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ABSTRACT

An improved method for estimating the directional spectrum of linear surface gravity waves from in situ
observations is presented. The technique, a refinement and extension of the inverse method of Long and Has-
selmann, is applicable to multicomponent wave measurements at fixed locations in constant or slowly varying
depth water. On a frequency band by frequency band basis, an estimate of the directional distribution of wave
energy S(#) is obtained by minimizing a roughness measure of the form [df]d>S(8)/d6?}* subject to the
constraints: (i) S(8) is nonnegative with unit integral, (ii) S(8) fits the data within a chosen statistical confidence
level, and (iii) S(#) is zero on any directional sectors where energy levels are always relatively low because of
the influence of geographic surroundings. The solution to this inverse problem is derived through a variational
formulation with Lagrange multipliers.

A series of simulations using the new estimator show the fundamental limitations of sparse array data and
the importance of using all available data-independent information [i.e., constraints (i) and (iii)] for achieving
optimal estimates. The advantages of smoothness optimization are illustrated in a comparison of the present
and Long and Hasselmann methods. The present method yields smooth estimates where Long and Hasselmann
obtained rough estimates with multiple spurious peaks. A smooth solution to the inverse problem that has only
truly resolved features is both easier to interpret and more readily evaluated numerically than wildly spurious
solutions. The examples also demonstrate the subjectivity of intercomparing estimation techniques.

A few illustrative examples are presented of S(6) estimates obtained from a two-dimensional array (aperture
120 m X 96 m) of 14 pressure transducer in 6 m water depth. Estimates using the full array and no geographic
constraints are smooth and exhibit the expected refractive columnation of shoreward propagating energy towards
normal incidence. Additionally, reflection from the mildly sloping beach 310 m shoreward of the center of this
array is very weak at wind wave and swell frequencies. Estimates of S(8) made using only the sensors on a
longshore line, and a constraint of no reflected energy, are very similar to S(8) obtained with the full array and
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no constraint.

1. Directional spectra estimation as an inverse problem

The frequency (o)-directional (#) spectral density
E(o, 0) is commonly used to statistically describe the
sea surface excursion 7(X, ¢) of natural wind-generated
surface gravity waves. Often E(g, 9) is estimated from
data acquired with a small number of fixed instruments
that sample sea surface elevation, surface slopes, sub-
surface pressure, or velocity components. Both point-
type (for example the pitch and roll buoy, Longuet-
Higgins et al. 1963; and others) and array-type ( Barber
1963; and others) instrument configurations have been
used for collecting directional wave data. In situ ob-
servations are inevitably spatially sparse. Sophisticated
analysis is needed that effectively utilizes all the infor-
mation contained in the data. Usually, time series can
be collected that are sufficiently long to accurately re-
solve the cross-spectra in the frequency domain with
Fourier analysis. The cross-spectrum H,,,(s) of a pair
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of array components with indices 7 and m can be ex-
pressed as a linear functional of E(g, 0):

2w
Hnm(a)=L dbg.(s, 0)gn(a, 0)E(a, ) (1)

where the functions g, and g,, (*denotes complex con-
jugate) relate the observed variables to the surface ele-
vation n at a chosen array origin x = 0 using linear
theory. Since E( g, 6) will be estimated on a frequency
band by frequency band basis, we drop the frequency
dependence from here on. The problem of estimating
directional spectra from multicomponent wave data
has been addressed by various authors. In this paper
we give further refinements and extensions of the vari-
ational method of Long and Hasselmann (1979) ap-
plicable to array-type and point-type measurement
systems of arbitrary sensor composition.

In the earliest attempts to estimate E(8) from ob-
served cross spectra H,,,, (Longuet-Higgins et al. 1963;
Barber 1963; and others), simple analytic forms were
arbitrarily chosen for the estimate E(8)(for example
a truncated Fourier series or cosine power law) and
the adjustable parameters were fit to the data. In the
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more systematic and “model independent” MLE
method (Davis and Regier 1977) E(0) is expressed as
a linear sum of the cross spectra with factorable weights:

E@0) = Z 2 an(6)ak(0)Hyum; (2)

E(#) is minimized subject to the constraint that a plane
wave is exactly resolved with perfect data. The nu-
merically simple MLE method has been widely used.
A fundamental shortcoming of both the MLE method
and alternative methods proposed by Davis and Regier
(1977) is that the differences between the observed H,,
and the cross spectra H,, associated with the estimate
E(0):
2w

Hypm = A dbg.(8)g%(0)E(6) (3)

are not explicitly constrained to be smaller than some
tolerance level for errors in the observations. If these
“data misfits” (H,,—H,») are much larger than statis-
tical and instrumental errors in the data (H,,,-H,.)
then the data is not optimally utilized and a tighter fit
will generally improve the estimate.

Pawka (1983) gave an algorithm that iteratively
modifies the MLE estimate until it fits the data (H,,
= H,,). Pawka’s method and other similar techniques
(Oltman-Shay and Guza 1984; Donelan et al. 1985;
Marsden and Juszko 1987) return a directional spec-
trum that is “consistent” with the data. However, for
a finite number of sensors there is not a unique E(8)
satisfying Eq. (1). A serious drawback of the algorithms
of Pawka and others is that they are not based on an
optimization principle, but on undefined assumptions
about the shape of E(#). Therefore it is not clear how
other E(f) that fit the same data differ from the selected
estimate E(#). Insight in the resolving power of array
data can only be gained through exhaustive model tests
on a wide variety of directional spectra. Simulations
with a limited class of E(8) tailored to the algorithm
may lead to unrealistic expectations of the resolving
power of fundamentally limited wave observations.

In practice the observed H,, always contain errors
due to the finite length of data records. Depending on
the array geometry there may not be an E(9) that fits
the data exactly. For example, if g,(0)gh(8)
= g,(0)g%(0)(e.g., two identical lags in an array_of
surface elevation gauges), then the misfits H,,,,—H,n,
and H),,-H), cannot be zero simultaneously [Eq. (1)]
unless H,,, = Hp,. In other cases the E(0) that fit im-
perfect data exactly may be so rough that exact fit es-
timators are numerically unstable. Unless the estimator
is restricted to particular measurement systems (e.g.,
Lygre and Krogstad 1986) some misfit between H,,,
and H,,, must be allowed for. Donelan et al. (1985)
do allow for data misfits but their misfit tolerance is
not based on data error statistics.
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In this paper we adopt the Backus and Gilbert (1967)
“inverse method,” first applied to directional spectra
estimation by Long and Hasselmann (1979), that does
not have the drawbacks of the methods mentioned
above. This approach is fundamentally different from
that of Davis and Regier (1977), where estimation of
the continuous function E(6) is treated as a “parameter
estimation problem,” solving for E(6) independently
at each angle . The inverse method solves a “function
estimation problem,” using integral constraints to solve
for E(#) simultaneously at all angles. Although con-
siderably more complex the “inverse method” ap-
proach seems more natural since integral properties of
E(0) are observed [Eq. (1)]. All information on the
directional distribution S(6) [ E(#) normalized by the
frequency spectral density E], available from wave data
and any other sources is cast in the form of constraints.
Examples of constraints are

(i) S(8) fits the data H,,,/E within a certain toler-
ance level for observation errors;

(i1) S(8) is a nonnegative function with unit integral
on the interval [0, 27).

Only directional distributions that satisfy all constraints
are considered acceptable estimates. The continuous
function S(#) cannot be specified by a finite number
of these constraints so that in general there are infinitely
many acceptable directional distributions. A unique
estimate S(0) is found by minimizing some ‘“nasty”
property of S(8). This measure of “nastiness” is sub-
jective, but the assumptions on which S(#) is based
are now clearly defined. More importantly, by solving
for an extremum it is known that the entire class of
S(8) tolerably consistent with the observations are
“nastier” than the selected S(8).

Long and Hasselmann ( 1979) solve for the S(8) that
is “as close as possible” to a preferred model S,,(8) by
minimizing f do[S(8) — S,.(8)]? subject to constraints
i) and ii). In many situations the selection of S,,(8)
cannot be based on data-independent physical grounds,
and the sensitivity of S(8) to the choice of S,,(6) must
be used to identify model-dependent structure in the
estimates S(0) that is not necessary to explain the ob-
servations. When S,,(6) is selected arbitrarily, only
features present in S(8) irrespective of the choice for
Sm(0) are considered to be_truly resolved features of
the wave field. Features in S(6) that depend on S,,(6)
may or may not be real. These features of doubtful
authenticity will hereafter be referred to as spurious.
Routinely evaluating the effect of S,,(8) on S(8) is
rather cumbersome and in practical applications (e.g.,
Hasselmann et al. 1980; Lawson and Long 1983) S,,,(6)
is a simple, smooth parametric expression fit to the
data H,,. This somewhat biases the estimates to
smooth solutions and suppresses wildly spurious struc-
ture in S(0) that can result from choosing an S,,(6)
that is very different from the true directional distri-
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bution. The resulting S(B) cannot be interpreted as an
extremum among all S(6) consistent with the obser-
vations and thus provides limited insight in the resolv-
ing power of the data.

In this paper we explore an alternative formulation
that has been applied to other oceanographic and geo-
physical inverse problems (e.g., Provost and Salmon
1986; Constable et al. 1987). We seek the “smoothest™
S(#) consistent with the observations by mimmizing
a roughness measure of the form [d6[d>S(6)/d6?]*
subject to constraints (i) and (ii). This approach,
mentioned but not pursued by Long and Hasselmann
(1979), has several advantages The first advantage is
rejection of spurious structure in S(B) The spatial ex-
tent of in situ wave observations is often very limited
so that the kernels g,(6)g(8) in Eq. (1) are smooth
functions. The gross features of S(8) are constrained
by such data, but very rapid oscillations in S(6) are
not resolved. That is, H,,, is rather insensitive to rapid
fluctuations in S(#) and such structure in an estimate
is essentially arbitrary. These fundamentally unresolv-
able features tend to be suppressed in a smooth S(0).
By minimizing the roughness of S(6) we attempt to
find the most featureless S(0) that satisfies all con-
straints. Ideally S(#) will have only features required
by the data and no other peaks. The smoothest solution
to the inverse problem is of interest because the inter-
pretation of directional wave data is often focused, not
on the detailed shape of S(8), but on identifying and
explaining peaks.

The second advantage of roughness minimization is
that no a priori guess of S(#) is required and S(8)
provides an objective interpretation of the data. Unlike
Long and Hasselmann (1979), the S(#) we obtain does
not depend on a preferred model. The variational
problem is considerably more complex than Long and
P_Iasselmann (1979), but the numerical evaluation of
S(0) is very stable. Like Long and Hasselmann (1979)
the solution S(8) to the nonlinear inverse problem can
only be evaluated iteratively. If $(8) is a very complex
(rapidly fluctuating) function then iterative schemes
may fail. Lawson and Long (1983 ) report convergence
problems if the model S,,(9) is very different from the
true S(0) so that S(6), attempting to fit this “wrong”
model, is a very “rough” function. Seeking the
smoothest solution to the inverse problem thus has the
advantage that S(6) is a well behaved function that is
easier to obtain numerically.

It is sometimes possible to supplement the wave data
with independent physical constraints on S(8). In cases
where wave data is collected in the vicinity of land
masses, S(#) may be strongly affected by topographic
effects. Refraction in shallow water, very weak reflec-
tion from nearby mildly sloping beaches, short fetches
for wind wave generation, and wave blocking by nearby
islands or headlands could result in shadow zones in
S(0) where energy levels are relatively very low re-
gardless of meteorological forcing. It is shown below
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that such information can be effectively used by adding
the constraint

(iii) S(#) vanishes on an arbitrary number of, a
priori defined, directional sectors.

Data-independent constraints of the form (iii), based
on a sound physical principle, can significantly improve
the estimate S(4).

Several of the issues discussed above, and the prop-
erties of the estimator developed below, are illustrated
by estimates of S(6) based on simulated error-free cross
spectra from a pitch and roll buoy. The orthogonalized
kernels [g,(0)gX(0)] of Eq. (1) are cos#, sinf, cos26
and sin26, and the basic resolving power of the buoy
is very poor. An estimate S(#) consistent with such
fundamentally limited data does not necessarily closely
resemble the true directional distribution S(6). As an
example, Fig. 1 shows very different S(#) that fit exactly
(to computer accuracy) the same pitch and roll buoy
data. Given this data an estimator that returns a bi-
modal distribution does not have “superior resolving
power” to one that returns a unimodal distribution.
The cross-spectral data alone, even without errors, are
inherently inadequate to distinguish between the two.

A “high resolution estimator” may arbitrarily select a
bimodal distribution and the two peaks in this S(8)
could be falsely interpreted as truly resolved (i.e., nec-
essary to explain the observations ) features of the wave
field. With the method presented in this paper this pos-
sible overinterpretation of the data is avoided. The S(8)
obtained through roughness minimization is in fact
the unimodal distribution in Fig. 1. This is the
“smoothest” and in this sense simplest .S(#) consistent
with the data. On the other hand, if there were an a
priori justification for assuming no energy in a sector
around say # = 180°, blocking by an offshore island
for example, then a topographic constraint can be in-
cluded in the analysis. The dotted line in Fig. 1 illus-
trates that with the constraint S(0) =0on 175° < 6
< 185° the smoothest distribution is now bimodal.

In section 2 the relation between the directional
spectrum and the statistics of observed cross-spectra is
discussed for the general case of an array of arbitrary
composition and geometry in water of variable depth.
A simple approximation is proposed for coastal appli-
cations on a seabed that is gently sloping in the on-
offshore direction and uniform in the longshore direc-
tion. Redundancy in array data is also discussed. In
section 3 the constraints on S(0) are defined, and the

“smoothest” S(#) consistent with all constraints is ob-
tained through variational calculus. To demonstrate
that the new technique effectively rejects spurious
structure in S(6), examples of model tests with artificial
data are presented in section 4. The examples illustrate
the limitations of sparse array data and the importance
of data-independent information. An extensive array
of pressure sensors was deployed in approximately
6-m deep water near Cape Canaveral, Florida in July
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FIG. 1. Bimodal (solid and dotted lines) and unimodal (dashed
line) directional distributions that fit the same cross-spectra of pitch
and roll buoy measurements. The unimodal distribution is the
“smoothest” S() consistent with the data alone. The dotted bimodal
distribution is the “smoothest™ S(8) consistent with both the data
and a constraint of no energy on 175° < 8 < 185°.
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1988. Examples of directional spectra obtained from
these observations are presented in section 5. The pre-
liminary analysis of this data shows very weak reflection
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from the gently sloping beach, and supports the validity
of a topographic constraint of the form (iii) in a typical
coastal environment. In section 6, estimates obtained
with the new technique are compared to model test
results reported by Long and Hasselmann (1979) to
highlight the differences in optimization principles. The
subjectivity of estimator intercomparisons is discussed.
The results are summarized in section 7.

2. Forward modeling

To formulate directional spectra estimation as an
inverse problem, a physical model is needed that relates
the directional spectrum to multicomponent wave ob-
servations. We assume that the water depth A(x), with
x = (x, y) the horizontal position relative to an arbitrary
origin (Fig. 2), is slowly varying on wavelength scales.
We also assume that the sea surface excursion %(x, )
is a linear superposition of independent Gaussian
nearly plane wave components that satisfy the linear
dispersion relation

o? = gk(x) tanh[k(x)h(x)]; k= |k| (4)
with k = (k cos#, k sinf) the vector wavenumber (Fig.
2) and g the acceleration of gravity. The direction 6 of
a wave component can be expressed as a function of
x and 0y, the direction at x = O:

6 = 0(x, 0). (5)

We define S(6y) as the directional distribution of wave
components with frequency ¢ at x = 0. The cross spec-
trum (at frequency o) H,,, of a pair of instruments
with indices » and m (Fig. 2) normalized by E, the
frequency spectral density (at frequency ¢) of 5 at
x = 0, is related to S(6,) by

Q Instruments

n(x, 1)

GRS

h(x) dn

=

FIG. 2. Definitions of variables and coordinates.
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H, 27
—};—m= S dBoGrn[0(Xn, 00)18m[0(Xm 00)]

X A(Xn, 00)A(Xm, bo) exp{ —i[B(Xn, 6o)

= B(Xm, 00)]1}S(b0) (6)

where the vector x,, = (X,, y,) defines the horizontal
position of instrument # (Fig. 2) and G, is the linear
transfer function that relates the observed variable to
n(X,, t). For a few commonly used instruments G(8)
is given in Table 1. The functions 4 and B describe
the spatial evolution of the amplitude and phase of a
wave component with direction 6y, unit amplitude
(A(0, 8y) = 1) and zero phase (B(0, ;) = 0)atx = 0.
Simple approximations for 6, A, and B are discussed
in appendix A.

Following Long and Hasselmann (1979) we express
Eq. (6) in the general form:

d
2 = [ dpisorson 1)
where d and b(6,) are a real data vector containing all
auto-, co-, and quadrature spectra and the correspond-
ing kernel vector, respectively, and S(6,) vanishes out-
side the limits of integration (Appendix A). The ele-
ments of Eq. (7) are not always linearly independent.
For example, in water of uniform depth the co- and
quadrature spectra of two identical instrument pairs
with equal lags, each yield two identical equations. The
sum of the autospectra of dn/dx and dn/dy, and the
autospectrum of 7, obtained with a pitch and roll buoy
(Table 1) also yields two linearly dependent equations.
By definition

[ dtosta0) = 1 (8)
so that autospectra of pressure or sea surface elevation
measurements are redundant in water of uniform
depth. Equations (7) and (8) can be reduced to a lin-
early independent set through the diagonalization of
the matrix C (e.g., Parker 1977):

C= f d8o[b(8o) — bI[b(8) — b]" (9)

TABLE 1. The transfer function G(#) for measurements of surface
elevation 7, surface slopes d5/dx and d7/dy, pressure p, and velocity
components ¥, and ¥,. p is the density of sea water. x and d are the
horizontal position and the depth of submergence of the instrument,
respectively.

G(6)
n 1
dn/ox ik(x) cosf
dn/dy ik(x) sinf
p g cosh[k(x)(h(x) — d))/cosh[k(x)h(x)]
Vi a{cosh[k(x)(4(x) — d)/sinh(k(x)h(x)]} cosd
v, a{cosh{k(x)(h(x) — d)]/sinh[k(x)h(x)]} sind
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f dbob(6o)

b=s——F7——.
[a

Equation (7) is transformed to an orthonormal set [and
orthogonal to Eq. (8)], d’ with the eigenvectors v” and
eigenvalues A" of C:

(10)

w5w1%—5)=fwwwwww—5www(n)

where the columns of W are the normalized eigenvec-
tors

Vl V2
W= ) 0
A redundant element of Eq. (7) will manifest itself as
a zero eigenvalue and the corresponding element of
the transformed set of equations is removed. Additional
eigenvalues of C are often very close to zero. The cor-
responding moments of S(f,) are extremely sensitive
to the slightest inaccuracy in the data, the sensor po-
sitions, or the physical model. In practice the dataset
does not contain useful information about these mo-
ments. For perfect data, an inverse S(#) that satisfies
Eq. (11) exactly will be extremely sensitive to the data
d (e.g., Parker 1977) if very small eigenvalues are re-
tained, and the evaluation of S(8) may be numerically
unstable. For imperfect data an inverse S(8) that sat-
isfies Eq. (11) within a proper tolerance for errors may
be insensitive to the data. However, the statistics of
errors in the data are often only approximately known
and the imposed data misfit tolerance criteria on S(8)
may not always be adequate to prevent numerical in-
stability. To obtain stable solutions to the numerically
complex inverse problem discussed below we discard
elements of Eq. (11) corresponding to eigenvalues N\
that are smaller than a threshold value

No< gn! (13)

with A! the largest eigenvalue. The choice of g is some-
what arbitrary and is essentially a trade-off between
numerical stability of the inverse model and a loss of
data. Based on model tests we chose g = 0.00! as a
truncation criterion that provides stable solutions with
insignificant loss of data.

As an example, Fig. 3 shows the eigenvalues (ranked
according to size) for a “slope array,” four pressure
sensors arranged in a square with dimension L, for
various kL. The \° through \'® are identically zero
because of the redundancy in the array geometry. In
the limit kL — 0 (Herbers and Guza 1989), ! and
A% are proportional to (kL)?> and correspond to
f d8o(cosbo, sinfp)S(8), and A\*> and \* are propor-
tional to (kL)* and correspond to f dby(cos26,,
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F1G. 3. Eigenvalues of the matrix C for a square slope array. (a)
Array geometry. (b) Eigenvalues ranked according to size for various
kL. Eigenvalues smaller than 2 - 10~° are not shown.

sin26,)S(8o). For KL < 1 the remainder of the eigen-
values contribute practically no information. For kL
= O(1) the curvature of the sea surface between the
array elements is significant and, in principal, more
information can be extracted from the slope array.
Data d obtained from observations will inevitably
contain errors due to the finite length of data records.
For a sufficiently narrow frequency bandwidth and a
sufficiently large number of degrees of freedom v, the
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cross-spectral estimates are approximately unbiased
and joint Gaussian. The elements of the covariance
matrix Z

Z=E{(d-d)d-dT} (14)

with E the expected value are simply related to the true
cross spectra (Jenkins and Watts 1968):

~ ~ 2
E{(H, — H,))(H% — HX)} = " H, H%. (15)

We assume that we can obtain an unbiased estimate
of the frequency spectrum E with a linear combination
of the elements of d:

E=¢"d (16)

where ¢ is an a prioni specified coefficient vector (for
example an average of the autospectra of pressure sen-
sors located near x = 0, converted to surface elevation
spectra with Table 1). We can approximate the co-
variance matrix V of the normalized data

d d d d \*
V=E{(ﬁ‘ﬁ)(ﬁ‘§a)] (17)

by expanding d/¢"d for small errors (Long 1980):

d 4 d-d d"(d-d) (18)
d cfda ' T4 (cTd)?
Substitution of Eq. (18) in Eq. (17), using Eq. (14)
yields:
cd™T Z ed”
v~ (I - ﬁ). (c'd)? (I B ﬁ) (19)

where I is the unit matrix. The covariance matrix V'
of the transformed data vector d’ = WT(d/E — b) is

vV = Wiyw, (20)

There are alternative ways of normalizing the data.
For example, a cross spectrum of surface elevation or
pressure measurements in uniform depth can be nor-
malized by the product of the autospectra of the two
instruments. For a pitch and roll buoy, Long (1980)
gives a normalization that eliminates the wavenumber
dependence in Eq. (7). The sensitivity of directional
spectra estimates to measurement errors may be af-
fected by the way data is normalized, and the formu-
lation presented here may not be optimal for every
application. However, unlike the alternatives men-
tioned above, the more general Eq. (16) can be applied
to an array of arbitrary composition in nonuniform
water depth.

3. Inverse modeling

The relation between the directional distribution
S(6y) and multicomponent data of surface gravity
waves in deep or uniform depth water can be expressed
in the general form [Eq. (11)]
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2
d' = A dBob'(85)S(8p) + € (21)
with d’ the transformed data vector W'(d/ E — b),
b’(8,) the transformed kernel vector WX (b(6,) — b),
and e is an error vector. For varying water depth Eq.
(21) takes the same form but with different integration
limits (Appendix A). This case will be discussed later.
The elements of e are joint Gaussian with zero means
and covariance matrix V' [Eq. (20)]. In the remainder
of this paper we drop the primes on d, b(6), and V
and the subscript 0 on 6.

We seek an estimate S(0) that is consistent with the
data at a y-confidence level, i.e., the misfit € between
S(0) and the data

27

c=d— A dgb(0)S(6) (22)

must satisfy the constraint (Long and Hasselmann
1979)
p?=eVile<p? (23)

where p,? is the y-confidence level of the X»? (V is the
dimension of €) variable p2. The matrix V is not known
exactly. Long and Hasselmann (1979) obtain an ap-
proximation V through (iterative) substitution of the
cross-spectra corresponding to S(6) in Eq. (15). We
have instead chosen an approximation V based on the
observed cross-spectra. Although for small e the
matrices V, V, and V are only slightly different, the
inverse of the (often ill conditioned ) covariance matrix
may be sensitive to the chosen approximation. For-
tunately V™! does not appear in the solution for S(8)
and extensive model tests indicate that $(0) is insen-
sitive to small errors in V. The confidence level v is
somewhat arbitrary but it provides an appropriate
trade-off between resolvmg power and rejection of
spurious structure in S(8). All the results presented in
this paper are based on a 75% confidence level.

Additional constraints on $(6) that always have to
be satisfied are

2

dssS(8) = (24)

S(8) = 0. (25)
The non-negativity constraint (25), which renders the
inverse problem nonlinear and not solvable with stan-
dard linear inverse methods (e.g., Parker 1977), is
eliminated by setting

S(8) = F(8)H(6) (26)
with
{l, for F(6)=0
H(6) = . 27)
0, for F(8)<O
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Substitution of Eq. (26) in Egs. (22) and (24) yields

2w

=d- | dob(0)F(0)H(9) (28)

27

dOF(0)H(6) = 1. (29)

_ We seek the “smoothest” directional distribution
S(0) consistent with the data by minimizing a rough-
ness measure of the function F(8) subject to the con-
straints (23) and (29). We assume that F(0) is well
behaved with derivatives d" F/d8"(8) that are contin-
uous on the domain 0 < # < 2= and periodic (d"F/
de"(0) = d"F/d6"(2n)) for n = 0, 1, 2, and 3. We
minimize the roughness measure R defined as

2%
R= fdo[dezF(H)]

Note that negative regions of F(8) also contribute to
R. This is necessary because negative regions of the
solution F(8) would be undetermined unless roughness
is penalized on the entire domain 0 < 6 < 2. Mini-
mizing the roughness of S(8) directly would be a pref-
erable approach but no method (if there is one) has
been reported that converges to the optimal (nonneg-
ative) solution of this much more difficult optimization
problem (Long, personal communication ). In practice
the inclusion of negative F(6) in R is not crucial be-
cause the precise definition of “roughness” is somewhat
arbitrary. The remaining sections of this paper show
that minimizing the roughness measure R defined in
Eq._(30) very effectively rejects spurious structure
in S(9).

Introducing Lagrange multipliers « [ for (23)] and
B [ for (29)] we minimize the functional

(30)

27

d=R+a'VIg+8 d9F(8)YH(8). (31)
0

Setting 6¢ = 0 and solving for 3, using Eqs. (28) and
(29), yields the equation

4
d4F(0) = o™V "'By(6) (32)
ae
where By (8) is defined as
27
déb(0)H(6)
0
Bo(8) = |b(8) —~ —F— | H(0) (33)
dbH (6)
and ¢ can be expressed in the form
2
e=D-— d8F(6)By(0) (34)
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with

27
f dob(0)H ()
DEJ_ 2 2
doH(9)

(35)

Now define the functions
27

Byt (0) = f arB, @) - ) [ aw

0’

X | di'B,(¢") n=0,1,2,3 (36)
0

and integrate Eq. (32) twice

d? T
25‘5 F(0) = ae"V !B, (0).
Integration of Eq. (34) by parts twice and substitution
of Eq. (37) for the second derivative of F(8) under the
integral yields

(37)

[C;+a'VIN=D (38)
where C, is the matrix
2n
G = doB,(6)B,T(0) (39)
0
and the vector A is defined as
A=aV e (40)

Finally, integrate Eq. (37) twice using Eq. (29) and
substitute Eq. (40) for ¢, yielding
27
1 - )\Tf déB,(6)H(9)
0

F(8) = NTB4(6) + 7
dbH(8)

(41)

Substitution of Eq. (40) in Eq. (23) yields the condition

for «

ATV
oy

a’=

(42)

Equations (38), (41), and (42) determine the so-
lution to the inverse problem. This nonlinear system
of equations is very similar to that obtained by Long
and Hasselmann (1979). The only essential difference
is the more convoluted way in which a “masking func-
tion” H(#) appears in the equations presented here.
The optimal solution F(8) is found iteratively. A start
solution is obtained by substituting H°(68) = 1 for H(0)
and solving Eq. (38), sweeping through « values to
find the minimum roughness R = ATC,\ subject to
constraint Eq. (42). Substitution of the solution vector
Aand H°(8)in Eq. (41) yields the start solution F°(8).
An improved guess H'(0) is determined through sub-
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stitution of F°(8) in Eq. (27). Solving Egs. (38), (41),
and (42) with H'(0) yields F'(6), et cetera until a
convergence criterion

2%
do[F™(6) — F"~'(8)1*H"(6)

27 <p? (43)
do[F"(0) + F"~'(8)12H"(9)

is met. The start solution F°(6) is in fact the optimal
S'(8) if the nonnegativity constraint (25) were relaxed.
Often F°(8) and the final solution F”(8) are not too
dissimilar and the iterative scheme converges rapidly
(~S3 iterations for u= 0.01). Like the Long and Has-
selmann (1979) scheme, the iterations have a tendency
to overshoot, in particular if | dF(6)/df| is large at
zero crossings. Stability of the algorithm is achieved by
replacing F"(8) by a weighted average of F"~'(8) and
F"(0) (0.9F" ! + 0.1 F" was used in the estimates dis-
cussed below) at each iteration step.

The above given solution to the inverse problem is
based only on wave measurements. In coastal appli-
cations data-independent information is often available
in the form of a constraint on the direction of wave
propagation. Deep ocean directional spectra are col-
umnated by refraction as they propagate into shallow
water; and bounds on wave directions at an array in
shallow water can be obtained with ray theory. For
example, on a beach that is uniform in the longshore
direction, the angle enclosed by k and the beach normal
is bounded by arcsin(o2/gk). A weaker form of the
constraint that allows for larger angles of incidence but
assumes that there are no caustics in the immediate
array vicinity (Appendix A) is more appropriate if the
array is surrounded by complex bathymetry. On mildly
sloping beaches wind waves and swell are strongly dis-
sipated in the surf zone and S(#) might be assumed to
be negligible small at seaward propagating angles.

Here we consider the general constraint:

F(#) = 0 everywhere except on the open intervals
(¢m1’ ¢m2) m=1,2,--+,M (44)

with M an arbitrary number of intervals on (0, 2=).
In this case without loss of generality, a coordinate
frame is chosen such that S(0) = S(27) = 0. The in-
verse problem with the additional constraint (44) is
treated in the same way as the “data only” case and
yields a nonlinear system of equations that has the same
form as Eqgs. (38), (41), and (42), and can be solved
with the same iterative scheme outlined above. The
details of the variational formulation are given in Ap-
pendix B. Examples of applications of constraint (44)
are given in the next sections. )

The nonnegativity constraint on S(8) [Eq. (25)]
renders the inverse problem nonlinear and much more
difficult to solve. However, as was shown by Long
(1986) and is also illustrated with an example in section
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4, this constraint is crucial in optimizing directional
spectra estimates. If S(#) is very narrow then constraint
(25) greatly improves the accuracy of S(#) but also
causes the matrix C, [Eq. (39)] to become more ill-
conditioned at every iteration step. Instability of the
numerical scheme can be prevented by reorthogonal-
izing the kernel vector b(#) [Egs. (9) through (12)],
using H"(0) of the last iteration step as a weighting
function in the matrix C [Eq. (9)].

When applying a topographic constraint on the wave
direction 6 we absorb this information in the forward
model by substituting

M S
> ["
bm

m=1

for the integration limits in Eq. (9). A linear data-
independent constraint of the form (44) generally
“weakens” the nonlinear nonnegativity constraint (25)
and enhances the stability and the efficiency of the nu-
merical scheme.

4. Model tests

In this section we present a series of model tests ap-
plying the new directional spectrum estimator to sim-
ulated array data. The purpose of these tests is to show
that minimizing the roughness measure R [Eq. (30)]
indeed yields smooth directional distributions without
spurious peaks. The examples also illustrate how the
various constraints contribute to the estimate and, in
particular, show the importance of data-independent
information {S(#) = 0 and topographic constraints].
Two simple arrays, with four surface elevation (or
pressure) gauges each, were chosen for the tests. The
test arrays are a square with dimension L in deep (or
uniform depth ) water (Fig. 3a), and a linear array with
spacings 2L, L, 4L, aligned with the depth contours
and the x-axis (Fig. 4). Unlike the square array, the
resolving power of the linear array is a strong function

4
O- —=x

FIG. 4. Geometry of the simulated linear array. The dashed
lines are depth contours.
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FIG. 5. Response of the square array (kKL = 3.2) to a bimodal
input directional distribution (solid line) of the form S(8)
~ 1 cos®[(0-60°)/2] + cos® [(6—120°)/2]. The dashed and dotted
lines are estimates obtained from perfect data (v = o), with and
without the constraint S(8) = 0, respectively.

of wave direction. Wave components with direction 4
and 27-60 cannot be distinguished by the linear array
and the resolution is very poor for 4 close to 0 or .
On mildly sloping (assumed to be weakly reflective)
beaches, linear arrays aligned with the depth contours
have been deployed to optimize the resolving power
for directional spectra that are strongly columnated to
near normal incidence (# ~ = /2) by refraction (e.g.,
Pawka 1983).

The procedure of the model tests is as follows. For
a chosen input (“true’) directional distribution S(4),
the “true” cross-spectra H,,, are computed with Eq.
(6)(the value of E is arbitrary). Next the data covari-
ance matrix Z is evaluated [Eqgs. (14) and (15)] and
random realizations H,,, with v degrees of freedom are
generated (the procedure is described in Long and
Hasselmann 1979). The simulated H,,, are treated as
*“data” in exactly the same way as ocean observations,
and an estimate S(8) of the directional distribution is
obtained with the method described in the previous
sections.

Figure 5 compares estimates for the square array
(kL = 3.2) with and without the constraint that S(8)
must be a nonnegative function [Eq. (25)]. The esti-
mates are based on perfect data (v = co and error free
sensors) of a bimodal directional distribution with
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FIG. 6. Estimates of S(8) obtained with the square array (kL
= 3.2) for the same input directional distribution (solid line) as Fig.
5. The three dashed lines are estimates for 3 independent realizations
of cross-spectra H,,, with v = 180.

0.0

o 50 100

peaks separated by 60°. The estimate utilizing the non-
negativity constraint accurately resolves the two peaks
without any spurious structure. Relaxing the constraint
yields a smoother unimodal distribution with negative
side lobes. The data by itself evidently cannot resolve
the bimodal structure of S(8) and the nonnegativity
constraint contributes important information. Adding
the constraint Eq. (25) renders the optimization prob-
lem nonlinear and complicates the numerical effort
required to evaluate S(#). However, this example (and
similar tests, Long 1986) shows that a nonnegativity
constraint is crucial for obtaining optimal results. All
estimates in the remainder of this paper utilize the
nonnegativity constraint. Additionally, the data will
include realistic statistical errors.

For the same bimodal input directional distribution
(Fig. 5) and array, Figs. 6 and 7 show estimates of S(8)
based on data records of finite length (v = 180) for kL
= 3.2 and 0.4, respectively. In each case estimates are
shown for three independent data realizations. The es-
timates of Fig. 6 (same wavelength as Fig. 5) resolve
the bimodal structure of S(#) but, naturally, not as
accurately as the perfect data estimate of Fig. 5. All
three estimates are smaller than S(8) at the peaks and
larger in the valley. This smearing effect of the estimator
is expected because the smoothness constraint is more
dominant when less information can be extracted from

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 20

the imperfect data. Figure 7 shows the same test with
the array size reduced to only %th of a wave length.
The resolving power is reduced by the small array ap-
erture to the extent that the two peaks of S(6) are
smeared to a broad unimodal shape in the estimates.
Figures 6 and 7 demonstrate that simple featureless
solutions to the inverse problem can be obtained with
the present optimization scheme. In both cases the es-
timates from three data realizations are similar. These
examples (and numerous other tests, not reported here)
indicate that the inverse method is insensitive to small
errors in the covariance matrix V obtained from data.

Finally, in order to compare the data misfits of S(¢)
to the errors generated in the simulated cross-spectra,
the “model” cross-spectra H,,, are evaluated through
substitution of S(6) in Eq. (6). Figures 8 and 9 show
the deviations of H,,/E (“data”) and H,,/E
(“model”) from the true normalized cross-spectra H,,,,/
E for the examples of Figs. 6 and 7, respectively. In
both cases the errors in H,,,/ E are comparable in size
to the errors in H,,,/E. For kL = 0.4 the errors are
considerably smaller than for kL = 3.2. This is due to
the fact that the cross-spectra of different sensor pairs
become increasingly coherent as kKL decreases and the
errors in H,,, and E (=[H,, + Hy; + H33 + Hyl/4)
tend to cancel (e.g., Herbers and Guza 1989). For very
small values of kL errors in the observations due to
other sources (for example instrument and digitization

mm oy g

350

! 1 L

200 250 300

100

150
0 (deg.)

FiG. 7. Estimates of S(#) obtained with the square array for the
same input directional distribution as Fig. 5. XL = 0.4 and v = 180
(same format as Fig. 6).
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FIG. 8. Errors in the data H,n/E — H,,./ E (circles) and errors in
the estimate H,./E — H,,,/E (asterisks) for the model test of Fig.
6. For every sensor pair (#, m) the two errors are connected by a
straight line. Each panel shows the results for one data realization.

noise, turbulence, and uncertainty in sensor positions)
are not negligible compared to the statistical uncer-
tainty in finite length data records. The inverse model,
imposing a too stringent data fit constraint, may be-
come unstable for kL <€ 1 unless measurement errors
are allowed for.

In the simulations presented so far, no geographic
constraint [Eq. (44)] has been imposed on S(8). The
next three examples (Figs. 10, 11, 12) show the utility
of such a constraint for the linear array (Fig. 4) with
dimension kL = 2.4. The input directional distribution
is again bimodal but, in order to allow for refraction
in shallow water, the peaks are narrower and separated
by only 24°, As before, in each test estimates are given
for 3 random realizations of cross-spectra having 180
degrees of freedom. The estimates S(8) in Figs. 10-12
are constrained to vanish for 180° < 8 < 360°, based
on the assumption that reflection from the beach is
negligible. The estimates in Fig. 10, using all sensors
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in the array, fairly closely resemble the true directional
distribution and resolve the bimodal structure. Figure
11 shows results for the same test, but with sensor 2
omitted from the array (Fig. 4) to simulate the effect
of an instrument failure. Without sensor 2, the smallest
sensor separation in the array exceeds one surface
wavelength (for kL = 2.4) and the wave field is severely
undersampled. The main feature of S(#), all wave
components close to normal incidence (6 = 90°), is
not resolved by the estimates. In the “smoothest” so-
lution to the inverse problem, the two peaks in S(8)
are completely aliased to large angles of incidence
where the array has less resolving power. The data by
itself is evidently grossly inadequate, but if combined
with additional data-independent information, an ac-
curate estimate of S(6) may be obtained. Figure 12
shows estimates of .S(#) for the same data as Fig. 11
but with the additional constraint that wave incidence
angles are reduced by refraction to 60° < § < 120°.
The estimates agree very well with the bimodal input
directional distribution. The crucial information miss-
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-0.01
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FIG. 9. Errors for the mode! test of Fig. 7 (same format as Fig. 8).
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FIG. 10. Response of the linear array (kL = 2.4) to a bimodal
directional distribution of the form S(8) ~ 1 cos®®[(6-78°)/2]
+ cos®®[(6-102°)/2]. The cross spectra have v = 180 and a “no
reflection” constraint: S(8) = 0 on 180° < # < 360° was imposed
on the estimates (same format as Fig. 6).

ing when sensor 2 fails is provided by the geographic
constraint. The example illustrates how the use of both
array observations and geographical data in the inverse
problem can provide more information than either one
of them alone.

5. Examples of estimates obtained from field obser-
vations

During July 1988 a 14-element array of pressure
sensors was deployed south of Cape Canaveral, Florida,
to investigate reflection of surface gravity waves from
a natural beach. A detailed description and analysis of
these observations will appear elsewhere. The array
(Fig. 13) spanned 120 m in the longshore direction
and 96 m in the cross-shore direction, and the pressure
sensing elements were about 0.5 m above the bed. The
sample frequency was 4 Hz. At mean high water, the
array center was located approximately 310 m from
the shoreline in a water depth of 6 m. Extensive bathy-
metric surveys at the instrumented site (Kirby 1988)
during, before, and after the experiment show that the

seabed was uniform in the longshore direction and -

monotonic, gently sloping (1:30 at the shoreline to
1:200 at the array) in the cross-shore direction. Depth
variations in the array vicinity are sufficiently small to
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assume a uniform depth (Appendix A). Using a few
illustrative examples, we show that the estimator pro-
duces directional distributions that are physically re-
alistic, and that reflection from the gently sloping beach
is weak.

Although the array is too limited in size to very ac-
curately resolve long swell, it has good omnidirectional
response and can detect weak reflections from the coast.
Figure 14 shows tests for a hypothetical example of
bimodal shoreward propagating waves (0° < § < 180°),
partially reflected from the beach, for both typical wind
wave and swell frequencies (f = ¢/27 = 0.2 Hz and
0.1 Hz). No geographic constraints (Eq. 44 ) were im-
posed in these simulations. At both frequencies all
peaks in S(0) are essentially resolved. For 0.2 Hz wind
waves, the array spans several wavelengths, and ac-
curate estimates of S(#) are obtained. For longer
wavelength 0.1 Hz swell, the estimates are less accurate.
Insufficient resolving power results in smoother S(6)
with smaller peak values. However, even the smallest
peak in S(#) is present in all estimates. Additionally,
in model tests (not shown ) similar to Fig. 14 but with
zero true reflected energy, the estimated reflected ener-
gies are very small. Thus the presence (or absence) of
weak seaward propagating components in the direc-
tional spectrum can be detected with this array even
if directional detail of the incident wave field is not
well resolved.

4.0
3.5

3.0F

1.0F - o

0
' v S
0.5 i W PRyt *|
4 /

0.0 Ad N 1 L M t ‘1 ' !
/]

FiG. 11. Results for the same test presented in Fig. 10 but
with sensor 2 missing in the array.
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FIG. 13. Geometry of the pressure sensor array deployed approx- FiG. 14. Response of the Cape Canaveral array (Fig. 13) to

imately 1%2 km north of the entrance to Port Canaveral in July 1988.  a directional distribution of the form S(8) ~ cos*®[(8-75°)/2]
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F1G. 15. Directional wave spectrum estimates obtained from data
collected between 4 July 22.33 h and 5 July 00.50 h, 1988 with the
array shown in Fig. 13. (a) the frequency spectrum E, total variance
= 368 cm? (b) directional distributions S(f) at four frequencies
(indicated by vertical lines in E).
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each case E, the mean of the surface elevation fre-
quency spectra (computed for each sensor using Table

1), and S(8) at four selected frequencies are shown
for a 136.5 minutes data run. As in the model tests of
Fig. 14, v = 144. The frequency spectrum was unimodal
on 4/5 July (Fig. 15a) and bimodal on 16/17 July
(Fig. 16a). In these examples (Figs. 15b, 16b), and in
other cases (not shown), S(6) is smooth with either
unimodal or bimodal shapes.

_On 4/5 July (Fig. 15b) both peaks of the bimodal
S(0) are, in general, increasingly closer to normal in-
cidence (8 = 90°) with decreasing frequency. This is
qualitatively consistent with the refraction of a spec-
trum of waves having common peak directions in deep
water. The estimated directional spectrum on 16/17
July is more complicated (Fig. 16b). At the swell peak
frequency (0.105 Hz) S(6) is unimodal with the peak
direction (6§ = 87°) close to normal incidence. At f
= (.149 Hz the estimate S(#) is bimodal with two peaks
of nearly equal magnitude separated by only 24° (peak
directions 73° and 97°). It is possible that similar bi-
modal structure is also present at f = 0.105 Hz with
even smaller peak separation, as longer wavelength
0.105 Hz swell from the same two generation sources
would be more strongly refracted to normal incidence
at the array. The array simply lacks resolving power
to separate strongly columnated swell peaks, and a
smooth unimodal estimate of S(#) can be obtained for
S/ = 0.105 Hz that is consistent with the data. Note
that the directional peaks at 0.105 Hz, which were re-
solved on 4/5 July, were separated by a relatively larger
32°. The two directional distributions at higher fre-
quencies shown in Fig. 16b are very different. $(6) at
the wind wave peak frequency f= 0.272 Hz is narrow
with peak direction § = 56° while S(8) at /= 0.237
Hz is broad with peak direction 6 = 95°.

The key feature of S(8) on both days is the very low
energy levels for both waves reflected from the shoreline
(16 — 90°| > 90°) and waves propagating shoreward
with more than 60° deviation from normal incidence
(60° <|8 — 90°| < 90°). On plane parallel contours,
0.1 Hz waves are in theory refracted to within 60° of
normal incidence, even for grazing incidence in deep
water. The estimates are thus consistent both with re-
fraction and weak reflection, and illustrate the validity
of topographical constraints used in the model tests
(Figs. 10-12). A

The fraction of S(6) directed offshore (reflected)
varies between 1% and 3% for the eight estimates shown
in Figs. 15b and 16b. Although integrating .S(#) is not
an optimal method for estimating bulk reflection coef-
ficients, it seems very unlikely that the ratio of reflected /
incident wave energy on this mildly sloping beach ex-
ceeded 10%. The assumption of no reflected energy
from natural beaches has been used in the past to re-
move the directional ambiguity of linear arrays (e.g.,
Pawka 1983). Low levels of reflected energy have been
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FIG. 16. Directional wave spectrum estimates obtained from data
collected between 16 July 23.36 h and 17 July 01.53 h, 1988 with
the array shown in Fig. 13 (same format as Fig. 15). Total variance
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reported in many laboratory studies using monochro-
matic, unidirectional waves. However, the spatially ex-
tensive two-dimensional arrays needed to measure re-
flected waves in a directionally spread natural wave
field have rarely been deployed close to shore. Freilich
and Guza (1984 ) report average (across the wind wave
and swell frequency bands) reflected energies of about
15% from a similar mildly sloping California beach.
They conclude (based on model tests) that this figure
is biased high and the true amount of seaward prop-
agating energy is probably very small (0-10% of the
total energy ), consistent with the present observations.
A priori assumption of weak reflectivity of the Cape
Canaveral beach can be utilized to drastically reduce
the number of instruments in the array of Fig. 13 with-
out degrading the directional spectra estimates. This is
demonstrated in Fig. 17 where the calculations of Figs.
15 and 16 were repeated using only the seven sensors
on the longshore axis. A geographic constraint of no
reflection: S(#) = 0 on 180° < # < 360° was imposed
to replace the cross-shore axis of the array. The results
are only marginally different from the full array/no
geographic constraint estimates. Evidently, a two-di-
mensional array is not needed for collecting wave data
at this site. A linear array aligned with the coastline
together with a no reflection constraint suffices.

6. Discussion

A reviewer suggested a comparison of the estimates
we obtained from simulated data to existing techniques.
Davis and Regier (1977), Pawka (1983), Oltman-Shay
and Guza (1984), Lygre and Krogstad (1986 ), Mars-
den and Juszko (1987), and others examined the fi-
delity of directional spectrum estimation techniques
by intercomparing the response to simulated cross
spectra of arbitrarily selected target directional distri-
butions S(#). Such intercomparisons generally showed
the shortcomings of the earlier methods that could
produce estimates that were not physically plausible
(i.e., negative energy) or were inconsistent with the
observations (i.e., improbably large misfits between the
estimate and the data). However, the more recent
methods all yield nonnegative estimates that are con-
sistent with the data. The ability of these methods to
resolve an arbitrary S(6) is therefore not a particularly
meaningful basis for comparison. Consider, for ex-
ample, a test with perfect data (i.e., infinite degrees of
freedom and error-free sensors) in which two different
estimates, S)(#) and S,(0) are obtained that both fit
the cross-spectra H,,, exactly. Suppose that .S; (6) more
closely resembles the “true” S(8) than S,(8). It might
be concluded that the method that produced S, (6) has
“superior resolving power.” However, since both S,(6)
and S(0) fit the H,,, exactly, replacing the initial input
distribution S(8) with S,(6) yields the same cross-
spectra H,,,. Naturally S>(8) now resolves S(8) [equal
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FiG. 17. A comparison of estimates from the 7 pressure sensors
on the longshore axis of the Cape Canaveral array (Fig. 13) using a
“no reflection constraint” on S(6)(solid lines), and estimates from
the full array without a geographic constraint on 5(#)(dashed lines,
same estimates as in Figs. 15 and 16). Only two frequency bands
are shown, other frequency bands show comparable agreement. (a)
4/5 July, f=0.132 Hz, (b) 16/17 July f= 0.149 Hz.
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to S,(6)] perfectly and might be considered a greatly

superior estimate. The intercomparisons will always

be biased by the choice of the target distribution S(8).

This subjectivity is particularly obvious for the model

fitting technique of Long and Hasselmann (1979) that
solves for the estimate that is statistically consistent
with the data and closest to an a priori defined preferred
model S,,,(#). Naturally this estimator will perform very
well if a target S(6) is chosen that resembles S,,(6).
Intercomparisons of the resolving power of directional
spectrum estimation methods are not meaningful if
the methods that are compared are optimal in the sense
that all available information is absorbed in the esti-
mate. A large discrepancy between an S(#) and a phys-
ically plausible estimate that is consistent with the data
should not be interpreted as a weakness of the esti-
mation technique but as a weakness of the array data.
If another method is applied that yields an estimate in
closer agreement with S(#), it does not mean that this
method is superior but rather a false sense of resolution
is created by the particular choice of S(8).

The present method, based on smoothness optimi-
zation, can yield significantly smoother and often
markedly different estimates than Long and Hassel-
mann (1979). This is illustrated by applying both es-
timators to test arrays and target spectra described in
Long and Hasselmann (1979). Two slightly different
array geometries were used (Fig. 18): a five-element
bottom pressure transducer array actually deployed in
the North Sea and a hypothetical six-element array.
The input directional distribution has a cos?*°(6/2)
shape “typical of a wind sea near the spectral peak”
(Long and Hasselmann 1979). Figure 19 shows the
model test results of Long and Hasselmann (1979) for
both arrays, with simulated cross-spectra having 30 and
180 degrees of freedom. All estimates are based on an
isotropic preferred model S,,(8) = 1/2x. Long and
Hasselmann’s estimates for v = 180 (Fig. 19¢,d) have
a somewhat rough wind sea peak, with spurious side
lobes for the five-element array. For noisy (v = 30)

N

FIG. 18. Geometries of five-element (circles) and six-element
(squares) wave gauge arrays used in the model tests of Figs. 19 and
20. The radius of both arrays is 90 m. (from Long and Hasselmann
1979).
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F1G. 19. Estimates of S(8) obtained by Long and Hasselmann (1979) in model tests with the arrays of Fig. 18
and a cos[(6—137°)/2] input directional distribution (O symbols) using an isotropic preferred model (X symbols).
The wave length is 100 m and 6 is measured clockwise from north. Estimates (solid, dashed, and dotted curves)
for three realizations are shown in each panel: (a) five-element array, v = 30; (b) six-element array, v = 30; (¢)
five-element array, v = 180; (d) six-element array, v = 180. (from Long and Hasselmann 1979)

array data, the fit to the preferred isotropic model more present smoothness optimization technique yields es-
strongly controls the estimates, and the wind sea peak timates (Fig. 20) that are much smoother than Long
level is reduced at the expense of large side lobes. The and Hasselmann’s and also do not exhibit the spurious
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RG. 20. Estimates of S(8) obtained with the present method for
the same model tests as Fig. 19 (see caption of Fig. 19 for the details).

side lobes evident in Fig. 19. The smoothness opti-
mization scheme presented here is indeed very effective.
Striking too is the fact that the estimates obtained in
the present study apparently resolve the input distri-
bution better than those by Long and Hasselmann.

For v = 30 Long and Hasselmann’s estimates show
wildly oscillating structure while the present estimates
still seem to resolve S(@) fairly well. This is a rather
misleading artifact of the subjectivity of the test. Even
though for v = 30 the resolving power of the array data
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is very strongly degraded by statistical uncertainty, rel-
atively good agreement is obtained (Fig. 20a,b) because
the smooth target S(6) resembles the smoothest solu-
tion to the inverse problem. However, Fig. 19a,b shows
that widely different solutions exist that are also con-
sistent with the noisy data. In the absence of additional
information there is simply no way to decide which of
these rather different estimates (Fig. 19 or 20) is
“better.”

The fidelity of physical plausible directional spec-
trum estimates that are consistent with the observations
is not limited by the estimation technique but only by
the resolving power of array data. In practice this re-
solving power is often severely limited because in situ
arrays are necessarily sparse, and the statistical uncer-
tainty in the data is often significant because of the
limited duration of stationary conditions. The rough-
ness minimization proposed in this study does not im-
prove nor degrade the resolving power even though an
intercomparison test with simulated data (e.g., Figs.
19 and 20) may suggest this. Only extra physical (e.g.,
topographic, Figs. 1, 11) constraints can truly improve
the estimates. However, the smoothness optimization
principle, even though it is somewhat arbitrary, has the
important advantage that it simplifies both the inter-
pretation and the numerical evaluation (relative to
other extrema) of the solution. The interpretation of
directional spectrum estimates is complicated by the
nonuniqueness of solutions to the inverse problem.
Methods that do not penalize roughness often produce
solutions with spurious peaks. This is particularly ev-
ident in the estimates Long and Hasselmann obtained
for less than ideal array data (e.g., Fig. 19). It is difficult
to discriminate between truly resolved and spurious
features in the estimates. Long and Hasselmann (1979,
their Fig. 2) inspect different solutions to the inverse
problem [i.e., fits to different models S,,,(8)] for com-
mon features, to discriminate between true features in
North Sea data and spurious ones resulting from the
basic limitations of the array data and the choice of
Sm(0). This very cumbersome procedure can be
avoided by seeking the simplest or smoothest solution
to the inverse problem. Model tests (e.g., Fig. 20) in-
dicate that the present smoothness optimization tech-
nique very effectively rejects peaks not required by the
data and that any remaining structure in the estimates
is generally shared by the input directional distribution.
The numerical evaluation of optimal (non-negative
and consistent with the data) estimates of the direc-
tional spectrum is far from trivial because of the non-
linear nature of the inverse problem. An extremal so-
lution can generally be obtained only through an it-
erative procedure, and numerical convergence to this
solution is difficult if it is a wildly fluctuating function.
The present method is mathematically complex but by
virtue of minimizing roughness has the important ad-
vantage that smooth well behaved solutions are ob-
tained that are not prohibitively difficult to evaluate
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numerically. Extensive model tests have confirmed the
robustness of the present algorithm even for extreme
cases of noisy data (e.g., Fig. 20a,b).

7. Summary and conclusions

An improved method is presented for estimating di-
rectional spectra of surface gravity waves from multi-
component data. The method is general in the sense
that is can be applied to any array of instruments that
measure surface elevation, pressure, velocity and/or
other variables at arbitrary but fixed locations in uni-
form or slowly varying water depth. The measurements
are related to surface elevation at a chosen array origin
with linear wave theory, using ray theory to account
for refraction between the instrument locations if the
array is in variable depth water. On a frequency by
frequency band basis we seek an estimate of the direc-
tional distribution S(#) that is consistent with the array
observations and any available a priori data-indepen-
dent information.

Following Long and Hasselmann (1979) we impose
the constraint that the misfit between the estimate S(6)
and the array data must be smaller than a chosen con-
fidence level for statistical uncertainty in cross spectra
of finite length data records. A rigid constraint that
always must be satisfied is the condition that S(f) is a
nonnegative and periodic [S(0) = S(27)] function
with unit integral. In addition we introduce the optional
constraint that S(8) vanishes on an arbitrary number
of intervals. This condition can be used to incorporate
data-independent geographic information about the
experiment site in the inverse model. For example, in
the proximity of weakly reflective land masses S(8)
may be very small at angles directed offshore.

These constraints do not uniquely define S(8) but
rather a class of possible S(6). We seek the “smoothest”
member of that class by minimizing a roughness mea-
sure of the form [ d8[d?S(8)/d6]%. This choice was
motivated by our desire to find the simplest solution
to the inverse problem, having no peaks that are not
required to explain the observations. Smooth solutions
are not only easier to interpret but also have the ad-
vantage that they are numerically more readily eval-
uated than wildly fluctuating ones.

The solution to the inverse problem is derived
through a variational formulation with Lagrange mui-
tipliers. The resulting nonlinear system of equations is
solved iteratively. Extensive model tests have shown
that the method indeed yields smooth estimates of S(8)
without spurious features. The non-negativity con-
straint renders the inverse problem nonlinear so that
numerically complex and time consuming iterations
are needed to evaluate the solution. Relaxing this con-
straint would greatly simplify the computations. How-
ever, model tests indicate that it can be a very powerful
constraint on S(8) and its omission may considerably
degrade the estimate.
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Geographic constraints on S(6) can be used very
effectively in conjunction with array data. If instru-
ments fail in a field deployment, the missing lags in
the array may seriously degrade its performance. In
this case estimates of S(8) often have spurious peaks,
or worse, spurious peaks only when there is directional
ambiguity because of crucial missing lags. Independent
geographic constraints may supply the information
missing in the degraded array and improve the esti-
mates. Of course, if the geographic constraints can be
used with a high degree of confidence, then less infor-
mation has to be extracted from the array data so that
a smaller number of instruments can be deployed in
the first place.

Estimates of S(#) were obtained from an extensive
array of pressure transducers deployed in shallow water
offshore of a mildly sloping beach. The preliminary
analysis of this experiment yielded smooth unimodal
or bimodal directional distributions which are very
small at both large angles of incidence and directions
corresponding to reflection from the shoreline. These
results support the use of topographic constraints in
similar coastal environments.

To illustrate the differences between smoothness
optimization and model fitting, the present method
was applied to test arrays and spectra reported in Long
and Hasselmann (1979). The comparison shows that
the present method yields smoother estimates without
the spurious peaks observed in Long and Hasselmann’s
(fit to an isotropic directional distribution) estimates.
The examples also illustrate the subjectivity of inter-
comparing estimation techniques. The apparent su-
periority of the present method to resolve the smooth
input S(8) merely reflects a bias in the selection of
that S(6).
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APPENDIX A
Wave Propagation in the Array Vicinity

In deep or uniform water depth the spatial evolution
of wave direction, amplitude, and phase (Eq. 6) are
given by

0(x, 6o) = 6o (Ala)
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A(x, 6) = 1 (Alb)
B(x, 6p) = k(x cosfy + y sinfy). (Alc)

In shallow or intermediate variable depth water the
functions #, A and B can, in principle, be evaluated
with a numerical wave propagation model (e.g., Izu-
miya and Horikawa 1987). Often, however, directional
wave data is collected on beaches with small depth
variations in the longshore (x) direction. If we neglect
longshore depth variations (% = h(y)) then ray theory
yields simple expressions for 8, 4, and B:

arccos{f(y, 6p)] for 0<fp<n
a(xs 00) =
27 — arccos[f(y, 0p)] for w <o < 2x
(A2a)
Cpo |2 sin2f, ]‘/“
A(x, 6y) = A2b
(x, fo) [cg(y)] T=r0.60) A

B(x, 0p) = ko x cosby

’ 112, 00)]7
i k(y' : A2
+ sinfg j; dy'’k(y )- sin’6, ] (A2c)

where k(y) is given by Eq. (4), C,(y) is the group
speed o/(2k(y)) + ah(y)/sinh[2k(y)h(y)] and f(y,
o) = ko cosfy/k(y). All variables with subscript 0 are
evaluated at x = 0. A necessary condition for the va-
lidity of Eq. (A2) is that there are no wave components
propagating at very large angles relative to the beach
normal. We do not consider the pathological case when

1f(y, 8)] =1 (ie., 0(x, ) = 0 or =) and a caustic
crosses the array causing a singularity in A(x, 6y). We
assume that S(6p) is negligibly small at angles 6, with
appreciable variations of A4(x, 6y) on wavelength scales
and replace the integral in Eq. (6) by

T O
[
Om

with 6,, an upper bound on the obliquity of wave ap-
proach.

278y
(A3)

w+0,,

APPENDIX B

Geographic Constraints

It is straightforward to add a data independent geo-
graphic constraint of the form Eq. (44) to the inverse
problem. With this additional constraint, Eqgs. (28) and
(29) can be written

M dm?
i=d- 3 dob(0)F(0)H(6)  (B1)
m=1 bm'
M dm2
dOF(6YH(9) = 1. (B2)
m=1 ¢m'
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We impose the smoothness conditions

2
F(8) is bounded everywhere (B3)

do?
d4
2 F(0) isbounded on ¢,' <8 < ¢°
m=1,2,---, M. (B4)
We minimize
M dm2
¢=R+aVIe+8 Z dOF(0)YH(8) (BS)
*m'
where R is the roughness measure
d2
B
R= 2 [ e F(o)} (B6)

and « and g are the Lagrange multipliers for constraints
(23) and (B2), respectively.
Setting 6¢ = 0 yields the equation

d4

20 F(8) = [a"™V ~'b(8) — B/21H(0).

(B7)

The solution F(8) can be obtained in the same way
Eq. (41) was derived for the “data only” case. Tedious
but straightforward integrations yield

F(8) = AT {B4(6) — WH4(0)} + Hy(6)
dOH,(0)YH(6)
(B8)
[C:+ C!_IV])\ =D (B9)

where C; and D are now defined as

27
C;= | do[By(0) — wH,(0)][B2(08) — wH,(6)]"
(B10)
D=d-w (B11)
with
27
d9B4(9)H(6)
W= (B12)
d9H(6)H(6)

On each interval (¢,,, ¢,2), the functions H,, B,, H,
and B, are given by
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- [ 2o ]
B>(0) b,(6) q s

[H4(0)] _ [ha((’)] + [P] (0 — ¢um')’

B4(09) bs(6) q 6

+ [r] w_—‘b"”)z (B13)
s 2

where £,(0), b,(0) are the functions
1)

ha(6)] _ fo M ’ P ...

b,(0) ! ém!

g (n—1)
f . dﬂ‘"’H(()"")[ (B14)

b(6 ‘”’)]

and p, q, r and s are the integration constants

[p]= 6 [h3<¢m2)]
q (¢m2 - ¢ml)2 b3(¢m2)

+ 12 [h4(¢mz)]
(¢m2 - d’ml)3 b4(¢m2)

[r] _ 2 [h3(¢m2)]
s| (¢m’— dm') [bs(dm”)
6 h4(¢m2)
- . (BI15
(¢m2 - ¢ml)2 [b4(¢m2)] ( )

At angles 6 that do not fall within any of the intervals
(ém', dm?), m = 1,2,+ + -, M, the functions H,(9),
B,(8), H4(8) and B4(6) vanish.
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