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Nonlinear shoaling of directionally spread waves on a beach 
T. H. C. Herbers and M. C. Burton 
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Abstract. The shoaling of directionally spread surface gravity waves on a gently sloping 
beach with straight and parallel depth contours is examined with weakly dispersive 
Boussinesq theory. In this second-order theory, energy is transferred from the incident 
waves to components with both higher and lower frequencies in near-resonant nonlinear 
triad interactions. Directional spreading of the incident waves causes a weak detuning 
from resonance that is of the same order as the detuning owing to dispersion. Boussinesq 
theory predictions of the evolution of a single triad (i.e., two primary wave components 
shoaling from deep water forcing a secondary wave component) are compared to 
predictions of dispersive finite depth theory for a typical range of beach slopes, incident 
wave amplitudes, frequencies, and propagation directions. The dependencies of the 
predicted secondary wave growth on primary wave incidence angles are in good 
agreement. Whereas the sum frequency response is insensitive to the (deep water) 
spreading angle of the primary waves, the difference frequency (infragravity) response is 
significantly reduced for large spreading angles. A stochastic formulation of Boussinesq 
wave shoaling evolution equations is derived on the basis of the closure hypothesis that 
phase coupling between quartets of wave components is weak. In this approximation the 
second- and third-order statistics of random, directionally spread shoaling waves are 
described by a coupled set of evolution equations for the frequency alongshore 
wavenumber spectrum and bispectrum. It is shown that a smooth overlap with solutions of 
dispersive finite depth theory exists in the limit of small beach slope and weak 
nonlinearity. 

1. Introduction 

As ocean surface waves shoal from deep to shallow water, 
amplitudes increase, wavelengths decrease, and propagation 
directions refract toward normal incidence to the beach. In 

addition to these linear propagation effects, nonlinear wave- 
wave interactions can cause significant transfers of energy to 
wave components with both higher and lower frequencies. 
Nonlinear effects on waves in deep water (•h >> 1, where • 
is the wavenumber and h is the water depth) and intermediate 
depths (•h = O(1)) are usually evaluated with finite depth 
theory on the basis of Stokes perturbation expansion for small 
wave slopes (a • << 1, where a is the wave amplitude) [e.g., 
Phillips, 1960; Hasselmann, 1962]. At second order, nonlinear 
interactions between two primary wave components with fre- 
quencies and (vector) wavenumbers (•o 1, kl) and (•o 2, k2) excite 
secondary waves with the sum (•o 1 + •o 2, k• + k2) and differ- 
ence (•o 1 - •o 2, k 1 - k2) frequency and wavenumber. These 
triad interactions are nonresonant [Philli•ps, 1960], and the 
amplitudes of the secondary ("bound") waves are small com- 
pared to the primary wave amplitudes. Observations of bound 
waves in intermediate depths agree well with predictions of 
second-order finite depth theory [e.g., Herbers et al., 1992, 
1994]. 

In shallow water (•h << 1) the secondary wave response is 
strongly amplified because triad interactions involving two pri- 
mary wave components propagating in approximately the same 
direction are near resonant. The solutions of finite depth the- 
ory are valid only if the Ursell number, U r • a/•2h 3, is small 
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[Ursell, 1953], and this condition is typically violated on 
beaches. When the relative mismatch A of (•o 1 q- •o 2, k 1 q- k2) 
from the gravity wave dispersion relation 

(601 q- 602) 2-- #lkl q- k21 tanh Ilk,-+ k21h] 
A+• 

- (601 q- 602) 2 

is small, energy is transferred from the primary waves to freely 
propagating secondary waves until the secondary waves even- 
tually run out of phase with the (slightly off-resonance) qua- 
dratic forcing terms in the second-order equations [e.g., Arm- 
strong et al., 1962]. The distance over which this detuning of the 
interaction takes place depends on the resonance mismatch 
and is infinite for A = 0. In the limit of weak nonlinearity (i.e., 
Ur << 1) O(1) energy transfers occur only in pure resonant 
(A = 0) interactions over asymptotically large distances (e.g., 
quartet interactions [Philli•ps, 1960; Hasselmann, 1962]), but 
the nonlinearity of waves shoaling on beaches is typically 
strong enough to cause large cumulative energy transfers in 
near-resonant triad interactions over moderate (e.g., O(10) 
wavelengths) distances [e.g., Freilich and Guza, 1984; Elgar and 
Guza, 1985a]. A useful approximation is provided by the 
Boussinesq equations, which are based on the assumption that 
a/h (nonlinearity) and (•h) 2 (dispersion) are small and of the 
same order (i.e., Ur = 0(1)). Peregrine [1967] extended the 
Boussinesq equations to varying depth, and these equations 
have been used extensively in various forms to describe the 
nonlinear energy transfers in near-resonant triads of shoaling 
waves. Freilich and Guza [1984] developed a discrete frequency 
domain Boussinesq model for unidirectional waves propagat- 
ing over a bottom varying slowly in one dimension that accu- 
rately predicts the transformation of wave frequency spectra 
observed on natural beaches [Freilich and Guza, 1984; Elgar 
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Figure 1. Definitional sketch of variables and coordinate frame. Directionally spread waves propagate over 
a beach with straight and parallel depth contours. The variable 0 denotes the wave propagation direction; k 
is the wavenumber vector; and h o is a representative water depth of the shoaling region. 

and Guza, 1985a]. Liu et al. [1985] developed a parabolic ap- 
proximation to Peregrine's equations, allowing for small direc- 
tional spreading angles on a two-dimensional beach, but ap- 
plications to a frequency directional spectrum of waves have 
not been reported. Recently, Wei et al. [1995] introduced a fully 
nonlinear variant of the Boussinesq equations to simulate the 
strong nonlinearity in nearly breaking waves. 

Whereas fully dispersive finite depth theory solutions are 
singular at the shoreline, weakly dispersive Boussinesq theory 
breaks down in intermediate depths (Kh = O(1)). Various 
alternative forms of the Boussinesq equations have been de- 
rived with improved dispersion relations [Madsen et al., 1991; 
Nwogu, 1993; Chen and Liu, 1995; Kaihatu and Kirby, 1995]. 
Although linear propagation effects are accurately incorpo- 
rated, these extended Boussinesq models do not predict the 
large deviations from the linear dispersion relation and asso- 
ciated vertical structure of secondary waves in intermediate 
depths [Herbers and Guza, 1994, and references therein]. The 
accuracy of second-order nonlinear wave properties predicted 
by finite depth and Boussinesq theories in the transition region 
from intermediate depths to shallow water is not well estab- 
lished. 

Boussinesq models are often cast in the form of coupled 
discrete mode equations [Freilich and Guza, 1984] that are 
cumbersome when applied to continuous spectra of natural 
wind-generated waves. Recently, stochastic formulations of 
shallow water wave models were introduced that predict the 
evolution of wave spectra on the basis of an energy balance 
equation, analogous to spectral models used in deep water 
applications [e.g., The Wave Model Development and Imple- 
mentation (WAMDI) Group, 1988]. Abreu et al. [1992] devel- 
oped a model for the nonlinear evolution of the frequency 
directional wave spectrum based on an asymptotic closure for 
nondispersive waves by Newell and Aucoin [1971]. In this 
model, only exact resonances are considered, and non- 
Gaussian phase coupling between wave triads is neglected. 
Eldeberky and Battjes [1995] developed a similar model based 
on the Boussinesq equations that is more appropriate for slop- 
ing beaches where the interaction distances are typically short. 

In this model (for unidirectional waves) a simple parameter- 
ization of phase coupling in near-resonant wave triads is in- 
cluded in the energy balance equation. 

In this study, Boussinesq theory is used to investigate sum 
and difference interactions of directionally spread waves prop- 
agating over a beach with straight and parallel depth contours. 
Predictions of the interactions of a pair of wave components 
shoaling from deep water (section 2) show that the sum fre- 
quency response is insensitive to the incident wave directions 
but the difference frequency response is significantly reduced 
for large spreading angles, in good agreement with the prop- 
erties of second-order bound waves predicted by dispersive 
finite depth theory. A stochastic formulation of Boussinesq 
shoaling theory is presented in section 3. A coupled set of 
evolution equations for the frequency alongshore wavenumber 
spectrum and bispectrum is derived on the basis of a third- 
order closure hypothesis (section 4). It is shown that in the 
limit of small beach slope and weak nonlinearity the spectrum 
and bispectrum solutions asymptotically match finite depth 
theory solutions. The results are summarized in section 5. 

2. Directional Spreading Effects 
on Shoaling Waves 

Boussinesq equations for weakly nonlinear, weakly disper- 
sive waves [Peregrine, 1967] are used here to describe the prop- 
agation of a directionally spread wave field over a beach with 
straight and parallel depth contours (Figure 1). Even waves 
with a large oblique incidence angle 0o relative to the shore- 
normal x axis in deep water will refract over a seabed with 
straight and parallel depth contours so that the angle 0 in 
shallow water is small. In the shallow water limit, Snell's law 
yields 

0 = Kh sin 00 (1) 

Hence the spreading angles A0 between wave components 
arriving from deep water are reduced to O(•h) in shallow 
water. Herbers et al. [1992] show that these small spreading 
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angles cause a weak detuning of nonlinear triad interactions 
from resonance that is formally of the same order as the de- 
tuning effect of weak dispersion. Secondary waves forced by 
any pair of obliquely propagating incident waves (even waves 
arriving at grazing angles from opposite quadrants) nearly 
obey the linear dispersion relation in shallow water (the mis- 
match is O(Kh)2), and thus a directionally spread shoaling 
wave field can be described as a spectrum of free waves that are 
coupled through near-resonant triad interactions. 

Assuming a gentle bottom slope h x = O(a •), the shoaling 
evolution can be evaluated with standard WKB methods [e.g., 
Freilich and Guza, 1984; Kirby, 1990]. The surface elevation 
function r• is expressed as a linear superposition of nearly 
plane, shoreward propagating waves 

T•(X, y, t) -- E E • ap,q(X) exp {i[ •p,q(X) q- lqy -- (.Opt]} 
(2) 

where top = p A6o and l q -- qAt are the frequency and along- 
shore wavenumber (with A6o and Al the separation of adjacent 
bands in the Fourier representation), and the amplitude ap,q is 
a slow function of x owing to the combined effects of shoaling 
and nonlinear interactions. The evolution equations for the 
amplitudes ap,q and phases tQp,q are derived in Appendix A 
(equations (A9) and (A13)). In dimensional form: 

dap,q hx 36op 
• = 4h ap,q q- 8#1/2h3/2 

ß E E am,nap-m,q-n sin (tQm,n q- tQp_m,q_ n -- tQp,q) 
m:-• n:-• 

d •,q 
22 

top hi/2 •3 (#h) 1/ lq 36op tOp 

--= (#h) 1/2 + 6# 3/2 26o•- 8#1/2h3/2ap,q 

(3a) 

ß E E am,nap-m,q-n COS (tQm,n q- tQp_m,q_ n -- tQp,q) (3b) 
m=-m n---m 

The first term on the right-hand side of (3a) is the amplitude 
growth of the mode due to shoaling (Green's law). The first 
term on the right-hand side of (3b) is the shallow water wave- 
number, and the second term represents phase changes owing 
to dispersion. Directional spreading contributes phase changes 
(the third term on the right-hand side of (3b)) that are of the 
same order as the phase changes owing to dispersion (see 
Appendix A for the scaling details). The double summation 
terms contain the amplitude growth and phase changes of a 
mode resulting from nonlinear interactions of all possible tri- 
ads in which the mode participates. For unidirectional, nor- 
mally incident (l = 0) waves, (3a) and (3b) reduce to Freilich 
and Guza's [1984, equations (16a) and (16b)] "consistent 
shoaling model." 

The amplitude and phase evolution equations (3a) and (3b) 
were integrated over a plane beach for the simple case of a 
single triad interaction in which two primary wave components 
incident from deep water drive a secondary wave component in 
shallow water. Although interactions with other wave compo- 
nents are neglected, the "single-scattering" approach is useful 
to examine the dependence of nonlinear energy transfers on 
directional spreading angles. The Boussinesq results are com- 
pared to second-order bound waves predicted by dispersive 

finite depth theory. Similar comparisons were reported by 
Madsen and SOrensen [1993] (unidirectional waves in uniform 
depth), Agnon et al. [1993] (unidirectional waves propagating 
over a sloping bottom), and Nwogu [1994] (directionally spread 
waves in uniform depth). 

For three wave components with frequencies (6oo), 6o(2), and 
6o(3), all >0) and alongshore wavenumbers (l (•),/(2), and/(3)) 
that satisfy the triad interaction rules 

60 © = 60 (1) q- 60 © (4a) 

/(3) = /(1)+ /(2) (4b) 

the evolution equations (equations (3a) and (3b)) for the am- 
plitudes (a (•), a (2), and a (3)) and phases (½O), ½(2), and ½(3)) 
reduce to 

dtI) 

dx 

da (1) hx (1) _ 3 60 (1) 
d• = 4h a 4h3/2#1/2 a(2)a © sin (I) (5a) 

da © hx 36o © 
d• = 4h a(2) - 4h3/2# 1/2 a(1)a(3) sin (I) (5b) 

da © hx 36o © 
d-•- = - 4-• a(3) + 4h3/2# 1/2 aø)a(2) sin (I) (5c) 

hl/26o(1)6o(2)6o(3) (#h)1/2(6o(1)l(2)_ 6o(2)/(1))2 
2o03/2 2 6o(1)6o(2)6o(3) 

3 (6o(1)a (2)2a (3)2 q- 6o(2)a (1)2a (3)2 -- 6o(3)a (1)2a (2)2) 
4h 3/2#1/2a (1)a (2)a (3) cos cI) (5d) 

where (I) = ½0) + ½(2) _ ½(3) is the biphase of the triad. In 
uniform depth (hx = 0), (5a)-(5d) have steady solutions with 
biphase values (I) = 0 or 180 ø (i.e., symmetric wave profiles). In 
the limit of small wave amplitudes these steady Boussinesq 
theory solutions match exactly the second-order bound waves 
predicted by finite depth theory in the shallow water limit: 

a (1) = -D(6o(2), /(2), _6o(3), _l(3))a(2)a(3) (I) = 180 ø (6a) 

a(2) = _D(6o(1), /(1), _6o(3), _l(3))a(1)a(3) (I) = 180 ø (6b) 

a(3) = D(6o(1), /(1), 6o(2), l(2))a(1)a(2) tI) = 0 (6c) 

with the coupling coefficient D given by (B8) in Appendix B. 
Hence a smooth overlap region between the predictions of 
finite depth and Boussinesq theories is expected for small- 
amplitude waves propagating over a gently sloping beach. This 
result is consistent with the smooth overlap of small-amplitude 
Stokes and Cnoidal waves in shallow water [e.g., Flick et al., 
198i]. 

Equations (5a)-(Sd) were used to predict both sum interac- 
tions (i.e., component (3) is a secondary wave) and difference 
interactions (i.e., component (3) is a primary wave) for a range 
of commonly observed beach slopes and incident swell ampli- 
tudes, frequencies, and propagation directions. These 
Boussinesq results are compared in Figures 2-6 to predictions 
of finite depth theory in the depth range 10-4 m that approx- 
imately spans the transition region from nonresonant to reso- 
nant triad interactions. In finite depth theory [e.g., Hassel- 
mann, 1962], primary wave components propagating over a 
gently sloping seabed obey the linear shoaling and refraction 
relations, and the associated nonresonantly forced secondary 
waves are completely specified by the local primary wave field 
(Appendix B). The Boussinesq evolution equations (5a)-(5d) 
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Figure 2. Comparisons of Boussinesq and finite depth theory predictions of the shoaling evolution of a 
single wave triad. A pair of normally incident wave components with frequencies 0.08 and 0.12 Hz excite a 
difference frequency (0.04 Hz) secondary wave (Figures 2a and 2c) and a sum frequency (0.20 Hz) secondary 
wave (Figures 2b and 2d). Figures 2a and 2b show the evolution of the wave amplitudes, and Figures 2c and 
2d show the evolution of the biphase. 

for the wave amplitudes and biphase were initialized in 10 rn 
depth with the local finite depth theory values ((I) = 0 for sum 
interactions and (I) = 180 ø for difference interactions) and 
subsequently integrated from 10 to 4 m depth with a first-order 
finite difference scheme. 

Boussinesq and finite depth theory predictions of sum and 
difference frequency waves forced by a pair of swell compo- 
nents with frequencies 0.08 and 0.12 Hz shoaling on a slope 
0.01 beach are compared in Figures 2 and 3. The deep water 
incident wave amplitudes in these simulations are 0.2 m. The 
0.08 Hz component is normally incident in both cases while the 
0.12 Hz component is normally incident in Figure 2 and ob- 
liquely incident (60 ø in deep water) in Figure 3. In these sim- 
ulations, measures of nonlinearity a/h and dispersion •h 
evolve from initial values of about 0.03 and 0.7, respectively, in 
10 m depth (Ur • 0.06) to ---0.1 and 0.4 in 4 m depth (Ur • 
0.6). The growth of the secondary wave in the Boussinesq 
predictions is controlled by the biphase (I) (equations (5a)- 
(5c)) and vanishes when (I) is equal to the finite depth theory 
values of 0 or 180 ø, as is the case at the initial conditions in 
10 m depth. However, the predicted Boussinesq biphases 
evolve (equation (5d)) and vary between about -5 ø and 15 ø for 
sum interactions (Figures 2d and 3d) and 140 ø and 200 ø for 
difference interactions (Figures 2c and 3c). These deviations 
from the finite depth theory value cause a gradual evolution of 
the secondary wave amplitude as the water depth decreases. 
The evolution of biphases to values close to 90 ø observed by 
Elgar and Guza [1985b] and many others occurs in depths 
shallower than the 10-4 m range of the present computations. 

Although in these simulations with finite wave amplitudes 
and bottom slope the Boussinesq and finite depth theory pre- 
dictions do not overlap smoothly (e.g., note the initial oscilla- 

tions in the Boussinesq amplitude and biphase predictions in 
Figures 2 and 3), the theories predict comparable secondary 
wave amplitude growth between 10 and 4 m depth (Figures 2a, 
2b, 3a, 3b, and other cases not shown). While the predicted 
sum frequency secondary wave amplitudes are only slightly 
smaller for obliquely propagating primary waves than for nor- 
mally incident primary waves (compare Figures 2b and 3b), the 
difference frequency secondary wave amplitudes are signifi- 
cantly reduced for large spreading angles (compare Figures 2a 
and 3a). The directional dependence of the secondary wave 
response in 4 m depth is further illustrated in Figures 4-6 for 
a range of beach slopes, incident wave frequencies, and am- 
plitudes with predictions of the normalized secondary wave 
amplitude a•v defined as the ratio between the secondary wave 
amplitude and the product of the local primary wave ampli- 
tudes. In finite depth theory, a•v is equal to IDI (equation (6) 
and Appendix B) and thus can be interpreted as a relative 
secondary wave response for a particular combination of pri- 
mary wave frequencies and incidence angles that is indepen- 
dent of the primary wave amplitudes. The directional depen- 
dencies predicted by Boussinesq and finite depth theories are 
generally in good agreement. In all cases, sum interactions are 
insensitive to the deep water spreading angle with approxi- 
mately a 10-20% decrease in a•v as the spreading angle in- 
creases from 0 to 60 ø, qualitatively consistent with recent nu- 
merical [Kaihatu and Kirby, 1992] and laboratory [Elgar et al., 
1993] investigations. The sum frequency a•v predicted by finite 
depth theory are consistently somewhat larger than the 
Boussinesq predictions, and these discrepancies increase with 
increasing incident wave amplitudes (about 10-20% and 30- 
50% for 0.1 and 0.4 m, respectively, Figures 5b and 5d). These 
differences are likely caused by errors in finite depth theory 
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Figure 3. Same comparisons as shown in Figure 2 but with an obliquely propagating (deep water incidence 
angle 60 ø) 0.12 Hz wave component. 

which overpredicts the secondary wave response for large- 
amplitude waves (i.e., the predicted secondary wave amplitude 
is comparable to the primary wave amplitudes in Figure 5d). 
The smaller a N predicted by Boussinesq theory (with energy- 
conserving interactions, equations (5a)-(5c)) for a pair of 
0.4 m amplitude incident waves (Ur •' 1.2) is virtually inde- 
pendent of the spreading angle (Figure 5d). 

The difference frequency secondary wave response is much 
more sensitive to the directional spreading angle than the sum 
frequency response (compare Figures 4a, 4c, 5a, 5c, 6a, and 6c 
to Figures 4b, 4d, 5b, 5d, 6b, and 6d). Both Boussinesq and 
finite depth theories predict a strong reduction of a N (about an 
order of magnitude) with an increase in deep water spreading 
angle from 0 to 60 ø, but large discrepancies between the pre- 
dictions are noted for runs involving a low difference frequency 
(0.02 Hz in Figure 4a) or a steep beach (slope 0.03 in Figure 
6c). In these cases, where the depth changes from 10 to 4 m 
over a distance comparable to the secondary wavelength, both 
theories (based on a slowly varying depth assumption) may 
have significant errors. 

3. Stochastic Shoaling Evolution Equations 
Predictions of the shoaling evolution of random, direction- 

ally spread waves propagating over a beach with straight and 
parallel depth contours can, in principle, be obtained by inte- 
grating the coupled discrete mode equations (3a) and (3b) for 
a large number of modes initialized with random amplitudes 
and phases at the offshore boundary and subsequently averag- 
ing the results of many realizations to obtain spectral statistics. 
This procedure was used successfully by Freilich and Guza 
[1984] and Elgar and Guza [1985a] to predict the evolution of 
one-dimensional (frequency) spectra (i.e., neglecting direc- 
tional spreading effects) on natural beaches. However, the 
extension of this approach to two dimensions is far from 

straightforward owing to the large number of modes required 
to simulate continuous frequency directional wave spectra 
(M. H. Freilich, personal communication, 1989). Furthermore, 
the detailed specification of amplitudes and phases at the sea- 
ward boundary of the computational domain poses a problem 
in two dimensions since conventional measurements of inci- 

dent wave conditions on beaches usually provide only certain 
bulk integral properties of the frequency directional wave spec- 
trum. Here an alternative stochastic formulation of Boussinesq 
shoaling evolution equations is derived that describes directly 
the shoaling transformation of continuous spectra of random 
waves. 

The surface elevation function r/(x, y, t) of random, direc- 
tionally spread waves propagating over a gently sloping beach 
with straight and parallel depth contours (h = h(x)) can be 
expressed as 

TI(X, y, t) = • • .4p,q(X) exp [i(lqy -- COpt)] (7) 

where the complex function .4p,q(X) incorporates both the 
amplitude ap,q(X) and phase ½p,q(X) of component p, q 
(equation (2)) 

1 

.4 p,q = • a p,q exp ( i qt p,q ) (8) 

and Fourier-Stieltjes integrals are approximated by discrete 
sums to simplify the algebra. The lowest-order statistics of r/ 
are described by the variance spectrum 

E p,q • t {.4 p,qA _p,_q} (9) 

where E{ } indicates the expected value. An evolution equa- 
tion for E can be derived by taking the x derivative of (9) 
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Figure 4. Boussinesq and finite depth theory predictions of the normalized secondary wave amplitude aN in 
4 m depth versus the deep water directional spreading angle of the two primary wave components. The 
primary wave frequencies are 0.09 and 0.11 Hz (Figures 4a and 4b) and 0.07 and 0.13 Hz (Figures 4c and 4d). 
The lower-frequency primary component is normally incident, while the deep water incidence angle of the 
higher-frequency primary component varies between 0 and 60 ø. Difference and sum interactions are shown in 
the Figures 4a and 4c and Figures 4b and 4d, respectively. The beach slope is 0.01, and the deep water 
amplitudes of both primary waves are 0.2 m. 

dx = E •A_p,_q' + E Ap,q dx J (10) 
In the Boussinesq approximation, dAp,v/dx follows from (8), 
(3a), and (3b) 

dAp,q hx tOp n tOp (gh) lq 
•-• = - • + i (gh)U2 + •-•3-• •; •[,,q 

3tOPl/2 E E Am,nAp-m,q-n (11) - i 4h 3/2/7 
m=-o, n=-oo 

Substitution of (11) into (10) yields 

dEp,q hx 3tOp 
dx = 2h Ep,q - i 4h3/2g•/2 

ß E E [t{Am,nAp-m,q-•-p,-q} 
m : -o, 

-- t {•1 m,n A _p_m,_q_n A p,q} ] (12) 

If Gaussian statistics are assumed (i.e., the cubic terms are 
neglected), then (12) reduces to Green's law for linear shoaling 
waves in shallow water. Nonlinear triad interactions cause 

phase coupling between any three wave components obeying 
the interaction rules (4a) and (4b) (including all cubic terms in 
(12)), and thus higher-order statistics are needed to describe 

nonlinear shoaling waves. The deviations from normality ow- 
ing to phase-coupled wave triads are uniquely specified by the 
bispectrum B [Hasselmann et al., 1963] 

Bm,n,p_m,q_ n • E M m,n A p-m,q-n A -p,-q} (13) 

With this definition the spectrum evolution equation (12) can 
be expressed compactly as 

dEp,q hx 3tOp o• 
dx = - 2-• Ep,q + 2h3/2#•/2 • • IM{B .... p-m,q-n} 

m = -o, 

(14) 

where IM{ } indicates the imaginary part. Similar evolution 
equations for the energy spectrum of unidirectional waves are 
given by Agnon et al. [1993] and Eldeberky and Battjes [1995]. 

An evolution equation for the bispectrum is obtained in a 
similar fashion by taking the x derivative of (13) 

dB m,n,p-m,q-n dA m,n } E dx AP-m'q-nA-p'-q 

dA p _ m,q -•n } + E Am,n dx A _p,_q 

+ E Am,nAp_m,q_ n dx J (15) 

and substituting (11) 
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d B m,n,p _ m,q_ n __ { 3 h x dx 4h h 1/2tomtop_mto p i 293/2 

(9h)l/2(topln - tomlq)21} B 2 tom top -m top m,n,p-m,q-n 

-i 4h3/2g1/2 • • {ø)mr ..... -r,n-s,p-m,q-n 
r------• s=--• 

q- top-mT ........ p-m-r,q-n-s - topT .... p-m,q-n .... } (16) 

with T the discrete trispectrum defined analogous to the 
bispectrum 

r ........ p-m-r,q-n-s • g{Ar,sAm,nAp-m-r,q-n-sA-p,-q} (17) 

In a weakly nonlinear wave field the trispectrum describes 
phase coupling between four wave components [Elgar et al., 
1995]. For example, if a primary wave component with fre- 
quency top-m and alongshore wavenumber lq_ n engages in 
two nonlinear interactions: a sum interaction with an (to m, l,•) 
primary wave to excite an (top, lq) secondary wave and a 
difference interaction with an (tot, ls) primary wave to excite 
an (top--m--r, lq-n-s) secondary wave, then the four wave 
components ,4 .... ,4 .... ,4p-m-r,q-n-s, and ,4p,q are phase 
locked and T ........ p--m--r.q--n--s is nonzero. Alternatively, 
three primary wave components (to,, ls), (tom, ln), and 
(top--m--r, lq-n-s) may drive an (top, lq) tertiary wave in a 
sum quartet interaction, also causing a nonzero value of 
T ........ p--m--r,q--n--s' In the limit of weak nonlinearity the 
contributions of a pair of triad interactions and a single quartet 
interaction to the trispectrum are formally of the same order, 
and thus a third-order theory is needed to describe the effects 
of phase coupling between four wave components. However, 
the trispectrum evolution equation (which can be derived in a 
similar fashion as (14) and (16)) depends on even higher-order 
nonlinearities. Approximate solutions for statistical properties 
of weakly nonlinear waves can be obtained only if a closure 
hypothesis is invoked. 

4. Third-Order Closure 

Since the Boussinesq equations used in the present study are 
truncated at second order in nonlinearity, a consistent closure 
approximation neglects the effects of nonlinear phase coupling 
between four wave components altogether so that the trispec- 
trum reduces to the Gaussian expression 

T ........ p-m-r,q-n-s--- Er,sE .... •pm•qn q- Em,nEp,q•rp•sq 

q- Er,sEp,q•m(_r)•n(_s) (18) 

where (5 o is the Kronecker delta symbol. In this approximation, 
average products of two secondary and two primary wave am- 
plitudes (and terms involving higher-order wave components, 
e.g., one tertiary and three primary waves) are neglected. Ini- 
tially, these nonlinear quartet terms are small compared to the 
leading order terms (products of four primary components) 
kept in (18), but the cumulative effect of weak nonlinear triad 
interactions over large interaction distances may result in com- 
parable amplitudes of primary and secondary waves. However, 
the trispectrum is an average over statistically independent 
realizations, and variations in biphases between different real- 
izations (e.g., different incident wave amplitudes) will tend to 

reduce the average products of primary and secondary wave 
amplitudes. Initially, when secondary wave amplitudes are rel- 
atively small (i.e., U• << 1), phase coupling between primary 
and secondary waves is strong because in each realization, 
biphases are close to the finite depth theory values 0 (sum 
interactions, equation (6c)) or 180 ø (difference interactions, 
equations (6a) and (6b)). As secondary waves grow to appre- 
ciable amplitudes, the associated biphases evolve. In the 
Boussinesq approximation (U• = O (1)), O (1) changes in 
both wave amplitudes, and biphases occur over distances of 
O[(a/h)-•] wavelengths (equation (5) and Appendix A). The 
long-term evolution of a single wave triad (e.g., equation (5)) 
exhibits periodic recurrence cycles in which energy is trans- 
ferred back and forth between the components [e.g.,Armstrong 
et al., 1962; Mei, 1983]. If a finite number of higher harmonics 
are included in the computations, these recurrence cycles be- 
come irregular [Bryant, 1973], and in a full spectrum of waves 
(e.g., equations (3a) and (3b)), energy exchanges between 
many different triads cause disordered amplitude evolution 
with a general spreading of energy to a broader range of 
frequencies and wavenumbers [Elgar et al., 1990]. As wave 
amplitudes evolve through nonlinear energy exchanges, the 
associated biphases undergo comparably large changes and 
become increasingly sensitive to the initial amplitude configu- 
ration until they are effectively randomized (i.e., biphase val- 
ues of independent realizations are approximately uniformly 
distributed between 0 and 360ø). Hence, while the amplitudes 
of primary, secondary, and higher-order waves become com- 
parable over large interaction distances, the initially strong 
nonlinear phase relationships are randomized, so that devia- 
tions from Gaussian statistics are expected to remain small. 

Substitution of (18) into (16) yields the approximate bispec- 
trum evolution equation 

dB p-m,q-n _ { ghx .... [ h l/2tomtop-mtop dx - - -•- - i 293/2 

(gh)l/2(topln - tomlq)21} 3 q- 2tomtop_mtop B .... p-m,q-n- i 2h3/291/2 
ß { to m Ep -m,q- n Ep,q q- top-mEg,n Ep,q - tof rn,n Ep -m,q-n} (19) 

Note that the summation of the trispectrum in (16) is over all 
quartets that involve two of the components within the (m, n), 
(p - m, q - n), (p, q) triad, and thus (19) includes six 
nonvanishing trispectrum terms. 

In the limit of infinitesimal separation between adjacent 
spectral components (A to, Al -• 0) a continuous density 
spectrum E(to, l) and bispectrum B (to', l ' , to - to', I - l ' ) 
can be defined as 

Ep,q • E(top, lq)AtoAl (20a) 

Bm,n,p-m,q-n • B(tom, ln, top-m, lq-n) Ato2Al2 (20b) 
such that the integrals over all frequencies and alongshore 
wavenumbers yield the mean square and the mean cube of r/ 
(equations (7), (9), (13), (20a), and (20b)) 

E{•2}=f•dtoI__••dlE(to, l) (21a) 

(2lb) 
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Substitution of (20a) and (20b) into (14) and (19) yields (in the 
limit Ao0, AI --> 0) the following evolution equations for 
E(o0, 1) and B(o0', 1', o0 - o0', I - 1') 

dE(to, 1) hx 3oo 

• = - 2•-E(o0, 1) + 2h3/2#1/2 

ß f_••do0'f_••dl ' IM{B(o0',l', o0-o0', l-l')} (22a) 

d B ( o0 ' 1' to-o0' 1-1') 
dx 

{ 3hx [h•/2o0'(o0-o0')o0 (#h)1/2(o01'-o0'1)2]} = - •- - i 2!73/2 + 2•1 • Z to' j-/_o- 
3 

ß B(to', 1', to - to', I - 1') - i 2h3/2#1/2 
.{o0'E(o0- o0', l - l')E(o0,1) 

+ (o0 - o0')E(o0', l')E(o0,1) 

- o0E(o0', l')E(o0 - o0', I - 1')} (22b) 

The first term on the right-hand sides of (22a) and (22b) 
represents linear shoaling (changes in group speed) effects. 
Nonlinear transfers in the spectrum E(o0, 1 ) are controlled by 
the imaginary part of the bispectrum. From (22a) and the 
symmetry relations 

B(o0', 1', o0 - w', I - 1') = B(o0', 1', -o0, -1) 

= B(o0 - o0', I - 1', -o0, -1) 

it follows that energy is conserved within each triad (i.e., the 
variance E(• 2) is not affected by nonlinear interactions). The 
last three terms (quadratic products of E) in (22b) represent 
changes in the imaginary part of B(to', l', to - to', I - l') 
owing to the three possible nonlinear interactions (one sum 
and two difference interactions) within the (to', l'), (to - to', 
I - l'), (to, l) triad. The second and third term on the 
right-hand side of (22b) represent the resonance detuning ef- 
fects (i.e., changes in the phase of the bispectrum) of disper- 
sion and directional spreading, respectively. 

In the limit hx -• O, (22a) and (22b) have a simple steady 
solution 

B(o0', l', o0 - o0', I - 1') 

h2 o0' (6o - o0')o0 + #2(o01, _ o0,1)2]-1 - go 

ß {o0'E(o0 - o0', I - l')E(o0, 1) 

+ (o0 - o0')E(o0', l')E(o0, 1) 

- o0E(o0', l')E(o0 - o0', 1- 1')} (23) 

which is identical to the asymptotic shallow water limit of finite 
depth theory for small-amplitude waves (equation (B9) in Ap- 
pendix B in discrete form). Thus, in the limit of weak nonlin- 
earity and small bottom slope the spectrum and bispectrum 
evolution equations (22a) and (22b) decouple (i.e., the bispec- 
trum depends only on the local spectrum), and the Boussinesq 
solutions smoothly match the solutions of dispersive finite 

depth theory. It is interesting to note that the bispectrum B 
vanishes when the spectrum E is flat (i.e., independent of to 
and l ), suggesting that the gradual broadening of wave spectra 
owing to nonlinear triad interactions is accompanied by com- 
plete randomization of biphases. This result is consistent with 
numerical flat bottom simulations by Elgar et al. [1990] (using 
a deterministic Boussinesq model) that show an initially nar- 
row spectrum evolving to a broad, featureless spectrum with 
weak phase coupling. Evolution to a featureless spectrum is 

ically break well before secondary wave amplitudes become 
comparable to the primary wave amplitudes. 

The effects of nonlinear triad interactions on continuous 

wave spectra are illustrated in Figure 7 with numerical predic- 
tions of the shoaling evolution of unidirectional (i.e., I = 0) 
waves from 8 to 2 m depth over a plane beach with slope 0.01. 
The initial significant wave height in these computations is 
0.8 m, and the spectral shapes are representative of remotely 
generated swell (Figure 7a) and locally generated seas (Figure 
7b). Bispectra were initialized in 8 m depth with the local 
bispectrum-spectrum relationship (equations (BS) and (B7) in 
Appendix B) of finite depth theory. The coupled evolution 
equations (22a) and (22b) were then integrated numerically, 
yielding predictions of spectra and bispectra in shallower water 
[see Norheim, 1997]. 

The predicted evolution of a swell spectrum (Figure 7a, peak 
frequency 0.07 Hz) shows the familiar development of har- 
monic peaks at frequencies 0.14, 0.21, 0.28, and 0.35 Hz. Ini- 
tially, energy is transferred from the primary peak to the sec- 
ond harmonic (0.14 Hz) peak in (0.07, 0.07, 0.14 Hz) sum triad 
interactions. As the 0.14 Hz harmonic energy levels increase, 
energy is transferred in (0.07, 0.14, 0.21 Hz) triads to the third 
harmonic (0.21 Hz) peak. The fourth harmonic (0.28 Hz) peak 
is driven by both (0.07, 0.21, 0.28 Hz) and (0.14, 0.14, 0.28 Hz) 
sum triad interactions. Thus energy cascades from the initial 
swell peak toward higher frequencies through multiple sum 
triad interactions. Energy is also transferred to low (infragrav- 
ity) frequencies (note the 0.01 Hz peak) through difference 
triad interactions involving pairs of primary swell (frequen- 
cies • 0.07 Hz) components. As the harmonic and infragravity 
peaks in the spectrum grow (at the expense of the primary 
swell peak), triad interactions involving many different fre- 
quencies gradually fill the valleys between the peaks, and the 
spectrum evolves to a broad, almost featureless shape in 2 m 
depth. 

The predicted evolution of a sea spectrum (Figure 7b, peak 
frequency 0.1 Hz) shows comparable nonlinear energy trans- 
fers to higher (sum triad interactions) and lower (difference 
triad interactions) frequencies. However, in this broader spec- 
trum a wider range of frequencies participates in the interac- 
tions, causing a gradual broadening of the spectrum rather 
than the development of distinct harmonic peaks characteristic 
of swell spectra (Figure 7a). Although the shoaling evolution of 
the swell and sea spectra differ initially (compare the predic- 
tions in 6 and 4 m depth), the principal effect of nonlinear 
interactions is to distribute energy equally across the spectrum. 
Hence, over long distances these different wave fields tend to 
evolve to rather similar broad, almost featureless spectra (com- 
pare the predictions in 2 m depth). A detailed discussion of 
wave spectrum and bispectrum evolution on beaches, including 
numerical examples for a range of beach profiles and incident 
wave conditions and comparisons of stochastic and determin- 
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Figure 7. Example predictions of the nonlinear shoaling evolution of (a) a narrow swell and (b) a broad sea 
spectrum on a plane beach with slope 0.01. The initial significant wave height [4(E{r/2}) 1/2] in 8 m depth is 
0.8 m, and the peak frequencies of the incident wave spectra are 0.07 Hz (Figure 7a) and 0.1 Hz (Figure 7b). 

istic Boussinesq model predictions to field observations, is 
given by C. A. Norheim et al. (manuscript in preparation, 1997). 

5. Summary and Discussion 
Although wave transformation on beaches is generally well 

described by one-dimensional models, the directionality of 
waves is of crucial importance to a variety of nearshore pro- 
cesses including infragravity motions, longshore currents, and 
sediment transport. In this paper the shoaling of directionally 
spread waves is investigated using Boussinesq-type equations 
for weakly nonlinear, weakly dispersive waves in varying depth 
[Peregrine, 1967]. A gently sloping beach with straight and 
parallel depth contours is assumed on which wave incidence 
angles are reduced by refraction and reflection is neglected. In 
this approximation the effects of dispersion and directional 
spreading are of the same order, and near-resonant nonlinear 
interactions occur between any pair of wave components inci- 
dent from deep water. 

Boussinesq theory predictions of the shoaling evolution of a 
single triad of three wave components on a plane beach are 

compared to predictions of dispersive, second-order finite 
depth theory [Hasselmann, 1962] for a typical range of beach 
slopes, swell amplitudes, frequencies, and propagation direc- 
tions (Figures 2-6). In these simulations, two primary swell 
components arriving from deep water force a secondary wave 
on the beach, and interactions with any other components are 
neglected. The dependencies of the predicted secondary wave 
response on the directional spreading angle of the primary 
waves are in good agreement. Whereas the sum frequency 
response is only slightly reduced for large spreading angles, 
difference interactions are sensitive to the primary wave direc- 
tions with typical reductions in secondary wave amplitudes of a 
factor of 3-10 when the primary wave spreading angle in deep 
water is increased from 0 to 60 ø. 

An alternative stochastic formulation of Boussinesq theory 
is presented that describes the shoaling transformation of con- 
tinuous spectra of random, directionally spread waves on a 
beach with straight and parallel depth contours. Under the 
closure hypothesis of weakly non-Gaussian statistics (neglect- 
ing phase coupling between quartets of wave components) a 
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coupled set of evolution equations is derived for the frequency 
alongshore wavenumber spectrum and bispectrum (equations 
(22a) and (22b)). 

In the limit of weak nonlinearity and small bottom slope, 
steady solutions of Boussinesq theory (both the deterministic 
and stochastic formulations) are shown to match exactly steady 
bound wave solutions of finite depth theory. Although the 
theories are based on different assumptions, they describe, in 
essence, the same phenomenon of secondary wave generation 
in triad interactions. In dispersive finite depth theory the triad 
interactions are nonresonant. Two primary waves obeying the 
dispersion relation force a secondary (bound) wave that does 
not obey the dispersion relation. The amplitude of this bound 
wave is determined by the local amplitudes of the primary 
waves. As the primary waves gradually shoal, the mismatch of 
the bound wave from the dispersion relation is reduced, re- 
suiting in an amplification of the bound wave. Finite depth 
theory breaks down in shallow water where the interaction is 
resonant (i.e., the bound wave obeys the dispersion relation) 
and the predicted bound wave amplitude is infinite. Weakly 
dispersive Boussinesq theory, on the other hand, describes the 
continuous transfer of energy from two primary wave compo- 
nents to a freely propagating secondary wave component. The 
small mismatch of the triad interaction from resonance is in- 

corporated by allowing for a slow modulation of wave ampli- 
tudes and phases that is equivalent to a small deviation of the 
wave frequency and wavenumber from the dispersion relation. 
Boussinesq theory breaks down in deep water where O(1) 
deviations from the dispersion relation cause rapid variations 
in wave amplitudes and phases. The two theories overlap for 
small-amplitude waves shoaling on a gently sloping beach and 
thus describe a smooth transition of secondary waves from 
small nonresonantly forced bound waves in deep water to 
resonantly forced free waves in shallow water. 

Although, formally, dispersive finite depth theory and 
weakly dispersive Boussinesq theory match only in the asymp- 
totic limit of small wave amplitudes and beach slope, the sim- 
ulations presented here indicate a reasonably smooth overlap 
region for commonly observed wave heights and beach slopes. 
These results are qualitatively consistent with field data. Her- 
bets et al. [1992] compared velocity and pressure measure- 
ments in 6 m depth to finite depth theory predictions and 
found reasonable agreement for Ursell numbers (i.e., the pre- 
dicted ratio of secondary to primary wave amplitudes) as large 
as 0.2. Frei[ich and Guza [1984] showed, for similar beach and 
wave conditions, that Boussinesq predictions initialized in 10 m 
depth (•ch • 0.5 with K the wavenumber of the dominant 
waves) accurately reproduced the observed harmonic growth. 
Both finite depth and Boussinesq theories appear to be robust 
in the transition region from nonresonant to near-resonant 
triad interactions. In many applications, reasonably accurate 
predictions of wave shoaling evolution from deep to shallow 
water may be obtained by switching from finite depth theory to 
Boussinesq theory somewhere in the depth region where both 
U r and •ch are sufficiently small. However, in more extreme 
conditions, finite depth theory may break down (i.e., predict 
harmonics that are not small compared to the primary waves) 
well before •ch is small; in which case, there is no overlap with 
Boussinesq theory. The shoaling process of extreme (e.g., hur- 
ricane-generated) swell or steep locally generated wind waves, 
with strong nonlinear evolution and breaking in intermediate 
water depths (•ch = O(1)), remains poorly understood. 

Appendix A: Weakly Dispersive 
Boussinesq Theory 

The equations of motion and the continuity equation can be 
written in nondimensionalized form (neglecting viscous ef- 
fects): 

Ou Ou 

Ot + (u. V)u + w •-+ X7p = 0 (Ala) 

Ow Ow Op 
Ot + (u.V)w+w•+•zz + 1 =0 (Alb) 

Ow 

ß = 0 (Alc) V U+•z 

where t is time, V denotes the two-dimensional gradient oper- 
ator (O/Ox, O/Oy), u is the vector (u, v) of the horizontal 
(x, y) velocity components, w is the vertical (z) velocity com- 
ponent, and p is pressure. The x axis points onshore; y points 
alongshore; and z points upward with z = 0 corresponding to 
the mean surface. The surface and bottom are defined by z = 
r•(x, y, t) and z = -h(x) (Figure 1, alongshore depth vari- 
ations are neglected). The variables in (A1) are normalized 
with the gravity #, the density of seawater O, and a represen- 
tative water depth ho (Figure 1) [see also Peregrine, 1967]. The 
surface and bottom boundary conditions are given by 

w =•+u'Vn z= n (A2a) 

p =0 z= •/ (A2b) 

oh 

w = -u •xx z = -h (A2c) 

The variables r/, u, v, w, andp are expanded in terms of the 
nonlinearity parameter e, defined to be the ratio of wave am- 
plitude to water depth, e = a/h. In shallow water, v and w are 
both O(gh) smaller than u, and thus the perturbation expan- 
sions of the scaled variables are given by 

T}-- 8T}l + E2T•2 +''' (A3a) 

L/ = gLt 1 + g2Lt2 +''' (A3b) 

v = •r(ev, + e2v 2 +'' ') (A3c) 

W -- O'(•:W 1 q- E2W2 +'' ') (A3d) 

p = -z + epl + e2p2 +''' (A3e) 

where •r -- gh is the dispersion parameter. The independent 
variables are scaled 

0 0 

--= •r- (A4a) Ox Ox' 

--= •r 2-- (A4b) Oy Oy' 

0 0 

-- = (A4c) Oz Oz' 

0 0 

Ot •r Ot (A4d) 

so that the order of the terms appears explicitly when (A3) and 
(A4) are substituted into the governing equations [Peregrine, 
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1967]. Dispersion o -2 and nonlinearity e are assumed to be of 
the same order, and the water depth is taken to be a function 
h (2) of the slow variable 2 = 

dh dh 

dx - e d2 ( A5 ) 

Substitution of (A3)-(A5) into the governing equations 
(Ala)-(Alc) using the boundary conditions (A2) and assum- 
ing irrotational flow yields the following relations for the first- 
and second-order flow variables [e.g., Peregrine, 1967] 

Pi = .11 (A6a) 

P2 = •2 + z'h + Ox'O•' (A6b) 

0u 1 

Wl = -(h + z') Ox' (A6c) 

( h2 •) 02ul u2 = •2- -•-+ z'h + Ox, 2 (A6d) 

( h2 •) 02ul (A6e) v2=•2- • + z'h + Ox' Oy' 
where u • and v• are independent of z' and •2 and •2 are the 
depth-averaged second-order flows. To O(e 2) these velocities 
can be expressed as gradients of velocity potential functions ½b• 
and •b2, and the momentum and (vertically integrated) conti- 
nuity equations reduce to 

1 

*11x q- (•lxt q- 8(.12x q- •2xt q- (•lx(•lxx- •h2q•kxxt) 

-- 0(8 2) (A7a) 
- 1 

*11y q- (•lyt q- 8(.12y q- (•2yt q- (•lx•lxy- •h2q•Lrryt) 

= O(e 2) (A7b) 

*11t q- hrbL• + E[T•2t q- h [b 2xx + h dp • yy + ( *11rb lx ) x + 

= O(e 2) (A7c) 

where subscripts t, x, and y indicate derivatives and the primes 
are dropped to simplify the notation. 

The lowest-order wave field (.1•, ½b•) is assumed to be a 
linear superposition of nearly plane, shoreward propagating 
waves [e.g., Freilich and Guza, 1984; Kirby, 1990) 

.11: E Z • ap,q(.•) exp {i[•p,q(X) + lqy -- COpt]} (A8a) 
p=-oc q=-oc 

rbl = • • 2•-•mp ap,q(•) exp {i[ •p,q(X) q- lqy -- Wpt]} (A8b) 
where •Op = p A •o and l q = q Al are the (scaled) frequency and 
alongshore wavenumber, with A•o and Al the separation of 
adjacent bands in the Fourier representation. The amplitude 
ap,q is a slow function of x owing to shoaling (i.e., changes in 
the group speed) and nonlinear interactions. The phase func- 
tion ½p,q contains both fast and slow variations with x 

d ½p,q(X) fop 
= h(.•) 1/2 + 8rp,q(•) (A9) 

The first term on the right-hand side of (A9) is the shallow 
water wavenumber, and Tp,q incorporates the slow phase 
changes that result from weak dispersion, oblique propagation, 
and nonlinear interactions. The requirement that .1• and ½b• are 
real yields the symmetry relations 

ap,q = a _p,_q •p,q '-- -- ½_p,_q rp,q = -- r_p,_q 

The governing equations (A7a)-(A7c) are cross differenti- 
ated to eliminate '12: 

V (•ltt- hrb• + e (•2tt- h&• + • (•5)t- 5 h2•tt 

--h•lyy-(•l•)x-h•] } =0(8 2) (A10) 
Integration of (A10), setting the integration constant (an arbi- 
traw function of time) equal to zero, yields 

_ 1 1 •lt, - h• + e •2tt- h&• + • (•5)t - 5 h2•tt - h•lyy 

-- (•l•)x- h•e] = O(e 2) (All) 
Substitution of the lowest-order wave field (equations (A8) 
and (A9)) into (All) gives, after some algebraic manipula- 
tions, 

_ • • { hx hl/2dap, q •2tt- h• = 4• ap,q + d• 
p=-• q=-• 

+ i hv2r _ hw} q- 2%J ap,q + i 8h P'q 6 

} ' • • gm,ngp_m,q_n exp [i(½m,. + •p-m,q-n- •p,q)] 
m=-• n:-• 

ß exp [i(•p,q + lqy - •pt)] + O(8) (m12) 

Resonant growth of •2 (which would upset the perturbation 
expansion (equation (A3))) is prevented by the solubiliW 
constraint that the right-hand side forcing terms in (A12) do 
not contain any free wave solutions of the general form 
F(x/h •/2 • t). Since all these terms obey to O(e) the shallow 
water dispersion relation (equation (A9)), it follows that the 
right-hand side of (A12) must vanish. Collecting the real and 
imaginaw parts of like frequencies and alongshore wavenum- 
bers yields a coupled set of evolution equations for the ampli- 
tudes and phases of the lowest-order waves: 

dap,q h• 3•p 
• = 4h ap,q + 8h3/2 

ß E E am,nap-m,q-n sin (•m,n q- •p-m,q-n- •p,q) (A13a) 
m:-o• n=-o• 

rp,q = 
h 1/2. 3 hl/2/2 3tOp top _q 

6 2% 8h3/2ap,q 

ß Z E am,nap-m,q-n COS (•m,n q- •p-m,q-n- •p,q) (A13b) 
m --- - oc 
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Appendix B' Dispersive Finite Depth Theory 
In second-order finite depth theory the surface elevation 

function r• is given by 

r/(x, y, t) = r/l(X, y, t) + r/2(x, y, t) (B1) 

where '11 is the wind-generated primary wave field and '12 
contains the associated secondary bound waves. The primary 
wave field is assumed to be a linear superposition of statisti- 
cally independent, nearly plane wave components propagating 
over a gently sloping seabed with straight and parallel depth 
contours 

r•l(X y, t) • • • (B2) , : •.•p,q(X) exp [i(lqy- tOpt)] 

where the complex amplitude function •p,q(X) is given by the 
linear shoaling refraction relation [e.g., Kinsman, 1965] 

•p,q(X) : •p,q(O) 

x ] ' Cgp(X)kp,q(X)Kp(O) exp i dx kp,q(X) (B3) 

The wavenumber magnitude •p = (k},q + l}) •/2 obeys the 
linear dispersion relation w} = 9 •p tanh (•ph), and the group 
speed is given by Cap = (mp/•p)[1/2 + •ph/sinh (2•ph)]. 
The condition that • is real implies that • (x) is the • --p, --q 

complex conjugate of • x •p,q(). The cross-shore wavenumber 
component kp,q is positive for p > 0 (i.e., waves propagate 
shoreward, Figure 1) and k_p,_ q (x) = - kp ,q (x). 

The corresponding seconda• wave field is given by [Hassel- 
mann, 1962, equation (4.2)] 

r/2(x, y, t): • • • •', D(o)m, l, O)p_m, lq-n; x) 
p=-,: q=-,: m=-oc n=-oc 

.... (X) exp -- tOpt)] ß •.•p_m,q_n(X) [i(lqy 

where D is the nonlinear coupling coefficient 

(B4) 

D(tom, l. O)p_m, lq-n) 

glkm,• + kp_m,q_ n tanh (Ikm,• + kp_m,q_ n h) - %2 

ß { O•m%-m gkm,.' kp-m,q-. g O)mO)p-m 

g Km 

2tOp (.O m cosh 2 (t<mh) q- 
2 2 

(.0 m q- (.OmO)p_ m q- (.Op_ m 
+ -- 

O)p_ m cosh2 ( t<p_mh ) 

gkm,. kp-m,q-n 
2g 2tOmtOp_ m 

(B5) 

with k/, i = (ki,j, lj) the vector wavenumber of primary wave 
component •o i, l i. 

The combined wave field (equation (B1)) can be expressed 
in the general Fourier representation (7) with the amplitude 
function Ap,q(X) given by 

A : •p,qq- E E O(tOm, ln, tOp-m, lq-n) • • • m,n•.•p-m,q-n 

m:-oc n=-oc 

(B6) 

Substitution of (B6) into (9) and (13) yields a (lowest-order) 
relationship between the spectrum and bispectrum [Hassel- 
mann et al., 1963]' 

B m ,n,p - m ,q - n -- 2{D(tom, l n , O) p - m , l q - n ) E m ,nE p - m ,q - n 

+ D(tom, ln, --O)p, -lq) Em,nEp, q 

q- D(top_m, lq_n, --O)p, -lq) Ep_m,q_nEp,q} (g7) 

The asymptotic shallow water approximation of the bispec- 
trum is obtained by expanding the coupling coefficient D 
(equation (B5)) for small •h [Herbers et al., 1992, 1995] 

3# 

D ( to m , in, O) p - m , l q - n ) = 2 tO m tOp _ mh 2 

ß 1 + • Kh<<l (B8) 
top (.O m top -m j 

Substitution of (BS) into (B7) yields 

3g I g2(tOpln-- tOmlq)21-1 Bmnp_mq_ n = h 2 O)m('Op-m('Op q- , , , O)mO)p_mO) p 

ß { to m EP _ rn ,q - ,E p,q q- O)p _ mE rn ,n EP ,q 

-- O) f m,nEp_m,q_n} Kh<<l (B9) 
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