonably well established, the interpretation of measurements is 56 

complicated by the fact that surface-following buoys do not collect measurements at a 57 

fixed location, but instead provide Lagrangian time series of the orbital motion of a water 58 

parcel at the surface.  Srokosz and Longuet-Higgins (1986) and Longuet-Higgins (1986) 59 

present a second-order theory of Lagrangian buoy motion in deep water and show that the 60 

high-frequency bound waves observed in an Eulerian reference frame are replaced by a 61 

change in mean sea level in the Lagrangian surface record. Interestingly, this change in 62 

sea surface properties does not affect the sea surface variance and skewness (Srokosz and 63 

Longuet-Higgins, 1986). 64 

In the present work we revisit some of the results by Srokosz and Longuet-65 

Higgins (1986), compare field observations to theoretical predictions, and discuss the 66 

implied low-frequency (infragravity) modulations of surface elevation and Stokes drift 67 

that are important to understanding e.g. satellite altimetry, surface dispersion of 68 

pollutants, and the interpretation of infragravity wave signals in buoy records.  We extend 69 

the second-order theory of Srokosz and Longuet-Higgins (1986) to finite water depth 70 

(section 2), explicitly consider the Lagrangian infragravity motion, and compare 71 

theoretical predictions to field observations from moored and drifting buoys.  The theory 72 

and data analysis show that the nonlinearity of wave orbital motion manifests itself in 73 

infragravity fluctuations of surface elevation (section 3) and Stokes drift (section 4) that 74 

are orders of magnitude larger than their Eulerian counterparts. The results are 75 

summarized in section 5.  76 
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2.    Lagrangian sea surface height variations 77 

Surface-following wave buoys provide Lagrangian measurements of the wave orbital 78 

motion at the sea surface.  In the linear approximation, the measured vertical buoy 79 

displacement record is equivalent to an Eulerian measurement of surface elevation at a 80 

fixed location, but the horizontal wave orbital excursions introduce a distortion at second-81 

order in wave steepness (see Srokosz and Longuet-Higgins, 1986;  Longuet-Higgins, 82 

1986).  Notably, in the Lagrangian frame of reference, second-order high-frequency 83 

bound waves are exactly cancelled out, so that the characteristic steepening of wave 84 

crests and broadening of troughs in deep water Stokes waves is not observed in a buoy 85 

record. 86 

In addition to wave nonlinearity, buoy measurements are also affected by mooring 87 

response (for a moored buoy) or surface currents (for a drifting buoy).  The mooring 88 

response is difficult to quantify and not considered here under the assumption that it 89 

affects buoy motions primarily at time scales longer than the periods of the dominant 90 

waves and associated (infragravity) group modulations.  91 

To describe the motions recorded by a small surface-following buoy, we consider 92 

a surface particle (at z  ) that follows the Lagrangian wave orbital motion while being 93 

advected with a surface current U .  This surface current may include the Stokes drift as 94 

well as ambient tidal and wind-driven contributions for a drifting buoy, and can be set 95 

equal to zero for a moored buoy.  For simplicity we assume here that variations in U on 96 

the space and time scales of the dominant waves are small, so that, in the local wave field 97 

description, U can be approximately considered steady and uniform in space. 98 

Furthermore, we assume that U is weak compared to the characteristic wave speed so 99 
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that wave-current interactions may be neglected. In this weak, quasi-steady and quasi-100 

homogeneous approximation, the primary effect of U is to induce a small Doppler shift 101 

in the wave propagation. 102 

To evaluate the horizontal   bx t and vertical   bz t buoy position in a 103 

stationary and spatially homogeneous sea state, we use a fully two-dimensional spectral 104 

description of the Eulerian sea surface including second-order bound waves (e.g. Phillips, 105 

1960; Hasselmann, 1962): 106 
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where the wavenumber vector is defined as  cos , sink s k k   with the sign index 108 
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depends on the primary wave frequencies, spreading angle and water depth.  116 

To evaluate the vertical displacement time series 117 

    ,b bz t x t        (3) 118 

we take bx to be the sum of the initial position 0x  , steady drift with velocity U , and a 119 

fluctuation approximated with the leading-order local wave orbital displacement: 120 

    0 ,2 ,
expb k

igk
x t x Ut A i t  

 
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        (4) 121 

with a phase function 122 

    0,k
t k x k U t


      .      (5) 123 

We assume that U is small relative to the wave phase speed so that it does not affect 124 

Eulerian wave properties to second order. Substitution of Eqs. 3-5 in Eq. 1 and expanding 125 

for small wave orbital displacements, yields to second order in wave steepness 126 
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with a coupling coefficient LD  128 

     1 2 1 2 1 2 1 2 1 2 1 2, , , , , , , , , , , ,L ED h D h L h                      (7) 129 

that is the sum of the Eulerian coefficient ED and an additional Lagrangian term  130 
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The Lagrangian contribution to the coupling coefficient accounts for the horizontal buoy 132 

displacements by the wave orbital motion.  In deep water, Eq. 8 is in agreement with the 133 

result derived by Srokosz and Longuet-Higgins (1986, Eqs. (6.10) and (6.3)). 134 

Since the Lagrangian corrections obey the anti-symmetry relation 135 

    1 2 1 2 1 2 1 2, , , , , , , ,L h L h            ,  (9) 136 

they do not affect the second and third cumulants of the sea surface height time series 137 

(Srokosz and Longuet-Higgins, 1986). However, the diagonal ( 1 2 0   ) contributions 138 

to Eq. 8 result in a change in mean water level (affecting the first cumulant), and the 139 

distortion of spectral properties is important in the detailed analysis of surface-following 140 

buoy measurements.  For example, consider the interactions of a pair of wave trains in 141 

deep water with frequencies 1,2 2    (where 0    ), travelling in the same 142 

direction 1,2 0  . The sum-frequency interaction yields perfect cancellation between the 143 

Eulerian and Lagrangian terms 144 
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causing the well-known absence of the double-frequency harmonic components in a 146 

Lagrangian wave record.  Interestingly, this cancellation does not occur for the difference 147 

interaction 148 
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For small values of the difference frequency , the magnitude of the negative ,ED

 term is 151 

a factor   smaller than L , and thus the familiar second-order set-down effect under 152 

wave groups is replaced by a much larger apparent set-up signal in a Lagrangian buoy 153 

record. 154 

 These effects are illustrated in Fig.1 with a numerical simulation of an energetic 155 

narrow-band wave field in deep water. The Eulerian (Eq. 1) and Lagrangian (Eq. 6) sea 156 

surface height variations were evaluated at an arbitrary location 0x  in the absence of 157 

surface drift ( 0U  ) for a random Gaussian sea state with a significant wave height of 8 158 

m and spectral peak frequency of 0.1 Hz. To simulate a narrow swell beam, a two-159 

dimensional Gaussian-shaped spectral energy distribution was used with standard 160 

deviations of 0.007 Hz (in frequency) and 5 degrees (in direction). As expected, the 161 

results show the double-frequency harmonic components disappear in the Lagrangian 162 

reference frame (Fig. 1 middle panel) and the occurrence of an infragravity modulation of 163 

comparable magnitude, with maximum set-up in the center of the wave groups (Fig. 1 164 

bottom panel). 165 

 These infragravity surface height modulations are closely related to the mean 166 

Lagrangian water level change discussed in Srokosz and Longuet-Higgins (1986). That 167 

is, for a single wave train in deep water with frequency   and amplitude 2a A , the 168 

difference interaction in Eq. 6 yields a mean water level change of 2 2 2a g , consistent 169 

with Srokosz and Longuet-Higgins (1986). In a bichromatic wave field, consisting of two 170 

wave trains with slightly different frequencies and the same amplitudes, this water level 171 

change is split equally between a mean set-up (the self-self difference interaction terms in 172 



10 

Eq. 6) and an infragravity group modulation (the cross difference interaction terms in Eq. 173 

6).  In a random wave field with an infinite number of frequency components there are no 174 

longer distinct mean and oscillating contributions to the sea level change, but instead a 175 

continuous spectrum of low-frequency variations. 176 

The situation is rather different in shallow water where the bound wave forcing 177 

approaches resonance ( 2

3 3 3tanh( )gk k h  ), causing strong amplification of the Eulerian 178 

coupling coefficient ED  (Eq. 2) for both sum- and difference interactions.  In contrast, the 179 

corresponding Lagrangian correction terms are not as strongly amplified (Eq. 8), and thus 180 

buoy measurements of nonlinear sea surface properties in shallow water are not expected 181 

to be significantly distorted by the Lagrangian displacements. 182 

3.    Third-order statistics of sea surface height 183 

To examine how nonlinearity affects Lagrangian surface height variations in natural 184 

wind-generated ocean waves, and verify theoretical predictions of these effects, we 185 

analyzed third-order statistics of moored buoy observations. First we present a bispectral 186 

analysis of a nearly fully developed wind-sea in strong winds with the objective to 187 

characterize and verify the Lagrangian bound wave contributions in the spectral domain. 188 

Next, in order to quantify the nonlinearity over a wider range of conditions, we evaluate 189 

the sea surface skewness from long-term buoy records in deep and shallow water. 190 

 191 

a. Bispectral analysis 192 

Although the nonlinear distortion of surface wave profiles is generally subtle (e.g., Fig. 193 

1), the second-order bound waves cause deviations from Gaussian statistics that are 194 
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important for remote sensing applications (e.g. the sea state bias in satellite altimetry 195 

associated with skewed wave profiles) and near-shore sediment transport (i.e. skewed 196 

wave orbital velocity variations).  Bispectral analysis (Hasselmann et al., 1963) is the 197 

natural tool to explore the non-Gaussian properties of a natural random wave field and 198 

identify nonlinear coupling between wave components across the frequency spectrum.  199 

Here we evaluate the bispectrum of an idealized small, surface-following buoy. 200 

Neglecting the Doppler shift from the mean drift velocity U  in Eq. 5 and setting the 201 

arbitrary initial buoy position 0 0x   , the vertical buoy elevation  bz t  (Eq. 6) can be 202 

expressed as a simple Fourier sum: 203 

    expbz t X i t


           (12) 204 

with a transform 205 
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In the limit of small frequency bandwidth  ,  a continuous bispectrum  1 2,B   can 207 

be defined as: 208 
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   (14) 209 

where  denotes an averaging operator.  Substitution of Eq. 13 in Eq. 14, assuming the 210 

primary wave amplitudes ,A  are statistically independent and Gaussian, yields to lowest 211 

order: 212 
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 (15) 213 

with  ,E   the (double-sided in frequency) frequency-directional spectrum of primary 214 

waves 215 

  
, ,

,
A A

E
   

 
 




 
.   (16) 216 

Eq. 15 is the theoretical expression for the Lagrangian surface height bispectrum.  The 217 

Eulerian surface height bispectrum is given by the same equation with LD replaced with 218 

ED (see Hasselmann et al., 1963, for a more general and formal derivation of the 219 

bispectrum). 220 

 To explore the Lagrangian sea surface statistics in a natural ocean wave field and 221 

verify the theoretical bispectrum Eq. 15, we use data from a moored Datawell DWR-G7 222 

Directional Waverider buoy that was deployed in 157 m depth off the California coast 223 

near Bodega Bay during June, 2010, as part of the Office of Naval Research High-224 

Resolution Air–Sea Interaction (HIRES) research initiative (Herbers et al., 2012).  A 225 

wind sea near full development with a significant wave height of about 4 m was observed 226 

over several days in persistent strong (13-15 m/s) winds. The steady conditions of this 227 

event allow for a detailed bispectral analysis to quantify nonlinear effects in the spectral 228 

domain. A 40-hour-long record (14:00 UTC June 14 through 06:00 UTC June 16) at the 229 

peak of this event was selected for analysis. Both spectra and bispectra were computed 230 

from 26.7-minutes-long data segments, and smoothed through ensemble averaging and 231 

the merging of 13 frequency bands to a resolution of 0.0081 Hz.  The frequency-232 
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directional wave spectrum was estimated from cross-spectra of the three-component buoy 233 

displacement data using the Maximum Entropy Method (MEM) of Lygre and Krogstad 234 

(1986).  The frequency and frequency-directional spectra (Fig. 2, for convenience 235 

transformed to single-sided f -spectra with the cyclic frequency defined as 2f   ) 236 

show the familiar properties of a uni-modal wind-wave spectrum that is narrow at the 237 

peak and broadens at higher frequencies with a 4frequency energy roll-off (e.g., Komen 238 

et al., 1994).  239 

  The surface elevation bispectrum  1 2,B   was predicted in both the Lagrangian 240 

reference frame of a surface following buoy and the Eulerian reference frame of a fixed 241 

horizontal location, by substituting the observed  ,E   in Eq. 15, using the appropriate 242 

coupling coefficients LD and ED , respectively.  These predicted bispectra (transformed 243 

to cyclic frequencies) are compared with the observed bispectum, estimated from the 244 

vertical buoy displacement time series in Fig. 3 (only the real part of  1 2,B   is shown, 245 

the imaginary part theoretically vanishes). As expected from the properties of the 246 

coupling coefficients, discussed earlier, the Eulerian and Lagrangian predictions differ 247 

dramatically.  The predicted Eulerian bispectrum  (bottom panel) shows the familiar 248 

pattern (Hasselmann et al., 1963; Elgar and Guza, 1985) of positive values at 249 

frequencies 1 2,f f   0.08 Hz  along ridges with 1f or 2f close to the peak frequency (0.09 250 

Hz) indicating the coupling between the primary spectral peak components and in-phase 251 

harmonic components.  At lower frequencies these ridges change sign to smaller negative 252 

values owing to the coupling of primary waves and 180 degrees out-of-phase bound 253 

infragravity components.  In contrast, in the predicted Lagrangian bispectrum the 254 
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negative values at infragravity frequencies are replaced by much larger positive values 255 

and bispectral levels are weak at higher frequencies, consistent with the absence of 256 

harmonics in these relatively deep-water conditions ( kh  5.1 at the peak frequency) and 257 

more energetic in-phase infragravity components (Fig. 1). 258 

 The main features of the observed bispectrum are clearly in agreement with the 259 

Lagrangian theory prediction of nonlinear interactions dominated by energetic phase-260 

coupled infragravity motions. Small differences between the Lagrangian theory 261 

prediction and observed bispectrum may be due to several possible sources of errors, 262 

including the mooring response of the buoy (not accounted for in the prediction for an 263 

idealized free drifting buoy), the lack of a high resolution directional spectrum estimate, 264 

and the finite record length (bispectral estimates have much greater statistical uncertainty 265 

than ordinary spectral estimates).  The high degree of similarity in the observed 266 

bispectrum and Lagrangian prediction is in sharp contrast with the  completely different 267 

structure of the Eulerian prediction, and thus this comparison demonstrates the large 268 

differences between Eulerian and Lagrangian sea surface elevation records in a natural 269 

wind sea. 270 

 271 

b. Sea surface skewness 272 

Bispectra can provide detailed insight in nonlinear coupling of wave components in the 273 

spectral domain, but the interpretation is often complex and these higher-order spectra are 274 

cumbersome to use in the analysis of large data sets.  A useful bulk measure of the 275 

deviation from Gaussian statistics in a surface elevation record  bz t  is the third moment 276 
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3

bz  , which - by definition - equals the integral of the bispectrum over all 1 2,   277 

frequency pairs: 278 

  
1 2

3

1 2 1 2,bz B d d
 

         (17) 279 

and, using Eq. 15, can be expressed in terms of the primary ocean wave spectrum: 280 

     
1 2 1 2

3

1 2 1 2 1 1 2 2 1 2 1 26 , , , , , ,b Lz D h E E d d d d

   

                .   (18) 281 

Since the Lagrangian contribution L  (Eq. 8) to LD (Eq. 7) obeys the anti-symmetry 282 

relation Eq. 9, the Lagrangian contribution to the bulk integral Eq. 18 is anti-symmetric 283 

about both the 1 and 2  axes, and vanishes altogether in the integration across the entire 284 

1 2,   plane. Hence, although a Lagrangian surface elevation record  bz t  may look very 285 

different from the Eulerian surface  t  at a fixed horizontal position, the corresponding 286 

third moments 3

bz  and 3 are in theory equal and given by Eq. 18 or alternatively the 287 

same integral with the Eulerian coupling coefficient ED . 288 

 The third moment 3 is conveniently normalized to a skewness measure 289 

 

3

1
2 2

S




 ,   (19) 290 

a parameter that is often used to quantify wave nonlinearity.  To evaluate the sea surface 291 

skewness in natural wind sea and swell conditions and to examine the fidelity of 292 

estimates obtained with operational moored waverider buoys, we used long-term 293 

observations from two buoys in the CDIP (Coastal Data Information Program) network 294 

(https://cdip.ucsd.edu/ ). The selected buoys are the Point Reyes Buoy, located in deep 295 

https://cdip.ucsd.edu/
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water (575 m) off Point Reyes, CA, and the nearby San Francisco Bar Buoy, located in 296 

shallow water (15 m) on the ebb tidal shoal in the entrance to San Francisco Bay.  Both 297 

buoys are Datawell Mark III Directional Waverider buoys. A three-month long period 298 

from November 1, 2009 through January 31, 2010, with a representative range of Pacific 299 

swell and local wind sea conditions was selected for analysis. On several occasions the 300 

significant wave height recorded by the Point Reyes Buoy exceeded 6 m (Fig. 4, upper 301 

panel). 302 

 The buoy data were processed in 4-hour-long records, discarding any data with 303 

gaps or anomalous spikes.  Spectra and bispectra were computed using the same 304 

procedures discussed earlier for the buoy off Bodega Bay. However, since the CDIP 305 

buoys are equipped with an internal filter that removes signals with periods longer than 306 

30 s, the skewness estimates presented here are restricted to a frequency range of 0.03-307 

0.64 Hz that excludes the lower part of the infragravity range.  To predict the skewness 308 

for each data record, first an estimate of  ,E   was obtained with the MEM method 309 

from the buoy measurements, and this estimate was used with Eq. 15 to predict the 310 

bispectrum  1 2,B   . Finally, the observed and predicted skewness values were 311 

obtained by integrating the corresponding bispectra (Eq. 17) within the same restricted 312 

frequency range, and normalizing Eq. 19 with the measured variance, also in the same 313 

frequency range. 314 

 At both sites the predicted skewness values are positive, ranging from 0 to 0.1 at 315 

the deep site and from 0 to 0.7 at the shallow site (Fig. 4).  These differences are 316 

indicative of the much stronger nonlinearity in shallow water (e.g., Elgar and Guza, 317 

1985).  At both sites the observed and predicted skewness values are generally in good 318 
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agreement.  It should be noted however that these skewness values (both observed and 319 

predicted) do not include coupling to lower infragravity (< 0.03 Hz) frequencies. 320 

Predicted skewness values (not shown) that include these lower frequencies are on 321 

average 90 % higher at the deep site and 25 % higher at the shallow site.  Thus, while the 322 

encouraging agreement between observations and predictions suggest that surface-323 

following buoy measurements of ocean surface waves can provide quantitative estimates 324 

of sea surface skewness, care must be taken to resolve the infragravity band, especially in 325 

deep water where the dominant contributions to the skewness come from the coupling 326 

between the primary sea-swell waves and infragravity components (e.g., Fig. 3).  327 

4.    Stokes drift fluctuations 328 

Whereas moored buoys are widely used to collect surface wave measurements, small 329 

drifting buoys can provide measurements of both waves and surface currents (e.g., 330 

Herbers et al., 2012; Thomson, 2012; Pearman et al., 2014) .  The concurrent observation 331 

of waves and surface drift is of particular interest in surface dispersion and mixing studies 332 

because traditional Eulerian current measurements are difficult to make at the sea surface 333 

and the wave-induced Stokes drift has a completely different profile in the more natural 334 

Lagrangian reference frame (e.g., Phillips, 1977).  Whereas the mean Stokes drift has 335 

been the topic of numerous studies (e.g., Hasselmann, 1970; Xu and Bowen, 1994; Polton 336 

et al., 2005; Lentz et al., 2008; Aiki and Greatbatch, 2012), infragravity fluctuations in 337 

the wave-induced surface drift on the scale of wave groups have received almost no 338 

attention (e.g., Smith, 2006). Here we examine the fluctuating surface drift observed with 339 

an idealized drifting buoy in a random sea state using second-order wave theory.  For 340 
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simplicity we consider a steady and homogenous sea state in the absence of ambient 341 

currents. 342 

An expression for the Lagrangian (horizontal) surface velocity u at the drifter 343 

location  bx t  can be derived by evaluating the horizontal momentum equation at the sea 344 

surface.  Neglecting vertical shear and Coriolis effects, the flow is driven by the 345 

horizontal pressure gradient at the surface that includes a non-hydrostatic contribution: 346 
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Eq. 20, derived from the nonlinear surface boundary conditions and the momentum 348 

equations, is a fully nonlinear relation between the surface elevation   and surface drift 349 

u .   350 

 Substitution of the surface elevation function Eq. 1 in Eq. 20 and integrating with 351 

respect to time, yields to second order 352 
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The integration constant EU  accounts for the ambient Eulerian surface current (e.g. the 355 

return flow driven by Stokes-Coriolis forcing and tidal and wind-driven flow: see Lentz 356 

et al., 2008). The Lagrangian Stokes drift contribution to the mean surface current is 357 

implicitly included in the nonlinear interaction term (i.e. the zero-frequency contribution 358 

of self-self difference interactions).  The coupling coefficient is given by 359 
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                                                                                                                    (22) 362 

The first term on the right hand side of Eq. 22 describes the Lagrangian effect of the 363 

horizontal wave orbital excursions on the surface drift, whereas the second and third 364 

terms are quasi-Eulerian second-order contributions driven by non-hydrostatic pressure 365 

contributions and pressure gradients resulting from the second-order surface slopes, 366 

respectively.  Our results (Eqs. 21 and 22) are obtained from an expansion around the 367 

moving sea surface z  , and although expressed different algebraically, they are in 368 

exact agreement with Eqs. (2.12) and (2.13) of Herterich and Hasselmann (1982), who 369 

expanded around the mean sea surface 0z  . 370 

 To illustrate the low-frequency drift fluctuations and connect this analysis with 371 

the classical steady Stokes drift solution for a plane wave, consider a pair of uni-372 

directional wave components ( 1 2 0   ) in deep water with frequencies 1,2 2   , 373 

and the same amplitude 
1 1 2 2, ,

1

2
A A a     .  The interaction coefficients (Eq. 22, using 374 

Eqs. 10 and 11) simplify to: 375 
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Again, as for the surface elevation, in deep water the double frequency harmonics vanish 380 

in the surface drift and - when the difference frequency  is small - the negative Eulerian 381 

contribution ( 22 g  )  to the infragravity response  (Eq. 23b) is  O  smaller than 382 

the positive Lagrangian contribution. 383 

 For this idealized wave field with modulated wave groups, Eq. 21 (using Eqs. 384 

23a,b) reduces to: 385 
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                                                                                                                                       (24) 388 

where, for simplicity, we set the arbitrary initial drifter position 0 0x  and neglected the 389 

small Doppler shift induced by the Stokes drift in the phase function Eq. 5.  390 

 The difference frequency variations in the surface drift predicted by Eq. 24 are in 391 

agreement with the classical Stokes drift theory. In the limit of small , the bichromatic 392 

wave field can be approximated as a sinusoidal wave train of frequency   with an 393 

amplitude slowly varying between a maximum value 2a in the center of the wave groups 394 

and vanishing amplitude in between the groups.  The classical steady Stokes drift 395 

prediction locally associated with this modulated wave field (not considering the return 396 

flow driven by the divergent mass flux) yields a surface drift velocity varying between 0 397 

(in between the groups) to 3 24 a g (center of the groups), which -  in the limit of 398 

small  - is in exact agreement with Eq. 24.  399 

 Dynamically, the mean contribution to the Stokes drift (the first term in Eq. 24) is 400 

affected by the Coriolis force, resulting in Eulerian counter flows which – if enough time 401 
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is available for a stationary solution to develop – in theory cancel the mean Stokes drift 402 

(see e.g. Hasselmann, 1970; Polton et al., 2005).  However, the infragravity fluctuations, 403 

with periods small compared to the inertial period, are not affected by the earth’s rotation, 404 

and will thus not be balanced by Eulerian counter flows.  Hence, the Lagrangian second-405 

order theory suggests the presence of energetic fluctuations in the surface drift on the 406 

scale of wave groups, that are much larger than the Eulerian bound wave velocities and 407 

should be readily detectable in drifter records. 408 

 To determine whether such Stokes drift fluctuations are indeed present in a 409 

natural sea state, we analyzed data from free drifting buoys deployed in deep water about 410 

60 km offshore of Monterey Bay, CA. The sea state was a mix of swell and locally 411 

generated wind-sea from the North-West with a significant wave height of about 3.3 m.  412 

The buoys include a Datawell DWR—G7 Directional Waverider buoy and three small 413 

Wave-Resolving Drifters (WRD) equipped with GPS and accelerometers (see Pearman et 414 

al., 2014 for a detailed description of these drifters). The drifters were deployed in a 415 

cluster and allowed to drift for about 8 hours before retrieval. Drift velocity 416 

measurements, based on the Doppler shift in the GPS signal, were recorded on-board the 417 

drifters.  An example time series of measured velocities from one of the drifters is shown 418 

in Fig. 5 (upper panel).  The observed orbital velocities (green curve, band-passed in the 419 

0.05-0.5 Hz swell-sea frequency range) show the expected modulations on (infragravity) 420 

time scales of a few minutes, characteristic of wave groups.  The corresponding record of 421 

infragavity velocity fluctuations (blue curve, band passed in the 0.002-0.02 Hz range) 422 

shows a correlation with the wave groups with maxima in the center of the wave groups.  423 

This pattern is qualitatively consistent with the in-phase infragravity fluctuations 424 
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predicted by the Lagrangian theory,  in contrast to the 180 degree phase difference of the 425 

Eulerian infragravity bound waves.  The observed infragravity drift variations are as large 426 

as 20 cm/s and comparable to the order of magnitude of the theoretical mean Stokes drift. 427 

 The in-phase coupling between infragravity drift fluctuations and surface wave 428 

groups is also clear in the observed bispectrum of the velocity component in the dominant 429 

wave direction (Figure 5, bottom panel).  The bispectrum was estimated  from the entire 430 

8-hour-long record based on 27.3 minutes-long FFT segments and merging 13x13 bands. 431 

To further reduce the statistical uncertainty, the resulting bispectrum (resolution 0.0079 432 

Hz) was ensemble-averaged over the three drifters. Similar to the surface height 433 

bispectrum presented earlier (Fig. 3), the real part of the velocity bispectrum shows 434 

positive values for pairs of frequencies  1 2,f f with one component in the swell-sea band 435 

and the other in the infragravity band. The imaginary part of the bispectrum shows no 436 

detectable coupling.  This observed near-zero biphase is consistent with the real and 437 

positive coupling coefficient (Eq. 23b) and clearly demonstrates the in-phase coupling 438 

between infragravity drift fluctuations and surface wave groups.  439 

 Although the observed phase-coupled infragravity motions indeed exhibit the 440 

phase characteristics of the predicted Stokes drift fluctutations, other motions (e.g. free 441 

infragravity waves or turbulence) may contribute to the infragravity velocity field that are 442 

not coupled to the local swell-sea waves and thus do not contribute to the bispectrum.  To 443 

compare the spectral energy levels of observed infragravity velocities and predicted 444 

Stokes drift fluctuations, high-resolution spectra of the velocity components  u  (in the 445 

dominant wave direction) and v  (in the transverse direction) were computed from a 7.28 446 

hour-long data record for all three drifters, using 1.82 hour-long Hamming-windowed 447 
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FFT segments with 50 % overlap, and merging 3 bands to yield a resolution of 0.0005 448 

Hz.  The resulting u  and v  spectra, averaged over the three drifters, are shown in Fig. 6, 449 

together with the total velocity spectrum.  The observed spectra are relatively flat at 450 

infragravity frequencies with some polarization along the dominant wave direction.  To 451 

compare these observed spectra with the theoretically expected infragravity Stokes drift 452 

fluctuations, we simplify the general expression of the Lagrangian velocity field, Eq. 21, 453 

by neglecting the effects of directional spreading and the Doppler shift associated with 454 

the mean current Eq. 5, to form a spectrum of the second-order velocity fluctuations: 455 

        
1 2

2

2, 1 2 1 2 1 22 ,u u

L LE D E E d d 

 

           ,   (26) 456 

where  E  is the frequency spectrum of primary waves and the coupling coefficient 457 

u

LD can be approximated for a narrow primary wave spectrum with Eq. 23.  Similarly, the 458 

Eulerian velocity spectrum of second-order bound waves  2,

u

EE  can be approximated 459 

by replacing u

LD in Eq. 26 with the corresponding Eulerian coefficient u

ED .  Predictions of 460 

2,

u

LE and 2,

u

EE at infragravity frequencies, using the Datawell buoy surface height record to 461 

estimate the primary wave spectrum  E  , are included in Fig. 6 (the displayed spectra 462 

are single-sided f  spectra). Whereas the spectral levels predicted by the Lagrangian 463 

theory (blue curve) are similar to the observed spectral levels (albeit slightly lower), the 464 

Eulerian bound-wave spectral levels (red curve) are several orders of magnitude smaller. 465 

Moreover, both the observed and theoretical Lagrangian infragravity drift spectra are 466 

nearly white, whereas the Eulerian spectrum drops off sharply toward low frequencies.   467 
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Although a precise quantitative comparison will need to account for directional 468 

spreading effects and also take into consideration the presence of free infragravity waves 469 

radiated from shore (e.g. Herbers et al., 1995), these preliminary results indicate that the 470 

infragravity Stokes drift fluctuations are indeed important in natural ocean waves and 471 

these motions are much more energetic than the Eulerian bound infragravity wave field. 472 

Whereas recent field studies show the mean Stokes drift to be approximately canceled by 473 

an Eulerian return flow (Lentz et al., 2008), consistent with a balance between the 474 

Stokes-Coriolis wave stress and the Coriolis force acting on the Eulerian return flow 475 

(Hasselmann, 1970), such a balance is not expected for the infragravity Stokes drift 476 

fluctuations that have periods small compared with the (inertial period) time scale of the 477 

Coriolis adjustment.  The large observed drift fluctuations (Fig. 5) are consistent with the 478 

absence of a balancing Eulerian flow, and may be important in upper ocean mixing and 479 

dispersion of pollutants. 480 

5.    Conclusions 481 

The Lagrangian properties of ocean surface waves are important to studies of upper-482 

ocean mixing, the interpretation of remote sensing data, and the in-situ sensing of waves 483 

and currents with drifting buoys. Although the theory for second-order Lagrangian wave 484 

properties is well established from earlier studies (notably Srokosz and Longuet-Higgins, 485 

1986; Longuet-Higgins, 1986; and Herterich and Hasselmann, 1982), their dynamics in a 486 

natural sea state are not well understood.  In this study we evaluate the spectral properties 487 

of Lagrangian surface height and drift measurements from second-order wave theory, 488 

consider skewness estimates from Lagrangian records, identify energetic infragravity 489 
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modulations in surface Stokes drift, and compare predictions with field observations of 490 

moored and free drifting buoys. 491 

 In a Lagrangian reference frame, high-frequency second-order bound waves are 492 

effectively shifted to infragravity frequencies, and a Lagrangian wave record that resolves 493 

these lower-frequency bound-wave contributions has in theory the same skewness as an 494 

Eulerian wave record. Skewness estimates obtained from long-term moored buoy 495 

observations in deep and shallow water are in good agreement with the theoretical 496 

predictions.  These results suggest that moored buoy networks, which are widely used to 497 

collect routine wave observations, can also provide reliable estimates of sea surface 498 

skewness, a parameter that plays an important role in the sea state bias of remote sensing 499 

systems and near-shore sediment transport. 500 

 Whereas the Lagrangian motion of a surface-following buoy in deep water 501 

exactly cancels the Eulerian sum-frequency bound waves, no such cancellation occurs at 502 

difference (infragravity) frequencies.  Instead, the set-down under wave groups is 503 

replaced with a much larger set-up signal in a Lagrangian wave record.  In deep water, 504 

the Lagrangian contributions dominate the infragravity wave signal, whereas in shallow 505 

water, where Eulerian bound waves approaching resonance are amplified, Lagrangian 506 

distortions are generally relatively small. Bispectral analysis of moored buoy 507 

observations in relatively deep water confirms both the suppression of double-frequency 508 

harmonics and strong in-phase coupling at infragravity frequencies predicted by the 509 

theory.  510 

 Lagrangian effects manifest themselves in a similar fashion in surface drift 511 

fluctuations, with infragravity variations that are in phase with the wave groups and much 512 
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larger than the (180 degrees out-of-phase) Eulerian infragravity bound-wave velocities.  513 

Drifter observations confirm the presence of such energetic infragravity fluctuations 514 

(O(10 cm/s)) that are an order of magnitude larger than the predicted Eulerian velocities.  515 

These energetic infragravity modulations in the wave-induced surface drift, which to our 516 

knowledge have not been explicitly identified before, may be important to upper ocean 517 

mixing and diffusion processes.  518 
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List of Figures 611 

FIG. 1. Numerical simulation of the sea surface excursions in a narrow-band (in 612 

frequency and direction) swell in deep water, observed in an Eulerian reference frame at 613 

a fixed location (red  curves)  and the Lagrangian reference frame of a surface-following 614 

buoy (blue curves). Top panel: example time series of surface elevation including 615 

second-order bound waves.  Middle panel: contribution of high frequency bound waves 616 

forced by sum interactions. Bottom panel: contribution of low (infragravity) frequency 617 

bound waves forced by difference interactions. 618 

 619 

FIG. 2. Wave spectra observed off the California coast near Bodega Bay during June 14-620 

16 in fully developed sea conditions. Top panel: Wave frequency spectrum.  The dashed 621 

line indicates the 4f  slope of an equilibrium high-frequency range.  Bottom panel: Wave 622 

frequency-directional spectrum. The spectral levels are multiplied by 4f (colorbar units  623 

2 3m s deg ) to display the directional broadening at high frequencies. 624 

 625 

FIG. 3. Observed and predicted surface elevation bispectra  (units 3 2m s ) in a fully 626 

developed sea (same case as Fig. 2).  Top panel: bispectrum estimated  from the vertical 627 

elevation time series measured with the Datawell Waverider buoy.  Middle panel: 628 

bispectrum in a Lagrangian reference frame predicted with Eq. 15 (using the frequency-629 

directional spectrum estimate shown in Fig. 2). Bottom panel: bispectrum in an Eulerian 630 

reference frame predicted in a similar fashion using the Eulerian coupling coefficient ED  631 

(Eq. 2) in Eq. 15. 632 
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 633 

Fig. 4. Sea surface statistics observed over a 3-month long period at the deep water Point 634 

Reyes Buoy (NDBC 46214, blue squares) and the nearby shallow water San Francisco 635 

Bar  Buoy (NDBC 46237, blue asterisks).  Top panel: observed significant wave heights.  636 

Middle panel: observed skewness at the deep water site compared with nonlinear theory 637 

predictions (red squares).  Bottom panel: observed skewness at the shallow water site 638 

compared with nonlinear theory predictions (red asterisks).  639 

 640 

FIG. 5. Sea surface drift velocities observed with drifting buoys deployed in deep water 641 

offshore of Monterey Bay on 29 April 2012.  Top panel: Example time series of the 642 

measured velocity component in the dominant wave direction. Band-passed infragravity 643 

drift fluctuations (blue) show a positive correlation with the wind wave groups (green) as 644 

predicted by Lagrangian theory.  Bottom panels: The corresponding bispectrum (units 645 

3m s , estimated from the entire 8-hour-long time series) confirms this phase relationship 646 

with a positive real part at frequencies coupling infragravity and swell-sea components 647 

(bottom left panel) and near-zero imaginary part (bottom right panel) . 648 

 649 

FIG. 6. Sea surface drift velocity spectra observed in deep water offshore of Monterey 650 

Bay (same data set as in Fig. 5) are compared with predicted spectra of infragravity drift 651 

fluctuations based on Eq. 26 (blue curve). The observed spectral levels are comparable to 652 

the predicted levels and orders of magnitude higher than the spectral levels of Eulerian 653 

bound wave contributions (red curve). 654 

655 
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 657 

FIG. 1. Numerical simulation of the sea surface excursions in a narrow-band (in 658 

frequency and direction) swell in deep water, observed in an Eulerian reference frame at 659 

a fixed location (red  curves)  and the Lagrangian reference frame of a surface-following 660 

buoy (blue curves). Top panel: example time series of surface elevation including 661 

second-order bound waves.  Middle panel: contribution of high frequency bound waves 662 

forced by sum interactions. Bottom panel: contribution of low (infragravity) frequency 663 

bound waves forced by difference interactions. 664 

665 
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 668 

FIG. 2. Wave spectra observed off the California coast near Bodega Bay during June 14-669 

16 in fully developed sea conditions. Top panel: Wave frequency spectrum.  The dashed 670 

line indicates the 4f  slope of an equilibrium high-frequency range.  Bottom panel: Wave 671 

frequency-directional spectrum. The spectral levels are multiplied by 4f (colorbar units  672 

2 3m s deg ) to display the directional broadening at high frequencies. 673 

674 
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 676 

FIG. 3. Observed and predicted surface elevation bispectra  (units 3 2m s ) in a fully 677 

developed sea (same case as Fig. 2).  Top panel: bispectrum estimated  from the vertical 678 

elevation time series measured with the Datawell Waverider buoy.  Middle panel: 679 

bispectrum in a Lagrangian reference frame predicted with Eq. 15 (using the frequency-680 

directional spectrum estimate shown in Fig. 2). Bottom panel: bispectrum in an Eulerian 681 

reference frame predicted in a similar fashion using the Eulerian coupling coefficient ED  682 

(Eq. 2) in Eq. 15.683 
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 685 

FIG. 4. Sea surface statistics observed over a 3-month long period at the deep water Point 686 

Reyes Buoy (NDBC 46214, blue squares) and the nearby shallow water San Francisco 687 

Bar  Buoy (NDBC 46237, blue asterisks).  Top panel: observed significant wave heights.  688 

Middle panel: observed skewness at the deep water site compared with nonlinear theory 689 

predictions (red squares).  Bottom panel: observed skewness at the shallow water site 690 

compared with nonlinear theory predictions (red asterisks).  691 
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 694 

FIG. 5. Sea surface drift velocities observed with drifting buoys deployed in deep water 695 

offshore of Monterey Bay on 29 April 2012.  Top panel: Example time series of the 696 

measured velocity component in the dominant wave direction. Band-passed infragravity 697 

drift fluctuations (blue) show a positive correlation with the wind wave groups (green) as 698 

predicted by Lagrangian theory.  Bottom panels: The corresponding  bispectrum (units 699 

3m s , estimated from the entire 8-hour-long time series) confirms this phase relationship 700 

with a positive real part at frequencies coupling infragravity and swell-sea components 701 

(bottom left panel) and near-zero imaginary part (bottom right panel) .702 
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 704 

FIG. 6. Sea surface drift velocity spectra observed in deep water offshore of Monterey 705 

Bay (same data set as in Fig. 5) are compared with predicted spectra of infragravity drift 706 

fluctuations based on Eq. 26 (blue curve). The observed spectral levels are comparable to 707 

the predicted levels and orders of magnitude higher than the spectral levels of Eulerian 708 

bound wave contributions (red curve). 709 


