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[1] Refraction of a Longuet-Higgins Gaussian sea by random ocean currents creates
persistent local variations (in the form of lumps or streaks) in average energy and wave
action distributions. These variations explicitly survive averaging over wavelength and
wave propagation direction. The lumps and streaks in average local action mean that the
uniform sampling assumed in the venerable Longuet-Higgins theory does not apply.
Proper handling of the nonuniform sampling results in greatly increased probability of
freak wave formation. The present theory represents a synthesis of Longuet-Higgins
Gaussian seas and the refraction model of White and Fornberg, which used a non-
Gaussian nonstatistical plane wave incident seaway. Using the linearized equations for
deep ocean waves, we obtain quantitative predictions for the increased probability of freak
wave formation when the refractive effects are taken into account. The wave height
distribution depends primarily on the ‘‘freak index,’’ g, which measures the strength of
refraction relative to the angular spread of the incoming sea. Dramatic effects are obtained
in the tail of this distribution even for the modest values of the freak index that are
expected to occur commonly in nature. Extensive comparisons are made between the
analytical description and numerical simulations.
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1. Introduction

[2] Freak waves in the ocean, known also as rogue waves
or giant waves, are waves of extreme height relative to the
typical wave in a given sea state, and may arise during a
storm or in relatively calm seas. Because of their steepness,
such waves pose great risk to cargo ships and even to large
cruise liners. Well-publicized and documented encounters
include a 25.6 meter wave that hit the Draupner oil platform
in the North Sea in 1995, two ships that suffered damage at
30 meters above sea level from a single wave in the South
Atlantic in 2001, and the cruise liner Norwegian Dawn that
met a series of three 21 meter waves off the coast of Georgia
in 2005. In March 2007, the MS Prinsendam was hit by a
21 meter tall freak wave in the Antarctic. Satellite images
taken over three weeks in 2001 and analyzed as part of the
European Union MaxWave project [Dankert et al., 2003]
detected ten waves of height above 25 meters, suggesting
that such waves commonly occur in the world’s oceans.
[3] Random (constructive) linear superposition of many

plane waves with differing direction and wavelength, as in
the Longuet-Higgins random seas model [Longuet-Higgins,

1957], offers a simple statistical explanation for the occur-
rence of freak waves. By the central limit theorem, the sea
surface height in this model must be a Gaussian random
variable with some standard deviation s. In the limit of a
narrow frequency spectrum the crest height then follows a
Rayleigh distribution: the probability of crest height ex-
ceeding H is given by

PRayleigh Hð Þ ¼ e�H2=2s2

: ð1Þ

Note that for linear waves there is an exact symmetry between
crests and troughs, so that for a crest height of H, the wave
height (crest to trough) is given by 2H. Conventionally, a
freak wave is defined as H� 4.4s, or 2H� 2.2 SWH, where
the significant wave height SWH� 4.0 s is the average of the

largest one third of wave heights in a time series. [More

precisely, SWH= 3
ffiffiffiffiffiffi
2p

p
erfc (

ffiffiffiffiffiffiffi
ln 3

p
þ 2

ffiffiffiffiffiffiffi
ln 9

p
) s� 4.0043 s

for a Rayleigh distribution.] The Rayleigh distribution
thus predicts freak waves to occur with probability 6.3 	
10�5 and extreme freak waves of crest height H � 6s (or
2H � 3 SWH) to occur with probability 1.5 	 10�8.
Observational data [Dankert et al., 2003] suggests that this
purely stochastic Rayleigh model significantly underesti-
mates the actual number of freak waves. A review of several
alternative theories of the freak wave phenomenon appears
in the work of Kharif and Pelinovsky [2003].
[4] Nonlinear instability effects [Onorato et al., 2001;

Trulsen and Dysthe, 1996] have been extensively and
successfully studied as a mechanism of freak wave forma-
tion. However, the effects of such instabilities depend
sensitively on initial conditions, and the full numerical
computations starting from a generic random sea state are
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costly. Thus it is difficult to obtain quantitative predictions
of the crest height distribution, analogous to (1), except in
approximations such as the Nonlinear Schrödinger Equation
(NLS) or the Dysthe equation [Trulsen and Dysthe, 1996;
Dysthe, 1979], which are valid for small to moderate values
of the wave steepness. Since nonlinear effects scale as
powers of the wave steepness kH, where k is the wave
number, strongly nonlinear evolution is more likely to be
triggered in an initial condition where the waves are already
unusually high. Thus the tail of the crest height distribution
may be dominated by linear triggering mechanisms that
produce slightly taller-than-average waves especially con-
ducive to nonlinear instability. Identifying such triggering
mechanisms, and combining them with nonlinear evolution,
would allow for quantitative predictions of the freak wave
probability distribution, and would also advance the long-
term goal of freak wave forecasting.
[5] One such linear triggering mechanism for deep water

waves is the focusing or refraction of an incoming plane
wave by random current eddies, as discussed by several
authors including [Peregrine, 1976; White and Fornberg,
1998], and motivated by the fact that many freak waves
have been observed in regions of strong ocean currents.
This mechanism must contain part of the story, since ocean
currents do refract waves in the ocean. The difficulty is with
the assumption of a single plane wave incident on the
refracting currents. A plane wave leads to caustics or
singularities with infinite ray density (smoothed out only
at the wavelength scale), and consequently a repeated and
reproducible pattern of freak waves, which will always
appear whenever focusing currents are present. Statistical
predictions have no place in such a theory. Of course, an
incoming plane wave is a physically unrealistic model of
most sea states, since directional and wave number spread
in the incoming sea will smear out the above-mentioned
singularities.
[6] These difficulties may be overcome by combining the

stochastic random seas approach and the focusing approach,
to obtain the distribution of crest heights resulting from a
random incoming sea incident on a region of random eddy
currents. Averaging over a random incoming sea smears out
but does not entirely destroy the effects of the refraction.
Lumps in wave action persist, varying from place to place
by factors of 2 to 4 typically. For realistic values of the
parameters, the predicted probability distribution of crest
heights depends on a single quantity, the ‘‘freak index,’’
which is a simple function of mean wave speed, rms current
speed, and angular spread of the incoming waves. We shall
see that realistic sea states can lead to enhancements of a
factor of 50 or more in the probability of forming freak
waves, over and above purely Gaussian seas with the same
averaged action density. The greatest probability enhance-
ment occurs for the largest freak waves, while the proba-
bilities associated with typical wave heights are scarcely
affected.
[7] In section 2 we review the focusing model, combine it

with a stochastic incoming sea, and obtain analytical results
for the probability distribution of crest heights when the
freak index is small. The predictions are tested in section 3
using numerical simulations in the ray limit (where the
wavelength is small compared to the size of the eddies). The
quantitative correspondence between ray dynamics and

wave dynamics is discussed further in section 4, in connec-
tion with analogous correspondence for the Schrödinger
equation. This is followed by some qualitative observations
in section 5. We emphasize that the probability distributions
obtained in section 2 and verified numerically in section 3
are not the final word, but must rather be used as input to
the full nonlinear evolution. This and other outstanding
questions are explored in section 6.

2. Theory

2.1. Refraction

[8] We begin by briefly reviewing the focusing of a plane
wave by a random current field. A detailed discussion may
be found in the work of White and Fornberg [1998].
[9] The ray dynamics of deep-water surface gravity

waves is governed by the usual eikonal equations for ray
position~r and wave vector ~k,

d~k

dt
¼ � @w

@~r
;

d~r

dt
¼ @w

@~k
: ð2Þ

Here the dispersion relation is given by

w ~k;~r
� �

¼
ffiffiffiffiffiffiffiffi
gj~kj

q
þ~k 	 ~U ~rð Þ ; ð3Þ

where ~U (~r) is the time-independent current velocity,
assumed to be slowly varying on the scale of a wavelength.
In the following analysis, we consider ~U (~r) to be a random
field, with zero average velocity, typical velocity fluctua-
tions of size u0, and spatial correlations on a distance scale
x. In the ocean, the typical eddy size x may vary between 20
and 100 km, while the typical speed u0 is generally below
1 m/s.
[10] An incoming plane wave of frequency w moving in

the y direction may be represented in phase space by initial
conditions~r = (x, 0) for all x and~k = (0, k), where k = 2p/l
is related as usual to the wave speed by v = @w/@k = (g/4k)1/2

and to the wave period as T = 2p/w = 2p(gk)1/2 (here we

neglect for simplicity the current velocity ~U, which gener-
ally is much less than v, but the exact expression (3) is
used to relate w, v, and k in numerical simulations, causing
v and k to be spatially varying even for a constant
frequency w). A typical wave period for deep-water ocean
waves is 10 s, corresponding to wavelength l = 156 m and
wave speed v = 7.81 m/s.
[11] When this incoming plane wave impinges on a

random current field, it will undergo small-angle scattering,
with scattering angle �u0/v after traveling one correlation
length x in the forward direction. Eventually, singularities
appear that are characterized in the surface of section map
[x(0), kx(0)] ! [x(y), kx(y)] by dx(y)/dx(0) = 0, i.e., by local
focusing of the manifold of initial conditions at a point. The
formation mechanism of these singularities may be ascribed
to a ‘‘bad lens.’’ Whereas a good lens without aberration
focuses all parallel incoming rays to one point, a bad lens
only focuses at each point an infinitesimal neighborhood of
nearby rays, so that different neighborhoods get focused at
different places as the phase-space manifold evolves for-
ward in y, resulting in lines, or branches, of singularities.
The typical pattern is an isolated cusp singularity, d2x(y)/
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dx(0)2 = dx(y)/dx(0) = 0, followed by two branches of fold
singularities, as shown in Figure 1.
[12] The first cusp singularities appear after a median

travel distance y = L � x (u0/v)
�2/3  x through the random

eddy field [White and Fornberg, 1998; Kaplan, 2002],
when the typical ray excursion in the transverse x direction
becomes of order x. For realistic parameters, L � 100 km or
more is typical. (Note that the weakness of the scattering
requires a wave to pass over many uncorrelated eddies
before the first singularities are formed. This allows ray
propagation to be described statistically without regard to
detailed structure of individual eddies, using only the length
scale x and dimensionless velocity ratio u0/v.) The cusp
singularities formed in this way are separated by a distance
�x in the transverse direction, and the typical deflection
angle by the time these singularities appear scales as

dq � dkx
k

� u0=vð Þ2=3 : ð4Þ

The quantity dq may be defined precisely as the rms value
of the deflection angle evaluated at the forward distance L,
where the averaging is performed over all rays and over an
ensemble of random eddy fields. The typical deflection
angle dq does not depend on the size of the eddies but only
on the velocity ratio u0/v: faster currents cause larger
deflection. For example, for v = 7.81 m/s and u0 = 0.5 m/s,
we find (u0/v)

2/3 = 0.16, dq = 18�, and the median distance
to the first singularity is L = 7.5x (150 km if we take the
eddy correlation length x to be 20 km).
[13] Of course, the singularities are a mathematical con-

struct existing only in the ray limit kxx ! 1. For wave
dynamics, any such singularities must be smeared out at
least on the scale of a wavelength, or more precisely, on the
scale kx

�1 � k�1(u0/v)
�2/3 in the transverse direction. For

example, a fold singularity will be softened over a distance
scale kx

�1 (kxx)
1/3. (The typical structure of the phase space

manifold near a fold singularity is
x� x0

x
� (

kx � kx0

dkx
)2; the

uncertainty principle implies that the smallest phase space
area enclosed by the fold that can be resolved by wave
dynamics is (x � x0)(kx � kx0) � 1.) This estimate shows
that the maximum wave intensity near a fold singularity is
enhanced by a finite factor (kxx)

1/3 � (kx)1/3(u0/v)
2/9 com-

pared to the background intensity, which is a factor of 5 or
more for reasonable-sized eddies. Although infinities are thus
absent from the wave dynamics, this model is still unsatis-
factory, as it predicts that extreme freak waves will always
occur whenever an incoming plane wave encounters a
random eddy field.
[14] Subsequent propagation through the random current

field produces new singularities, and the resulting number
of branches grows as ey/L while the wave continues to travel
forward. As we will see in section 2.2 below, wave intensity
peaks associated with these later singularities become
increasingly washed out because of growing spread in wave
direction. Thus the early generations of caustics, appearing
soon after the incoming wave is first scattered by the eddy
currents, will typically dominate the freak wave distribution.

2.2. Averaging

[15] We now consider the more realistic situation where
the initial plane wave is replaced by a random superposition
of waves with a finite angular spread Dq. Typically, Dq
may take values of 10� to 30�. Again, for kxx  1, we are
justified in modeling the wave dynamics using the ray
approximation, where the initial positions are still given
by~r = (x, 0) uniformly distributed over all x and the initial
wave vectors are given by ~k = (k sin q0, k cosq0), with a
Gaussian directional spread P(q0) � e�q02/2(Dq)2. (In section 4
we confirm the quantitative correspondence between wave
and ray intensity statistics in the context of the linear
Schrödinger equation.)
[16] This set of initial rays is refracted in its evolution

through the eddy field, and by the time the first singularities
appear, the typical ray is scattered by a transverse wave
vector of size dkx, as described by (4). Because of the finite
spread Dkx � kDq of initial conditions, the singularities in
position space are smoothed out. Instead we obtain regions
of above average intensity near the positions of the would-
be singularities, and regions of below average intensity
elsewhere, as indicated in Figure 2. The typical contrast

Figure 1. A cusp singularity, followed by two branches of
fold singularities, is formed as initially parallel rays,
distributed uniformly in the x (horizontal) direction and
traveling in the y (downward) direction, pass through a
focusing region. The two branches appear because the focal
distance varies with the distance of approach from the
center, as in a ‘‘bad’’ lens with strong spherical aberration.
After averaging over incident directions, the singularities
will be softened but not washed away completely.
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between high- and low-intensity regions is determined by
the dimensionless freak index [Heller, 2005],

g ¼ dq
Dq

� dkx
Dkx

� u0=vð Þ2=3

Dq
: ð5Þ

For example, when g � 1, scattering produces small
fluctuations of order dkx in the vertical thickness of the
phase space region representing the evolved sea state in
Figure 2 (left). The mean vertical thickness of this phase
space region remains Dkx, and the contrast ratio between
maximum and average intensity therefore scales as 1 +
O(g). In the opposite limit, g  1, the singularities in the
ray density are only slightly softened by the spread Dkx in
the initial sea state, and the maximum intensity is enhanced
by a factor scaling as g3/2 compared to the average intensity.

(Near a fold singularity, the manifold
x� x0

x
� (

kx � kx0

dkx
)2 is

thickened by O(Dkx) in the k-direction and O(x
Dkx

dkx
) in the

x-direction.)
[17] Large g, which maximizes the likelihood of freak

wave formation, occurs for small initial directional spread

Dkx and large deflections dkx, i.e., for a well-collimated
(long-crested) sea encountering a very strong random cur-
rent field. On the other hand, we will see below that typical
parameter values occurring in nature correspond rather to
small or moderate values of the freak index, g < 1 or g � 1,
where the small-g expansion will be more relevant. Inter-
estingly, even in this regime where most refraction effects
have been washed out, one can nevertheless observe dra-
matic consequences for the probability of freak wave
formation, particularly for the extreme freak waves.
[18] What justifies our focus on intensity fluctuations asso-

ciated with the first generation of singularities, those formed
after typical travel distance L? Subsequent evolution through
the random eddy field causes the direction of travel to undergo
diffusion, so that the initial angular spread Dq becomes

Dq yð Þð Þ2 � Dqð Þ2 þ O dqð Þ2y=L
� �

ð6Þ

after distance y, and thus the effective freak index decreases
as

g yð Þ �

ffiffiffi
L

y

s
ð7Þ

Figure 2. (left) An initial sea state characterized by a spread Dkx � kDq in the transverse component of
the wave vector is described by a strip of finite thickness in the (x, kx) phase space at y = 0 (top). Under
subsequent refraction through the eddy field, the sea state acquires additional fluctuations of typical size
dkx � kdq as it evolves forward in y, and eventually singularities in the ray dynamics are encountered. At
the bottom of the figure, the evolved phase space distribution in (x, kx) is projected to a position space
density r(x) by integrating over all values of kx at each x. Although all singularities are washed out
because of the finite initial spread Dkx, a pattern of high-intensity (focusing) regions and low-intensity
(defocusing) regions is evident after projection. (right) Further refraction through the random eddy field
produces multiple tendrils in the phase space distribution and many high-and low-intensity regions in
position space, which may be described statistically.
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at large distances y. The first generation of singularities,
formed soon after entering a region of strong random
currents, is responsible for producing the largest intensity
fluctuations and thus appears to be the most hospitable
environment for freak wave formation.
[19] We now consider the implications of these spatial

variations in ray density for the distribution of crest heights.
Since the ray density fluctuations occur on a scale larger
than a wavelength, the local wave dynamics may still be
described by a Gaussian-random Longuet-Higgins model,
and (1) generalizes to

Plocal Hð Þ ¼ e�H2=2~s2 x;yð Þ : ð8Þ

[20] Here ~s2(x, y) = s2I(x, y), where I(x, y) is the local
density of rays, normalized to unity for the initial sea state
before scattering, and s2 is the elevation variance associated
with the initial sea state.
[21] Here we should note that both wave energy density

and wave action density are proportional to the mean square
wave amplitude, which in turn corresponds to ray density.
Thus the lumps we find in ray path density or squared wave
amplitude imply, and can be converted into, lumps in either
energy density or in action density. The conserved quantity
in the presence of currents is wave action, rather than wave
energy [Bretherton and Garrett, 1968]. In the present
circumstances, the conversion factor relating action and
energy is nearly constant: the effect of currents of strength
0.5 m/s as against a typical 10 m/s wave velocity gives
corrections on the order of 5%.
[22] Now let Ra be the ratio of the local probability of an

H = as event to the probability of the same event using a
Rayleigh distribution. Then

Ra x; yð Þ ¼ Plocal Hð Þ
PRayleigh Hð Þ ¼ exp

�a2

2

1

I x; yð Þ�1

� �� 	
: ð9Þ

Equation (9) shows that local enhancement and suppression
of the freak wave formation probability is very significant:
in a zone where the local energy is just 50% above the mean
(I = 1.5), the frequency of a 4.4s wave crest (the threshold
for a rogue wave) increases by a factor of 25, while the
frequency of a 6s wave crest is enhanced by a factor of 400.
At the same time, the low-energy zones are remarkably
quiescent: 4.4s events are 20 times less likely in a patch
down only 25% in energy density from the mean (I = 0.75).
[23] After spatial averaging, we obtain the total probabil-

ity of a crest height exceeding H,

P Hð Þ ¼
Z

dI P Ið Þ e�H2=2s2I ; ð10Þ

where P(I) �
R
dxdyd(I � I(x, y)) is the probability

distribution of energy densities obtained using ray
dynamics. This local rescaling of the random wave model
is unproblematic for linear wave equations, and has been
used successfully in computing wave function statistics for
the linear Schrödinger equation [Kaplan, 2002; 1998;
Kaplan and Heller, 1998] (see also section 4). Caution
must be used in applying such rescaling to a nonlinear wave
equation, as we know that over sufficiently long time scales,

nonlinear instabilities will cause the sea state to re-
equilibrate to a longer or shorter mean wavelength after a
change in the energy density. This and related issues are
addressed in section 6.

2.3. Analytical Results

[24] We work in the regime of small or moderate freak
index g, where scattering effects are relatively weak com-
pared with the angular spread of the incoming waves. This
limit is most likely to be encountered in nature, and yet
yields surprisingly large effects in the tail of the freak wave
probability distribution. Consider a Gaussian-distributed
local energy density, with a standard deviation � propor-
tional to g:

P Ið Þ ¼ e� I�1ð Þ2=2�2ffiffiffiffiffiffiffiffiffi
2p�2

p ; ð11Þ

where

� ¼ ag : ð12Þ

This general form (11) of the ray density distribution is
expected to apply to any weak scattering process, while the
proportionality constant a depends on the specific equation
of motion (2), and is to be fixed below in section 3. Then
the distribution of crest heights becomes

P Hð Þ ¼
Z

dI
e� I�1ð Þ2=2�2e�H2=2s2Iffiffiffiffiffiffiffiffiffi

2p�2
p : ð13Þ

For small fluctuations �, or large heights H, the integral may
be evaluated by the method of steepest descent, expanding
around the maximum I = 1 + z, and we obtain

P Hð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

1þ 3z

r
e�z 1þ3z=2ð Þ=�2 ; ð14Þ

where z is defined implicitly as a function of H through the
cubic equation

z 1þ zð Þ2¼ �2H2

2s2
: ð15Þ

[25] The validity of the steepest descent approximation
requires either small density fluctuations � � 1 or very tall
waves H/s  1, or both, but the right hand side of (15) may
in general be of order unity. However, if we consider the
probability of waves of a fixed height H in the limiting case
of a very small freak index, � ! 0, then z becomes small
and we obtain the perturbative result,

Ppert Hð Þ ¼ 1þ 2�2
H2

4s2

H2

4s2
� 1

� �� 	
e�H2=2s2 þ O �4

 �
; ð16Þ

i.e., a polynomial multiplying the original Rayleigh
distribution. This perturbative result is analogous to
quantum wave function intensity distributions in the
presence of weak disorder or weak scarring by periodic
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orbits [Mirlin, 2000; Damborsky and Kaplan, 2005].
According to the perturbative expression, the probability
of seeing a wave height equal to or greater than 2H = 4s
(the significant wave height of the initial sea state) is
unaffected by refraction, but the probability is enhanced as
we consider more and more extreme waves. We note that
Ppert(H) is a cumulative distribution function. The prob-
ability density of encountering a wave crest of height H is
given by dPpert(H)/dH, which is enhanced both for very
small heights (H < 1.17s) and very large heights (H >
2.22s) and is reduced for waves of intermediate height. This
is consistent with the physics of energy focusing, which
increases fluctuations while keeping the average energy
density unchanged.
[26] On the other hand, if we consider the extreme tail

H/s ! 1 for a given freak index, the right hand side of
(15) becomes large, and so does the z parameter. We obtain

Ptail Hð Þ � exp � 1

�2
3

2

�2H2

2s2

� �2=3

� �2H2

2s2

� �1=3

þ 1

3
þ . . .

" #" #
:

ð17Þ

Note that the leading term in the exponent grows only asH4/3

for very large crest heightsH, in contrast with the much faster
H2 growth for the Rayleigh distribution. However, depending
on the value of the freak index g (or equivalently on the
typical intensity fluctuation parameter e), the probabilities
associated with this asymptotic tail may be too small to be
observable in practice.
[27] Also of interest are the moments of the crest height

distribution, H2n. Since the crest heights are locally Ray-
leigh-distributed, we may write

H2 ¼ H2
RayleighI x; yð Þ ð18Þ

where HRayleigh
2 is a Rayleigh-distributed random variable

corresponding to the average surface elevation variance s2,
and I(x, y) is a slowly changing scaling factor that describes
energy density variations. Averaging over space,

H2n ¼ H2n
Rayleigh 	 In

¼ H2n
Rayleigh 	

Z
dI P Ið Þ In ; ð19Þ

where the first factor is the corresponding moment in the
absence of refraction, while the second factor depends only
on the ray dynamics and takes into account fluctuations in
the local energy density. Assuming once again a Gaussian
distribution of ray densities for small freak index (11), we
have

I � 1ð Þn ¼ �n n� 1ð Þ!! ð20Þ

for even n and 0 for odd n, and in particular the scaling of
the even moments with the freak index g is predicted to be

Rn ¼ I � 1ð Þn
� �1

n �
ffiffiffi
n

2

r
� ¼ a

ffiffiffi
n

2

r
g: ð21Þ

In a regime where the Gaussian approximation is inade-
quate, the moments In or Rn

n = I � 1ð Þn may be evaluated
directly from a numerical ray dynamics simulation. We note
that I = 1 is required by probability conservation in the ray
dynamics, while the higher moments In for n � 2 are
necessarily greater than 1 in the presence of refraction.
However, for small freak index g � 1, the corrections to
Rayleigh are tiny except for the very high moments, n � 1/g
for In or n � 1/g2 for Rn. Only in these high-order moments
can one clearly see the dramatic refraction-induced effects,
which dominate the tail of the crest height distribution.
[28] Finally, we must consider the effect of a finite range

of wave frequencies (or speeds or wavelengths) in the initial
sea state, as given for example by the JONSWAP spectrum
[Komen et al., 1994]. For simplicity of presentation, con-
sider first the simplified case where the energy is uniformly
distributed among all wave speeds in the interval [v � Dv,
v + Dv]. The total finite-bandwidth ray intensity is then
given by

Ifb x; yð Þ ¼ 1

2Dv

Z vþDv

v�Dv

dv0 Iv0 x; yð Þ ; ð22Þ

where Iv 0(x, y) is the ray density associated with the single
wave speed v0, and obeys the statistical properties discussed
above for freak index g � (u0/v

0)2/3. We are of course
interested in fluctuations of the total ray intensity around its
average, e.g., the variance

�2fb ¼
1

2Dvð Þ2
Z vþDv

v�Dv

dv 0
Z vþDv

v�Dv

dv00 dIv0 x; yð ÞdIv00 x; yð Þ ; ð23Þ

where

dIv0 x; yð Þ ¼ Iv0 x; yð Þ � 1 � g � v0�2=3 : ð24Þ

Two effects must be taken into account in determining the
effect of finite but small Dv in (23). First, the size of the
intensity fluctuations at a given velocity is velocity-
dependent, i.e., dIv0 x; yð ÞdIv0 x; yð Þ � v0�4/3, and since the
function v0�4/3 has a positive second derivative, integrating
over a symmetric interval of size Dv around the central
velocity v will lead to an O((Dv/v)2) enhancement in the
variance (23) compared with the result for a single wave
velocity v. Secondly, replacing the initial velocity v with v0

causes the rays to deviate by a typical distance � v0 � vð Þ
v

x

by the time the first caustic is reached, and thus the intensity
fluctuation map dIv 0(x, y) is shifted with respect to the
original map dIv(x, y) by a similar displacement. Now
assuming that the original ray intensity map dIv(x, y) is
sufficiently smooth on the eddy scale x (true for large
angular spread Dq or small freak index g, as discussed
above), we find that the correlation between dIv(x, y) and
dIv0(x, y) should fall off as 1 � O((v0 � v)2/v2). Both
effects are second order in Dv, and combining them we
find that the variance of the energy density for finite
bandwidth behaves as

�2fb ¼ �2 1� O Dv=vð Þ2
h i

; ð25Þ
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where � is the zero-bandwidth result evaluated using the
central velocity v, and where the sign and numerical
coefficient of the leading correction may be g-dependent.
Replacing the uniform velocity spread with a more
realistic spectrum, such as JONSWAP, will merely change
the numerical coefficient. In section 3 we will confirm

that the quantitative size of the finite-bandwidth effect is
very small in practice, and will almost certainly be
overwhelmed by nonlinear corrections that are explicitly
excluded from our model. Thus, within the linear
approximation, one is generally well justified in ignoring
finite-bandwidth effects, and simply relying on the freak
index obtained from the mean wave speed.

3. Numerical Simulations

[29] Following White and Fornberg [1998], for our
numerical simulations of the ray density we generate
incompressible random current fields ~U (~r) as

Ux ~rð Þ ¼ �@y ~rð Þ=@y; Uy ~rð Þ ¼ @y ~rð Þ=@x : ð26Þ

Here the two-dimensional stream function y(~r) is Gaussian
distributed with Gaussian decay of spatial correlations:

y ~rð Þ ¼ 0; y ~rð Þy ~r0ð Þ � e� ~r�~r0ð Þ2=2x2 ; ð27Þ

and normalized so that j~U ~rð Þj2 = u0
2. The choice of a

Gaussian-distributed and Gaussian-correlated stream func-
tion is made for convenience and for consistency with White
and Fornberg [1998]. The theoretical discussion in the
previous sections does not depend on any specific choice of
a random ensemble, but only on the length scale x and
velocity scale u0.
[30] The calculation is performed on a 640 km by 640 km

grid, with an eddy correlation length x = 20 km and periodic
boundary conditions in the transverse (x) direction. Without
loss of generality, the rms current speed u0 is set to 0.5 m/s.
Again, the specific values of x and u0 are arbitrary and serve
merely to set the scale for the simulation. The refraction
strength as measured by dq or dkx may be controlled by
varying the incoming wave velocity v, in accordance with
(4), while the angular spread Dq is controlled directly in the
initial conditions. To avoid boundary effects, ray trajectories
are launched at a distance y0 = 50 km inside the random
eddy field, uniformly spaced in the transverse x direction,
and with a range of wave vector directions q0. The initial
wave vector for each ray is~k0 = (k0 sin q0, k0 cos q0), where
the initial wave number k0 is chosen to correspond to
constant frequency w = 2p/(10 s) in accordance with (3).
[31] Each trajectory is obtained by integrating the ray

equations of motion (2), using the Dormand-Prince method
(a fourth order Runge-Kutta integration scheme). These
trajectories are interpolated and weighted with P(q0) �
e�q02/2(Dq)2, and then points along the interpolated trajec-
tories are binned onto a fine rectangular grid to produce a
ray density map I(x, y). Of course, the spacing of the initial
trajectories in position and angle, as well as the mesh size of
the final grid, must be chosen small to avoid numerical
artifacts in the distribution of ray densities. For the
parameters discussed here, adequate convergence was
achieved using a 5 km spacing for the initial ray position
x0 (ultimately interpolated to a 1.25 km spacing), a 3�
increment in initial angle (ultimately interpolated to a 1�
increment), and a 512 by 512 grid (corresponding to a
1.25 km grid spacing) for collecting density data. In
general, higher values of the freak index cause structures

Figure 3. A ray density map is shown for rays moving
through a 640 km by 640 km random eddy field with rms
current u0 = 0.5 m/s. The rays are launched at a distance
y0 = 50 km from the top of the figure, with frequency w = 2p /
10 s (corresponding to velocity v = 7.81 m/s in the absence of
currents). The rays are initially uniformly distributed in the x
(horizontal) direction and have initial angular spread Dq
around the y (downward) direction. (top) Dq = 5�,
corresponding to a very high freak index g = 3.6. (bottom)
Dq = 25�, or g = 0.7.
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at finer scales to appear in the ray density, requiring a
greater number of trajectories to achieve converged results.
[32] Typical density maps for the same random eddy field

but two different values of the initial angular spread are
shown in Figure 3. Recalling that the median distance at
which initially parallel rays form a caustic is approximately
150 km for our parameters, we collect statistics on ray density
I(x, y) over the region y0 + 12.5 km < y < y0 + 250 km, which
includes the most significant density fluctuations. Several
moments of the ray density distribution for various initial
angular spreads Dq are shown in Figure 4. The initial wave
velocity v and rms current speed u0 are kept fixed in these
simulations, so varying Dq corresponds to a variation of the
freak index g (5).
[33] We notice first that the norm R2 is simply the

standard deviation e of the ray densities, and its linear
scaling with the freak index g for small g confirms the
prediction (12). Similarly the scaling of the higher moments
with g is consistent with the prediction of (20) and (21).
Fitting the moments Rn for g = 0.7 results in the value a =
0.25 for the proportionality constant in (12). This value
results in good agreement with (21) for all moments in the
regime of small or moderate freak index, as indicated by
the theoretical lines for R2, R4, R10, and R20 in Figure 4.
The fact that all moments are described by a single
constant a validates the assumption of Gaussian density
fluctuations in this regime. Notably, linear dependence on
the freak index g, especially for the high moments that
govern the tail of the crest height distribution, is evident
for all but the largest g (corresponding to initial angular
spread Dq = 5�). Thus the small-g approximation appears
to be justified for most sea conditions expected in nature.
Furthermore, the uppermost line in Figure 4 shows that the

maximum intensity fluctuation R1 = max(jI � 1j) also
scales linearly with g, as expected for a finite sample.
[34] Given the ray densities I(x, y), the probability P(H)

of encountering a crest height larger than H may be obtained
using (10). The results for several values of the initial
angular spread Dq are shown in Figure 5, and compared
with the analytical prediction (14), which was derived in the
limit of small freak index. The Rayleigh prediction (1)
serves as a baseline for comparison. In Figure 6, we
calculate the factor by which P(H) is enhanced over the
Rayleigh prediction, for several values of H. We see that
under realistic conditions, refractive effects may enhance
the probability of encountering a freak wave (H = 4.4s) by
as much as an order of magnitude, while the probability of
extreme freak waves (H = 6s) may be enhanced by more
than two orders of magnitude, depending on Dq. The small-
g analytic approximation provides a reasonable estimate of
this enhancement for all but the least realistic situation of
very long-crested incoming waves (Dq = 5�, or g = 3.6).
[35] Until now, we have been varying the freak index g =

dq/Dq by adjusting only the angular spread Dq of the
incoming sea. To verify that the freak index is in fact the
single parameter determining the probability of freak wave
formation in our model, we must likewise vary the refrac-
tion strength dq � (u0/v)

2/3. Since the eikonal equations (2),
(3) are manifestly invariant under the simultaneous rescal-
ing of the wave speed v and rms current speed u0 (v ! qv,
u0 ! qu0, k ! q�2k, w ! q�1w), we may without loss of
generality vary vwhile keeping the currents fixed. The results
of such a calculation are shown in Figure 7, and confirm that
the energy density fluctuations leading to freak waves exhibit
single-parameter scaling with the freak index g.
[36] Of course, a realistic initial sea state has a finite

frequency bandwidth, and consequently includes a range of

Figure 4. The norm Rn = I � 1ð Þn
� �1

n

of the ray density

I(x, y) (Figure 3) is calculated for several n and for different
initial angular spreads Dq (corresponding to different values
of the freak index g). From left to right, the data points
represent Dq = 25�, 20�, 15�, 10�, and 5�. In each case, the
intensities are sampled on a uniform rectangular grid
extending in the longitudinal y direction from a distance
of 12.5 km to a distance of 250 km beyond the y = 0 line
where the rays are initially launched. The theoretical lines
for R2, R4, R10, and R20 are obtained from (12) and (20).

Figure 5. The fraction P(H) of crest heights greater than H
is computed from the ray densities I(x, y) using assumption
(10) of locally Rayleigh fluctuations (solid lines). From
bottom to top, the five solid lines show results for initial
angular spread Dq = 25�, 20�, 15�, 10�, and 5�. The small-g
analytic prediction (14) is shown by a dashed line in each of
the five cases. The Rayleigh distribution (1), which
describes the refraction-free g ! 0 limit, is also shown
for comparison.
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wave speeds rather than a single speed v. Repeating our
simulations for velocity uniformly distributed in the range
[v � Dv, v + Dv], we find little change in the size of ray
density fluctuations, as compared with the monochromatic
case of a single speed v. This is consistent with the
discussion leading to (25), which showed that finite-
bandwidth effects vanish at leading order in Dv/v. For
example, in the typical case of freak index g = 1.2 (central
velocity v = 7.81 m/s, rms current speed u0 = 0.5 m/s, and
directional spreadDq = 15�), the moderate bandwidthDv/v =
0.2 results in an increase of less than 1% in the width efb of the
intensity distribution, as compared with the monochromatic
result; doubling the bandwidth to Dv/v = 0.4 still produces
only a 3% increase in the width of the intensity distribution.
The effect on freak wave formation, for Dv/v = 0.4, is
indicated by the open symbols in Figure 6 (the effect of
bandwidthDv/v = 0.2 would be too small to be clearly visible
on the scale of the figure).
[37] Another phenomenon observed in the numerical

simulations, which may be of interest when comparing with
observational data, is the rapid change in mean wave
direction that typically occurs in conjunction with hot spot
formation. This is easy to understand in the large g limit,
where a fold singularity results in a discontinuity in the ray
density necessarily associated with a discontinuity in the
mean ray direction (since the wave vector~k associated with
the fold will be different from the wave vector associated
with other parts of the phase space manifold that project
onto the same position ~r). For finite initial angular spread
Dq, such discontinuities are smoothed out as we have seen,
but the residual effect remains. For example, on a square
grid of cell size 1.25 km (�8 wavelengths), we observe a
maximum cell-to-cell change of 25�–28� in the mean wave
direction when 10� � Dq � 25�, to be compared with a

median cell-to-cell fluctuation of 2�–3� over a 640 km by
640 km grid for the same parameters. This rapid change in
wave direction associated with entering a hot spot may be
consistent with mariners’ observation of some freak waves
appearing at large angles from the mean wave direction.

4. Schrödinger Equation Simulations
and Statistics

[38] We now describe linear Schrödinger equation simu-
lations, which are designed to check the assumptions and
ideas presented so far: (1) Is the connection between mean
square wave amplitude and ray density sound, under the
conditions of averaging over wavelength and especially
direction? (2) Is it correct to derive the global wave statistics
as an integral over locally Gaussian seas (the local Rayleigh
approach, see (8) and (10))? The linear Schrödinger equa-
tion with a random potential is a slightly imperfect labora-
tory for making comparisons with water waves, and of
course the correct ray dynamics using eddy fields has
already been presented above. However, solving the correct
nonlinear water wave equations with proper dispersion on
these eddy fields is difficult, and although we hope to do so
in the future, we argue that the linear Schrödinger equation
is adequate for the present statistical checks on ray-wave
correspondence.
[39] In the wave simulations, statistics for rare events

have to be gathered over large runs in space and time. One
cannot sit only at the focal region of an eddy and have event
after event; one has to wait and measure the statistics there
as elsewhere. If we had used a plane wave, the wave would
repeat itself periodically. With a random superposition of
hundreds of waves of different frequencies, we never
encounter repetitions in the time allotted to the simulations.

Figure 7. The standard deviation R2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 � 1

p
and

maximum fluctuation R1 = max jI � 1j of the ray intensity I
are plotted as in Figure 4 but varying the velocity v of the
incoming wave as well as the angular spread Dq of the
incoming sea. The velocities chosen correspond to v = bv0,
where b = 0.8, 1.0, 1.2, and 1.4, and v0 = 7.81 m/s is the
original velocity used in the previous figures. The five
symbols of each type correspond to the same five values of
Dq as in Figures 4 and 5.

Figure 6. The increase in the number of waves with crest
height greater than H is shown as a function of freak index
g. Solid squares correspond to H = 4.4s (the traditional
definition of freak waves), solid circles correspond to H =
5s, and solid triangles correspond to H = 6s (extreme freak
waves). The open symbols indicate an analogous calcula-
tion but for finite bandwidth Dv/v = 0.4. From left to right,
the data points represent initial angular spread Dq = 25�,
20�, 15�, 10�, and 5�. The dashed lines are obtained from
the small-g analytic prediction (14).
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[40] The simulations are performed as follows. Both the
ray and wave simulations use of course the same random
potential, which plays the role of the random eddy field.
(Note that the formation of caustics and energy lumps is
independent of the microscopic mechanism of ray deflec-
tion; only the correlation length and mean deflection angle
are important.) For each run, we produce a Gaussian
random potential field V(~r) by superposing 40 sine waves
with random direction, phase, and amplitude. An overall
scale factor controls the strength of the potential, and thus
the distance to the first focal caustics. The random potential
may be suppressed by a smooth tanh function in the
entrance region (top) and/or exit region (bottom), to simu-
late eddy-free zones through which the random waves travel
before and after refraction by the eddies. The images shown
below are about 8 correlation lengths across and 32 corre-
lation lengths in the vertical direction.
[41] For the ray studies, we establish a rectangular posi-

tion grid. Typically 40,000 ray trajectories are launched
uniformly along a line in the zero-potential entrance region
at the top, with initial direction and speed taken from
appropriate Gaussian distributions. As in the previous
Section, the data is binned onto a rectangular grid to
produce a density map. Here the map is 512 by 2048 pixels,
so that one correlation length x corresponds to 64 pixels. To
avoid pixelization effects, each trajectory is treated as a
narrow Gaussian density (typically 15 pixels across, which
is much less than the size of the energy lumps).
[42] On the same potential field we propagate waves

through the region of study, again using a 512 by 2048
square grid. The wavelength is chosen to be one tenth of a
correlation length x, so the field has a size of 80 by 320

wavelengths. Each incident waveset begins as a random
superposition of 400–700 traveling plane waves, and is
then propagated smoothly into the region with a lumpy
potential by the split operator fast Fourier transform method
[Garraway and Suominen, 1995] (SOFT). The spatial grid
and time step are adjusted to ensure that we are accurately
solving the full, linear, 2D time-dependent Schrödinger
equation i�h@y(x, y, t)/@t = (�1

2
r2 + V(x, y))y(x, y, t) for

the incoming waveset and random potential field V(x, y).
We use absorbing wall boundary conditions on the two long
sides and at the far end of the 512 by 2048 FFT grid,
adjusted so as to reduce reflections from these boundaries to
a negligible contribution. Statistical data are not taken near
the absorbing walls. No forward scattering or other assump-
tions are used, although backscattering is negligible in any
case for our parameters.
[43] Statistics are collected at every time step. The mean

square amplitude density plots and wave statistics data are
obtained in each run (i.e., for a given potential, dispersion of
incident directions, etc.) by evolving each waveset for
approximately 10,000 wave periods, repeating this process
for 5 to 10 incident wavesets, and averaging the results.
[44] Figures 8 and 9 reveal a great deal about the

calculations and the results. Since our aim is to check the
accuracy of freak wave statistics predicted from ray data, all
runs are performed at moderate to large freak index g,
where statistically significant numbers of freak wave events
appear, and where ray-wave correspondence is most likely
to be suspect. Each run takes a few hours on a single
processor Macintosh G4 workstation. In Figure 8, we see
ray density (Figures 8A and 8B) and wave intensity (C, D, E)
data, together with the potential superimposed in E, for a

Figure 8. (A, B) Ray density and (C, D, E) wave intensity data, together with the potential
superimposed in Figure 8E, and freak events superimposed in Figure 8D for a freak index g � 3.4. Rays
and waves are launched from the top (y = 0) toward the bottom of each panel. Each panel extends 320
wavelengths in the y (vertical) direction and 80 wavelengths in the x (horizontal) direction. The
correlation length of the potential is eight wavelengths. Bright zones represent high average ray density or
average squared wave amplitude. Very impressive and detailed agreement is seen comparing the ray
density and squared wave amplitude averages. The classical ray density without averaging over initial
direction is shown in Figure 8A in red. Freak events of 4.4s are recorded in blue in Figure 8D, and 6s events
are shown in red. (See Figure 10 for the relevant statistical information.)
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freak index g � 3.4. Very impressive and detailed agreement
is seen comparing the ray density and wave intensity aver-
ages; compare B (ray) with C (wave) especially. In A, the
singular ray density for Dq = 0 (g = 1, corresponding to a
single incident plane wave, i.e., the White and Fornberg limit
[White and Fornberg, 1998]) is shown in red for comparison,
superimposed on the direction-averaged ray density for g �
3.4. In Figure 8D, freak events of 4.4s are superimposed in
blue, and 6s events (truly disastrous!) are shown in red.
[45] Whereas the region shown in Figure 8 is entirely

within the random potential field, Figure 9 shows wave
simulation results ‘‘before, during, and after’’ random
scattering. Waves are again launched from the top toward
the bottom. All four panels show the mean square wave
amplitude in gray scale, with Figure 9A showing it un-
adorned. Figure 9B superimposes the potential field, which
is random only in the central region and zero elsewhere.
Figures 9C and 9C superimpose freak event information,
with C encoding all 6s events, and D all 4.4s events that
occurred during the run. Note that very few 4.4s events, and
no 6s events, occur before the random potential is encoun-
tered. Significant numbers of these events are found ‘‘down-
stream’’ of the random potential, but the largest
concentration of extreme events is located within the
refracting region, and especially near the first zone of
(smoothed) caustics. Referring back to (9), we note that
the unlucky ship that finds herself in one of the bright lumps
in Figure 9 (where intensity is as high as four times the
mean) will have approximately 1500 times the probability
of encountering a 4.4 s freak wave than in a zone of average
energy density. A fearsome 5s event is 12,000 times more
likely there than in a zone of average energy density.
[46] Figure 10 strongly supports our idea of locally

Gaussian statistics averaged over the mean wave density
distribution. The wave density distribution for this run
(g = 3.4) is shown in gray scale in the right panel, which also

Figure 9. All the results shown here are obtained from a
wave simulation at g � 2. Seven hundred randomly chosen
plane waves, with a range of propagation directions and
wavelengths, are superposed and launched from the top (y =
0) toward the bottom. As in the previous figure, each panel
is approximately 80 wavelengths or eight correlation
lengths across in the x (horizontal) direction. All four
panels show the mean square wave amplitude (bright zones
indicating high mean square amplitude), with Figure 9A
showing this quantity unadorned. Figure 9B superimposes
the potential field, which is random only in the central
region. Figures 9C and D superimpose freak event
information, with Figure 9C encoding the 6s events and
Figure 9D the 4.4s events that occurred during the run.

Figure 10. Log of the crest height probability distribution by region (compared with Rayleigh and
theory) for g = 3.4. The dashed line is the Rayleigh distribution based on the average SWH. The solid line
shows numerical data from wave propagation. The dotted lines represent the theory based on (10),
together with measurement of the mean density I(x, y). Note the excellent agreement with the Rayleigh
distribution in the ‘‘undisturbed’’ region, c.
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indicates the three regions c, b, a over which statistics are
collected. Region c is located in the entrance zone before the
onset of the random potential; region b is located inside the
refraction zone and contains the first (smoothed) caustics;
and finally region a shows the wave behavior after refraction.
Naturally, variations are seen from run to run and are largest
for the rare events. We never obtain sufficient numbers of
extreme freak waves (crest height �6s) prior to refraction
(region c). However we see many 6s events during and after
refraction. In each case, the dashed line gives the Rayleigh
distribution, based on the average SWH; the solid red line
shows the numerical crest height data, and the dotted line is
theory based on (10) combined with measurement of the
spatial mean density variation I(x, y). [That is, P(I) is
determined from the mean density data I(x, y), and used in
the integral (10) to obtain the predicted P(H).] In region a, the
energy density distribution P(I) is quite close to Gaussian.
A Gaussian distribution of energy density is also a
reasonable fit to region b, which is relevant to the
derivation of (14) in section 2.3 but not needed here. Note
the excellent agreement with the Rayleigh distribution in
the ‘‘undisturbed’’ region, c. Note too the excellent agree-
ment between the data and the predicted curves in all three
regions. It is important to note that refraction effects are
evident only in the tail: the probability distribution of
‘‘typical’’ crest heights (H � 3s) is consistent with Rayleigh
in all three regions. Consequently, the measured SWH differs
in the three regions a, b, and c, by less than 3%.
[47] Table 1 presents some typical data obtained from the

linear Schrödinger propagation. For the three typical runs
shown here, we report 4.4s, 5s, and 6s and larger events in
regions a, b, and c. See Figure 10 (right) for an image of the
three zones.

5. Qualitative Observations

[48] We remark briefly on some qualitative and perhaps
speculative aspects of the results. Anecdotal reports from
mariners implicate at least three types of freak waves:

(1) The ‘‘three sisters,’’ i.e., three large waves in a row
heading in approximately the mean wave direction, (2) ‘‘out
of nowhere’’ waves, which attack suddenly from an unex-
pected quarter, perhaps 45 degrees from the mean wave
direction, and (3) the infamous ‘‘hole in the sea followed
by a wall of water.’’ This third kind of wave is reported to be
persistent, and perhaps very broad. Certainly, nonlinear
effects are important in forming and sustaining the third type
of wave; it is possible that the linear effects considered here
could help trigger it.
[49] There is modest evidence for the first two types of

wave in our simulations. This is not to say that nonlinear-
ities play no role, indeed they must for a complete descrip-
tion. However, we find in the simulations that the freak
events often appear as three sisters, or perhaps five with the
middle three being tallest, for the parameters we used.
Furthermore, we do see rays propagating at high angle to
the mean direction; these leave tracks such as the small,
fairly bright branches seen in Figure 3, even when the
incident waveset has a 25� standard deviation in angle. Such
streaks are also seen in the Schrödinger simulations in
Figures 8 and 9. Waves are seen traveling in the direction
of the streaks in the simulations. These streaks are typically
guided by remnant fold caustics that have survived the
averaging and received several chance deflections in one
direction. They are compact and move at a high angle
relative to the mean wave direction. We call these streaks
and the waves that populate them ‘‘runners.’’
[50] We should also mention another mechanism for

lumping, namely the collision or overlapping of two
smoothed V-shaped fold caustics that form immediately
following a cusp. These resemble ‘‘rooster tails’’ seen in
the wake of power boats, and we call them by that name.
Several are seen in Figures 8 and 9. They cause a sudden
increase of local average wave action.
[51] Certainly, the qualitatively reasonable idea that the

ray density fluctuations are washed out because of chaotic
exponential instability of the rays is incorrect. What is
perhaps even more surprising is that instead of smoothing

Table 1. For Three Typical Runs Shown Here, We Report Events of Size at Least 4.4s, 5s, and 6s in Regions a, b, and ca

Run/Region g d k/k 6s Found 6s Pred 5s Found 5s Pred 4.4s Found 4.4s Pred

1/c 0.67 0.14 0* 1 1.4 1 1 1
1/b 0.67 0.14 13 14 4 4 2.5 2.4
1/a 0.67 0.14 4.7 6 2.4 2.5 1.9 1.7
2/c 1 0.22 0* 1 0.65 1 1 1
2/b 1 0.22 41 47 7 9.2 3.5 4.5
2/a 1 0.22 10 4 3.5 2.5 2.1 1.7
3/c 1.35 0.14 0* 1 1.5 1 1.3 1
3/b 1.35 0.14 356 349 26 27 8 8
3/a 1.35 0.14 148 106 15 13 6 5

aSee Figure 10 for an image of the three zones. Runs 1 and 3 have the refracting zone extending throughout regions b and a. Run 2 has the refracting zone
only in region b (as in Figure 9). Region c is the nonrefracting zone preceding first entry into the refraction region. Here ‘‘ns pred’’ is the predicted number
of ns events (n = 6, 5, 4.4), divided by the expected number based on Gaussian statistics over the whole region. Similarly ‘‘ns found’’ is the theoretically
predicted value for this ratio. The asterisk indicates that no 6s events were seen in the prerefracting region for the entire run. For a freak index g = 1, we see
a factor of �50 increase in the number of 6s and larger events, a factor of � 10 increase in 5s and larger events, and a � 4-fold increase in 4.4s and larger
events, compared with the Longuet-Higgins Gaussian seas model in the refracting region b. Run 1 for g = 0.67 (Dq � 9� spread of incident wave directions
and dq � 6� mean deflection) shows correspondingly lower enhancement of freak events over the Gaussian expectations. Run 3, for a freak index of 1.35,
shows up to 350-fold enhancement of 6s and larger events.
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out, the ray density develops finer structure after propagat-
ing several times the distance to the first focal regions.

6. Conclusions and Outlook

[52] We have seen that refraction of a stochastic Gaussian
sea by random eddy currents creates a lumpy spatial energy
distribution, causing deviations from the initial Rayleigh
crest height (or wave height) distribution expected in a
random wave model. Significant energy lumps survive
averaging over wave direction and wavelength, despite the
chaoticity displayed by individual ray trajectories and the
washing out of singularities in the ray dynamics. These
lumps dramatically increase the probability of freak wave
formation, even though parameters associated with low-
order moments of the wave height distribution, such as the
significant wave height or the kurtosis (i.e., the normalized
fourth moment), are almost unchanged. A single dimen-
sionless parameter called the freak index g, defined as the
ratio of typical angular deflection in one focal distance to
the initial angular uncertainty of the incoming waveset, is
sufficient to determine the size of the tail in the crest height
distribution. Although freak wave probability increases with
increasing g, very significant effects are obtained already
when g takes modest values realizable in nature. The
increase in extreme freak waves (those of wave height
greater than three times the significant wave height) is
especially spectacular. The number of such waves may
increase by two or more orders of magnitude when a
well-collimated sea (angular spread Dq � 15�) encounters
a field of strong eddy currents (rms current speed u0 =
0.5 m/s). For physically reasonable parameters, good agree-
ment is obtained between analytic results based on a small-g
approximation and numerical simulations.
[53] In this paper we use statistics averaged over a large

area, including all the lumps and streaks, to define the SWH
and the global statistics. For any reasonable freak index, the
low moments of the global distribution, including the kurto-
sis, are scarcely affected, yet as we have shown the far tails of
the distribution, i.e., the ‘‘freak’’ events, can be greatly
enhanced. One could perhaps argue that inside a spatially
extended lump one should re-define the SWH to adjust to
the local energy density and then inside that region the
statistics would be the ‘‘expected’’ Gaussian with a larger
SWH than some kilometers away. The largest of the lumps
are on the order of the correlation length of the eddies,
which can be thought of as either large or small depending
on the wavelength of the seaway. Much smaller lumps
appear when two streaks cross for example, and fine
structure is also present as mentioned in the previous
Section. The basic idea of the nonuniform sampling theory
used here is that the seas suffer a sudden increase in local
wave action when encountering a lump, and they have
neither the time nor space to fully accommodate this
increase through the normal nonlinear evolution. The seas
inside a lump have the same wavelength but larger ampli-
tude and are therefore steeper, greatly enhancing the prob-
ability of a freak wave appearing, just as in other scenarios
where wave steepness increases. By combining refraction
and random wave statistics we retain a statistical model for
freak wave formation.

[54] As emphasized in the introduction, the linear model
considered here may be regarded a starting point for a more
sophisticated nonlinear analysis. To leading order in the
wave steepness, nonlinear effects may be taken into account
by replacing the Rayleigh distribution of crest heights in (8)
with the Tayfun distribution [Tayfun, 1980]. At this order,
the only effect of nonlinearity is to create an asymmetry
between wave crests and wave troughs, while the distribu-
tion of wave heights remains unchanged. Numerical evi-
dence suggests that the Tayfun approximation gives
accurate results for crest height statistics in two dimensions
except in the case of a very narrow directional spread
[Socquet-Juglard et al., 2005].
[55] At higher order, nonlinearity of the wave equation

results in exponential instabilities, such as the Benjamin-
Feir instability [Benjamin and Feir, 1967] for an initial
plane wave evolved under the nonlinear Schrödinger equa-
tion (NLS). The likely effect of such instabilities is an
enhancement in the probability of freak wave formation on
short- to moderate-distance scales [Onorato et al., 2001;
Trulsen and Dysthe, 1996] (the Benjamin-Feir time scale is
of order (kH)�2 wave periods, where kH is the steepness).
On longer time scales, nonlinearity should have the opposite
effect of reducing wave steepness by transferring energy in
the hot spots to longer wavelength modes, and resulting in a
new equilibrium distribution with a larger significant wave
height. We do not expect such re-equilibration to be
effective when the energy density is varying significantly
over scales as short as 10 wavelengths. However, further
investigation employing a nonlinear model such as a four-
wave approximation [Zakharov, 1968] is needed to deter-
mine whether refraction and nonlinearity acting together
produce more freak waves than does either effect separately.
Interestingly, recent numerical explorations of nonlinear
effects on freak wave formation in two dimensions
(using nonlinear equations of the Dysthe type) show
that these effects are strongly dependent on directional
spread [Socquet-Juglard et al., 2005; Onorato et al.,
2002]. Nonlinear enhancement of freak wave formation is
maximized for long-crested waves, which is the same as the
limit in which refraction effects are greatest. Of course,
nonlinear effects additionally scale with the initial wave
steepness (e.g., with the a parameter in the JONSWAP
spectrum), while refraction effects depend on scattering
angle, allowing for nontrivial interplay between the two
mechanisms. A number of other issues suggest themselves
but are not addressed here, such as experimental detection of
energy lumpiness, and the rate of movement of lumps (due to
changing eddy positions and velocities).
[56] The essence of this paper is a synthesis of Longuet-

Higgins Gaussian seas [Longuet-Higgins, 1957] and the
refraction model of White and Fornberg [1998]. From the
perspective of wave propagation, it is still a linear theory,
and indeed we have checked it successfully with a linear
Schrödinger propagator. From the point of view of ray
dynamics it is decidedly nonlinear and even chaotic in the
usual sense of exponential sensitivity to small changes in
initial data. If the Longuet-Higgins Gaussian seas model is
‘‘too cold’’ (too few extreme events are predicted to occur),
and the White and Fornberg model is ‘‘too hot’’ (freak
waves appear periodically at every focal point), then the
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present combination of Gaussian seas and refractive effects
may be ‘‘just right.’’
[57] We mention that random refraction due to many

small eddies is not essential to the main idea presented
here, which is the notion of random wave statistics in the
presence of energy lumps and streaks. Such variations in
energy or action could have many causes, including a single
large eddy or indeed a variable shallow bottom. In fact the
latter seems the best hope for a real world laboratory to test
the ideas in this paper. For a sea incident on a continental
shelf with bottom depth variations, one might hope to
compare the statistics of the incoming wave with the
statistics at various locations that are predicted to be action
maxima or minima. This could hopefully become a semi-
quantitative test of the ideas presented here, i.e., a deviation
from Gaussian statistics in the far tails of the distribution.
Indeed the Canadian waters off Vancouver Island and the
Queen Charlotte Islands, an area known for its unruly seas,
may be one such ‘‘laboratory.’’
[58] Finally we express our conviction that nonlinear wave

effects are very important, perhaps to every freak wave event.
However, we believe the sudden buildup of energy or action
in the lumps that we have shown exist may be an important
triggering mechanism for nonlinear evolution.
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