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A global 1� implementation of the spectral wave model, WaveWatch III, was forced with surface winds
from two atmosphere–ocean general circulation models (AOGCMs: ECHAM5 and CSIRO Mk3.5), dynam-
ically downscaled to 60 km using the Cubic Conformal Atmospheric Model. Two 30-yr time slices were
simulated: 1979–2009 representing current climate, and 2070–2099 representing a future climate sce-
nario under a high greenhouse gas emission scenario (SRES A2). A further wave model simulation with
forcing from the NCEP Climate Forecast System Reanalysis for 1979–2009, using the same model settings
as the climate model forced runs, serves as a benchmark hindcast to assess skill of climate-model-derived
wave fields. Climate model forced wave simulations for the 1979–2009 time-slice display biases relative
to the benchmark wave climate – notably an overestimation of wave generation in the Southern Ocean,
which influences broad regions of the Pacific which receive these waves as swell. Wave model runs were
repeated following bias-adjustment of the climate model forcing winds with the aim to reduce biases, but
model skill to simulate the monthly 99th percentile of significant wave heights deteriorates severely.

Projected future changes in wave climate (between 1979–2009 and 2070–2099) under the SRES A2
greenhouse gas emission scenario are relatively insensitive to whether bias-adjustment of winds has
been applied. Two robust features of projected change are observed from the two climate model sets
which are qualitatively consistent with previous studies: a projected increase of Southern Ocean wave
generation leading to approximately 10% increase in Southern Ocean mean significant wave heights
(HSm), and a projected decrease in wave generation in the North Atlantic, with changes in HSm of similar
magnitude.

Interannual anomalies of monthly mean significant wave height, HSm, were regressed against climate
indices (Southern Oscillation Index – SOI; North Atlantic Oscillation – NAO and the Southern Annular
Mode – SAM) over each time-slice. Significant differences in the relationships between wave height var-
iability and these climate indices between current and projected climates are observed. For example, a
significant shift from negative to positive correlation between the NAO and HSm anomalies along the wes-
tern European and north-west African coasts in the projected future climate is noted. The potential future
changes in wind-wave characteristics, and the changing relationships between interannual variability of
wave climate with identified climate indices, as a response to projected future climate scenarios have
broad implications for a range of processes and activities in the coastal, near-and-off-shore environments.

Crown Copyright � 2012 Published by Elsevier Ltd. All rights reserved.
1. Introduction

There is increasing evidence for historical variability and
changes in surface ocean wave climate. Studies using satellite
altimeter data have described trends and variability in wave
heights since at least the early 1990s (Hemer et al., 2010a; Young
et al., 2011; Izaguirre et al., 2011), and studies based on the vi-
sual observing ship records suggest these trends extend over
012 Published by Elsevier Ltd. All r
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longer historical time periods (Gulev and Grigorieva, 2004). Ob-
served changes in the wave height distribution are likely accom-
panied by changes in wave period and direction, as suggested by
wind-wave reanalyses (Hemer et al., 2010a), and these combined
influences will shift the equilibrium state of the coast. Further-
more, changes in wave climate will influence engineering
requirements for offshore infrastructure (Weisse et al., 2008),
and given the primary role of waves in the interactions which oc-
cur across the air–sea boundary, might also be expected to con-
tribute to feedbacks in the coupled climate system (Cavaleri
et al., 2012).
ights reserved.
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Having identified the wind-wave climate responds to climate
variability and the potential impacts of such changes, the research
community have increased their efforts to understand how wave
climate might be influenced under the effects of projected future
climate change (Hemer et al., 2012c). These efforts have had a pre-
dominantly regional focus, which potentially overlooks regions of
the global ocean/coast of greater risk – whether measured as a
function of magnitude of hazard (amount of wave climate change),
or as function of vulnerability (with regions of lower adaptive
capacity at greater risk; Hemer et al., 2010b). The Pacific Islands,
where waves have a strong influence on marine and coastal infra-
structure and ecosystems and associated economic resources, are a
notable region of potential high risk to future change in wave cli-
mate. Similar arguments apply for many other nations globally,
reflecting a need for a global understanding of the wave climate re-
sponse to projected future changes in climate.

Hemer et al. (2012a, 2012b) used a limited ensemble of surface
winds derived from a regionally downscaled climate model (RCM),
to determine the magnitude of projected change in wave climate
for the east coast of Australia for two future greenhouse gas emis-
sion scenarios. They assessed the benefit of adjusting the RCM sur-
face winds to minimise bias with respect to NCEP Reanalysis-2
winds, to improve representation of the regional wave climate. In
this study, we apply the same approach to determine two realisa-
tions of the global wave climate response under a single projected
future (SRES A2) high greenhouse gas emission climate scenario.
The spaectral wave model, WaveWatch III (v3.14, Tolman, 2009)
is dynamically forced using surface winds derived from the Cu-
bic-Conformal Atmospheric Model (CCAM, McGregor, 2005; McGr-
egor and Dix, 2008), which has downscaled two CMIP-3 general
circulation models (CSIRO Mk3.5 and ECHAM5) to approximately
0.5� resolution globally. The runs are repeated with climate model
surface winds adjusted to minimise bias with respect to the NCEP
Climate Forecast System Reanalysis using the method proposed by
Hemer et al. (2012), to determine benefit of this procedure to rep-
resent the current global wave climate.

It is well established that interannual wave climate variability
responds to large scale changes in atmosphere–ocean systems.
Correlation of interannual anomalies of monthly mean significant
wave height with climate indices representing these systems has
been used widely to determine these relationships. For example,
wave climate variability in the Pacific Ocean varies with the El-
Niño – Southern Oscillation (ENSO), indicated by strong correla-
tions with the Southern Oscillation Index (SOI) or similar ENSO
indicator (e.g., Niño3.4 index) (e.g., Gulev and Grigorieva, 2004,
Izaguirre et al., 2010, Hemer et al., 2010a). In turn, the associated
wave climate variability has been noted to influence shoreline po-
sition along the eastern Australian coast (Short and Trembanis,
1994; Short et al., 2000, Ranasinghe et al., 2004; Harley et al.,
2011) and the western coast of North America (Storlazzi and Gri-
ggs, 2000; Allan and Komar, 2006). Similarly, wave height vari-
ability in the North Atlantic Ocean varies strongly with the
North Atlantic Oscillation (NAO) (Woolf et al., 2002, Izaguirre
et al., 2010), with an associated coastal response (Thomas et al.,
2011). An analysis of satellite altimeter wind-wave data and the
ERA-40 reanalysis found the principal component of variability
of Southern Hemisphere wave climate was significantly corre-
lated with the Southern Annular Mode (SAM), particularly during
the austral winter months (Hemer et al., 2010a). These studies
aim to understand the relationships of wind-wave climate vari-
ability to large-scale climate phenomena in order to provide pre-
dictive capacity on seasonal and climatological time-scales. There
is a consequent need therefore to establish whether dynamical
wind-wave variability will relate to these climate indices in the
same manner in a future climate scenario as in the present
climate.
Our study has three aims: (1) Identify how well the present glo-
bal wave climate is represented using a dynamical downscaling ap-
proach from two CMIP-3 GCMs (and whether bias-adjustment of
surface winds can improve this); (2) Determine the magnitude of
projected change in wave climate for a single, high (SRES A2)
greenhouse gas emission scenario; and (3) identify whether the
relationship between dynamical wind-wave variability and key cli-
mate indices (SOI, SAM, NAO) remains the same under a future cli-
mate scenario.

2. Data

2.1. ERA-Interim

ERA-Interim is the latest global atmospheric reanalysis pro-
duced by the European Centre for Medium Range Weather Fore-
casts (ECMWF; Dee et al., 2011). ERA-Interim spans the period
January 1, 1979 onwards, and continues to be extended in near-
real time. The 31-yr period, 1979–2009 inclusive, is used for this
study. At the time this study commenced, ERA-Interim archives in-
cluded 3-hourly surface wave parameters (significant wave height,
HS, mean wave period, TM, and mean wave direction, hM) on a 1.5�
latitude–longitude grid. ERA-Interim wave parameters are derived
from a fully coupled atmosphere–wave model (WAM) which de-
scribes the evolution of two-dimensional wave spectra at the
sea-surface, with satellite radar altimeter-derived wave height
data (from 1991 onwards) used to adjust the model predicted
wave spectra based on assumptions about the contributions of
wind-sea and swell. The wave model is applied with a horizontal
resolution of 110 km, with wave spectra discretised using 24 direc-
tions and 30 frequencies. The model includes several enhance-
ments over the version used in ERA-40, including a reformulation
of the dissipation source term and introduction of a scheme to
parameterise unresolved bathymetry. Notable improvement of
ERA-Interim wave parameters (HS, TM, and TP) relative to ERA-40
were observed by Dee et al. (2011), with the overall quality of
ERA-Interim wave fields being equivalent to the operational anal-
ysis of 2005. Here we use the 1.5� resolution ERA-Interim dataset,
freely available to the research community, to define a point of ref-
erence surface wind and wave climate derived from the 31-yr re-
cord for comparison.

2.2. NCEP Climate Forecast System Reanalysis

The US National Centre for Environmental Prediction (NCEP)
Climate Forecast System Reanalysis (NCFSR; Saha et al., 2010)
was designed and executed as a global, high resolution coupled
atmosphere–ocean–land surface–sea ice system to provide the
best estimate of the state of these domains over the period January
1979 to present. This reanalysis does not include ocean waves, but
provides a high resolution (spatial – 0.5�, and temporal – hourly)
representation of near-surface marine winds globally which repre-
sents all but the most intense tropical and extratropical storms
with high skill (e.g., Cox et al., 2011). Here the NCFSR near-surface
winds are used as a benchmark dataset for climate model derived
winds, and as forcing for a 31-yr wave hindcast using the same
model parameterisations used for the climate model forced runs.
2.3. CCAM downscaled GCM surface winds

The World Climate Research Programme (WCRP) endorsed
Working Group on Coupled Modelling (WGCM) established the
Coupled Modelling Intercomparison Project (CMIP) as a protocol
for investigating output of coupled atmosphere–ocean general cir-
culation models (AOGCMs). Phase 3 of CMIP (CMIP-3; Meehl et al.,
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2007) provided much of the data underpinning the Intergovern-
mental Panel on Climate Change (IPCC) Fourth Assessment Report
(AR4; IPCC, 2007). The CMIP-3 data comprise output from 25
AOGCMs, however these models are implemented at coarse resolu-
tion (mean spatial resolution of 2.1�), and surface winds were not
archived at sufficient temporal resolution to support dynamical
wind-wave studies. Dynamical wave studies are strongly depen-
dent on the quality of the forcing surface winds. These must be ar-
chived at high spatial and temporal resolution to adequately
represent storm wind systems so that realistic wave fields can be
generated within the model. For this study, we use dynamically
downscaled climate model outputs obtained from CSIRO’s Cubic
Conformal Atmospheric Model (CCAM; McGregor and Dix, 2008),
which was used to dynamically downscale two CMIP-3 GCM runs
(CSIRO Mk3.5 and ECHAM5) for a single, high (SRES A2) green-
house gas emission scenario. The two models were chosen as rep-
resenting a medium and high climate change response to future
emission scenarios. The global surface temperature climate change
response from CSIRO Mk3.5 is approximately equal to the CMIP3
ensemble mean. ECHAM5 has one of the highest simulated
changes in surface temperature over the 21st century. CCAM is a
full atmospheric GCM formulated on the conformal-cubic grid.
CCAM was applied globally with a resolution of approximately
60 km, and 18 vertical levels. Forcing is derived from sea-ice and
sea-surface temperatures from the parent AOGCMs, which have
been bias-adjusted using a simple additive approach (detailed by
Katzfey et al., 2011) to reduce large SST biases seen in the AOGCMs
(i.e., there are no atmospheric forcings from the AOGCMs; Katzfey
et al., 2011). Three-hourly near-surface (10-m) winds and daily
sea-ice concentrations, spanning the period 1960–2100, archived
on a 0.5� global grid were available from the two CCAM runs. This
study considered two time-slices of 30-yr or more from these re-
cords, representing a current climate (1979–2009) and a future cli-
mate (2070–2099).

Two GCMs were downscaled to explore the range of possible
conditions associated with multi-model ensembles in the pro-
jected climate. This ensemble is too limited to provide an adequate
estimate of the uncertainty within the total sample space if all 25
AOGCMs were considered. The study did not consider uncertainty
associated with emission scenarios, intra-model ensembles, or be-
tween downscaling models. The choice to limit the ensemble to
two members was based on two factors: (a) computational limita-
tions; and (b) the downscaling step using CCAM reduces the spread
of surface wind field scenarios which are observed in the forcing
AOGCMs.

Biases in distribution of wind speed and direction (mean cli-
mate and variance biases) were found between the CCAM derived
surface winds and the NCFSR surface winds. Following Hemer et al.
(2012a), a bivariate quantile adjustment of CCAM winds was car-
ried out, which adjusts both directional components of the surface
wind field to align in distribution with the NCFSR winds. It extends
the widely used quantile adjustment procedure to a vector variable
(surface wind) to adjust biases in the mean and variability of the
CCAM derived wind fields. Wind speed and direction are adjusted
by dependently mapping the joint probability distribution (JPD) of
eastward (u) and northward (v) wind components onto the JPD of u
and v from the NCFSR winds dataset at each grid cell. Firstly the u
wind component is distributed into percentile bands, at 2 percen-
tile intervals (i.e., adjustment of maximum values follow adjust-
ments of all values between the 98th percentile and the
maximum value), leading to a 50 � 1 adjustment vector for u at
each grid cell. Within corresponding u percentile bands from the
CCAM and NCFSR datasets, the empirical distributions of v are
determined. A quantile adjustment (at 2 percentile intervals) of
the CCAM empirical v distribution (within the given u percentile
band) is made to fit the corresponding NCFSR empirical distribu-
tion (a 50 � 50 adjustment matrix for v at each grid cell is deter-
mined). Two sets of adjustment matrices are produced – one for
each CCAM wind dataset (the CSIRO Mk3.5 and ECHAM5 forced
runs), providing a two-member ensemble of bias-adjusted CCAM
derived surface winds, for each time-slice. i.e.,

ucor;x;i ¼ u1;x;i þMu;x;i; ð1Þ
vcor;x;y;i ¼ v1;x;y;i þMv;x;y;i; ð2Þ

where u1 and v1 represent eastward and northward CCAM de-
rived wind components respectively, Mu;x;i ¼ u2;x;i � u1;x;i and
Mv ;x;y;i ¼ v2;x;y;i � v1;x;y;i, are the bias adjustment matrices, where
u2 and v2 represent eastward and northward NCFSR derived wind
components respectively, x denotes the xth percentile of the east-
wards wind u-component, y denotes the yth percentile of the
northwards wind v-component within the xth u-component, and
i denotes location. To investigate wind changes over future time
periods, the projected future CCAM winds are adjusted using the
corresponding model adjustment matrices evaluated from the his-
torical time-slice (i.e., assume the model biases are time invariant)
as investigated by Hemer et al. (2012b).

To summarise, for each time-slice, four forcing wind datasets
are used: un-adjusted winds derived directly from two CCAM runs
(CSIRO Mk3.5 and ECHAM5 forced runs); and bias-adjusted winds
from two CCAM runs.
3. Methodology

3.1. Wave modelling

This study has investigated wave climate model skill with forc-
ing derived from downscaled CMIP-3 experiments. Our approach
follows the dynamical method outlined by Hemer et al. (2012a,
2012b), but extended to a global domain (summarised in Fig. 1).
The WaveWatchIII wave model (version 3.14, Tolman, 2009) was
implemented over a near-global domain (latitude 80�S–80�N) at
1� spatial resolution. Despite surface winds being available at high-
er resolution, the wave model was limited to 1� spatial resolution
on the basis of reducing required computational resources (com-
puting time and storage). The 1� � 1� model grid is defined using
the automated grid generation software for WaveWatch III
(Chawla and Tolman, 2007) using the DBDB2 v3.0 bathymetry,
and GSHHS shoreline database, defining an obstruction grid for
unresolved boundaries in the sub-grid domain. The wave spectra
of the WaveWatch III model was defined by a directional resolu-
tion of 15� and 25 frequency bands ranging non-linearly from
0.04 to 0.5 Hz. On the basis of early CFSR forced runs, WaveWatch
III was implemented using the WAM4 parameterisations as
adapted by Bidlot et al. (2007, referred to as BAJ in the WaveWatch
III manual).

A total of nine wave model runs were carried out (Table 1).
These included five runs spanning the historical period 1979–
2009, and four spanning 2070–2099 representing a future climate
under the SRES A2 greenhouse gas emission scenario.

Spanning the period 1979–2009, run G1d_cfsr was forced using
NCFSR near-surface winds and sea-ice concentrations. This run
serves as a benchmark global hindcast, using the same model grids
and parameterisation, to assess skill of the climate model forced
wave fields. We deem the climate model forced runs to be accept-
able if model skill is comparable to the G1d_cfsr run.

For each time-slice, two runs are carried out forced with down-
scaled climate model near-surface winds directly. For the 1979–
2009 period, these are G1d_mk3.5_20c and G1d_echam5_20c, which
are forced with CCAM winds downscaling the CSIRO Mk3.5 GCM
and the ECHAM5 GCM respectively. These runs together form a



Fig. 1. Schematic of dynamical wave climate modelling methodology used in this study.

Table 1
List of model runs carried out in this study.

Ensemble Model run Run period CCAM forcing Bias-adjusted winds

G1d_cfsr G1d_cfsr 1979–2009 – No

G1d_ens_20c G1d_mk3.5_20c 1979–2009 Mk3.5 No
G1d_echam5_20c 1979–2009 ECHAM5 No

G1d_ens_21c G1d_mk3.5_21c 2070–2099 Mk3.5 No
G1d_echam5_21c 2070–2099 ECHAM5 No

G1d_ba_ens_20c G1d_ba_mk3.5_20c 1979–2009 Mk3.5 Yes
G1d_ba_echam5_20c 1979–2009 ECHAM5 Yes

G1d_ba_ens_21c G1d_ba_mk3.5_21c 2070–2099 Mk3.5 Yes
G1d_ba_echam5_21c 2070–2099 ECHAM5 Yes
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2-member current climate ensemble: G1d_ens_20c. For the 2070–
2099 period, the corresponding runs are G1d_mk3.5_21c and
G1d_echam5_21c, and the 2-member future climate ensemble:
G1d_ens_21c. In addition, for each time-slice, two wave model runs
are carried out where forcing is derived from the same downscaled
climate model runs, with near-surface winds bias-adjusted to have
a distribution aligned with NCFSR. For the 1979–2009 period, these
runs are G1d_ba_mk3.5_20c and G1d_ba_echam5_20c, and a 2-
member ensemble referred as: G1d_ba_ens_20c. For the 2070–
2099 period, the corresponding runs are G1d_ba_mk3.5_21c and
G1d_ba_echam5_21c, with the two member future climate ensem-
ble: G1d_ba_ens_21c. The wave model runs forced with bias-ad-
justed winds were carried out to determine whether global wave
model skill can be improved using the approach described by
Hemer et al. (2012a, 2012b).

3.2. Analysis procedure

Our primary interest is the mean wave climate and seasonal cy-
cles described by each model run. Our analysis derives 4 monthly
parameters from each model run: monthly mean significant wave
height, HSm; the monthly 99th percentile of significant wave
height, HSm99; monthly mean wave period, TMm; and monthly mean
wave direction, hMm. These parameters are determined for each
model grid cell for each month, leading to 372 time-series points
for each cell within the 161 � 360 model grid. These monthly
parameters are determined for each of nine model runs outlined
in Table 1. The same parameters are derived from the 1979–2009
ERA-Interim wave database for comparison.

We compare annual means of each monthly parameter from
run G1d_cfsr against ERA-Interim globally. Similarly, we compare
seasonal means (December to February mean representing boreal
winter, and June to August mean representing boreal summer).
We then compare the results of each CCAM forced wave model
run with run G1d_cfsr for same periods. Projected change in each
wave parameter is determined by the difference between the fu-
ture 30-yr mean, and the corresponding current climate 30-yr
mean of the given parameter. The significance of the projected
changes is assessed using a standard t-test for difference in means.

3.3. Interannual variability

Inter-annual wave climate variability is dependent on large-
scale changes in the atmosphere–ocean system. Previous studies
have identified significant relationships between wave height var-
iability and other regional climate patterns around the world. In
this study we are interested in whether relationships between
wave climate and large scale climate indices (SOI, NAO and SAM)
are observable in the climate model derived wave climate, and
whether these relationships are maintained in the future wave cli-
mate. To investigate, we regress the derived wave climate against
these climate indices. We determine the three climate indices (SOI,
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NAO and SAM) from the mean sea-level pressure record of each
CCAM run directly. For simplicity, we use the same form to approx-
imate each index, analogous to the Troup SOI (Troup, 1965), as the
standardised anomaly of the mean sea level pressure (MSLP) differ-
ence between two given regions. The indices are calculated as:

Index ¼ 10ðDP � DPmÞ=SDðDPÞ;

where DP is the difference between monthly averaged MSLP at
region 1 and the monthly averaged MSLP at region 2. Subtracting
DPm, the mean annual cycle of DP, removes the mean annual cycle
from DP. SD(DP) is the long term standard deviation of DP for the
given month of year. A value of �10 means the index is 1 standard
deviation on the negative side of the long-term mean for that
month. Using this definition for all indices results in each index
(particularly NAO and SAM) having a value which is an order of
magnitude larger than is common.

To determine SOI, the pressure difference is determined be-
tween Tahiti and Darwin, consistent with the Troup definition.
The NAO is determined using the same form, with the pressure dif-
ference between Lisbon, Portugal and Reykjavik, Iceland used. Der-
ivation of a SAM index also follows the same form, except the
pressure difference is determined between the zonal mean MSLP
at 40�S and the zonal mean MSLP at 65�S. Indices (SOI, NAO and
SAM) are determined from the NCFSR dataset for the period
1979–2009, and from each CCAM model (Mk3.5 and ECHAM5)
for time-slices 1979–2009 and 2070–2099. Indices corresponding
to the bias-adjusted CCAM winds are not available – MSLP is not
altered in the bias-adjustment procedure. Finally, the 12 month
running mean of each detrended index is regressed against the
12-month running mean of wave height anomaly (monthly mean
wave height with the mean annual cycle subtracted, and detrend-
ed) from each wave model run, with significance tested using a t-
test statistic to determine whether the regression slope differs sig-
nificantly from zero. To examine whether changes in regression
coefficients between climate indices and HSm anomalies in the pro-
jected future climate are significantly different from the current
time-slice, we use a bootstrap method (Efron, 1982). We repeat
the calculation of regression coefficients 500 times, with repeat
random sampling with replacement of the HSm anomalies. We
are then able to construct a probability distribution function for
regression coefficients at each grid cell, from each wave model
run. Regions with significant future changes in regression coeffi-
cients are those where no overlap of the central 95% of the PDF (be-
tween 2.5% and 97.5% probabilities) is observed between the
present and future time-slice distributions. These regions are inter-
preted as having significantly different relationships between the
given climate index and wave climate under the future climate
scenario.
4. Results

4.1. Present climate

4.1.1. Marine Surface Wind Speeds (U10)
Fig. 2 displays the annual and seasonal zonal mean surface wind

speed from the two CCAM runs (CCAM-echam5 and CCAM-mk3.5).
We define the zonal mean surface wind speed at each parallel of
latitude, as the mean surface wind speed across all ocean longi-
tudes at the given latitude. Surface winds derived from these two
models are in close agreement across the global ocean. This limited
range of variability within the CCAM ensemble follows the results
of Hemer et al. (2012a), where it was shown the GCM downscaling
approach using CCAM markedly reduced the spread of surface
wind speeds seen within the forcing GCM ensemble.
The spatial resolution of ERA-interim winds is coarser than the
CCAM and NCFSR winds, and as a result is not able to resolve the
position of maxima to the same degree as the higher resolution
models. Despite this, we observe better agreement between the
CCAM surface winds and ERA-Interim than between the CCAM
and NCFSR winds. Consistent with the results presented by Hemer
et al. (2012a), the climate model derived winds exaggerate the zo-
nal flow relative to the benchmark (ERA-Interim and/or NCFSR)
winds. This is more notable relative to ERA-interim winds, which
we attribute to the resolution issue mentioned above. A positive
bias in zonal mean wind speeds is observed in each of the northern
and southern extratropical storm and trade wind belts (Fig. 2).
These positive biases are more apparent during the corresponding
hemispheric winter. For example, climate model wind speeds are
overestimated in the Southern Ocean storm and southern trade
belts during the austral winter (JJA; Fig. 2(c)), but show good agree-
ment with ERA-Interim during the austral summer (DJF, Fig. 2(b)).
Difference between reanalyses winds (ERA-Interim and NCFSR)
however are greater than the difference between CCAM and either
reanalysis – CCAM wind speeds being typically bounded by reanal-
ysis winds (i.e., overestimate ERA-Interim winds, and underesti-
mate NCFSR winds). This providing additional confidence in the
quality of CCAM winds for the study.

The CCAM model winds suggest evidence of an expanded Had-
ley cell in both hemispheres (Fig. 2(a)), indicated by a poleward
bias in the position of the wind speed minima corresponding to
the position of the subtropical ridge. This bias is more apparent
during the boreal winter mean (DJF, Fig. 2(b)) in both hemispheres,
and is not observed during the boreal summer mean (JJA, Fig. 2(c)).
Bias-adjustment of the surface wind fields, following the method
proposed by Hemer et al. (2012a) removes these biases in the
mean wind field. The bias-adjusted winds align with the NCFSR
winds in Fig. 2 by definition.

The monthly 99th percentile of wind speed (U1099, not shown)
displays the same properties as the mean wind speed discussed
above. Zonal mean values of the monthly 99th percentile are dom-
inated by peaks in the extratropical storm belts, with a southern
peak annual mean of approximately 20 m/s and 18 m/s from the
climate models and ERA-Interim respectively, and a northern peak
showing greater agreement between the CCAM runs and ERA-In-
terim with values of approximately 17 m/s.
4.2. Wind-waves

4.2.1. NCFSR forced hindcast
The structure of the global wave climatology has been well de-

scribed in several previous studies (e.g., Young, 1999; Sterl and
Caires, 2005). While the structure of the significant wave height
climatology is well represented by the G1d_cfsr run, relative to
ERA-Interim G1d_cfsr annual mean significant wave heights dis-
play a positive bias over large portions of the global oceans
(Fig. 3). This bias is approximately 10–15% in the extratropical re-
gions, and slightly lower (<5%) in the tropical Atlantic and western
tropical Pacific oceans. A larger positive bias (up to 20%) relative to
ERA-Interim is observed in the eastern tropical Pacific. Fig. 4 shows
the zonal mean HSm for the period 1979–2009. Seasonal mean sig-
nificant wave heights show overestimation of wave heights is
greater during winter months, with higher positive biases recorded
in the north Pacific and Atlantic basins during the boreal winter
months (DJF, Fig. 4(b)). In the Southern Ocean, a positive bias is ob-
served for all seasons. However, higher positive biases in HSm are
observed during the austral winter months (JJA, Fig. 4(c)). The po-
sitive biases observed in HSm are similarly represented in HSm99,
with maximum bias of approximately 20% observed in the extra-
tropical storm belts.
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Fig. 5 shows the zonal mean, TMm for the 1979–2009 time-slice.
Mean wave period shows similar structure to prior climatologies
(e.g., the web-based KNMI/ERA-40 wave atlas described by Sterl
and Caires, 2005), but a long bias of G1d_cfsr derived mean wave
periods with respect to ERA-Interim is observed throughout the
global ocean. This bias is largest, with magnitudes of approxi-
mately 1 s, in the swell dominated regions of the global ocean such
as the tropical Indian and eastern Pacific oceans, and is high
(approximately 0.5 s) throughout the Southern Hemisphere (not
shown).

Fig. 6 shows the zonal mean hMm for the period 1979–2009.
Biases in hMm between G1d_cfsr and ERA-Interim are typically less
than 10�, except localised occurrences where steep gradients in
wave direction are observed, such as the subtropical divergence
zones (not shown). The differences in these regions may be
attributed to the coarse resolution of the 1.5� resolution ERA-
Interim product, shifting relative position of these features by a
grid cell. This agreement of wave direction in the G1d_cfsr run
relative to ERA-Interim is within the 15� resolution of the wave
model, and shows the G1d_cfsr run is a suitable benchmark for this
study.

4.2.2. Forcing with surface winds directly from downscaled climate
models

When the WaveWatch III wave model is forced with CCAM
derived near-surface winds, the global spatial variability of the
annual mean wave climate, described in prior studies (e.g.,
Young, 1999) is reproduced. The zonal mean HSm from runs
G1d_echam5_20c and G1d_mk3.5_20c display good agreement
(|bias| < 0.2 m) with run G1d_cfsr and ERA-Interim across all lat-
itudes, except the Southern Ocean storm belt (Fig. 4). A negative
bias of approximately 0.4 m is observed in the North Pacific be-
tween longitudes 100–250�E (Fig. 7(a) and (b)). A notable posi-
tive bias of similar magnitude in the annual mean HSm relative
to G1d_cfsr is observed in the Southern Ocean over the same lon-
gitude range (Fig. 7(a) and (b)). This is balanced by a slight neg-
ative bias relative to G1d_cfsr over remaining longitudes, so the
Southern Ocean storm belt zonal mean of the annual mean
HSm aligns with G1d_cfsr (Fig. 4(a)). During the austral summer
(DJF, Fig. 4(b)), the zonal mean HSm from runs G1d_echam5_20c
and G1d_mk3.5_20c more closely align with ERA-Interim in the
Southern Hemisphere, having a negative bias with respect to
G1d_cfsr. During the austral winter however (JJA, Fig. 4(c)), the
climate model derived wave fields display a strong positive bias
(of more than 1 m relative to ERA-Interim, and 0.25 m relative to
G1d_cfsr) in the Southern Hemisphere. The positive bias in the
Southern Ocean extends into the eastern tropical Pacific, partic-
ularly during the austral winter (not shown). Tropical regions
elsewhere exhibit a negative bias (<10%) in HSm. The spatial
structure of biases is consistent for both HS statistics assessed
(HSm and HSm99), and percentage bias magnitudes are similar
(not shown).

The spatial variability of mean wave period from runs
G1d_echam5_20c and G1d_mk.5_20c reflects previous climatolo-
gies. Relative to run G1d_cfsr, a negative bias of up to 0.5 s in
annual mean TMm is observed over all regions except regions



Fig. 3. (a) Mean annual significant wave height (m), HS, from ERA-Interim for period 1979–2009; (b) as for (a), from run G1d_cfsr; and (c) bias between G1d_cfsr and ERA-
Interim derived mean annual HS (m). Positive values indicate G1d_cfsr overestimates ERA values.
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corresponding with high swell energy (following distribution
presented by Semedo et al., 2011), including the Southern Ocean
and tropical eastern Pacific, which show good agreement with
G1d_cfsr (Fig. 8). The negative bias observed relative to G1d_cfsr
is greater in magnitude during the austral summer (seen in DJF
zonal mean, Fig. 5(b)), with little bias in TM observed during the
austral winter (seen in JJA zonal mean, Fig. 5(c)). Recalling the
bias between G1d_cfsr and ERA-Interim, the regions of negative
bias between the CCAM forced runs and G1d_cfsr show relatively
close agreement with ERA-Interim, while regions of small bias in
the tropical eastern Pacific and eastern Indian Oceans translate as
a strong positive bias relative to ERA-Interim (in excess of 1 s in
mean annual TMm).

Mean wave direction within the CCAM forced runs displays
similar structure to G1d_cfsr and ERA-Interim, but a bias towards
more zonal wave directions in all regions of the global ocean is
noted (Fig. 9). Easterly mean wave directions in the tropics
(north-easterlies in the northern tropics, and south-easterlies in
the southern tropics) have a greater easterly component in runs
G1d_echam5_20c and G1d_mk3.5_20c, indicated by a bias of
approximately 5�. To a lesser extent, westerly mean wave direc-
tions in the extra-tropics (north-westerly in the Northern Hemi-
sphere, and south-westerly in the Southern Hemisphere) have a
greater westerly component in runs G1d_echam5_20c and
G1d_mk3.5_20c, with a directional bias of less than 2� (Fig. 9).
This zonal bias remains present throughout the year, with the
position of transition between positive and negative biases shift-
ing with corresponding seasonal change in position of the sub-
tropical ridge (Fig. 6).

4.2.3. Forcing with bias-adjusted downscaled climate model near-
surface winds

Bias-adjustment of climate model derived forcing winds so that
the bivariate distribution of surface winds in the 1979–2009 time-
slice aligns with the NCFSR distribution has a large influence on the
modelled wave field. In a general sense, the spatial variability of
the global wave climate remains, but a strong negative bias with
respect to run G1d_cfsr is observed globally, except the western
tropical Pacific and the Gulf of Mexico (Fig. 7(c) and (d)). The zonal
mean HSm from runs G1d_ba_echam5_20c and G1d_ba_mk3.5_20c
display large negative biases (between 0.5 and 1.0 m) relative to
run G1d_cfsr across all latitudes (Fig. 4). This bias remains relatively
constant regardless of season. Notably, the large positive biases
with respect to ERA-Interim in the Southern Ocean wave heights
observed in runs G1d_echam5_20c and G1d_mk3.5_20c during the
austral winter (JJA) is reduced to near zero for these runs with
bias-adjusted forcing. A bias of approximately 0.35 m remains dur-
ing the austral summer.

Large negative biases in wave heights in runs with bias-ad-
justed wind forcing are more apparent when looking at storm
wave conditions (e.g., HSm99). Model skill in representing storm
wave systems deteriorates severely for runs G1d_ba_echam5_20c
and G1d_ba_mk3.5_20c. Looking at zonal mean HSm99, a negative
bias relative to G1d_cfsr of approximately 4 m is observed in the
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southern extratropical storm belt throughout the year (Fig. 10(a)–
(c)), and in the northern extratropical storm belt in the boreal win-
ter (Fig. 10(b)). These biases in storm wave conditions provide an
explanation for the observed decrease in HSm in the runs with
bias-adjusted forcing.

Reduced skill modelling storm wave systems carries through
to also influence wave periods and directions. Runs
G1d_ba_echam5_20c and G1d_ba_mk3.5_20c consequently show
a strong negative bias in TMm (of between 1 and 3 s), relative
to both G1d_cfsr and ERA-Interim, across the global ocean
(Fig. 8). The bias is greater in regions with more relative swell
energy (eastern tropical Pacific and Indian oceans). Relative to
G1d_cfsr, the TMm bias remains relatively constant throughout
the year (Fig. 5).

Changes in wave direction resulting from the bias-adjustment
of forcing winds are observed as a further increase in the zonal bias
in wave directions relative to run G1d_cfsr, particularly in the
southern and northern tropics (i.e., more easterly component to
the south-easterly and north-easterly winds, respectively, Fig. 9).
This response is more pronounced during the boreal winter
months (DJF, not shown), when observed in both hemispheres,
but is also seen in the Southern Hemisphere during the austral
winter (JJA). We attribute this directional response to the reduced
influence of swell waves. Bias-adjustment of the wind fields limits
generation of storm waves. It is these waves which propagate as
swell into regions away from the storm belts. As a consequence,
the observed mean wave direction becomes a function of local
wind forcing only, and consequently a zonal bias in wave direction
results.

4.3. Projected changes at the end of the 21st century

4.3.1. Marine Surface Wind Speeds (U10)
Projected changes in mean wind speed, determined as the dif-

ference between the 2070–2099 mean and the 1979–2009 mean,
display differences between the two CCAM runs (CCAM-ECHAM5
and CCAM-Mk3.5). Two robust features are observed in the pro-
jected changes in wind speed in the CCAM runs: (1) weakening
wind speeds in the Northern Hemisphere, particularly in the North
Atlantic basin where significant projected decreases of approxi-
mately 3 m/s in the annual mean wind speed are observed, and
(2) strengthening of the southern extratropical westerlies where
a significant projected increase of approximately 1 m/s in annual
mean wind speed is observed (Fig. 11). This projected strengthen-
ing is greater during the austral winter months.

The projected increase in Southern Ocean wind speeds is more
uniform zonally, and spans a broader range of latitudes in the
CCAM-ECHAM5 model than in CCAM-Mk3.5 (Fig. 11). South of
45�S, CCAM- increased wind speeds are projected by ECHAM5 al-
most uniformly for all longitudes (Fig. 11(a)). For the CCAM-
Mk3.5 model, aside from the Pacific sector which is similar to
CCAM-ECHAM5, the projected increase in Southern Ocean wind
speeds is greater, but only observed further south (south of 55�S;
Fig. 11(b)). In both models, the southern subtropics (25–45�S) are



0 90 180 270 360
−80

−60

−40

−20

0

20

40

60

80

θM (°N) θM (°N) θM (°N)

(a) (b) (c)

La
tit

ud
e 

(° )

0 90 180 270 360 0 90 180 270 360

ERA−Int

G1d_cfsr

G1d_echam5_20c

G1d_Mk3.5_20c

G1d_ba_echam5_20c

G1d_ba_Mk3.5_20c

Fig. 6. Zonal mean, mean wave direction, hM, for the period 1979–2009 (�N). (a) Annual mean; (b) Dec–Feb mean; and (c) Jun–Aug mean. Close agreement between respective
CCAM forced models is observed by overlaying lines.

230 M.A. Hemer et al. / Ocean Modelling 70 (2013) 221–245
a region of projected decrease in mean wind speed. In the southern
equatorial Pacific, both models project strengthening wind speeds,
although these are more extensive in the CCAM-ECHAM5 model
(where strengthening extends from 170�E eastwards to the Amer-
ican continent) than in CCAM-Mk3.5 where the strengthening is
localised to the central Pacific. In the Indian Ocean, a notable pro-
jected increase in wind speeds is observed in the eastern equatorial
Indian during the dry season (JJA) which is stronger in the CCAM-
Mk3.5 model (�2 m/s increase) than in CCAM-ECHAM5 (<0.5 m/s
increase). In the region of calm prevailing winds at the intertropi-
cal convergence zone, a projected decrease of more than 1 m/s is
observed in both models. In each model, the north-easterly Pacific
trades display a southerly contraction with a projected increase in
the south of the trade wind belt (significant in the CCAM-Mk3.5
model only) and a decrease of approximately 1–2 m/s in wind
speed in the northern half of the north-easterly trade wind belt.

The projected change in bias-adjusted winds matches the pro-
jected changes in un-adjusted winds presented in Fig. 11.

4.3.2. Wind-waves
Here, we discuss only results taken from the model being forced

with surface winds directly from the downscaled climate model.
This follows the results presented in Section 4.1 which showed a
deterioration of wave model skill when forced with bias-adjusted
winds. We note however that the projected change signal from
the runs with bias-adjusted forcing show close agreement with
the projected change signal from runs with direct forcing (not
shown).
The two robust features observed in the wind field (increasing
westerlies in the Southern Ocean, and the weakening wind speeds
in the North Atlantic) are observed in the projected changes in HSm

(Fig. 12). In the Southern Ocean, particularly in the Pacific sector
between latitudes 40�S and 60�S, a projected increase in wave
heights of up to 0.4 m (�7%) is observed for the given future cli-
mate scenario. This region is also a region of strong bias in the cli-
mate model forced runs relative to the G1d_cfsr. Few locations
display projected change in excess of the magnitude of the bias
(Fig. 12). The projected significant increase in Southern Ocean
mean wave heights is greatest during the austral winter months,
with maximum projected increase (outside of ice affected areas)
in HSm of almost 0.6 m observed SW of New Zealand at approxi-
mately, 50�S, 180�E (not shown). In the austral summer, a pro-
jected decrease in HSm of 0.2 m is observed between latitudes
30�S and 50�S. Reflecting the projected changes in wind speed,
the projected increase in Southern Ocean wave heights spans a
greater latitude range in CCAM-ECHAM5 forced runs, with pro-
jected significant increase in HSm as far north as the Tasman Sea,
with a corresponding significant increase in wave heights in the
eastern equatorial Pacific Ocean associated with an increase in
the Southern Ocean generated swell component (Fig. 12(a)). In
the CCAM-Mk3.5 forced runs, the projected increase in HSm is ob-
served further south, with little increase in annual mean wave
heights observed in the ice-free ocean (Fig. 12(b)). During the aus-
tral winter (JJA) however, significant increase in HSm is projected
over a large area of the Southern Ocean, extending northwards into
the Tasman Sea, from both models, with a corresponding increase



Fig. 7. Annual mean HS bias with respect to run G1d_cfsr (m). (a) G1d_echam5_20c, (b) G1d_mk3.5_20c, (c) G1d_ba_echam5_20c, and (d) G1d_ba_mk3.5_20c. Positive values
indicate the climate model forced runs overestimate G1d_cfsr.
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Fig. 8. (a) Mean annual TM (s) from run G1d_cfsr. The following plots display annual mean TM bias (s) with respect to run G1d_cfsr. (b) G1d_echam5_20c, (c) G1d_mk3.5_20c, (d)
G1d_ba_echam5_20c, and (e) G1d_ba_mk3.5_20c. Positive values indicate the climate model forced runs overestimate G1d_cfsr.
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Fig. 9. (a) Mean annual hM (�N) from run G1d_cfsr. The following plots display annual mean hM bias (�clockwise) with respect to run G1d_cfsr. (b) G1d_echam5_20c, (c)
G1d_mk3.5_20c, (d) G1d_ba_echam5_20c, and (e) G1d_ba_mk3.5_20c. Positive values indicate the climate model forced runs have a clockwise bias with respect to G1d_cfsr.
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in regions affected by Southern Ocean swell (eastern tropical
Pacific, Indian and South Atlantic Oceans). These regions display
a consequent significant increase in annual mean TMm of approxi-
mately 0.5 s.

A decrease of up to approximately 0.7 m (�15%) in HSm is pro-
jected in the North Atlantic, with the maximum change observed
at approximately 45�N, 30�W in the central North Atlantic. Similar
projected decrease in HSm is observed in the North Pacific basin
(Fig. 12(a) and (b)). Both the CCAM-ECHAM5 and CCAM-Mk3.5
forced wave fields show a projected decrease in HSm in the north-
west Pacific and North Atlantic, which is stronger during the boreal
winter (�1 m decrease) than boreal summer (�0.2 m decrease),
and this seasonal variability is reflected in the zonal mean pro-
jected changes (Fig. 13). A corresponding significant decrease in
TMm of approximately 0.5 s is observed in these regions.

Aside from the ice-influenced Sea of Okhotsk, Labrador Sea and
Hudson Bay, projected change in HSm for the Northern Hemisphere
up to the end of the 21st century is almost entirely decreasing. This
is attributed to the widespread projected decrease in wind speeds
across the Northern Hemisphere observed in Fig. 11. The observed
projected decrease in wave heights in the north and east Indian
Ocean are also consistent with local projected decreases in wind
speed. The Southern Hemisphere shows greater variability, with
a projected increase associated with the extratropical storm belt
which extends northwards (contracts southwards) during the
austral winter (summer).

The spatial distribution of projected changes in HSm99 is very
similar to the projected changes in HSm discussed above. The mag-
nitude of projected change in the storm waves (99th percentiles) is
larger than those for the mean wave heights by a factor of approx-
imately 2.

The projected response in wave direction shows a general trend
towards a greater southerly component to mean wave direction
(�3–5� directional shift) throughout the global ocean, with pro-
jected changes of up to 10� observed at some locations (Fig-
ure ure14). However, there are several locations where this
general trend is not observed. These locations tend to be in regions
of islands and/or complex topography, and diffraction/refraction
processes influence the wave direction response. The subtropical
ridge in each hemisphere appears to be a region of larger projected
change in wave directions. We attribute this to the sensitivity of
wave direction to the position of the ridge, which is projected to
shift pole-wards in the future climate scenarios. No clear seasonal
structure to the projected changes in wave direction is observed.

4.3.3. Interannual variability
This section investigates the interannual variability of only the

wave model runs forced with un-adjusted CCAM surface winds.
Figs. 15–17 show the results of the regression analysis of G1d_ncfsr,
G1d_echam5_20c and G1d_echam5_21c derived HSm anomalies
against the SOI, NAO and SAM climate indices, respectively, for
both historical and future time-slices. The regression coefficient
values plotted reflect the magnitude of the response of the annual
mean HSm per unit of climate index (i.e., a value of 0.05 suggests a
unit increase in the climate index is associated with a 5 cm in-
crease in the annual mean HSm (e.g., a regression coefficient of
0.02 relative to SOI suggests an El Niño event (SOI < �10) is associ-
ated with a 20 cm negative anomaly of HSm at that given location).



Fig. 11. Projected change (m/s) in annual mean near-surface (10 m) wind speed (2070–2099 less 1979–2009) for the SRES A2 scenario, from runs (a) CCAM-ECHAM5, and (b)
CCAM-Mk3.5. Only regions where projected future annual mean wind speed is significantly different (at 95% confidence level) to historical annual mean wind speed are
coloured. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 2 shows the range of climate index values in each dataset,
according to the definition used in this study.

The regression coefficients of the HSm anomaly against the SOI
for run G1d_ncfsr displays strongest relationship in the Pacific
Ocean, displaying features consistent with prior studies (e.g., Laing,
2000; Hemer et al., 2010a; Izaguirre et al., 2010; Fan et al., in press;
Figure 15(a)). A positive anomaly of the SOI (La Niña phase) is asso-
ciated with decreasing wave heights over large portions of the Pa-
cific, particularly in the south-west Pacific, consistent with prior
studies, and in the Northern Hemisphere westerly storm belt.
The well-documented positive correlation between HSm and the
SOI in the Tasman and Coral seas on Australia’s eastern coast
(Ranasinghe et al., 2004; Short et al., 2000) and in the South China
Sea are observed. Positive correlations are observed in the south-
eastern part of the Pacific basin, with a strong HS response ob-
served in the Southern Ocean to the west of Chile. The region of po-
sitive correlation to the SOI adjacent to Australia’s west coast noted
by Hemer et al. (2010a) is also observed.

In runs G1d_echam5_20c and G1d_mk3.5_20c, representing the
current time-slice using climate model forcings, we observe sev-
eral of these same features in the corresponding map of regression
coefficients (Fig. 15(b) and (d)). Strong negative relationships are
observed over broad expanses of the Pacific Ocean, concentrated
in the south-west Pacific and in the northern westerly storm belt
(although distributed more evenly across the North Pacific). Re-
gions of positive correlation are also observed in the south-east Pa-
cific adjacent to the Chilean coast and in the Tasman and Coral
Seas, although in run G1d_echam5_20c (Fig. 15(b)), the region of
positive correlation in the Tasman region is weak and shifted east-
wards to be centred north of New Zealand. The positive relation-
ship in the South China Sea is seen in run G1d_echam5_20c
(Fig. 15(b)), but is absent in the G1d_Mk3.5_20c run (Fig. 15(d)).
The CCAM forced runs suggest a stronger relationship between
HSm anomalies and SOI in the Atlantic and Indian Oceans than ob-
served in the G1d_ncfsr run (Fig. 15(a)) or implied by previous
studies. In the Indian Ocean, the positive correlation on Australia’s
west coast continues westward across the basin, reaching a maxi-
mum along the African coast. A strong positive relationship to the
SOI is observed in the North Atlantic which is not observed in
existing data.

Runs G1d_echam5_21c and G1d_Mk3.5_21c, representing the
end of 21st century under the A2 future emission scenario, show
HSm anomalies correlate with SOI similarly to the current climate,
but several significant differences are noted (Fig. 15(c) and (e)).
While strong negative relationships are observed over large por-
tions of the Pacific, we see changes in distribution. In both model
run sets, we see a significant weakening of the negative relation-
ships in the western north-equatorial region, and a significant
strengthening the positive correlation to SOI is observed in the
adjacent South China Sea in the G1d_echam5_21c (G1d_Mk3.5_21c)
results. The negative regression coefficients in the south-west
equatorial Pacific and the northern westerly storm belt have both
weakened, becoming less negative towards the end of the 21st cen-
tury. A region of significant positive correlation is observed adja-
cent the Alaskan coast which was unobserved in either of the
20th century CCAM forced runs (G1d_echam5_20c and



Fig. 12. Projected change (m) in annual mean significant wave height, HS (2070–2099 less 1979–2009) for the SRES A2 scenario, from runs (a) G1d_echam5_{20c,21c}, (b)
G1d_mk3.5_{20c,21c}. Only regions where the projected wave heights are significantly different to the present wave climates, at a 95% CI, are coloured. Stippling denotes
regions where the magnitude of projected change exceeds the model bias. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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G1d_Mk3.5_20c). The positive correlation in the south-east Pacific
has also weakened in both runs. In the G1d_echam5_20c run partic-
ularly, the zonal extent is restricted considerably in the 21st cen-
tury scenario. Whereas this positive relationship extended across
the Pacific in runs G1d_ncfsr and G1d_echam5_20c, it is limited to
being eastward of 240�E in run G1d_echam5_20c (Fig. 15(c)). The
positive relationships in the Coral and Tasman Seas show a signif-
icant strengthening in the 21st century scenario from run G1d_e-
cham5_21c (Fig. 15(c)), with the positive relationship shifting
towards the Australian coast. In run G1d_Mk3.5_21c, a significant
weakening of the positive relationship is seen in this region
(Fig. 15(e)). The positive relationship observed across the Indian
Ocean in G1d_Mk3.5_20c has significantly increased in the future
CSIRO Mk3.5 forced scenario, but remains relatively unchanged
in the ECHAM5 forced runs. However, the relationship to SOI in
the Atlantic Ocean noted from the present climate runs are ob-
served to have weakened in both run-sets.

The regression coefficients of the interannual HSm anomalies
against the NAO for run G1d_ncfsr display a strong signal in the
North Atlantic, consistent with previous studies (e.g., Woolf et al.,
2002; Fig. 16(a)). The positive phase of the NAO is accompanied
by an increase in wave heights in the North Atlantic between the
United Kingdom and Greenland of up to approximately 4 cm per
unit NAO (i.e., for a maximum NAO value of approximately 10 –
see Table 2 – a 40 cm increase in annual mean HSm may be attrib-
uted to this relationship), and a decrease in wave heights further
south stretching across all North Atlantic latitudes. This association
is well documented, as occurring during a strengthening of the Ice-
landic low and Azores high pressure systems, leading to a strength-
ening of the North Atlantic storm track with consequent influence
on the North Atlantic wave climate.

Fig. 16(b) and (d) shows the regression coefficients of the
G1d_echam5_20c and G1d_Mk3.5_20c derived wave height anoma-
lies relative to the NAO respectively, representing relationships in
the current climate from the CCAM forced models. The strong di-
pole signal in the North Atlantic is observed in both runs, consis-
tent with G1d_ncfsr and previous studies. A meridional dipole
signature is similarly observed in the North Pacific in these runs,
which suggests a strong Pacific teleconnection, not seen in existing
observational datasets. Osborn (2004) showed the SLP patterns
associated with the principal component of Atlantic sector SLP in
the ECHAM4 AOGCM follows an Arctic Oscillation type pattern,
with a similar strong teleconnection to the North Pacific. The posi-
tive regression coefficients in the Southern Ocean observed in run
G1d_cfsr are not reproduced in the CCAM forced runs.

Fig. 16(c) and (e) shows the relationships as derived from runs
G1d_echam5_21c and G1d_Mk3.5_21c respectively. In both CCAM
forced run-sets, we see significant change in the structure of the
North Atlantic dipole relationship of wave height anomalies with
the NAO. In the ECHAM5 derived runs (Fig 16(b) and (c)), a strong
positive relationship is observed between the United Kingdom and
Greenland, as observed in other datasets, but the negative correla-
tion further southwards in the North Atlantic has weakened signif-
icantly, and a band of significant positive correlation is observed
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Fig. 13. Zonal mean significant wave height, HS, for periods 1979–2009 and 2070–2099, from each climate model forced wave model run (m). (a) Annual mean, (b) Dec–Feb
mean, and (c) Jun–Aug mean. Close agreement between respective CCAM forced models is observed by overlaying lines.
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along the full length of the western European and north-west Afri-
can coasts. In the CSIRO Mk3.5 derived runs (Fig. 16(d) and (e)), the
strong positive relationship shows significant strengthening in the
21st century scenario, with significant positive relationships ob-
served along the north-west European coast and Bay of Biscay.
The Pacific teleconnection observed in the present climate run is
also observed in the future climate.

The G1d_ncfsr wave climate displays a strong relationship be-
tween the HSm anomalies and the SAM (Fig. 17(a)). A positive
SAM phase is associated with a positive anomaly of wave heights
in the Southern Ocean, particularly the Pacific sector, and north-
wards into swell dominated regions of the eastern equatorial Paci-
fic. In the Southern Ocean, we see a maximum regression
coefficient of approximately 3 cm per SAM unit. This suggests that
a strongly positive SAM phase (value of approximately 10 – see Ta-
ble 2) is accompanied by an increase of approximately 30 cm in an-
nual mean HSm in this region. Accompanying the positive
relationship in the far Southern Ocean is a negative relationship
in the extratropics southwest of Australia and in the South Atlantic,
consistent with the southern shift in position of the southern storm
belt associated with a positive phase of SAM. These features were
reported by Hemer et al. (2010a) from both altimeter derived wave
height data and the ERA-40 reanalysis wave data.

The G1d_echam5_20c and G1d_Mk3.5_20c runs display similar
relationships between HSm anomalies and the SAM (Fig. 17(b)
and (d)), with a strong positive correlation in the Southern Ocean,
extending northwards into the swell dominated region of the east-
ern equatorial Pacific, and a negative correlation in the southern
extratropics. A strong relationship between SAM and HSm anoma-
lies in the Southern Ocean is also observed in the future projected
wave climate (G1d_echam5_21c and G1d_Mk3.5_21c; Fig. 17(c) and
(e)), although significantly weaker relative to the current climate
time-slice over most longitudes in both run-sets. The negative
relationship observed in the southern extratropics for the pres-
ent climate is also much weaker in the future climate in both
run-sets, particularly in the Indian Ocean, suggesting an overall
weakening of the HS relationship to SAM variability in the future
time-slice.
5. Discussion and conclusions

A global 1� resolution implementation of a third generation
wave model, WaveWatch III (v3.14), has been run for two 30-yr
time-slices: One time-slice representing the current climate, and
another representing a future climate scenario under the IPCC SRES
A2 emission scenario. Forcing winds (and sea-ice fields) were de-
rived from two CMIP-3 global climate model runs (ECHAM5 and
CSIRO Mk3.5), which were dynamically downscaled using the Cu-
bic Conformal Atmospheric Model to 0.5� spatial resolution, with
3-hourly temporal archives. Wave model runs were also carried
out using forcing winds taken from the CCAM downscaling runs,
with further bias-adjustment of the wind fields to align their distri-
bution with the NCEP Climate Forecast System Reanalysis (using
the method proposed by Hemer et al., 2012a). The wave climate
obtained using climate model forcing was compared to the wave



Fig. 14. Projected change (�clockwise) in annual mean wave direction, m (2070–2099 less 1979–2009) for the SRES A2 scenario, from runs (a) G1d_echam5_{20c,21c}, (b)
G1d_mk3.5_{20c,21c}. Only regions where the projected wave directions are significantly different to the present wave climates, at a 95% CI, are coloured. Stippling denotes
regions where the magnitude of projected change exceeds the model bias. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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climate obtained when WaveWatch III was forced with NCFSR
winds, under the same model settings.

The NCFSR forced WaveWatch III wave model displays notable
biases relative to the ERA-Interim derived wave climate, when
using default BAJ parameterisation in the model. The BAJ parame-
terisation was chosen after an initial 1-yr run with this parameteri-
sation which showed better validation against ERA-Interim relative
to a 1-yr run with the default WaveWatch III settings using Tolman
and Chalikov (1996) source term parameterisations. Increased res-
olution of the NCFSR winds are a probable cause of the positive
biases observed in model derived wave heights, particularly in
the Southern Ocean. We did not tune WaveWatch III parameters
to improve model skill with NCFSR forcing. Recently completed
wave model hindcasts using NCFSR winds with a new source term
parameterisation (Ardhuin et al., 2010, 2011) within WaveWatch
III indicate model skill can be improved using the same forcing. De-
spite the biases observed between the G1d_cfsr derived wave
heights from this study and ERA-Interim fields, the G1d_cfsr run
provides a valuable control for climate model forced wave runs,
where model differences can be isolated, with the only difference
between models being surface wind forcing and sea ice extent.

The climate model forced wave model runs produce a wave cli-
mate qualitatively consistent with previous studies. Relative to the
G1d_cfsr run, the direct climate forced wave fields show positive
biases in HSm in the Southern Ocean of approximately 0.25 m,
and a negative bias of similar magnitude in the North Pacific. The
climate model winds have a general bias toward an exaggerated
zonal circulation (extratropical westerlies and trade winds are
overestimated in magnitude, with a directional bias towards zonal
flow). These characteristics are similarly transferred to the simu-
lated wave climate. However, we also see a positive bias in HSm

in regions where swell generated in the Southern Ocean has prop-
agated, associated with the overestimate of Southern Ocean wave
heights (and underestimate of North Pacific wave heights) in these
runs.

Aiming to improve the biases in the simulated wave field, each
set of CCAM derived winds (CCAM-ECHAM5 and CCAM-CSIRO-
Mk3.5) were bias-adjusted so that the bivariate surface wind dis-
tributions in the 1979–2009 time-slice aligns with the NCFSR wind
distribution at any given point. The mean significant wave heights
in the Southern Ocean show improvement relative to ERA-Interim
when forced with the bias-adjusted CCAM winds, but a negative
bias with respect to the benchmark G1d_cfsr run. The reduced bias
relative to ERA-Interim, but large (negative) biases relative to the
control G1d_cfsr run indicate the bias-adjustment has not im-
proved model skill (when compared in a consistent model space).
Furthermore, large negative biases (relative to G1d_cfsr and ERA-
Interim) in the storm wave statistic used in this study (HSm99) are
observed in these runs with bias-adjusted wind forcing. In their
east Australian regional wave climate study, Hemer et al. (2012a)
reported a decrease in the performance of the model to represent
storm wave statistics after bias-adjustment of forcing winds, but
argued that the increased model skill in representing the mean
wave climate justified use of the proposed bias-adjustment



Fig. 15. Regression coefficient of the 12 month running mean of the mean HS anomaly (after annual cycle removed) against the 12 month running mean of the Southern
Oscillation Index. (a) G1d_cfsr, (b) G1d_echam5_20c, (c) G1d_echam5_21c, (d) G1d_Mk3.5_20c, and (e) G1d_Mk3.5_21c. Stippled regions have a significantly different regression
coefficient (at 95% confidence level) in the projected future run. Only regions with correlation significant at 95% level are coloured. See Table 2 for range of SOI values in our
study. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 16. Regression coefficient of the 12 month running mean of the mean HS anomaly (after annual cycle removed) against the 12 month running mean of the North Atlantic
Oscillation. (a) G1d_cfsr, (b) G1d_echam5_20c, (c) G1d_echam5_21c, (d) G1d_Mk3.5_20c, and (e) G1d_Mk3.5_21c. Stippled regions have a significantly different regression
coefficient (at 95% confidence level) in the projected future run. Only regions with correlation significant at 95% level are coloured. See Table 2 for range of SOI values in our
study. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

240 M.A. Hemer et al. / Ocean Modelling 70 (2013) 221–245



Fig. 17. Regression coefficient of the 12 month running mean of the mean HS anomaly (after annual cycle removed) against the 12 month running mean of the Southern
Annular Mode Index. (a) G1d_cfsr, (b) G1d_echam5_20c, (c) G1d_echam5_21c, (d) G1d_Mk3.5_20c, and (e) G1d_Mk3.5_21c. Stippled regions have a significantly different
regression coefficient (at 95% confidence level) in the projected future run. Only regions with correlation significant at 95% level are coloured. See Table 2 for range of SOI
values in our study. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 2
Minimum and maximum values of climate indices in each dataset, defining the range, according to definition used in this study.

Historical (1979–2009) Future (2070–2099)

Min Max Min Max

SOI NCFSR �18.4 8.9 – –
ECHAM5 �16.6 14.7 �15.6 10.9
Mk3.5 �13.2 18.0 �13.4 12.7

NAO NCFSR �4.2 6.2 – –
ECHAM5 �7.5 11.1 �8.5 10.2
Mk3.5 �8.2 8.5 �10.3 10.5

SAM NCFSR �7.4 8.8 – –
ECHAM5 �13.9 8.2 �8.5 10.2
Mk3.5 �8.0 9.1 �8.7 10.5
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method. In this global study, we find that bias-adjustment of the
forcing winds has marginal influence on the wave height distribu-
tion up to approximately the upper end of the inter-quartile range,
but deteriorates model performance of storm wave conditions to a
level where we do not support application of this procedure. The
method used is a bivariate adjustment of the distribution of east-
ward and northward wind components from the climate model,
to align with the distribution from the reanalysis. Wang et al.
(2010) show that adjustment of mean wind speed leads to
improvement of the dynamically derived wave field, but suggested
further improvements are likely possible. The procedure used in
this study reduces model skill to represent the storm wave climate.
One cause of this is likely the bivariate-quantile-adjustment result-
ing in too few samples at storm wind speeds for given directions to
construct a satisfactory adjustment matrix. Improvement may be
achieved by adjusting wind-stresses (instead of speeds), which
would adjust the forcing stresses, however the problem of sparse
sampling at wind speed extremes for given directions would re-
main. Given directional wind biases are typically within the rela-
tively coarse directional resolution of the global wave models
(15�), a quantile adjustment of wind speed (or wind stress magni-
tude) may be sufficient to improve the simulated wave climate,
overcoming the shortcomings of the present method. This study,
by deterioration of storm wave climate fields after bias-adjustment
of wind fields has been carried out, has demonstrated that adjust-
ment of the upper percentiles of climate model derived wind
speeds (in this study limited by 98th percentile) requires indepen-
dent study. Another alternative to improve wave climate model
fields would be to apply a bias adjustment to the output wave
fields themselves, as applied by Charles et al. (2012). Trials of
different bias-adjustment procedures are ongoing, which also in-
cludes assessment of the best approaches to ensure high percen-
tiles (storm wave conditions) are best represented.

Projected changes in wave climate for the given future emission
scenario (SRES A2) are relatively insensitive to whether bias-
adjustment of wind forcing is carried out. Two strong robust sig-
nals are observed in the projected changes in both CCAM model
sets. Firstly, an increase in Southern Ocean wind speeds transfers
to generation of larger waves in the region. These Southern Ocean
generated wave systems are observed to propagate northwards
into the other ocean basins, so that corresponding increases in sig-
nificant wave height (HSm and HSm99) and mean wave period are
observed, with an increase in the contribution of southerly waves
to the wave spectrum in these regions, shifting the projected mean
wave direction to a more southerly orientation. The second feature
which is common to both CCAM model run sets is a decrease in
wind speeds in the North Atlantic, with a corresponding decrease
in significant wave heights and wave periods in the region. Wave
direction responds to future change in the region with a diver-
gence, so that south-westerly waves in the north have an increas-
ing southerly component, and west-south-westerly waves nearer
to the west European coast have an increasing westerly, or north-
erly, component. A similar decrease in wave heights and periods is
observed in the North Pacific, but not as strong or as consistent be-
tween the two models.

Our ‘ensemble’ is small, with only two downscaled GCMs hav-
ing been considered for a single emission greenhouse gas emission
scenario. We recognise that our sample is extremely limited within
the total sample space which surrounds projections of wave cli-
mate. Several sources of uncertainty surround wave climate pro-
jections, consisting of the future emission scenario, GCM, GCM
parameterisation, downscaling methodology, and the method used
to determine the projected wave field (including both dynamical
and statistical approaches). The results of this study must therefore
be considered within the context of other studies which have
investigated projected future changes in wave climate. Wang and
Swail (2006) developed statistical projections of the surface wind
wave climate from three GCMs for three forcing scenarios, exploit-
ing the statistical relationship between mean sea level pressure
and/or surface winds and the surface wind wave climate. Statistical
projections have the advantage of being computationally inexpen-
sive, and not requiring sub-daily wind-fields, but in studies carried
out so far are limited to projections of significant wave height only.
Mori et al. (2010) used surface winds derived from the 20 km res-
olution Japanese Meteorological Research Institute and Japan
Meteorological Agency (MRI/JMA) GCM, forced using an ensemble
mean SST obtained from the ensemble of CMIP3 GCMs, to force a
global implementation of the SWAN model, for an SRES A1B sce-
nario. Quantitative inter-comparisons of the results from this study
and these other studies is underway, as a contribution of the Coor-
dinated Ocean Wave CLImate Projections project (Hemer et al.,
2012c), but qualitatively, we see strong similarities between these
studies, with projected increase of approximately 10% in mean
Southern Ocean mean wave heights, and projected decrease of
up to 15% in mean wave heights in the central North Atlantic.

In this study, we have assessed only changes in integrated wave
parameters, HS, TM and hM, with various inferences on how this has
influenced sea and swell components of the wave field. Given the
spatial variability of projected change in the surface wave field,
sea and swell components of the wave field at any location will
be independent of one another. Our model has archived the full
modelled wave spectrum at many locations across the global
ocean, and partitioned sea and swell fields at all locations. Ongoing
analysis will assess how the surface wave spectrum across the glo-
bal ocean responds to the projected future climate scenario.

It is now well established that modes of variability of the wider
climate system are equally observed in the wave climate. For
example, strong relationships are observed between the Pacific
wave climate and climate indices associated with ENSO. In the
North Atlantic, significant relationships between wave parameters
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and the NAO are observed, and the principal mode of variability of
wave climate in the Southern Hemisphere is significantly corre-
lated to the SAM. In this study, the relationship between wave cli-
mate and the climate indices mentioned above have been
investigated, but it could be expected that relationships to several
other indices (e.g., Pacific Decadal Oscillation, Arctic Oscillation, In-
dian Ocean Dipole) exist. However, it is not clear whether the rela-
tionships between interannual variability of the wave climate and
these indices are robust in a changing climate. We have investi-
gated the relationship between HSm and the SOI, NAO and SAM
from the simulated present and future wave climates. Maps of cor-
relation of these indices at a seasonal level, and with TMm and hMm

would provide further insight on potential shifts in wave genera-
tion areas, but is left to a following study.

While there has been steady progress in the skill of simulating
ENSO within AOGCMs, systematic errors remain which limit the
ability of the models to reproduce the mean climate and natural
variability (Randall et al., 2007). Most models do not capture the
full meridional extent of the sea-surface temperature (SST) anom-
alies in the eastern Pacific, and tend to produce anomalies which
extend too far into the western Pacific. Many models produce
ENSO variability which occurs on time-scales much faster than ob-
served (Randall et al., 2007). Future projections in the tropical Pa-
cific Ocean under enhanced greenhouse gas emissions suggest a
general increase in SST, with a greater increase over the eastern
tropical Pacific than over the western tropical Pacific, together with
a decrease in SLP gradient along the equator and an eastward shift
of the tropical Pacific rainfall distribution. This has been described
as an El Niño-like mean state change (upon which individual ENSO
events occur, Meehl et al., 2007). Each model, however, shows dif-
fering projected response of El Niño variability. ECHAM5 and CSIRO
Mk3.0 (a predecessor of CSIRO Mk3.5) were noted as two models
which, along with the majority of models, project a shift towards
a more El Niño like mean state. While ECHAM5 suggested a slight
increase in El Niño variability under enhanced greenhouse gases,
CSIRO Mk3.0 displayed little change (Meehl et al., 2007). In our
two datasets, regression coefficients between HS anomaly and
SOI show significant differences in the future time-slice, relative
to the present climate time-slice, over large portions of the Pacific
domain. Regions of negative correlation show a significant weak-
ening relationship to the SOI, most notable in the northern west
equatorial Pacific. Regions of positive correlation in the South Chi-
na Sea show a significant strengthening, suggesting the known
ENSO response of wave conditions will strengthen in a future cli-
mate, with broad associated implications in these regions. In the
Tasman Sea, the results from the two models diverge, with EC-
HAM5 derived runs showing a projected significant increase in
the positive relationships in the region, whereas the CSIRO Mk3.5
derived runs project a significant weakening. These results demon-
strate the difficulty of working from just two climate model runs,
and the need to increase our future ensemble of projected wave cli-
mate change scenarios.

A strong relationship between wave height anomalies and the
NAO is observed in the North Atlantic in both our present and pro-
jected wave climate simulations. The IPCC fourth assessment re-
port indicated the AOGCM multi-model ensemble is capable of
reproducing many aspects of the NAO (Randall et al., 2007, IPCC
Ch.8). Many of the models project a decrease in arctic MSLP in
the 21st century, which would result in an increasing trend in
the NAO, as suggested by more than half of the models (Randall
et al., 2007). Neither ECHAM5 or CSIRO Mk3.5 were part of the
model ensemble from which this study was taken, but their prede-
cessors ECHAM4 and CSIRO Mk2 were typical of models which
bounded the ensemble – ECHAM4 suggesting a large positive trend
in the NAO into the 21st century, and CSIRO Mk2 suggesting no fu-
ture trend (Osborn, 2004). North Atlantic wave heights are pro-
jected to decrease under the future climate scenario, but the
relationship to the NAO in the region is more complex. We see sig-
nificant changes in the relationship between the NAO and HS

anomalies in the region, particularly in the Bay of Biscay (from
both models), and extending as far south as the north-west African
coast in the ECHAM5 derived runs. In locations where a positive
phase of the NAO is associated with negative HS anomalies in the
present climate, we see the positive phase of the NAO is accompa-
nied by positive HS anomalies in the future climate. Regions of neg-
ative anomalies display a shift offshore into the central Atlantic.
This response suggests while wave heights decrease in the pro-
jected climate, there is an increasing influence of a swell compo-
nent from waves generated further north in this region during
positive NAO phases. This response is consistent with the clock-
wise rotation of wave direction in this region, seen in our simula-
tions, and also reported from regional studies (Charles et al., 2012).

The present and projected wave climates derived from our sim-
ulations display strong positive relationships over large portions of
the Southern Hemisphere between the SAM and HSm anomalies.
The spatial structure of the SAM is well represented within the
CMIP multi-model ensemble (Randall et al., 2007). However dis-
crepancies exist in amplitude, the detailed zonal structure and
the temporal structure. For example, Randall et al. (2007) showed
that the ECHAM5 modelled SAM variance was almost twice as
large as the SAM variance within the NCEP reanalysis. While ozone
recovery is expected to lead to a reversal in the SAM response in
future austral summers (Arblaster et al., 2011), poleward shifts in
the southern extratropical storm track and a positive trend in the
SAM are projected in almost all climate models under future high
CO2 scenarios (Meehl et al., 2007).

As we have seen with other indices, the relationship between HS

anomalies and the SAM shows significant differences between the
present and projected climate simulations. A significant weakening
in the negative relationship between SAM and HS anomalies is ob-
served in the southern extratropics, particularly in the Indian
Ocean.

Researchers have proposed using relationships between wave
climate and these indices to project future changes in wave cli-
mate. These statistical projections are based on an assumption of
stationarity (identified relationships between present local vari-
able and large-scale variable are assumed to be the same in the fu-
ture climate, in the context of climate change). However, these
significant differences in the relationships from one time-slice to
another question this assumption and require consideration when
aiming to reconstruct wave climate from projected changes in SOI,
NAO and/or SAM (or other climate index).

This study has presented global dynamical projected changes in
wave climate for a single high emission scenario, SRES A2, from
two GCMs. Significant changes in wave climate are projected over
large regions of the global ocean, and it can be expected that such
changes may impact a range of activities and processes in a future
warmer climate. Surface waves drive coastal circulations, influence
coastal ecosystems, drive transport of coastal and nearshore sedi-
ments and hence influence shoreline stability, and are capable of
causing considerable damage to offshore and coastal infrastruc-
ture. While there is evidence that the influence of a changing wave
climate may dominate the influence of sea-level rise in some coast-
al regions (e.g., Coelho et al., 2009), it could be expected that in
some locations, the combined influence of these non-stationary
processes will likely be greater, with dramatic effects in the coastal
zone. Much future research is required to first quantify, but ulti-
mately narrow, the uncertainties which surround projected future
changes in wave climate on global scales (see Hemer et al., 2012c),
and furthermore, to apply these to local-scale studies to compre-
hend the consequent impacts. The availability of CMIP5 experi-
ments (Taylor et al., 2012) provides a much improved dataset
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(high spatial and temporal resolution) to support wave climate
projection studies, and we continue to assess the influence of pro-
jected future changes in atmospheric circulation on wave climate
with these new scenarios. However, it must be recognised that
while future impacts of wave climate change will be highly vari-
able on the basis of the magnitude of projected change, the adap-
tive capacity of the coast or industry/activity being considered will
also play a critical role.
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