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ABSTRACT 

Methods are outlined for determining the transformations to directional wave spectra induced by 
large-scale currents. The problems considered are those where waves move from quiescent water on 
to a current, or from one current region to another. Situations involving wave generation on currents 
are not discussed. The principle of wave action conservation is used to relate the wave energy densities 
in the two regions, and an equilibrium range constraint is applied to the high frequency tail of the 
transformed spectrum in instances where wave action is not conserved and energy is dissipated by 
wave breaking. Examples are presented which highlight how current-induced wave refraction and 
energy dissipation may have important  consequences for the transformed spectrum. 
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numerical  constants associated with the equilibrium range of  
the surface elevation spectrum for waves on a current  
(A*=2B*)  
distance between adjacent wave orthogonals 
absolute wave celerity 
absolute wave group velocity 
component  of  the absolute wave group velocity in the direction 
of  the wave orthogonal ( = OtOa/Ok) 
relative wave group velocity 
relative wave celerity 
water depth 
wave energy density 
distance between adjacent wave rays 
equilibrium range directional spreading function 
acceleration due to gravity 
wave height 
significant wave height 
wave number  ( = 2n/L) 

0378-3839 /93 /$06 .00  © 1993 Elsevier Science Publ ishers  B.V. All rights reserved. 



208 T.S. HEDGES ET AL. 

L 

Sr/r/ER ( 

Sr/r/wA ( 

Ta 
L 
T, 
U 
OL 

0 

7E 

P 
2 

O'r/W A 

O,) a 

fO r 

V 

) 

) 

) 

wavelength 
spectral density of  surface elevation; a function of the param- 
eters contained within the brackets 
limiting value of  S~, ( ) associated with the equilibrium range 
of  the surface elevation spectrum 
spectral density of  surface elevation predicted on the assump- 
tion that wave action is conserved 
absolute wave period 
relative wave period 
mean zero-upcrossing period 
current velocity 
angle between wave front and current direction 
angle between two vectors for evaluation of their scalar product 
direction of  a component  wave, measured relative to the pre- 
dominant  wave direction 
4.0 t an -  t ( 1.0 ) 
water density 
total variance of surface elevation predicted on the assumption 
that wave action is conserved 
absolute wave angular frequency 
relative wave angular frequency 
spatial gradient operator, O/Ox+ O/Oy, x and y being Cartesian 
co-ordinates in the horizontal plane 

Subscripts (other than those defined above): 

' ~2  

value in region 1 (containing incident waves) 
value in region 2 (containing transformed waves ) 
a vector quantity (i.e. r is the vector quantity r) 

I N T R O D U C T I O N  

A satisfactory estimation of the hydrodynamic forces experienced by the 
submerged elements of  offshore structures depends upon an adequate de- 
scription of  the water-particle motions. These motions are usually predicted 
with the aid of  a wave theory based upon a number  of simplifying assump- 
tions. One possible assumption is that the water is quiescent - -  that the only 
water motions are those induced by the waves. However, in reality, ocean 
waves rarely propagate on quiescent water. 

Waves may combine with currents in a variety of ways. For example, the 
wind may blow over water already in motion under tidal forces. If the wind is 
opposing the tidal flow then the waves tend to be higher than if it follows the 
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flow. This effect has been studied in the laboratory by Francis and Dudgeon 
( 1967 ). Another possibility is that waves generated on quiescent water prop- 
agate from the generation area on to a current some distance away. This pos- 
sibility is the one considered in the present study. 

The scope of the investigation is l imited to large-scale currents which vary 
slowly in space and time. It is these currents which are most relevant to the 
design of offshore structures. Large-scale currents have horizontal variations 
which may be regarded as negligible within a wavelength whilst t ime varia- 
tions in the current are negligible within a wave period (see Peregrine, 1976 ). 

It has also been necessary, at present, to limit the study to the consideration 
of currents which are essentially uniform with depth. Such an idealisation 
may be appropriate for tidal flows but is unlikely to be wholly satisfactory for 
situations in which there is strong shearing of the water surface by the wind. 
Nevertheless, even for the latter case, calculations involving a vertically-uni- 
form current will provide some insight into the likely behaviour of waves en- 
countering the real flow conditions. 

Longuet-Higgins and Stewart ( 1961 ) were the first to deal correctly with 
the interaction between water waves and currents. They introduced the con- 
cept of "radiation stress" and showed the existence of energy transfer be- 
tween waves and currents. Bretherton and Garrett (1968) later drew atten- 
tion to a quantity which they called "wave action". Wave action is important  
in the study of waves on currents as, unlike wave energy, it is conserved in the 
absence of  wave generation or dissipation. This approach is adopted in the 
present study. 

In more recent years, the interaction of short-crested waves and currents 
has received attention from, amongst others, Tayfun et al. ( 1976 ), Mathiesen 
(1984), Brink-Kjaer ( 1985 ) and Treloar (1986). The present investigation 
extends this work by the introduction of an equilibrium range constraint (see 
Hedges, 1981 ). This concept has received little attention in the literature re- 
lating to the interaction of  short-crested waves and currents. However, the 
implications of neglecting to apply such a constraint may be of considerable 
importance. 

ABSOLUTE AND RELATIVE WAVE FREQUENCIES 

Before developing the theory to describe the transformation of a general 
three-dimensional wave field on encountering a current, the absolute and rel- 
ative wave frequencies need to be defined. These quantities are well-known 
(see Hedges, 1987 ), and only a brief outline is given here. 

Initially, consider a train of two-dimensional regular waves of wavelength 
L and height H travelling on a steady, horizontally and vertically uniform 
current. The current velocity is U in the direction of  wave propagation. View- 
ing the waves in a stationary frame of  reference containing the wave orthog- 
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onal, Fig. 1 (a) ,  they have a celerity Ca and a per iod Ta. However,  if the waves 
are viewed in a frame of  reference moving  along the wave orthogonal  at ve- 
locity U, Fig. 1 (b) ,  they appear  to be travelling on "still" water with celerity 
Cr and per iod Tr. 

Hence 

Ca=CrJrU (1) 

o r  

L L 
- + U  ( 2 )  

Ta Tr 

Alternatively 

(.t)a = O)r q- k U  (3) 

where o) a is the absolute wave angular frequency ( = 2n/Ta); ogr is the relative 
wave angular frequency ( = 27r/Tr); and k is the wave number  ( = 2n/L ). 

In the moving  frame of  reference, the waves seem to be propagating on 
"still" water and all the usual equat ions describing wave mot ion  are valid. 
Thus,  according to linear wave theory: 

09Zr =gk tanh kd (4) 

in which g is the acceleration due to gravity and d is the water depth.  
Substi tut ing for ogr in Eq. ( 3 ) gives: 

Oga = _+ (gk tanh  kd)'/2+kU (5) 

which is the dispersion relat ionship for small ampli tude,  two-dimensional  
waves on a current.  Given d, U a n d  Oga, Eq. ( 5 ) may be solved for k. Equat ion 
(3) ,  or (4) ,  then  yields Ogr. Note  that,  in general, there is no unique solution 
to Eq. ( 5 ). A discussion of  the full solut ion of  the dispersion relationship for 
waves on a current  is p rovided  by Peregrine ( 1976 ). 

Ca = L / T a  C r = L / T r  

L L 

Y/,~v/.K'. I I , ~ Y  y//~x'14::, \ ' ."/,~2"/ 

a} w a v e s  in s t a t i o n a r y  b) w a v e s  in m o v i n g  
f r a m e  o f  r e f e r e n c e  f r a m e  o f  r e f e r e n c e  

Fig. 1. Waves  on  a u n i f o r m  current .  



INTERACTION OF SHORT-CRESTED RANDOM WAVES AND LARGE-SCALE CURRENTS 211 

WAVE A C T I O N  C O N S E R V A T I O N  

When waves propagate from quiescent water on to a current, their absolute 
period remains constant but the wave amplitude is changed as energy is trans- 
ferred between the waves and the current. In the general three-dimensional 
situation, wave refraction also occurs. Changes in wave amplitude induced 
by a current may be determined using the principle of wave action conserva- 
tion (Bretherton and Garrett, 1968). Wave action is defined as E/ogr, where 
E, the wave energy density, is given by: 

E=pgH2/8 (6) 

in which p is the water density. Provided that there is no energy dissipation 
or wave generation, wave action is conserved and the governing equation may 
be written: 

at ()+V[(U+Cg,-) ~- 1=0 (7) 

where __U is the current vector, __C~r is the vector representing the wave group 
velocity relative to the current, and V is the spatial gradient operator. From 
linear wave theory, the magnitude of the relative wave group velocity is: 

(_D r 2kd 
Cgr( = 0OOr/0k) = ~ [1 + sinh 2kd ] (8) 

Before proceeding further, it is important  to clearly define the various co- 
existing flow directions (see Fig. 2 ). Firstly, streamlines are defined as run- 
ning in the direction of the current velocity vector. Secondly, wave orthogo- 
nals give the direction of wave travel - -  they are normal to the wave fronts. 
Finally, wave rays run in the direction of the absolute group velocity, Cga, 
given by: 

Cga = U"~ Cgr (9) 

current 
streamline wave 

4 ~ ray  

/ /  Cgr / ~ /  Cr 

I ~ U  I P 
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~ l _  _ _ .~ o r t h o g o n a l  
Ca 

Fig. 2. A s t reaml ine ,  a wave  ray a n d  a wave  or thogona l .  
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(Note  that  streamlines, wave orthogonals  and wave rays are all in the same 
plane if the current  is directly following or directly opposing the waves. ) 

Jonsson and Skovgaard ( 1978 ) developed a me thod  for de termining the 
changes in wave direction, wavelength and wave height as regular waves cross 
a shearing current.  They applied Snell's Law to evaluate the degree of  refrac- 
t ion induced by the current  (see Fig. 3 ), giving: 

k2 L~ sin oq 
- -  m 

k~ L2 sin a 2 
( lO) 

in which a is the angle between the wave fronts and the current  direction. 
Subscript "1"  refers to a value in region 1 containing the incident  waves and 
subscript  "2"  refers to a value in region 2. Note  that  for incident  waves on 
quiescent water, U~ = 0. 

Generalising Eq. ( 3 ): 

09a =OJr  + k -  U ( l l )  

in which _k is the wave n u m b e r  vector, k- U is the scalar product  of  vectors k 
and __U ( i . e .k .  U=kUcosfl where fl is the angle between _k and __U). Thus  k- U 
represents the wave n u m b e r  mul t ip l ied  by the magni tude  of  the current  ve- 
locity componen t  in the wave direct ion (see Fig. 2 ). Together  with Eq. (4) ,  
Eqs. ( 10 ) and ( 11 ) can be used to find the changes in k, ogr and the orthogo- 
nal direction as waves pass f rom one current  region to another.  If  the incident  
waves are on quiescent  water, then O)rl =O) a and the procedure is simplified 
accordingly. 

Although the shearing current  changes the wave ray spacing (see Fig. 4),  
wave action is conserved between wave rays in the absence of  wave genera- 
t ion or dissipation. Thus,  for steady-state condit ions,  Eq. (7) gives: 

E l  E2  
- -  Cgal el  = - -  Cgaze2 ( 1 2 )  
(-Dr I O-)r2 

in which e is the distance between adjacent  wave rays. 
For short-crested r a n d o m  waves on a current,  the wave energy density, E, 

is related to the surface elevation spectral density, S . .  (09a,0, U), by: 

E =pg S. .  (o9.,0, U) dOga dO ( 1 3 ) 

where 0 is the direct ion of  a spectral componen t  (here measured  relative to 
the p redominan t  direct ion of  the incident  waves ). Thus,  Eq. ( 12 ) may be re- 
written: 

Srlrl2(O)a,O2,U2) O)r2 Cgal . e~ .  dO, 
= - -  • (14) 

S..1 (ma,0, ,U1 ) 09,1 Cga2 e2 d02 
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X / /  X 

Fig. 3. Change in wave direct ion across a shearing current.  

Note that the wave directions in the two regions, 01 and 02, will not generally 
be the same owing to refraction at the boundary between the regions. This 
implies that a component  of the transformed spectrum will have been pro- 
duced by a component  in the incident spectrum of the same frequency (as tOa 
remains constant across the boundary)  but in a different direction. 

Variations in 0 are related to the behaviour of  the wave orthogonals, rather 
than the wave rays, and it may be shown (Longuet-Higgins, 1957 ) that: 

d01 b2 k2 
d02 bl kl 

(15) 
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s h e a r  \ \ 

l a y e r  \ 
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,% 
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Fig. 4. Change in wave ray d i rec t ion across a shearing current .  
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where b is the distance between adjacent wave orthogonals. From geometric 
considerations (see Fig. 3 ): 

b2 COS o~2 
- ( 1 6 )  

b I COS OL 1 

Furthermore,  since (Da remains constant across the current boundary: 

k2 Ca1 
_ ( 1 7 )  

k, Ca2 

Equation (14) may now be re-written with the aid of  Eqs. ( 15 ) and ( 17 ) as 
follows: 

Sq~/2 (O)a ,02, U2 ) O)r2 Cgal el b2 Cal 
= - -  ( 1 8 )  

Srlql(o)a,OI,Ul) O)rl Cga2 bl e2 Ca2 

Now, defining C'ga to be the component  of  the absolute wave group velocity 
vector in the direction of  the wave orthogonal (see Fig. 2) so that: 

Cga( = O0.)a/Ok ) = UCOS~"~- Cg r (19) 

it may be shown that 
t 

e _ Cga (20) 
b Cga 

Thus, finally: 

S~l.2(O)a,O2,V2) O)r2 Cgal Cal 
= - -  . - -  (21) 

Sr/r/l ((Da,01 ,UI )  O)rl C 'ga2 Ca2 
The above derivation of  this result is for the simple case of  current shear 

shown in Figs. 3 and 4. But as Mathiesen (1984) demonstrates,  Eq. (21) can 
be used more generally to account for changes in both water depth and current. 

In the special case of  incident waves travelling on quiescent water ( Ul = 0 ), 
the above formulation is slightly simplified as (Drt = (Da and C'gal = Cgal = Cgrl. 
If, in addition, the incident waves are long-crested and encounter  either a 
directly following or a directly opposing current  so that there is no refraction, 
then the spectral densities in the current  and quiescent water regions are re- 
lated to the wave energy densities by: 

Sr/r/2(O)a,U2) __ pg Srm2((Da,U2)d(Da E2 
- - ( 2 2 )  

S, mi ((D~) pgSwll ((Da) do)a E1 

For two-dimensional,  steady-state conditions, Eq. (7) becomes: 

0 E 
0X [ ( U - ~ - C g r ) -  ] = 0  ( 2 3 )  

(D r 
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so that for waves travelling from quiescent water on to a directly following or 
directly opposing current: 

El Cgrl  E2(m2-l-Cgr2) 
O) a O9r2 

(24) 

or  

E2 O)r2 Cgr I 
m 

El O) a ( U2 + Cgr2) 
(25) 

Combining Eqs. (22) and (25) gives the two-dimensional, wave-current 
interaction model described by Hedges ( 1981 ) and supported by the experi- 
mental investigation of Hedges et al. ( 1985 ). 

Note that if C~a2 = 0 then Eq. (21 ) predicts an infinite spectral density in 
region 2. This situation arises when Cgr2=-  U2cosfl2 (see Eq. 19) and the 
wave energy cannot propagate on to the current; wave breaking then occurs 
at the current boundary. Only spectral components  having C~a2 > 0 can cross 
from region 1 to region 2. 

Even when waves do advance into region 2, any increase in spectral density 
will be limited by the breaking process. Such considerations have received 
little attention in previous work on the interactions of three-dimensional wave 
fields with currents and are now discussed below. 

THE EQUILIBRIUM RANGE CONSTRAINT 

The previous section describes how the principle of wave action conserva- 
tion may be used to obtain estimates of the spectral density when waves are 
transformed on encountering currents. A decrease in spectral density is pre- 
dicted for some conditions, an increase for others. However, wave growth at 
a particular frequency and in a given direction cannot continue without limit: 
wave breaking will be induced. As in the absence of currents, there exists a 
range of frequencies, the equilibrium or saturation range, over which the 
spectrum becomes saturated. 

A general approach to calculating the equilibrium range spectrum, taken as 
the upper limit to spectral densities, has been given by Kitaigordskii et al. 
( 1975 ). Their method is based upon earlier work by Phillips ( 1958 ) for waves 
on quiescent water. More recently, Hedges et al. (1985) have produced ex- 
perimental evidence supporting the application of an equilibrium range con- 
straint in the case of long-crested random waves encountering opposing 
currents. 
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Kitaigordskii et al. (1975 ) showed that the directional frequency equilib- 
r ium range spectrum, S,,ER (OOa,0, U), may be written: 

SnrtER(O)a,O,U)= L ~B*k-3 GER(O) 1 
i=lL ~-O)a~- k=ki  (26) 

where B* is a non-dimensional constant, GEe. (0) is a spreading function de- 
scribing the angular distribution of wave component  energy within the equi- 
librium range, and k=ki are the N roots of the dispersion relationship. For 
the conditions considered here, waves are crossing a boundary from one cur- 
rent region to another (or moving from quiescent water on to a current) and 
there will be only one appropriate solution for k for specified values of d, U, 
o) a and 0. If this were not the case then the following development would be 
modified as a result of  the need to continue to apply the summation indicated 
in Eq. (26). 
In the present case, Eq. (26) becomes simply: 

B.k-3 
S, rlER((.Oa,O,U ) -- GER (0) (27)  C'ga 

where C'ga is defined by Eq. ( 19 ). 
Information on the form of GER(O) is scarce, although some possibilities 

are discussed by Kitaigordskii et al. ( 1975 ). In the absence of currents, a deep- 
water spectrum is often assumed to be symmetrical about the predominant  
wave direction. However, this assumption is not necessarily appropriate when 
waves are refracted on encountering a current. Whatever the form of the 
spreading function, it must satisfy: 

On + n~ 2 

GER(O)dO= 1 (28) 
On -- n/2 
where On is the direction of the normal to the boundary between region 1 and 
region 2 (here measured relative to the predominant  direction of the incident 
waves). Implicit in Eq. (28) is the assumption that the transformed wave 
field contains only components  which have propagated into region 2 from 
region 1. 

In the absence of  any better information, a possible form for GER (0) is now 
proposed. 

The actual limiting spectral densities associated with the equilibrium range 
are likely to depend to some degree upon the shape which the transformed 
spectrum attempts to adopt as a result of  the interaction between the waves 
and the current. Thus, in this study, the distribution of surface elevation var- 
iance with 0 has been predicted for region 2 on the basis of wave action con- 
servation (Eq. 21 ), and then spectral densities for each direction have had a 



INTERACTION OF SHORT-CRESTED RANDOM WAVES AND LARGE-SCALE CURRENTS 217 

limit assigned to them which is in proportion to the unlimited value associ- 
ated with that direction. Thus, if S,.wA(Oga,0, U) is the spectral density pre- 

2 is the as- dicted on the assumption that wave action is conserved, and a.WA 
sociated total variance of surface elevation: 

On + rr / 2 oc~ 

2 f f SrlqWA(O)a'O'U)dO')adO (29) O'r/WA 

On--rr/2 0 

then the equilibrium range spreading function is given by: 

l; 
GER(0) -- 2 SqqWA (O)a'0' U) d°)a (30)  

O" r/WA 0 

Note that in the case of short-crested waves encountering a current flowing 
in, or directly against, their predominant direction, the equilibrium range 
constraint provided by Eqs. (27), (29) and (30) reduces to the relationship 
for long-crested waves (see below) as the spread of wave directions is nar- 
rowed. This is in accordance with expectations. Note, also, that the results 
above are for a general water depth. 

For the special case when long-crested waves meet an opposing or a follow- 
ing current, GER (0) may be omitted from Eq. (27 ). If deep-water conditions 
also exist then: 

o~2=gk (31) 

and 

t 
C g  a = U-~-  g 2COr (32) 

Equation (27) then becomes: 

Sv,ER(Oga,U) =2B*g 2 coF 5 [1 + (2UCOr/g)]-t (33) 

in which co r = CO a - -  k e  (Eq.  3 ). Equation ( 33 ) agrees with that given by Hedges 
( 1981 ) and used by Hedges et al. ( 1985 ), except that they replaced constant 
2B* by another factor, A*. (For a discussion of the value of constant B* for 
conditions when U ~ 0, see Phillips ( 1977 ). ) 

CHANGES IN SPECTRA: TWO EXAMPLES 

The changes in spectral form when long-crested random waves are trans- 
formed by following and opposing currents have been discussed by Hedges 
( 1981 ), Burrows and Hedges ( 1985 ) and Hedges et al. ( 1985 ). Generally, 
following currents lead to a reduction of spectral density over all frequencies 
while adverse currents lead to an increase in spectral density (provided that 
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the waves can cross on to the current - -  see earlier discussion of Eq. 21 ). 
However, increases in spectral density are limited by wave breaking as parts 
of the spectrum become saturated. The situation is further complicated in 
short-crested seas by wave refraction, as the following examples illustrate. In 
each of these examples, it is assumed that spectral densities in the current 
region are given by Eq. (21 ) provided that values do not exceed the equilib- 
rium range limit given by Eq. (27); otherwise Eq. (27) is assumed to apply 
with GER(0) determined from Eqs. (29) and (30) .  

Figure 5 shows the typical changes in the surface elevation spectral density 
as short-crested waves encounter a current opposed to their predominant di- 
rection. The current velocity is 0.5 m / s  and the water depth is 120 m. The 
wave condition on quiescent water is modelled using a Jonswap spectrum 
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Fig. 5. Changes in surface elevation spectral density as short-crested random waves  encounter 
an adverse current. 
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with the significant wave height, Hs, equal to 3.00 m, the zero-upcrossing pe- 
riod, T~, equal to 6.58 s and with the peak at a value oftOa of 0.767 rad/s. The 
corresponding peak enhancement factor is approximately 4 (see Isherwood, 
1987). A cosine-squared spreading function has been used to distribute the 
wave energy about the predominant wave direction on quiescent water. This 
predominant direction is at right angles to the current boundary. 

When the waves meet the current, the shape of the spectrum is changed 
considerably, with spectral densities generally being increased. The value of 
the constant B* used to establish the limiting values associated with the equi- 
librium range of the spectrum has been taken as 0.025. Note that in this par- 
ticular example, whilst the value of Hs is increased as the waves move on to 
the current, the value of :/:~ is slightly reduced. 

Figure 6 shows the same quiescent water wave conditions as in the previous 
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Fig.  6. Changes in surface elevation spectral density as short-crested random waves encounter a 
shearing current. 
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example, but in this case the waves encounter a current of 0.5 m / s  travelling 
at right angles to the predominant  incident wave direction. The effects of re- 
fraction distort the spectral form so that it is no longer symmetrical about the 
predominant  wave direction once the waves move on to the current. Note, 
however, that despite the obvious changes to the directional distribution of 
wave energy, the value of  Hs remains unchanged in this particular example. 
Tz is slightly increased as the waves move on to the current. Again, the value 
of  B* has been taken to be 0.025. 

CONCLUDING REMARKS 

A theoretical model has been developed to describe the interaction of short- 
crested random waves with large-scale currents. The transformed spectral 
densities are predicted using the principle of wave action conservation and 
due allowance is made for wave refraction. An equilibrium range constraint 
is then applied to account for the limit to the growth of spectral densities due 
to energy dissipation. The examples presented show the marked changes in 
spectral form which may be induced by currents. Whilst it is common prac- 
tice in the offshore industry to adopt a parametric spreading function which 
is symmetrical about the mean wave direction, this study has shown that strong 
asymmetry may exist as a result of  current action. The ability of the present 
theory to predict this asymmetry requires confirmation by field measure- 
ments or physical model tests. 
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