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[1] Dissipation of ocean swell, inferred from published oceanographic data, is investigated
to determine if laboratory results on the dissipative stabilization of narrow-banded wave
trains are applicable to ocean swell. Three issues are addressed. (i) Dimensional decay rates
of ocean swell are about a million times smaller than typical decay rates of laboratory
waves. Nevertheless, when decay rates are nondimensionalized using scales of dispersive
and nonlinear effects, the dimensionless decay rates of ocean swell are comparable to those
of laboratory waves, indicating that dissipation and nonlinear effects can influence ocean
swell on the same time scale. (ii) The stability of ocean swell to small perturbations is
examined within the theoretical framework of nonlinear Schrödinger-type models that
either do or do not include dissipation. As in laboratory experiments, for swell with small
enough nonlinearity, dissipation can inhibit and eventually stop the growth of small
perturbations before nonlinearity becomes important. And as in laboratory experiments, we
document herein an example of ocean swell with stronger nonlinearity that exhibits
frequency downshifting, which is not predicted by any nonlinear Schrödinger-type model,
including higher-order models, with or without dissipation. (iii) Given that dissipation can
influence the evolution of ocean swell, we compare the predicted decay rates of four
(published) dissipative models with observed decay rates, both in the ocean and in a
laboratory wave tank. The model that presupposes an inextensible film on the free surface
agrees best with measured rates of dissipation of ocean swell.
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1. Statement of the Problem

[2] Ocean ‘‘swell’’ refers to slowly varying wave trains
of surface water waves, which are typically generated by
an oceanic storm, and which are observed to propagate
over thousands of km without additional forcing [Snod-
grass et al., 1966]. The standard mathematical model of the
dynamics of surface water waves, first posed by Stokes
[1847], is an energy-conserving system, with no dissipa-
tion. But water and air are both viscous fluids, so the energy
of ocean swell must dissipate as the swell propagates. The
dissipation rate of ocean swell is measurable [cf. Collard et
al., 2009] but weak enough that Snodgrass et al. [1966]
pronounced it ‘‘negligible’’ in their landmark paper. It
appears that they meant that dissipation is negligible in the
sense that ocean swell can propagate the entire length of
the Pacific Ocean, more than 1/3 of the distance around the

world, while still maintaining measurable wave amplitudes
and significant coherence.

[3] At about the same time as the important work of
Snodgrass et al. [1966], several scientists around the world
discovered what is now called either the ‘‘modulational
instability’’ or the ‘‘Benjamin-Feir instability’’ [Lighthill,
1965; Benjamin and Feir, 1967; Benney and Newell,
1967; Ostrovsky, 1967; Whitham, 1967; Zakharov, 1967,
1968]. The instability occurs in energy-conserving systems
with dispersive waves (i.e., in which waves with different
frequencies travel at different speeds). A consequence of
this instability is that in many physical situations, a uniform
train of plane waves of finite but small amplitude is likely
to be unstable. An approximate model that describes this
process is the nonlinear Schrödinger (NLS) equation. In
two spatial dimensions, this equation has the form

i@�Aþ �@2
�Aþ �@2

�Aþ �jAj2A ¼ 0; ð1Þ

where A(�, �, �) describes the complex, two-dimensional
envelope of a train of nearly monochromatic, nearly plane
waves, with the rapid oscillation of individual wave crests
and troughs averaged out; � and � are slowly varying spa-
tial variables, in a coordinate system moving with a repre-
sentative group velocity of the waves; � is an even more
slowly varying time-like variable, to mark the slow evolu-
tion of the wave train, after both the rapid oscillations and
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the effect of group velocity have been taken into account;
and {�, �, �} are real-valued constants, which are derived
from the original problem. See Sulem and Sulem [1999] for
a discussion of some of the many physical applications of
this model.

[4] This instability is relevant to ocean swell because (1)
describes approximately the inviscid dynamics of surface
waves on deep water, as noted by Zakharov [1968]. For
gravity-induced surface water waves without dissipation,
�� > 0, ��� 0 in (1). Then, it is straightforward to show
that any spatially uniform solution of (1), which has
jAj ¼ const. and which represents a uniform train of plane
waves, is unstable. Because ocean swell is dispersive, it
tends more and more toward a uniform train of gravity-
induced plane waves on deep water, so swell is unstable
according to (1). Benjamin and Feir [1967] emphasized
that this instability leads to a spreading of wave energy in
frequency-space and, therefore, to ‘‘the disintegration of
wave trains on deep water.’’ Later, other researchers pro-
posed that the modulational instability might also lead to
the formation of ‘‘freak waves’’ [Calini and Schober,
2002; Janssen, 2003; Dyachenko and Zakharov, 2005;
Onorato et al., 2006; Dysthe et al., 2008]. The modula-
tional instability has been a basic principle of nonlinear
wave propagation ever since it was discovered.

[5] The work described herein was motivated in part by
an interest in reconciling these two scientific develop-
ments: if ocean swell is unstable, as predicted by (1), how
can it propagate coherently over thousands of kilometers,
as documented by Snodgrass et al. [1966], Collard et al.
[2009], and others? It is unclear (to us) how to reconcile
this picture of energetic ocean swell that remains coherent
over long distances with ‘‘the disintegration of wave trains
on deep water,’’ envisioned by Benjamin and Feir [1967].

[6] A possible resolution of this paradox was suggested
by results of Segur et al. [2005], who found that adding
even a small amount of dissipation to (1) can stabilize the
modulational instability. Specifically, they showed that if
(1) is generalized to

i@�Aþ �@2
�Aþ �@2

�Aþ �jAj2Aþ i�A ¼ 0; ð2Þ

where � > 0 represents dissipation in the system, then a spa-
tially uniform wave train (with jAj ¼ constant) can be
unstable according to (1) with �¼ 0, but stable according
to (2) for any � > 0 and for any real-valued choices of
{�,�, �}. They provided experimental confirmation of their
mathematical result, but dissipation rates in their experi-
ments were much larger than those of ocean swell, so ques-
tions arose as to how well their laboratory experiments
modeled the dynamics of ocean swell.

[7] The objective of this paper is to provide some of the
basic information needed to create dissipative generaliza-
tions of (1) that are appropriate for ocean swell. Several
issues need to be addressed.

[8] (a) What dissipation rates for swell are observed in
the open ocean? Waves in a laboratory tank necessarily
have much shorter wavelengths than those of ocean swell.
When the dissipation rates of ocean waves and laboratory
waves are each scaled properly, how do their respective
values of the dimensionless (�), used in (2), compare?

[9] (b) In order to replace the standard (nondissipative)
model of surface water waves with a more accurate dissipa-
tive model, one can consider the water to be viscous and
the fluid motion to be (weakly) rotational. In addition, one
should reconsider the boundary conditions at the free sur-
face, for two sets of reasons.

[10] 1. Hunt [1964], Van Dorn [1966], and others noted
that the dissipation rates they observed in laboratory
experiments on surface water waves were too large to be
attributed solely to boundary layers on the sidewalls and
bottoms of their wave tanks. Van Dorn [1966] hypothe-
sized an additional boundary layer at the free surface to
account for the extra dissipation observed.

[11] 2. Van Dorn [1966] also noted that dissipation rates
in his laboratory experiments changed over time, and
hypothesized that a contaminating film, growing on the
free surface, might explain both the extra dissipation and
its time-dependent nature. Similarly, Segur et al. [2005]
found that measured dissipation rates in their wave tank
increased slowly (over a period of hours to days). In addi-
tion, they found that an increased dissipation rate could be
reduced nearly to its original value by skimming off a thin
layer of water at the free surface. This observation is con-
sistent with Van Dorn’s hypothesis that a contaminating
film grows slowly on the free surface. Whether there is an
analogous dissipative effect due to film dynamics on the
sea surface is unknown.

[12] The outline of this paper is as follows. In section 2,
we use published oceanographic data [Snodgrass et al.,
1966; Collard et al., 2009] to document observed dissipa-
tion rates in the open ocean. These observed rates show
some scatter, but they all lie within a factor of two of each
other. Oceanic dissipation rates are vastly smaller than dis-
sipation rates observed in wave-tank experiments. Even so,
when each dimensional dissipation rate is scaled appropri-
ately to translate it into � , the dimensionless dissipation pa-
rameter in (2), some values of � for ocean swell and for
waves in our tank are reasonably close. In section 3, we
apply the model in (2) to swell events documented by
Snodgrass et al. [1966] and Collard et al. [2009]. Their
papers do not provide enough information about the
observed swell to draw precise conclusions, but we can
estimate how much sidebands might have grown for spe-
cific sets of observed ocean swell. Section 3 also contains a
detailed discussion of frequency downshifting, which
occurs outside the range of validity of either (1) or (2). In
section 4, we analyze four dissipative models of surface
water waves that have been proposed in the literature, to
determine which of these models have (linearized) dissipa-
tion rates consistent with those observed both in laboratory
experiments and in ocean swell.

[13] The main conclusion of this paper is that viscous
dissipation, which usually has only a weak effect on the
propagation of surface water waves forced by gravity, can
affect the stability of those waves. Specifically, we find the
following results.

[14] 1. The rate of viscous dissipation for ocean swell is
vastly smaller than the rate of dissipation of surface waves
in a laboratory wave tank. But ocean swell is also much
less nonlinear than typical waves in a wave tank. The rela-
tive strength of dissipation versus nonlinearity is encoded
in the dimensionless parameter � in (2). The range of values
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of � for typical ocean swell overlaps the range of values for
laboratory waves.

[15] 2. For ocean swell with small enough nonlinearity,
dissipation impedes and can stop the modulational instabil-
ity before sidebands grow appreciably.

[16] 3. For waves with strong enough nonlinearity, either
in the carrier wave train (measured by ") or in the initial
size of the sidebands, the wave train can exhibit frequency
downshifting, which is not predicted by either (1) or (2).
We show in section 2 the first example known to us of fre-
quency downshifting of freely propagating ocean waves.

[17] 4. Among the theoretical models mentioned above,
the inextensible-film model provides the most accurate pre-
diction of dissipation rates of ocean swell.

[18] A preliminary version of this paper was given by
Henderson and Segur [2012].

2. Observed Dissipation Rates of Ocean Swell
and of Laboratory Wave Trains

[19] In their classic paper, Snodgrass et al. [1966] set up
a chain of up to six measuring stations along a great-circle
path between New Zealand and Alaska, to record the prop-
agation of ocean swell across the Pacific Ocean. Over 2.5
months, the authors tracked the swell from 12 different
storms in the southern oceans. Ocean swell is dispersive, so
the swell from a particular storm in the southern oceans
might have passed the measuring station in New Zealand
over about a day or less, but the same set of swell was
spread over 5–6 days by the time it reached Alaska. Conse-
quently, the wave spectra that the authors measured were
often somewhat narrow-banded at the first measuring sta-
tion, and they became even more narrow-banded at subse-
quent measuring stations, because the swell had more time
to disperse.

[20] Snodgrass et al. [1966] processed their data to
remove various undesired effects. They specifically men-
tion adjusting their data to remove wave attenuation due
to: (i) geometric spreading (on a two-dimensional spherical
surface), (ii) island shadowing (i.e., blocking of swell by
islands in the path), and (iii) refraction due to local varia-
tions in bathymetry. In addition, they filtered out the waves
of the background sea state that coexisted with the swell.
Herein, we use their processed data to deduce a measured
rate of wave attenuation due to dissipation, for the swell
from a specific storm.

[21] Figure 1 is Figure 20 from Snodgrass et al. [1966].
It shows measured spectra, L(f), from a storm that occurred
on August 1.9, as the swell passed Tutuila (in American
Samoa, 14�200S, 170�400W), then Palmyra (5�500N,
162�W), Honolulu (Hawaii, 21�100N, 157�500W), and
finally Yakutat (Alaska, 59�300 N, 140�200W). These spec-
tra are from 3 h time series taken at roughly 12 h intervals.
One sees that (i) the peak frequency increases with time as
the slower, higher frequency waves arrive at a given station
and (ii) the spectra at a given frequency become more
narrow-banded with increasing distance from the storm
center. Figure 2 shows our digitization of three of the
curves at a particular peak frequency (�52 mc/s), indicated
by the arrows in Figure 1. Also in Figure 2 are conversions
of these data to units of energy density, using

� fð Þ ¼ 10L fð Þ=10. The exponentiated views show the
narrow-bandedness of the 3 h spectra.

[22] A composite of these 3 h spectra provide a wave
spectrum for the entire swell system from a given storm
event. Figure 3a, a digitization of part of Figure 21 of Snod-
grass et al. [1966], shows the measured composite spectra,
L(f), of the entire swell system from a storm that occurred
on August 1.9. These composite spectra do not appear
narrow-banded, because they contain the energy at each
frequency over a period of several days. We use the com-
posite spectra to compute total energy in the swell system
and deduce an energy-decay rate. Again we converted these
data to have units of energy density, using � fð Þ ¼
10L fð Þ=10. The resulting spectra are shown in Figure 3b. The
area under each curve in Figure 3b provides a measure of
the total energy in the swell system, denoted by M, at each
gage site. For consistency, we integrate all four curves over
the frequency interval available at Yakutat (the smallest
interval). Figure 3c shows the change in total energy meas-
ured at successive locations, and the slope of the straight-
line fit gives the energy-decay rate for this set of swell.
Approximate distances between these locations are Tutuila-
Palmyra: 2400 km; Palmyra-Honolulu: 1800 km; and
Honolulu-Yakutat : 4500 km.

Figure 1. Spectral information from 3 h measurements of
swell taken about every 12 h at the locations indicated (1
mc/s¼ 0.001 Hz) [Snodgrass et al., 1966, Figure 20]. The
arrows indicate curves that are digitized and shown in
Figure 2.
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[23] Figure 4 shows similar spectral information
obtained from measurements of swell resulting from the
August 13.7 storm, which were obtained at Cape Palliser
(41�370S, 175�200W), Tutuila, Palmyra, Honolulu, and

Yakutat. The spectrum obtained at Cape Palliser has two
peaks, as shown in Figure 4b, indicating that dispersion had
not yet separated the different frequency components.
Since the spectrum obtained at this first site does not fit the

Figure 2. (a, c, and e) Digitized versions of the curves indicated by the arrows in Figure 1. (b, d, and f)
Same information recomputed in units of energy density as a function of frequency using
� fð Þ ¼ 10L fð Þ=10, where f is frequency. (a and b) Palmyra (5 A.M.); (c and d) Honolulu (6 P.M.); and (e
and f) Yakutat (10 A.M.).
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description of a narrow-banded wave train, we use the sec-
ond data set, obtained at Tutuila, to determine initial ampli-
tudes. Figure 4c is the same as Figure 4b, rescaled and
without the curve from Cape Palliser. This closer look
shows that the spectral peak shifts downward, from about
65 mc/s at Tutuila to 61 mc/s at Palmyra, then it remains at
this lower frequency as the swell continues its propagation
to Yakutat. We return to this process, called frequency
downshifting, in section 3.

[24] Figure 5 shows similar spectral information for the
July 23.2 storm, based on data measured at Tutuila, Pal-
myra, Honolulu, and Yakutat. Note that the wave energy
recorded at Honolulu (triangles) is bigger than that at Pal-
myra (squares). This feature is clearly evident in the data of
Snodgrass et al. [1966], but they do not comment on it. We
consider it part of the scatter in their data.

[25] Table 1 summarizes the results from these three
data sets. For each data set, it provides D, the measured
energy-decay rate, !0, the most energetic frequency and a
characteristic initial amplitude, 2jA0j ¼

ffiffiffiffiffiffiffiffiffi
2M0
p

, where M0

is the total energy at Tutuila in each set of swell. The crest-
to-trough wave height is twice this : 4 jA0j.

[26] More recently, Collard et al. [2009] analyzed satellite
synthetic aperture radar (SAR) observations of ocean waves
to determine wave-attenuation rates for ocean swell that had
propagated at least 4000 km from the specific storm on
which they focused. These authors had abundant data from
which to choose, so they were able to avoid effects like
island shadowing, for which Snodgrass et al. [1966] had to
correct their data. Eventually, the authors chose 35 sets of
ocean swell from this storm, in which each set of swell had a
spectrum with a central peak period of 15 s (so !0¼ 0.42
rad/s). After removing the effect of geometric spreading
from their data, they computed an energy-decay rate that
gave the best least-squares fit for all of their data:

D ¼ 0:37� 10�6m�1: ð3aÞ

[27] In addition, they estimated that 1 standard deviation
from this mean rate of energy-decay lay in a range:

Figure 3. Spectral information from measurements of swell from the August 1.9 event of Snodgrass
et al. [1966]. Symbols indicate data obtained at Tutuila (solid circles), Palmyra (squares), Honolulu (tri-
angles), and Yakutat (hollow circles). (a) Digitized version of top part of Figure 21 in Snodgrass et al.
[1966], with 1 mc/s¼ 0.001 Hz. (b) Same information recomputed in units of energy density as a func-
tion of frequency using � fð Þ ¼ 10L fð Þ=10, where f is frequency. (c) Each datum point in Figure 3c corre-
sponds to (the log of) the integral (using 41.2< f< 74.6 mc/s) of each �-curve in Figure 3b, giving the
total energy, M(x), in the swell at that location. The slope of the solid line gives the energy-decay rate,
D¼ 0.43 � 10�3 km�1.
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0:31� 10�6 < D < 0:40� 10�6m�1: ð3bÞ

[28] Our results, in Table 1, lie somewhat outside the
range in (3b), but they are close enough that we can attrib-
ute the discrepancy to scatter in the data of Snodgrass et al.
[1966].

[29] Collard et al. [2009] also gave an average signifi-
cant swell height of 4.4 m for their data set, which leads to
an r.m.s. value [Dean and Dalrymple, 1991] for the wave
amplitude of:

2jA0j ¼
1

2

4:4

1:4

� �
¼ 1:6m: ð4Þ

Note that this wave amplitude is larger than any of those in
Table 1, which are based on data of Snodgrass et al.
[1966]. Collard et al. [2009] gave three reasons for this dif-
ference: (1) they intentionally chose a very energetic
storm, to obtain good signal-to-noise ratios in their data;
(2) their SAR data allowed them to follow the most ener-
getic swell from the storm, while Snodgrass et al. [1966]
could only measure waves along their fixed great-circle
path; and (3) their filtered sample of 35 sets of swell con-
tained no swell with small amplitudes, again to obtain good
signal-to-noise ratios. We also note that the standard devia-
tion of Collard et al. [2009], quoted in (3b), is based on the

Figure 4. Spectral information from measurements of swell from the August 13.7 event from Snod-
grass et al. [1966]. Symbols indicate data obtained at Cape Palliser (upside down triangle), Tutuila (solid
circles), Palmyra (squares), Honolulu (triangles), and Yakutat (hollow circles). (a) Digitized version of
top part of Figure 30 in Snodgrass et al. [1966]. (b) Same information recomputed in units of energy
density. (c) Same information as in Figure 4b scaled to zoom in on the last four measurement sites. (d)
Each datum point in Figure 4d corresponds to (the log of) the integral (using 41.2< f< 73.4 mc/s) of
each �-curve in Figure 4c, giving the total energy, M(x), in the swell at that location. The slope of the
solid line gives the energy-decay rate, D¼ 0.25 � 10�3 km�1.
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swell generated by the single storm they studied. It need
not apply to ocean swell in general.

[30] How do these observed decay rates for ocean swell,
from either Snodgrass et al. [1966] or Collard et al. [2009],
compare with decay rates of freely propagating waves in a
laboratory wave tank? As mentioned above, Segur et al.
[2005] found that the decay rate measured in their wave

tank could depend on how long the water had been sitting
in the tank since the water surface was last cleaned. They
found that once the free surface of the water was cleaned,
then the observed decay rate remained fairly constant for a
period of a few hours—long enough to run a series of
experiments. In this ‘‘cleaned surface’’ situation, they
measured an amplitude-decay rate of 0.11 m�1 for waves
on deep water. The wave energy is proportional to (ampli-
tude)2, so their observed energy-decay rate was twice this:

D ¼ 0:22 m �1: ð5Þ

Thus, the observed energy-decay rate in this laboratory
experiment was approximately a million times larger than
that for ocean swell, as shown either in (3) or in Table 1,
even though all of these waves are on deep water!

[31] However, this comparison might not be the most im-
portant one to make. Recall that (1) is designed to describe
the evolution of a wave train due to nonlinear wave

Figure 5. Spectral information from measurements of swell from the July 23.2 event from Snodgrass
et al. [1966]. Symbols indicate data obtained at Tutuila (solid circles), Palmyra (squares), Honolulu (tri-
angles), and Yakutat (hollow circles). (a) Digitized version of top part of Figure 26 (from about
30< f< 65 mc/s) in Snodgrass et al. [1966]. (b) Same information recomputed in units of energy den-
sity. (c) Each datum point in Figure 5c corresponds to (the log of) the integral (using 37.0< f< 62.1 mc/
s) of each �-curve in Figure 5b, giving the total energy, M(x), in the swell at that site. The slope of the
solid line gives the energy-decay rate, D¼ 0.23 � 10�3 km�1.

Table 1. Summary of Three Systems Documented by Snodgrass
et al. [1966]a

Storm Date D (m�1) !0 (rad/s) 2jA0j (m)

Jul 23.2 0.23 � 10�6 0.37 0.33
Aug 1.9 0.43 � 10�6 0.41 0.64
Aug 13.7 0.25 � 10�6 0.40 0.71

aSummary of results for the swell generated by storms on July 23.2, Au-
gust 1.9, and August 13.7, as documented by Snodgrass et al. [1966]. For
each storm, the table lists energy-decay rates (D), found in Figures 3c, 4d,
and 5c, plus the peak frequencies (!0) and the characteristic initial ampli-
tudes (2jA0j), both recorded at the Tutuila site.
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interactions and linear dispersion. The dimensionless pa-
rameter, �, in (2), compares the distance scale for dissipa-
tion to distance scales for nonlinear interactions and
dispersion. D is the (dimensional) distance scale for dissi-
pation, either in a wave tank or in the ocean, so � gives the
ratio of D to the distance scale for nonlinear interactions (or
for dispersion).

[32] The time-like variable (�) in (1) or (2) actually
measures how far the wave has traveled from its source;
call this physical distance X. In (1) or (2), � is a dimension-
less, slow ‘‘time’’:

� ¼ "2k0X ; ð6aÞ

where k0 is the (dimensional) wave number of the carrier
wave, and

" ¼ 2jA0jk0 ð6bÞ

is a dimensionless measure of the nonlinearity of the carrier
wave [Segur et al., 2005]. In addition, there is an extra fac-
tor of 2 between D, an energy-decay rate, and �, an
amplitude-decay rate. It follows that the dimensionless � is
given by

� ¼ D
2"2k0

: ð7Þ

[33] Now we can compute dimensionless values of �, for
the laboratory experiments of Segur et al. [2005], for ocean
swell observed by Snodgrass et al. [1966] and for swell
data of Collard et al. [2009]. We begin with the laboratory
data. In addition to the energy-decay rate in (5), Segur
et al. [2005] also measured other relevant parameters for
their main set of experiments:

k0 ¼ 0:441 cm �1; 2jA0j ¼ 0:218 cm ¼> " ¼ 0:10: ð8Þ

[34] Equations (5), (7), and (8) yield the first line of Ta-
ble 2. The information from Table 1, plus (!0

2¼ gk0), the
dispersion relation for gravity-induced waves on deep
water, and (7) yield the next three lines of Table 2. Finally,
using !0¼ 0.42, (!0

2¼ gk0), (3a), (4) and (7) yield the last
line of Table 2.

[35] Comments on Table 2:
[36] 1. Consider first only the ocean data, ignoring the

first line in Table 2. Values of � vary from each other by a
factor of more than 30, even though the corresponding val-
ues of D vary by less than a factor of 2. This change is pri-

marily due to the presence of ", the nonlinearity parameter,
defined by (6b). � is a ratio that compares two distance
scales, one representing dissipation and the other represent-
ing nonlinear interactions. Smaller values of " (as for the
July 23.2 storm) imply weaker nonlinear effects, so dissipa-
tion has more time to influence the dynamics of the waves.

[37] 2. A central question addressed in this paper is
whether the wave damping that occurs naturally in the
open ocean can stabilize the modulational instability for
ocean swell. In the main set of lab experiments of Segur et
al. [2005], dissipation in the wave tank stopped the modu-
lational instability after some early growth of sidebands, as
(2) predicts. The value of � for the July 23.2 storm is larger
than that for the lab experiment, while the values for the
August 1.9 and August 13.7 storms are smaller by no more
than a factor of 4, so one could conjecture that dissipation
might have limited the growth of sidebands for the swell
from these three storms as well. In section 3, we use (2)
with appropriate values of � to simulate how much side-
bands might have grown for each of the three events docu-
mented by Snodgrass et al. [1966].

[38] 3. What happens if � is quite small, as it is in the
last row of Table 2? By the argument above, small � means
that the distance scale for dissipative effects is much longer
than the distance scale for nonlinear interactions. Then (2)
suggests that nonlinear effects, which drive the modula-
tional instability, could make perturbations grow signifi-
cantly before dissipation stops further growth. But
laboratory experiments indicate instead that both (1) and
(2) fail as valid models in this situation, because physical
water waves exhibit frequency downshifting, which is not
predicted by either (1) or (2). See section 3 for further dis-
cussion of downshifting.

3. Growth of Sidebands of Ocean Swell and the
Effects of Dissipation

[39] In this section, we investigate the effects of meas-
ured dissipation rates, discussed in section 2, on the stabil-
ity of sets of ocean swell propagating in one horizontal
dimension. For this purpose, we recast (2) in dimensional
form:

i @X Aþ D
2

A

� �
þ �@2

T Aþ �jAj2A ¼ 0; ð9Þ

where the (dimensional) variables (X, T) are related to labo-
ratory coordinates, (x, t), such that X ¼ "2x is a slow space
variable; T ¼ " t � x=Cg

� �
is a slow time variable in a ref-

erence frame traveling at the carrier wave’s group speed,
Cg ; " << 1 is given in (6b); the dimensional coefficients,
� ¼ �k0=!

2
0 and � ¼ �4k3

0 , are consistent with the nondi-
mensional values given in Ablowitz and Segur [1981];
k0; !0 k0ð Þf gare the wave number and corresponding fre-

quency of the carrier wave; A(X, T) is the slowly varying
complex carrier-wave amplitude; and D/2 is the amplitude-
decay rate, listed in Table 2 for the events considered here.
Following Segur et al. [2005], we consider a perturbed,
Stokes-like solution to (9) of the form

Table 2. Comparison of Dimensionless Dissipation Rates for
Laboratory and Field Dataa

Event k0 (m�1) " D (m�1) �

Lab data [Segur, 2005] 44.1 0.10 0.22 0.25
Jul 23.2 [Snodgrass, 1966] 0.014 0.0046 0.23 � 10�6 0.39
Aug 1.9 [Snodgrass, 1966] 0.017 0.011 0.43 � 10�6 0.105
Aug13.7 [Snodgrass, 1966] 0.016 0.011 0.25 � 10�6 0.065
Collard et al. [2009] 0.018 0.029 0.37 � 10�6 0.012

aWave numbers, measures of nonlinearity, measured energy-decay
rates, and ratios of measures of dissipation to nonlinearity for a laboratory
experiment and four oceanographic observations.
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e�DX=2þi�jA0j2 1�Exp �DX½ �ð Þ=D A0 þ 	 a�1 Xð Þe�ibT þ a1 Xð ÞeibT
� �� �

þ O 	2
� �

;

ð10Þ

where A0e�DX=2þi�jA0j2 1�Exp �DX½ �ð Þ=D is an exact, Stokes-like
solution of (9); the complex functions a�1(X) and a1(X) are
the amplitudes of the minus and plus sideband perturba-
tions with perturbation frequencies 7b ; and 	<<1 is a
small (accounting) parameter. The perturbation frequency,
b, is chosen to be the one with the maximum growth rate
for D¼ 0. Here A0 is a constant listed in Table 1, and the
sidebands evolve with distance, X, according to

i _a1 Xð Þ � �b2a1 þ _
 a1 þ
1

2
ei
þ2iarg A0f ga��1

	 

¼ 0;

i _a�1 Xð Þ � �b2a�1 þ _
 a�1 þ
1

2
ei
þ2iarg A0f ga�1

	 

¼ 0;

ð11Þ

where 
 Xð Þ ¼ 2�jA0j2 1� e�DX
� �

=D ; _
 Xð Þ ¼ 2�
jA0j2e�DX ; ()� indicates complex conjugate; and (11)
results from substituting (10) into (2) and keeping only
terms of O(	).

[40] Figure 6 shows the evolution of sidebands for the
three swell events of Snodgrass et al. [1966] discussed in
section 2. The phases of the initial values of a�1(X) and
a1(X) are chosen to give the maximum growth rate when
D¼ 0; the magnitudes of the initial values (of the perturba-
tions) do not matter here, since (11) is linear. A conse-
quence of that choice of initial phase is that ja�1(X)j and
ja1(X)j have the same evolution. (For other choices of ini-
tial phases, the perturbation amplitudes can evolve asym-
metrically, as shown by Segur et al. [2005].) Figure 6
shows that the presence of damping provides a bound on
the growth of the perturbations. For the swell system of
July 23.2, the bound is about a factor of 2.5. Thus, for this
system, even though the actual decay rate of the waves is
quite small (see Table 1), dissipation is likely to dominate
nonlinearity in their evolution. The more appropriate mea-
sure of dissipation is its ratio to nonlinearity, �, which for
this system is 0.39 (see Table 2). For the swell system of
August 1.9, the bound is much larger, about a factor of 15,
and the ratio of dissipation to nonlinearity is smaller,
�¼ 0.105. For this system, nonlinearity is likely to play an

important role in evolution. Nevertheless dissipation, while
not dominant, is also likely to play a role.

[41] What happens when delta is quite small, as it is for
the swell systems of August 13.7 and Collard et al.
[2009]? Figure 6c shows that for the August 13.7 swell,
sideband perturbations can grow to about 60 times their
original size, which is large enough for nonlinearity to
dominate if the initial perturbations are not too small.
(Regardless of how small delta is, one can calculate a value
for the initial perturbation amplitude small enough that dis-
sipation stops growth before nonlinearity becomes
important.)

[42] For the data of Collard et al. [2009], the bound is
larger still : (11) predicts that perturbations of wave trains
like theirs grow so large that a linearized model like that in
(11) is no longer relevant. Then one might suppose that the
fully nonlinear model, (2), is required. But observations of
large amplitude waves (with small �) show evolution that is
not governed by either (1) or (2). Instead, based on oceano-
graphic observations of Collard et al. [2009], Ardhuin
et al. [2010] concluded that swell dissipation can be nonlin-
ear. And using laboratory data, Segur et al. [2005] showed
that if the amplitude of either the carrier wave or the initial
perturbation was large enough, the wave train exhibited a
nonlinear dissipative process, frequency downshifting,
which we discuss next.

[43] Frequency downshifting of surface water waves can
occur in two different ways, which might or might not be
related. The first is for wind waves. Moskowitz [1964],
Janssen [2004], and others have noted that in the presence
of strong enough winds, ocean waves reduce their peak fre-
quency as they gain energy from the winds. Eventually this
process stops, and the sea is called ‘‘fully developed.’’ This
process is well documented, and is not relevant for ocean
swell, which propagates freely even with no wind.

[44] The second corresponds to swell, and was first docu-
mented by Lake et al. [1977]. They observed in laboratory
experiments (with no wind) that a nearly monochromatic
train of surface waves with large enough amplitudes can
shift its energy to a lower frequency as it propagates. Other
observations of frequency downshifting in laboratory
experiments of freely propagating surface waves can be
found in Segur et al. [2005, Figures 10–12] and Henderson
et al. [2010, Figures 9 and 10]. Figure 4, above, shows

Figure 6. Evolution of sideband amplitudes from computations of (11). Solid curves have D> 0 (with
values listed in Table 2); dashed curves have D¼ 0. (a) July 23.2 swell event, b ¼ 0.002/s; (b) August
1.9 swell event, b ¼ 0.004/s; and (c) August 13.7 swell event, b ¼ 0.004/s. In all cases, a�1(0)¼ 1,
a1(0)¼�i.
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what might be the first recorded example of frequency
downshifting of ocean swell.

[45] Frequency downshifting in a train of freely propa-
gating, nearly monochromatic, dispersive waves of finite
amplitude can be identified in two independent ways.

[46] 1. For a train of nearly monochromatic waves,
the frequency of the carrier wave is the dominant fre-
quency of the wave train. Downshifting occurs when
the frequency of the carrier wave no longer dominates,
because a lower frequency has gained more energy than
that of the carrier wave. This process can be seen in Fig-
ure 4c.

[47] 2. Let A(T,X) denote a solution of (9) with periodic
boundary conditions (in T), and let � denote that period. If
the initial data for (9) are square-integrable, so

M 0ð Þ ¼ 1QZ �

0
jA T ; 0ð Þj2dT <1;

then A(T,X) has a convergent Fourier series for any D	 0,

A T ;Xð Þ ¼
X1

n¼�1
an Xð Þe�inbT : ð12Þ

Hence, a second way to define frequency downshifting is
that the weighted average value of nb decreases as X
increases.

[48] We now calculate this weighted average value.
Two useful constants of the motion of (9) with periodic
boundary conditions (in T) and D¼ 0 are the wave
‘‘energy,’’

M Xð Þ ¼ 1QZ �

0
jA T ;Xð Þj2dT ; ð13aÞ

and the ‘‘momentum’’

P Xð Þ ¼ iQZ �

0
A�@T A� A@T A�½ �dT : ð13bÞ

[49] If D> 0 in (9), then neither of these quantities is
constant, but each evolves simply:

M Xð Þ ¼ M 0ð Þe�DX ; P Xð Þ ¼ P 0ð Þe�DX : ð13c; dÞ

[50] It follows that if M(0)> 0, then
P Xð Þ
M Xð Þ ¼

P 0ð Þ
M 0ð Þ ð13eÞ

is a constant of the motion in (9), for any D	 0. Making
use of (12) and Parseval’s relation [e.g., Guenther and Lee,
1988], we may write

M Xð Þ ¼
X1

n¼�1
jan Xð Þj2; P Xð Þ ¼ 2

X1
n¼�1

nbjan Xð Þj2: ð14Þ

[51] If one interprets jan Xð Þj2as a non-normalized proba-
bility density, then it follows from (14) that P(X)/M(X) is
twice the average frequency of any solution of (9) with per-
iodic boundary conditions. And it follows from (13e) that
this average frequency is a constant of the motion of (9),
for any D	 0. Thus, according to the second definition of
frequency downshifting, above, no bounded solution of (9)
with periodic boundary conditions can exhibit downshift-
ing, for any D	 0.

[52] A similar argument applies to solutions of (1) or (2)
with periodic boundary conditions in (�, �). In that case,
P(�) becomes a two-component vector, corresponding to
the two directions (�, �). For one of these two components,
P(�)/M(�) represents twice the average frequency of the so-
lution of (1) or (2), and it is a constant of the motion.
Therefore, according to the second definition of frequency
downshifting (above), downshifting lies outside of the
range of validity of either (1) or (2) as approximate models
of the evolution of ocean swell.

[53] One can show by a similar argument that downshift-
ing also lies outside the range of validity of a higher-order
NLS-type model due to Dysthe [1979]. Note that all of
these results depend on using the second definition of
downshifting, not the first. For the laboratory experiments
of Segur et al. [2005] or Henderson et al. [2006, 2010], it
was not necessary to distinguish between these two defini-
tions of downshifting, because we saw no experiments in
which one of these occurred while the other did not. Fewer
data are available for ocean swell, so we cannot guarantee
that the two definitions always agree.

[54] Figure 7 shows the measured evolution of P(X)/
M(X) for the three sets of swell from Snodgrass et al.
[1966], discussed in section 2. Note that for the August
13.7 swell system, P(X)/M(X) decreases and changes sign
between Tutuila (at X¼ 0) and Palmyra (at X¼ 2400 km).
The decrease of P(X)/M(X) shows that (13e) was not satis-
fied during this interval, but P(X) and M(X) are both
obtained from field data, so perhaps this decrease is due
only to scatter in those data. The change of sign of P(X)/
M(X) is more serious. According to (13a), M(X) must
remain non-negative, and the data in Figure 4 show that

Figure 7. The ratio of momentum to energy for three swell systems of Snodgrass et al. [1966]. (a) July
23.2. (b) August 1.9. (c) August 13.7. The symbols are defined in Figures 3–5.
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M(X) decreased as X increased. So if P(X)/M(X) changed
sign, then P(X) changed sign, and the evolution of P(X) is
badly predicted by (13d). We conclude that the August
13.7 swell system underwent frequency downshifting,
according to the second definition above. In fact, the Au-
gust 13.7 swell system also downshifted according to the
first definition above—the data in Figure 4c show that the
spectral peak of this swell system downshifted between
Tutuila and Palmyra.

[55] For the swell systems observed by Collard et al.
[2009], the measure of nonlinearity, ", was almost three
times that for the August 13.7 event. Hence, we would
expect the ratio P(X)/M(X) decrease for these waves as
well, but with no measurements of P(X) or M(X) for the
swell of Collard et al. [2009], we cannot test the hypothe-
sis. Nevertheless the conclusion of Ardhuin et al. [2009,
2010], that swell dissipation is amplitude dependent, is
consistent with the occurrence of frequency downshifting
in their data, because Islas and Schober [2011] found that
adding nonlinear damping to an NLS-type numerical code
leads to what they call ‘‘irreversible downshifting.’’

[56] Possible explanations for downshifting of freely
propagating surface waves are discussed by Dias and
Kharif [1999], based primarily on numerical computa-
tions. To our knowledge, these results have not yet been
verified experimentally. The cause of downshifting is less
clear for ocean swell than it is for waves in the laboratory,
because ocean swell can gain or lose energy through inter-
actions with local seas, winds and currents, whereas these
other possibilities can be excluded from laboratory
experiments.

[57] The results of sections 2 and 3 show that dissipation
can play a significant role in the evolution of ocean swell.
Dimensional decay rates of swell are much smaller than
those in laboratory experiments, but nonlinearity can also
be much smaller in swell than in a laboratory. The ratio of
dissipative to nonlinear effects, � (see Table 2), provides a
measure of the relative importance of these competing
effects. The values of � obtained from observations of
ocean swell are large enough to indicate that dissipation is
not negligible for evolution. Indeed, dissipation can inhibit
the growth of perturbations of swell, and even stop their
growth in some cases. In section 4, we consider sources
and models for dissipation.

[58] Another stabilizing mechanism, first studied by
Alber [1978], is randomness in the wave field, which might
have played a role in stabilizing the swell systems dis-
cussed here. Alber’s work showed that the relative strength
of nonlinearity versus spectral bandwidth, measured by the
Benjamin-Fier Index (BFI), determines whether random-
ness in the surrounding wave field can lead to instability of
a uniform wave train: as the nonlinearity increases or the
spectral bandwidth decreases, the likelihood of an instabil-
ity increases.

[59] In Alber’s work, the BFI is constant over the wave
field, but a swell wave train undergoes dispersive spreading
as the waves propagate, so the spectral bandwidth in the
direction of propagation of the wave train necessarily
decreases over time. Mathematically, one can show that
this bandwidth should decrease like 1/D, where D is the
distance the wave train has propagated from its source.
Practically, this decreasing bandwidth played such an im-

portant role in the analysis of swell by Snodgrass et al.
[1966] that they mention it in the abstract of their paper. A
consequence is that the BFI almost certainly increases as
the wave train propagates, making it less and less likely
that randomness could stabilize a propagating train of
swell.

[60] A second problem with applying Alber’s work to a
dispersing swell wave train is that the theory requires that
the wave field be spatially homogeneous. But a swell wave
train is certainly not spatially homogeneous: longer waves
travel faster than shorter waves, so a snaphot of the wave
field at any fixed time (after the waves have propagated
away from the source) shows clearly the direction in which
the wavefield is propagating. With more work, one can esti-
mate from this same snapshot the size of D—the distance
back to the source of the wavefield.

[61] Thus, Alber’s work does not apply to swell such as
that analyzed by Snodgrass et al. [1966] or Collard et al.
[2009]. Indeed, to obtain a spatially homogeneous wave
state, Komen et al. [1984] ‘‘ . . . ensured that no swell was
present . . . .’’ Nevertheless, we cannot rule out the possibil-
ity that both randomness and dissipation played a role in
stabilization of the observed swell.

4. Approximate Models of Ocean Swell in the
Presence of Dissipation

[62] Comparisons in section 2 of data from ocean swell
and from laboratory experiments show that measured dissi-
pation rates in the open ocean are vastly smaller than those
in a laboratory wave tank. Even so, the comparisons in sec-
tions 2 and 3 show that the role of dissipation in the evolu-
tion of ocean swell can be comparable to its role in the
evolution of surface water waves in a laboratory wave tank.
The objective of this section is to examine possible theoret-
ical models of dissipation for small-amplitude waves.

[63] Waves in a laboratory wave tank experience dissi-
pation in the boundary layers on the sidewalls and bottom
of the tank, but the observed decay rates of gravity-driven
surface waves are often larger than what can be attributed
to these boundary layers. No such boundary layers affect
ocean swell on deep water, but ocean swell clearly loses
energy as it propagates, as shown in section 2.

[64] At this time, we do not know what mechanism gen-
erates the ‘‘extra’’ dissipation in laboratory wave trains, nor
the mechanism that generates dissipation of ocean swell on
deep water, nor whether the same mechanism is at work in
both situations. For surface water waves, maximum veloc-
ities occur on the free surface, and so do maximum velocity
gradients (away from rigid boundaries) so there is reason to
expect the ‘‘extra’’ dissipation to occur near the free sur-
face. In this section, we consider four boundary conditions,
each of which has been proposed to allow for viscous dissi-
pation at or near the free surface, and we give the dissipa-
tion rate predicted by that model for infinitesimal waves.
By comparing the dissipation rates predicted by each of
these mathematical models with the observed dissipation
rates of laboratory-generated waves and of ocean swell, we
hope to narrow the range of plausible mechanisms that cre-
ate the observed dissipation, in wave tanks and in the open
ocean.
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4.1. Boundary Layers on the Sidewalls and Bottom of
a Wave Tank

[65] We begin with a known source of dissipation, along
the sidewalls and bottom of a wave tank. The dissipation from
these boundary layers is well understood and does not affect
ocean waves on deep water. Consider a long wave tank with a
rectangular cross section of width W, filled to a depth h with
still water. A wave maker, which spans the width at one end of
the tank, creates a train of periodic, plane waves of small am-
plitude a, which then propagate to the other end of the tank. Ei-
ther the waves are absorbed at the other end, or else the
experiment ends when the wave train first reaches the far end
of the tank; either way, we assume that all of the waves propa-
gate in one direction, with no reflected waves. We also assume
that the fluid motion is nearly irrotational, and that the wave-
length of these waves is long enough that surface tension can
be ignored. Then the frequency ! and the wave number k of
the waves are related by the usual dispersion relation for
gravity-driven surface waves with small amplitudes,

!2 ¼ gk tanh khð Þ: ð15Þ

[66] The energy of a packet of these waves travels with
the group velocity,

Cg ¼
g 2khþ sinh 2khð Þ½ �

4!cosh2 khð Þ
: ð16Þ

[67] As the waves propagate, they create oscillatory
boundary layers on the sidewalls and bottom of the tank.
The rotational motion inside these boundary layers dissi-
pates energy. The spatial decay rate of the amplitude of this
uniform wave train, due to these boundary layers, is well
established [Van Dorn, 1966]:

DWh

2
¼ �

2!

� �1=2 2k

W

� �
kW þ sinh 2khð Þ
2khþ sinh 2khð Þ

� �
; ð17Þ

where � is the kinematic viscosity of water. If the boundary
layers on the sidewalls and bottom of the tank were the
only sources of dissipation, then the elevation of the free
surface above its quiescent level for a small-amplitude
wave train would be

� x; tð Þ ¼ a exp �DWh

2
x

 �
sin kx� !t þ �0f g þ O a2

� �
: ð18Þ

[68] As a concrete example, consider the experiment of
Segur et al. [2005], cited in Table 2: tank width, W¼ 0.254
m; water depth, h¼ 0.20 m; wave frequency, ! /2¼ 3.33
Hz; wave number, k¼ 44.1 m�1; kinematic viscosity of
water at 20�C, �¼ 1.00 � 10�6 m2/s. Then (17) gives a
spatial decay rate for wave amplitudes due to boundary
layers at the sidewalls and bottom of the tank:

DWh=2 ¼ 0:054 m�1: ð19Þ

[69] This is approximately half of D=2¼ 0.11 m�1, the
amplitude-decay rate measured by Segur et al. [2005].

Thus, the dissipation from wall boundary layers is impor-
tant in laboratory experiments, but they might not be the
only source of dissipation. For ocean swell propagating on
deep water, there are no sidewalls and the bottom boundary
layer is insignificant, so none of the dissipation predicted
by (17) occurs.

[70] Each of the four models discussed below provides a
prediction of dissipation due to viscous effects at or near
the free surface. For laboratory experiments, this decay rate
should be added to that from (17).

4.2. The Clean-Surface Model

[71] This model, consisting of a viscous fluid beneath a
free surface, with a vacuum above the surface, was
explored in detail in Lamb [1932, section 349] and has
been popular. Dias et al. [2008] used it to derive (2) from
the Navier-Stokes equations, with an explicit formula for
the decay rate, given below in (21b). Lo and Mei [1985]
assert that this model provides the viscous-damping factor
‘‘in the open ocean or a very wide tank.’’

[72] The model consists of the Navier-Stokes equations
for an incompressible, viscous fluid of infinite depth,
bounded above by a free surface, with a vacuum above that
surface. A constant gravitational force acts downward; one
can also include surface tension, but we neglect it here.
One can obtain a dissipation rate by linearizing the equa-
tions, which simplifies the problem. For a two-dimensional
fluid flow, one uses a Helmholtz decomposition to write the
velocity field with an irrotational part and a rotational part.
Thus, for a wave motion with (real-valued) spatial wave
number k, the two components of velocity are

u x; z; tð Þ ¼ ik Aeikxþ�t � A�e�ikxþ��t� �
e�jkjz

� mCeikxþ�tþmz þ m�C�e�ikxþ��tþm�z
� �

;

w x; z; tð Þ ¼ jkj Aeikxþ�t þ A�e�ikxþ��t� �
ejkjz

þik Ceikxþ�tþmz � C�e�ikxþ�� tþm�z
� �

;

ð20a; bÞ

where we require

Re mð Þ > 0 ð20cÞ

so that the motion vanishes as z! �1. The first terms in
each line of (20a, 20b) satisfy the Laplace equation, and the
second terms in each line satisfy the linear diffusion equa-
tion, so

� ¼ � m2 � k2
� �

; ð20dÞ

where � is the kinematic viscosity of the fluid. One also
needs to represent the pressure in the liquid, and the (mov-
ing) location of the free surface (z¼ � (x,t)). Then on the
free surface, one must satisfy a kinematic condition
(@t� ¼ wjz¼�) and two dynamic conditions (that the normal
and tangential components of stress both vanish on z¼ �).
After some algebra, one obtains a quartic equation for {m/
jkj}. This equation has two roots with Re(m)> 0. For
g¼ 9.81 m/s2, �¼ 1.00 � 10�6 m2/s, and waves long
enough that one can ignore surface tension, these two roots
correspond to waves traveling to the left and to the right.
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Substituting either of these roots into (20d) yields a bound
on the temporal dissipation rate:

Re �ð Þ � 2�k2: ð21aÞ

With an error of less than 1% for any surface water wave
with frequency less that 3 Hz,

Re �ð Þ 
 2�k2: ð21bÞ

The spatial decay rate is obtained by dividing (21b) by Cg

so that we may approximate

Dcs

2

 4

�k3

!
¼ 4

�ffiffiffi
g
p jkj5=2: ð22Þ

[73] We note that this model does not impose a boundary
layer structure on the problem—the only approximation is
to linearize the Navier-Stokes equations. For small Dcs, Re
(m/jkj) is small, so the rotational motion is usually confined
to a thin layer near the free surface. But this is a conse-
quence of the dynamics, not because it is imposed on the
problem.

[74] Again, we use the parameters of the laboratory
experiment cited in Table 2 as an example, to obtain a pre-
dicted amplitude-decay rate due to dissipation at the free

surface of Dcs/2¼ 0.016 m�1. Add this to the decay-rate
from sidewall and bottom boundary layers (in (19)) to
obtain the amplitude-decay rate predicted by the clean-
surface model:

D=2 ¼ 0:070 m�1: ð23Þ

[75] The dashed-dotted line in Figure 8a shows the pre-
diction of (17) plus (22), while (22) by itself gives the dot-
ted line in Figure 8b. (For the experiments in Figure 8a, h
¼ 0.20 m and W¼ 0.254 m. The surface was cleaned by
blowing a wind that pushed the surface film to one end of
the tank where it was vacuumed away. The wave maker is
described in Segur et al. [2005].)

4.3. The Two-Fluid Model

[76] Dore [1978] noted that for waves at the air-water
interface, the decay rate predicted by the clean-surface
model ‘‘is a good approximation only for waves whose pe-
riod is a small fraction of a second,’’ but it is very often
used for waves of much longer periods, with poor results.
Dore addressed this deficiency by accounting for viscous
dissipation both in the water below the air-water interface
and in the air above it. Somewhat surprisingly, he found
that for ocean swell, most of the dissipation occurs not in
the water but in the air! At atmospheric pressure and 20�C,

Figure 8. Spatial decay rates of wave amplitude for freely propagating surface water waves, in labora-
tory experiments (in Figures 8a and 8c) and for ocean swell (Figures 8b and 8c). In all graphs, the sym-
bols represent observed decay rates, either in our lab (for Figure 8a) or in the ocean (for Figure 8b). In
Figure 8b, hollow circles represent data from Snodgrass et al. [1966], while the solid square represents
the result from Collard et al. [2009]. In all graphs, the dashed-dotted curve shows predictions of the
clean-surface model, the solid curve shows predictions of the two-fluid model, the dashed curve shows
predictions of the inextensible surface model, and the dotted curve shows predictions of maximum decay
rate from the surfactant model. The curves in Figure 8a include the contributions of boundary layers on
the walls and bottom of a tank, while the curves in Figure 8b exclude those contributions. Figure 8c com-
bines the two graphs into a single figure.
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the density of water is about 800 times heavier than that of
air, but the kinematic viscosity of air is about 15 times
larger than that of water. As a result, the dissipation rate
predicted by this model can be significantly different from
that of the clean-surface model, which is a limiting case of
Dore’s [1978] model.

[77] Logically, the two-fluid model is a direct generaliza-
tion of the clean-surface model. One considers two immis-
cible, incompressible, viscous fluids, with the lighter one
resting above the heavier one, and a movable interface
between them. Both are influenced by a constant gravita-
tional field. In the simplest situation, each fluid fills a semi-
infinite region, but there are nearly twice as many variables
as in the clean-surface model, and the problem is not very
simple, even after linearizing the equations and restricting
to two-dimensional motion. Each fluid has a velocity field
with a rotational and irrotational part, like that in (20);
there are two kinematic boundary conditions at the inter-
face, relating the motion of the interface to the normal ve-
locity in each fluid at the interface; the dynamic boundary
conditions at the interface are that both the normal and tan-
gential components of stress must be continuous across the
interface. This model reduces to the clean-surface model if
one sets the density and dynamic viscosity of the upper
fluid to zero.

[78] Dore [1978] does not actually solve this linearized
problem. Instead he works out what he calls ‘‘an excellent
numerical approximation’’ for the spatial decay rate of
wave amplitudes, according to this model:

D2f

2
¼

ffiffiffi
2
p �a

�w

�ak2
� �1=2

gjkjð Þ1=4 þ 2�wk2

	 

2

ffiffiffiffiffi
jkj
g

s !
; ð24Þ

where {�a, �a ; �w, �w} refer to the density and kinematic
viscosity of air and water, respectively. In (24), the first
term in the square brackets represents dissipation in the air,
while the second term reproduces (21b) and represents dis-
sipation in the water. For the experiment cited in Table 2,
with �a/�w¼ 0.0012, �a¼ 15.3 m2/s, (24) gives D2f/2¼
0.022 m�1. When added to (19), this gives the amplitude-
decay rate predicted by the two-fluid model for this particu-
lar experiment:

D=2 ¼ 0:076 m �1: ð25Þ

[79] For this experiment, most of the dissipation
occurred on the sidewalls and bottom of the tank, given by
(20); at the free surface, there was more dissipation in the
water (the second term in (24)) than in the air (the first term
in (24)). But for the long wavelengths seen in ocean swell,
this ordering is reversed—there are no sidewalls, and
almost all of the dissipation occurs in the air. The solid
curves in Figure 8 show the predictions of the two-fluid
model, added to (17) for Figure 8a, and by itself in
Figure 8b.

4.4. An Inextensible-Film Model

[80] In this model a viscous, incompressible fluid lies
beneath a free surface (at z¼ � (x,t)) under the force of
(constant) gravity. The velocity field of the fluid has a rota-
tional part and an irrotational part, given by (20a) and (20b)

in the linearized problem. One imposes the usual (linearized)
kinematic condition at the free surface (@t� ¼ wjz¼�). The
normal stress at the free surface is required to vanish, as in
the clean-surface model. The essential feature of this model
is that a thin, massless film, lying on the free surface, cannot
stretch tangentially, and a no-slip condition on that surface
forces the tangential velocity of the fluid to vanish there.
The tangential stress at the free surface is not constrained,
and it is usually not zero.

[81] Lamb [1932, section 351] analyzes this model for an
infinitely deep fluid and derives a decay rate for this linear-
ized problem. His result leads to the following spatial
decay-rate for wave amplitudes:

Dfilm;1
2
¼ k2

ffiffiffiffiffiffi
�

2!

r
¼

ffiffiffi
�

2

r
k2

gjkjð Þ1=4
: ð26aÞ

(Lamb’s analysis in section 351 is similar to that of the
clean-surface model in section 349. His work requires
some decoding, because he uses a parameter � without
defining it : � in section 351 is the complex frequency,
denoted by n in page 349.)

[82] The generalization of (26a) for a fluid of finite depth
h is

Dfilm;h

2
¼

ffiffiffiffiffiffi
�

2!

r
2k2cosh2 khð Þ

2jkjhþ sinh 2jkjhð Þ

	 

; ð26bÞ

where ! is given by (15). Miles [1967] gives results con-
sistent with this, but does not give (26b) explicitly.
Equation (4) of Van Dorn [1966] is similar to (26b), but it
contains misprints. See the Appendix for a derivation
of (26b).

[83] To use this model to predict an amplitude-decay
rate in a wave tank, one should add the results from either
(26a) or (26b) to that from (17). As an example, kh¼ 8.82
for the lab experiment cited in Table 2, and (26a and 26b)
both predict a decay-rate due to dissipation near the free
surface of Dfilm/2¼ 0.30 m�1. Adding this to (17) gives the
amplitude-decay rate predicted by the inextensible-film
model for this experiment:

D=2 ¼ 0:35 m �1: ð27Þ

[84] Thus, while the clean-surface model (in (22)) and
the two-fluid model (in (24)) both predict amplitude-decay
rates less than the measured value (D=2¼ 0.11 m�1), the
inextensible-film model predicts a decay rate larger than
the measured value.

[85] This pattern persists for all of the data available to
us. Figure 8a shows amplitude-decay rates measured in our
wave channel for wave trains with frequencies between 1.5
and 4 Hz. The dashed curve represents the inextensible-
film model, with results from either of (24a and 24b) added
to the prediction of (17). It consistently predicts values
higher than either the two-fluid model (represented by the
solid curve) or the clean-surface model (the dashed-dotted
curve), and also higher than the measured values. Figure 8b
shows measured amplitude-decay rates for ocean swell,
based on observational data from Snodgrass et al. [1966]
and Collard et al. [2009]. The dashed curve, representing
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the inextensible-film model, predicts values higher than
those observed, while the two-fluid model (solid curve) and
the clean-surface model (dashed-dotted curve) both predict
values less that those observed. The inextensible film
model is less accurate than either the clean-surface model
or the two-fluid model in predicting the laboratory data, but
it is the most accurate predictor of the ocean data. The
clean-surface model has been used more than the other two
models considered herein, but it predicts the decay of ocean
swell poorly.

[86] Figure 8 makes the inextensible-film model attrac-
tive, so it might be worthwhile to point out a limitation of
that model. Both the clean-surface model and the two-fluid
model are posed as nonlinear models; we linearize them to
find their (linearized) dissipation rates, quoted above, but
there is no conceptual problem in going beyond linearized
models to find approximate nonlinear models for surface
waves on a viscous fluid.

[87] In contrast, the inextensible surface model is
intrinsically linear—the condition that the tangential veloc-
ity should vanish on the interface can hold only in a linear-
ized model. To see this, note that for a free surface given
by (z¼ � (x,t)), the unit normal vector is

n̂ ¼ �@x�; 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @x�ð Þ2

q :

[88] So the kinematic boundary condition on the free
surface,

@t� þ u@x� ¼ w;

[89] can also be written in a form due to Zakharov
[1968],

@t� ¼ vn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @x�ð Þ2

q
; ð28Þ

where vn ¼ u;wð Þ � n̂ is the normal component of fluid ve-
locity on the surface. It follows from (28) that the vertical
motion of the free surface (@t�) is usually greater than the
normal component of fluid velocity, so the extra velocity
must come from the tangential velocity, which therefore
cannot be zero. This argument holds everywhere on the
free surface, except where @x� ¼ 0 or vn¼ 0.

[90] Thus, the limitation of the inextensible-film model
is that it is incomplete—it does not uniquely identify its
nonlinear generalizations. It is likely that many nonlinear
models reduce to the inextensible-film model when
linearized.

4.5. A Visco-Elastic Film Model

[91] In this model, a visco-elastic film at the surface has
its own constitutive law and dynamics. The stress in the
film must balance the stress in the fluid at the interface.
Miles [1967] gives a review of the derivation and shows
that the inextensible-film model discussed in section 4.3 is
the limit of infinite elasticity for an insoluble film. Thus,
predictions from the visco-elastic film model agree with
measurements of linear decay in the appropriate limits (of
infinite elasticity and infinitesimal amplitude). But the

visco-elastic film model does not share the inextensible-
film model’s inherent problem of intrinsic linearity. So the
former is a candidate for a model that agrees with measure-
ments at linear order and can be used to study dynamics
occurring at higher order.

[92] However, finite elasticity admits longitudinal waves
in the film, which can resonate with the water wave, caus-
ing dissipation that is larger than the inextensible film limit.
Miles found the maximum damping rate due to this reso-
nance to be twice that of the inextensible-film model. Huh-
nerfuss et al. [1985] also discuss the visco-elastic model. In
their notation, the limiting value of dissipation for gravity
waves is

Dve;max

2
¼

ffiffiffi
2
p �2k7

g

	 
1=4

; ð29Þ

which is twice that of the inextensible-film model (26a).
Figure 8 also includes this prediction with the dotted curve.
It does not appear to be relevant for the laboratory case
where we clean the surface, however, it provides an upper
bound on the dissipation rate for ocean swell.

[93] Finally, we note that no model for linear decay rates
will explain amplitude-dependent dissipative effects such
as those observed by Ardhuin et al. [2010]. Can linear
decay rates account for frequency downshifting? All of the
predictions of decay rate discussed in this section depend
on the wave frequency. In derivations of dissipative nonlin-
ear Schrödinger-type equations like (2) for deepwater wave
evolution, the decay rate that appears [e.g., Dias et al.,
2008] will depend only on the frequency of the carrier
wave. Nevertheless, one wonders: if the sidebands were
free waves and were allowed to decay at their own rates,
would the most unstable minus and plus sidebands have
significantly different amplitudes at say, half the propaga-
tion distance? For the laboratory, both the Dore model and
the clean-surface model, plus the contributions from the
sidewall and bottom boundary layers, predict measure-
ments reasonably well. Using these models to examine fre-
quency dependence, we find that the ratio of the amplitude
of the minus sideband to the amplitude of the plus side-
band, if initially equal, stays equal (to within four decimal
places) for the length of the wave tank. (This result is
unchanged using the inextensible-film model.) Indeed, the
data show for moderate amplitude waves, the minus sec-
ondary and tertiary sidebands may grow at a slower rate
than the plus secondary and tertiary sidebands, depending
on initial phases [see Segur et al., 2005, Figure 6]. This
asymmetric growth is well predicted by (2). So, linear dis-
sipation alone cannot account for frequency downshifting
in the laboratory experiments. For ocean swell, the
inextensible-film model best predicts measurements. Using
that model with the carrier and most unstable sideband fre-
quencies corresponding to the August 13.7 swell, the ratio
of minus to plus sideband amplitudes at 5000 km (about
half the propagation distance) is 1.12, so there is a measura-
ble difference in the amount that the two sidebands decay.
This effect provides another cause of frequency downshift-
ing for ocean swell that is not present for laboratory waves.
It will not be present in models that assume a single, repre-
sentative decay rate for the entire spectrum, indicating a
potential limitation of such models.
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5. Summary

[94] In this paper, we considered the effects of dissipa-
tion on the evolution of ocean swell. Decay rates obtained
from observations of ocean swell are orders of magnitude
smaller than decay rates of necessarily higher frequency
waves in a laboratory. However, the swell is also typically
much less nonlinear than the laboratory waves. So, the rela-
tive strength of dissipation versus nonlinearity for the labo-
ratory and the ocean are not so disparate. Therefore,
information gained from laboratory experiments may have
some relevance to ocean swell. We further examined this
idea by considering the dissipative growth of small pertur-
bations for ocean swell and found that for swell with
small enough nonlinearity, dissipation impedes and can
stop this modulational instability before sidebands grow
appreciably.

[95] As shown in Figure 4, for one observed swell sys-
tem with larger nonlinearity, frequency downshifting
occurred. Downshifting is not predicted by models of
narrow-banded, freely propagating deep water waves
derived from Euler’s equations such as nonlinear
Schrödinger-type models (including higher order in band-
width models) even if linear dissipation is included.

[96] The type of dissipation we examined here, with ex-
ponential decay, agrees well with observations in the labo-
ratory and in the ocean. Predicting the actual measured
decay rate is more difficult. We examined predictions from
four models, which use (i) a stress-free surface above a vis-
cous fluid, (ii) a continuous-stress interface between two
viscous fluids (air and water), (iii) no constraint on tangen-
tial stress, but zero tangential velocity at the surface, and
(iv) continuity between stress in the water and stress in a
visco-elastic film on the interface. We compared predic-
tions from these models with observations and found that
(iii) agrees well with measurements of decay rates of ocean
swell. Its constraint of no tangential flow at the surface is
incorrect for nonlinear waves and, therefore, cannot be
used to derive a model with nonlinear dissipation. How-
ever, it is a limit of the model (iv), which does not have
that constraint.

[97] The main conclusion of this paper is that viscous
dissipation, which usually has only a weak effect on the
propagation of surface water waves forced by gravity, can
affect the stability of those waves. It does so for ocean
swell because dissipation and nonlinear interactions occur
on the same time scale. This overlapping of time scales is
inherent in equation (2).

Appendix A: Derivation of (26b)

[98] Consider a viscous, incompressible fluid, subject to
a constant gravitational force, g, which acts vertically
downward. The fluid rests on a flat, horizontal bed at
z¼�h, and is bounded above by a free surface at
z¼ � (x,t). We restrict our attention to two-dimensional
motion, and linearize the equations of motion. Then a sinu-
soidal wave of amplitude 2jNj and wave number k appears
on the free surface as

� x; tð Þ ¼ N eikxþ�t þ N �e�ikxþ��t; ðA1Þ

where �(k) is a complex-valued frequency to be deter-
mined, and ( )

�
denotes complex conjugate. The two-

dimensional velocity field has a Helmholtz
decomposition:

u ¼ @x
� @z ; w ¼ @z
þ @x ; ðA2a; bÞ

in which the velocity potential, 
(x,z,t), and the stream
function,  (x,z,t), satisfy, respectively,

@2
x
þ @2

y
 ¼ 0; @t ¼ � @2
x þ @2

y 
h i

; ðA2c; dÞ

and � > 0 is the kinematic viscosity of the fluid. For a trav-
eling wave, the velocity potential and the stream function
must be of the form:


 x; z; tð Þ ¼ Aeikxþ�t cosh k zþ hð Þf g
cosh khf g

þA�e-ikxþ�� t cosh k zþ hð Þf g
cosh khf g ;

 x; z; tð Þ ¼ Beikxþ�tsinh m zþ hð Þf g
þB�e-ikxþ��tsinh m� zþ hð Þf g:

ðA2e; fÞ

[99] As in section 4, we require that Re (m(k))> 0, so
that the maximum velocity occurs at the free surface, and
that{�,m,k} are related by (20d).

[100] The linearized momentum equations imply that the
pressure in the fluid satisfies

p x; z; tð Þ
�

þ gzþ @t
 ¼ constant;

and we may set the constant to zero without loss of
generality.

[101] Three boundary conditions must be satisfied at the
free surface.

[102] 1. The kinematic condition, that @t� ¼ wjz¼0,
yields

�i�N ¼ ktanh khð ÞAþ iksinh mhð ÞB: ðA3aÞ

[103] 2. The condition of no tangential motion along the
free surface defines this model:

ikA� m cosh mhð ÞB ¼ 0: ðA3bÞ

[104] 3. The balance of normal stress at the free surface:

p

�
¼ �g� � @t
jz¼0 ¼ 2�@zwjz¼0

¼> �gN þ i�A ¼ 2�k2Aþ 2i�km cosh mhð ÞB:
ðA3cÞ

[105] Equations (A3a,b,c) have nonzero solutions only if

m �2 þ gktanh khð Þ
� �

� gk2tanh mhð Þ ¼ 0: ðA4Þ

[106] Equations (A4), (15c), and (15d) determine
both m(k) and �(k). Use (20d) to eliminate �2 from
(A4). After some rearrangement, the result can be writ-
ten as
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m� jkjð Þ
	
�2m m� jkjð Þ mþ jkjð Þ2

þ gjkj mtanh jkjhð Þ � jkjtanh mhð Þ
m� jkj

 �

¼ 0:

ðA5Þ

[107] One solution of (A5) is {m¼ jkj}, so �¼ 0 from
(20d). This solution describes a static solution of the Lap-
lace equation, with no motion. For m 6¼ jkj, define

z ¼ m

jkj ; �
4 ¼ gjkj

vk2ð Þ2
; �4 ¼ gjkjtanh jkjhð Þ

vk2ð Þ2
: ðA6Þ

Then the second factor in (A5) yields

z z� 1ð Þ zþ 1ð Þ2 þ �4 ztanh jkjhð Þ � tanh zjkjhð Þ
z� 1

 �
¼ 0; ðA7Þ

while (20c) implies Re(z)> 0.
[108] For �¼ 10�6 m2/s (for water), g¼ 9.81 m/s2, and

wavelengths longer than 5 cm, �4> 1018. For �4 >> 1 and
�jkjh >> 1, z ¼O(�), so

ztanh jkjhð Þ � tanh zjkjhð Þ
z� 1

 �
� ztanh jkjhð Þ � 1

z� 1

¼ tanh jkjhð Þ � 1� tanh jkjhð Þ
z� 1

:

In this range, (A7) has two solutions consistent with (20c),
given approximately by

z6 ¼ �e6i=4
� �

� coth jkjhð Þ
4

þ O ��1
� �

: ðA8Þ

Substituting (A8) into (20d) after using (A6) determines
� (k) :

�6 ¼ 6i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gktanh khð Þ

p
� 16i

2
ffiffiffi
2
p

ffiffiffiffiffiffiffi
�k2
p

gktanh khð Þð Þ1=4coth jkjhð Þ

þ O 1ð Þ;

corresponding to waves that propagate to the left or right,
and that decay in time. At leading order, the temporal fre-
quency of oscillation is given by (15), and the temporal
decay rate is

� coth jkjhð Þ
2
ffiffiffi
2
p

ffiffiffiffiffiffiffi
�k2
p

gk tanh khð Þð Þ1=4:

The spatial decay rate at leading order is obtained by divid-
ing this by the group velocity, given in (16). The result is
given in (26b).
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