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Some Cases of Wawve Motion due to a Submerged Obstacle.
By T. H. HaveLock, F.R.S.

(Received May 14, 1917.)

1. As far as I am aware, only one case of wave motion caused by a
submerged ohstacle has been worked out in any detail, namely the two-
dimensional motion due to a circular cylinder; for this case, Prof. Lamb has
given a solution applicable when the cylinder is of small radius and is at a
considerable depth.* The method can be extended to bodies of different
shape, and my object in this paper is to work out the simplest three-
dimensional case, the motion of a submerged sphere.

The problem I have considered specially is the wave resistance of the
submerged body. In the two-dimensional case, this is calculated by considera-
tions of energy and work applied to the train of regular waves. But for a
moving sphere the wave system is more complicated, like the well-known
wave pattern for a moving point disturbance, and similar methods are not so
easily applied ; I have therefore calculated directly the horizontal resultant
of the fluid pressure on the sphere. Before working out this case, the
analysis for the circular cylinder is repeated, because it is necessary to carry
the approximation a stage further than in Prof. Lamb’s solution in order to
verify that the resultant horizontal pressure on the cylinder is the same as
the wave resistance obtained by the method of energy.

The stages in approximating to the velocity potential may be described in
terms of successive images; the first stage ¢ is the image of a uniform
stream in the submerged body, the second stage ¢, is the image of ¢, in the
free surface, the third ¢s is the image of ¢s in the submerged body, and so
on. In order to keep the integrals convergent, a small frictional coefficient is
introduced in the usual manner ; after the calculations have been carried out,
the coefficient is made zero. Further, the solution for uniform motion is
built up so that expressions can be found for the velocity potential at any
time after the starting of the motion, although only the final steady state has
been studied in detail. The wave resistance of a sphere is found to have the
form const. X &*2¢~ %2 Wy, («), in which « is 2¢f/c? with f the depth of the
sphere and ¢ its velocity; Wy, 1(a) is a confluent hypergeometric function.
In order to graph the wave resistance as a function of the velocity,
expansions have been found for this particular variety of the function

* H. Lamb, ¢ Ann. di Matematica,” vol. 21, p. 237 ; also ‘Hydrodynamics,’ 4th ed., p. 401.
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Wy, m () ; it belongs to the logarithmic case for which a general expansion is
not available.

In general form the graph of the resistance is very similar to that of the
circular cylinder.

Cireular Cylinder.

2. The steady state for uniform motion of the cylinder may be attacked
directly, as in Prof. Lamb’s solution, but we shall adopt his suggestion of
building it up from simple oscillations. ‘Take the axis of z# in the free
surface of the water, and the axis of y vertically upwards. A circular
cylinder, of radius ¢, is making small oscillations parallel to Oz with velocity
¢ cos of, the axis of the cylinder being horizontal and perpendicular to O,
and the mean position of the centre being the point (0, —f). A first
appproximation when the depth f is sufficiently large is found by ignoring
the surface effect altogether and putting

- ¢ = ca® (z[r?) et = 2+ (y+f)> (1)
This satisfies the boundary condition at the surface of the cylinder. For the
next step, add a term X; to the velocity potential so as to satisfy the
conditions at the free surface, but ignoring meantime the disturbance
produced thereby at the surface of the cylinder. The term X; must be a
potential function and it must satisfy the condition for deep water, namely,
0X1/dy = 0 for y = —o ; these conditions are fulfilled by
X, = oot ra(,c) o sin w di, 2)

0
where « is a function of « to be determined. This form is chosen because we

can satisfy the conditions at the free surface by using an equivalent form
for (1), since

xfr? = re“"(?/‘rf) sin kz dk ; y+7> 0. 3)

0

The surface elevation is expressed similarly by
y = gt r/a (i) sin ez di. (4)
0

In order to keep the various integrals convergent, we assume that the
liquid has a slight amount of friction proportional to velocity ; in the sequel
the results are simplified by making the frictional coefficient u tend to zero.
In these circumstances the pressure equation is

»[p = const.—gy +pup—1q> (3)
Hence the conditions at the free surface are, neglecting the square of the

velocity,
—gy+up = const. ; —0¢ /0y = On[ot.
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Here ¢ is the velocity potential after (2) has been added to (1); thus the
equations for « and 3 are

ca’we~" — Ko = 103

(6)
ioea’e™f +ioca —g B+ peate ™/ + pa = 0 |
From these we obtain the expressions for X; and », namely
» 2__ 4
X, = ca%"“tj JET T ZYI o (f-1) gin gz d, )
0 JK—0° +iuc
2 ) .
n = ca’e J’ ——ﬂ"#?)— e~ I sin wx dr. )
0 JKk—0o°+1u0
The expression for X; can be divided into two parts
ot [ . L gre— <~ gin kx d
Xy = —m%“’t'( ¢~ =D gin kx chc—~2ca2a“’tj gre T sin i die (9)
0 0 O*—iuc—gk

If we regard X; as the image of the oscillating cylinder in the free
surface, we see from the form of the first integral in (9) that part of the
‘image is a negative doublet at the image point (0, /). We obtain next the
velocity potential of the motion produced by a sudden small displacement of
the cylinder, and we take this to be equivalent to a momentary doublet of
constant strength. Suppose then that at a time = a doublet is suddenly
created, maintained constant for a time &r, and then annihilated. The
velocity potential at any subsequent time 7 is given by a Fourier synthesis of
the preceding results for an oscillating cylinder, and we have

¢ = %’f E F7 -0 [$]do, (10)

where [¢] is the sum of (1) and (9), omitting the factor ¢,

Carrying out this integration for the value of ¢ in (1) and for the first part
of (9) gives simply the momentary doublet at the centre of the cylinder and
the negative doublet at the image point. These doublets last for a short
time &7 ; the subsequent fluid motion is contributed by the second part of
(9). For this we have to evaluate the real part of

) glo (t—7)
j T ey t—r>o0. (11)

0 02—iuoc—gx

We obtain the value by contour integration; further we simplify the
result by neglecting w? We shall make p zero ultimately, but we must
retain it sufficiently to keep the integrals convergent; however, at one or
two stages, superfluous terms may be omitted when it is clear that the final
limiting values will not be affected. We find for (11) the value

— g Ve #t=gin {«V (t—7)},
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writing V for ,/(g/«x) whenever it serves to simplify the notation. Hence
the velocity potential of the subsequent fluid motion after the cylinder has
been given a small displacement at time = is

¢ = 2ca?dre~ b= r/cVe‘“f“y) sin gz sin &V (t—7) de. (12)
0

Finally we obtain the velocity potential for a cylinder in uniform motion
by substituting z+c¢(t—17) for #, noting that hereafter z will refer to a
moving origin immediately over the centre of the cylinder; we then
integrate with respect to = from the start of the motion up to the instant in
question. We could in this way obtain results for any stage of the motion,
but we limit the discussion to the final steady state ; for this we take —co as
the lower limit in integrating with respect to 7. Before writing down the
result, we must remember to introduce the integrated effect of the original
momentary doublet in (1) and its negative image, which were not included in
(11); these clearly add up to steady doublets. Hence we find for the steady
state

¢ = D—D, + 2¢a? j " =< =9 (A sin kz + B cos kz) de, (13)
0

where D represents the doublet ca®z/r? at the point (0, —f), D; an equal
doublet at the point (0, /), and

BV (V+o) 2V (V—c)
B\ ST = B e
4B = PV prV (14)

V=P +1w2 @ (V+otin®

3. Before proceeding further we may obtain the surface elevation from (13)
for comparison. The surface condition is now

—0¢ /0y = On[ot = —confow.

Hence we have

n = 203f] (@ + f?)— 2aPuy [ "(A cos kz— B sin xz) e+ di, (15)
0

in which «y = g/¢® Further, since w is to be small, we may omit irrelevant
terms aud put

A = —ky(k—ro)[{k—(ko+ipfc)} {x—(ko—1ip[c)},

B = wo(ufe)] {x—(ko+ip[c)} {x—(ro—ip[c)}. (16)
The integral in (15) can then be written as

®© 6—ixx X £ikT
—kf
jd {K—Ko—ip/c+/c—/c0+i,,,/c}6 dr. 17)
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We transform these integrals by contour integration in the plane of a
complex variable «, treating separately the cases of # positive and # negative ;
after making u zero in the final results we obtain

2a2f . ® 1m co8 M f— Ko Sin mf
n = EAS Fdwalege o sin kox + 202k, jo w{; e A v dm; x<0,
202f ® m cos mf—i- sin mf
= 5= + 207 < e~™ dm ; z>0. 18
n $2+f2+ Ko jo WLZ—’(-ICz ¢ ) > ( )

These agree with Lamb’s results for the circular cylinder in a uniform stream.
The wave resistance R is derived from the regular waves in the rear, by
considering the rate of increase of energy and taking into account the
propagation of energy in a regular train ; we have
R = 1lgp (amplitude)® = 4dm?ypatn,?e=27, (19)
4. We have now to obtain the resistance R by direct summation of the
horizontal component of fluid pressure on the cylinder. It is clearly
necessary to proceed to a further stage with the velocity potential, since we
have assumed so far that the surface effect is negligible in the neighbourhood
of the cylinder. If we write (13) as
¢ =D+X,, (20)
the doublet D is the first approximation, satisfying the boundary conditions
on the cylinder; X, is the image of the doublet in the free surface, found by
satisfying the conditions there. The next step is to find Xp, the image of X;
in the cylinder, ignoring then the effect of X, at the free surface. It follows
that X, is the image of Xj in the cylinder, found as if the cylinder were at
rest in a field defined by X;. Taking polar co-ordinates with the origin at the
centre of the circular section of the cylinder, we have
z =1rcosb; y+f=rsin; (21)
also the conditions for X, are that it should be a potential function, the
components of velocity must vanish as 7 becomes infinite, and
0(X1+Xy)/or = 0, for r» = a. (22)

But from (13), X; consists of a summation of terms of the forr

‘We obtain X, by replacing each term by the expressions
¢ ralsi CoS R
e~ geasin b/ sin (ka2 cos G/7),

and the above conditions for X, are then satisfied. This process amounts
simply to inversion; we may think of X; as due to a line distribution of
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sources and X, is then a circle of sources on the inverse of this line with
respect to the eylinder. We have now for the velocity potential to this stage
¢ = D+ 2ca? f " (=0 { (A—1}) sin x4+ B cos ) dic
0
+ 2¢a? re“"f eyt L (A—4%) sin (kaz[r?)+ B cos (ka?z[12) } de.  (23)
0

We have put A—3 for A so as to include under the integral sign the
doublet previously denoted by D;.

The method could theoretically be carried on step by step; however, we
stop at this stage because it is sufficient for obtaining the wave resistance
R from the pressure equation to the same approximation as by the energy
method.

2
We have R = j apcos 6.d0 ; (24)
0

plp = —c0p[or—gy+udp—}%q (25)
It we write (23) as ¢ = D+ X;+X,, and omit terms which obviously
contribute nothing to the value of R, we }have, when 7 = a,

P_ 0 v v e\ 10D 9(X;+Xs)
;—— Cax(X1+Xz)+/J/(X1+Xz) 23 o8

= (2¢/a) sin 00 (X1 +X2)[00+pu (X1 +Xs), (26)

where we have used (22) and the value of D. From (23), omitting the
doublets D and D,, which will from symmetry give no contribution to R when
w is zero, we have

p = 4ea? Jne*2"f+"“ sinb{2xc A sin @ sin (p—0)+ p A sin ¢
0
+2kcB sin 0 cos (p—0)+uBcos p}de, (27)

where ¢ = xacos 0. Substituting in (24) we have an expression for R. We
may now change the order of integration and take first that with respect
to 6; we can carry this out, after some transformation, by means of the
integrals

j ¢039 cos (Jusin §—nf) d6 = whr|T (n+1),

0

f " o030 cos (B sin O+ n8) d6 = 0, (28)
0

where 7 is a positive, odd integer. In fact the integration with respect to 8
gives simply m«a (kcB 4+ pA); hence we have

R = dpeat rlc(ch + pA) e~ e, (29)
0
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where A and B are given by (14), or by (16) since we suppose w small. Thus
we have

R = 4mpeat Lim

j’ o urolre=2 dg
mw—>0

o (k=G F i[O} o= (eo—iufo) }
= dmrpea* Lim p {27i®e=*/ [ 24 (u[c) 4 finite quantity}
= 4d7mgPpatc™ o201, (30)

which is the same as the previous expression (19).

Sphere.

5. A sphere of radius « is at depth /' below the surface and is moving with
uniform velocity ¢ parallel to the axis of #. The origin is in the free surface,
the axis of # being drawn vertically upwards. As before, the first approxi-
mation is a doublet D given by

b = calr[2r; 72 = 2P+ 2+ ) 31)

For the purpose of satisfying the conditions at the free surface we have

8{1}0

This suggests at once suitable forms for the next approximation and for the
free surface; the equations are similar to (6) of the previous case, and we
obtain in the same way

p=D=—fws rﬂ"“‘”ﬂJo{x\/(mz)}dx; e/>0. (32)

¢ =D—D;+Xy, (33)
where D; is a doublet at the image point (0, 0, /) and

X, = ca? (%Jm\/(g/c) e U= dg jwe“%f*” Jo[ka/ { (x4 cu)? + 2} ] sin (¢ Vu) du.
z Jo 0

(34)
The corresponding surface elevation is

n = ad j:e_"fJo{lC,\/(%z—*'yz)}lCdK

+a? r\/(g/c) e kdi re‘i“u Jolwn/ { @+ cu)?+y*} Isin («Vu) duw.  (35)
0 0

The first term represents the effect of the doublets D and D;. It can be
verified by approximate methods that the second term includes a main part
like the well-known wave pattern for ship waves. Since the expression in
(35) gives finite and continuous values for the surface elevation, it might be
of interest to examine some points in detail ; for instance, the elevation near
the lines corresponding to the lines of cusps for a moving point disturbance.
However, we pass now to the calculation of the resultant horizontal pressure
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on the sphere. We have to find X, the image of X; in the sphere ; for this
we first put X; into a different form by using

wdo[r {(x+ cw)?+92}3] = j.” cos {x (z+cu) cos ¢} cos (ky sin ) dp.  (36)

From (36) and (34), after carrying out the integration with respect to ,
we obtain

Xy = ¢a? re—"(f"’) Kk jw{A sin («xx cos ¢)+ B cos (kz cos ¢) }
0 0
x cos (ky sin ¢) cos pdp, (37)
where A and B are given by (14) after writing ¢ cos ¢ for c.
For convenience in the following analysis, we transfer the origin to the

centre of the sphere, noting that in (37) we shall have exp.(—2«f+«z) in
place of exp.( —«f+xz). Also we use polar co-ordinates

x=rcosa; y = rsinacos 3; z = rsin « sin 5.

The conditions for X, are that it must be a potential function, the
disturbance due to it must ultimately vanish as we recede from the sphere,
and on the sphere

3 (X1+4Xa)/0r = 0. (38)

To avoid repetition of expressions like (37), we take out of it a typical term
and write
X = e sin (k2 cos ¢) cos (ky sin ¢). 39

We know that the function
Lo ™ sin (ka®z cos ¢ [72) cos (ka?y sin ¢ [7?) (40)

satisfies the first two conditions for X, but we find it does not fulfil (38).
An additional term is required, and it can be found in the following way.
Suppose that on the sphere we have

e sin (k2 cos ¢) cos (ky sin ¢) = %A, Y, (2, B), (41)

where the right-hand side is an expansion in surface spherical harmonics.
Then for the term (39), all the conditions for X, are satisfied by

ar~tex@ " gin (ka%z cos ¢ [1?) cos (ka?y sin ¢ [72) — a1 A, Y, [(m+ 1) 7L,
(42)

Suppose, similarly, that on the sphere we have

<% cos (kx cos ¢) cos (ky sin ¢) = 2B, Y, (2, B). (43)
VOL. XCIIL.—A., 28
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Then the complete expression for X is

) @0
TXg = cw‘*.{

™
e~ eds ( ar~ e« cog (katy sin ¢ [r?) cos ¢
0

JO

x {A sin (ka®z cos ¢ [r?)+ B cos (ka?z cos ¢ [72) } d

—ca? jme“&‘f Kk r 2 (AAL+BB,)(n+1)"Ya/rym+1Y, cos b de.
0 m

0

(44)
We have now
¢ =D—D1+X;+X; =D+X, (45)
and the pressure equation is
plp = —c0p[or—gz+pp—}q (46)

The wave resistance, or the resultant horizontal pressure on the sphere, is
R = f o jd a?p sin « cos a dfB. 47
0 0

Omitting terms which, from symmetry, will give no contribution to R, we
have '
_ X x @DIX_1DX_ 1 DX
T O 20 0a Psin’a 0B OB
But when » = a, we have
oD/oB = 0; 0D/Ge = —%casina; oX/or = 0,
hence plp = (3¢/2a) sin « 0X [0+ uX. (49)
We must now substitute (49) in (47) and use the value of X given by the
sum of (37) and (44) on the sphere ; it is clear that we may omit the doublet
D; as it will not affect the limiting value of R when u is zero.

(48)

o3

6. Consider, in the first place, the contribution of the first term in the
value of p given in (49). In the repeated fntegrals which are obtained, we
may change the order of integration, and we shall carry out first the summa-
tion over the surface of the sphere. We notice that, when » = a, the first
term in the value of Xs in (44) is equal to the: value of X;; the additional
part of Xy is the term involving the expansions in spherical surface
harmonics. Choose a typical term from the latter part, and we find we have
to evaluate

[3sin e cos « (OY,[02) dS, (50)
taken over the surface of unit sphere.

But this integral is equal to

—3[Pa(cos 2) Yo (2, B)dS. (51)

Hence, the only term which has a value different from zero is the term in

Y., the surface harmonic of the second order. From the manner in which
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the expansions were introduced, in (41) and (43), it follows that the contri-
bution of the second term in {44) is one-third of that of the first term;
‘hence, summing up the result so far as the firsc term of (49) is concerned, we
have

0 ™ 2m ™ .
7R = _5(,»%64,05 e‘z“f/cd/cj' cos ¢ deb g B g i o Py (cos «) gasinasing
0 0 0 0

x 08 (ko sin « cos B sin ¢)
x {A sin (ke cos « cos ¢)+ B cos (ka cos « cos ) } dae.  (52)

Taking the integration with respect to 8, we find it is equal to

2 j” grasimacosp oog (ke sin asin ¢ sin B) dB = 27 Iy (ke sin e cos ),  (53)
0

where I, () is the Bessel function Jo (iz), a result which may be obtained by
direct expansion and integration term by term. For the integration with
respect to « the term in A in (52) obviously gives zero, and we are left with

27 j” Ly (ko cos ¢ sin «) cos (ka cos ¢ cos «) Py (cos &) sin a da. (54)
0

Here also we may expand in powers of xa and integrate term by term ;
it can be shown that the integral of the coefficient of (xa)™ vanishes except
for the single term «%?; thus we find that (54) reduces to

— (27 [5) k2aPcos?e.

7. We have now to consider the term wX in the value for p in (49). We
might omit this term, on general grounds, as giving no contribution to R
ultimately when w vanishes; for X is the velocity potential for a sphere at
rest in a given field X;. However, it may be left in, and we have a similar
calculation. Taking the second integral in (44), we find it is now only the
term in Y; which counts ; hence the contribution of this part is one-half of
that of the first integral in (44). Further, it is the term involving A which
gives a value different from zero when integrating with respect to «, and
instead of (54) we have

™
27 J’ Iy (ke cos ¢ sin «) sin (ra cos ¢ cos o) Py (cos ) sin « da,
0

which reduces to (47 /3) ke cos ¢.
8. Collecving the various results, we have now

R = —2eap re—zf«f,czfz,( j"(,cc Bcos ¢+ uA) cos? b de, (55)
0 0

a form which may be compared with the corresponding expression for the
cylinder in (29).
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A and B are given by (14) when we replace ¢ by c¢cos ¢ ; putting these
values in (55), we see that we may change the order of integration. Further,
as we make u vanish ultimately, we may use simplified forms of A and B
corresponding to (16). These give

® 12e=2f di

w|2
R — 20,6 2
R = drieaSpp jo sec’d dep L (e —rosec’d)® +(ufe) sec? ¢

To obtain the limiting value for u zero we may treat this like the similar

expressions in (30); or, alternatively, we may put (u/c)sec ¢ = 1/n, and use
the general result
. f@)de T ;
%E{L[(m)—g =5 {/(a=0)+/(«+0)}.

The apparent difficulty with regard to values of ¢ near /2 is overcome by
noticing that with the particular functions involved in R no extra contribu-
tion arises from such terms near the upper limits of the variables. Carrying
out the integration in « in this way, and changing the remaining variable by
putting tan ¢ = ¢, we obtain

R = dargtpabe=be—21 j (1 22y =2, (56)
0

The remaining integral can be expressed in terms of known functions.
Possibly the simplest method is to use the confluent hypergeometric
function® defined, for real positive values of « and for real values of % and m
for which k—m—% <0, by

o~ 22

Wi, m (a) = T‘_(g__m [0 g k—gtm (1 + ’l.(,/ae)k—%“”e“u du. (57)

We have now the wave resistance of the sphere given by
R = +mlgpalf~3a®2e™ P Wy, (o) ; a = 2qf[c (58)
8. For purposes of calculation, we require expansions of Wy,;(«). This
function belongs to the logarithmic type of confluent hypergeometrie function,
and general expansions are not available in this case; however, they can be
obtained without difficulty for Wy,1. In the first place, the differential

equation satisfied by Wy,1 is

%+<—i+i—£§> y=0. (59)
We use the ordinary methods for solving by means of power series. The

roots of the indicial equation are § and —4 ; hence one of the fundamental

* E. T. Whittaker, ‘Bull. Amer. Math. Soc.,” vol. 10, p. 125 ; also Whittaker and
Watson, ¢ Modern Analysis,” Chap. XVTI.
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solutions will contain logarithms. Calculating the coefficients step by step,
we obtain as a fundamental system

1= WP (L= hokfy =y o+ phbpat—...) @)
Y2 = logata ™ (—f—=8at 3P —14izat+..)

We know that W1,; is a linear function of #; and ys; however, it is simpler to

obtain an expansion directly and use (60) to verify it, For this purpose we

use the equivalent contour integral for the confluent hypergeometric function,

alig=l? ““’i DT (—s—k—=m+NT (—=s—k+m+1)

Wism = —5— | T(=k—m+HT(~k+m+1%)

atds, (61)

where the contour has loops if necessary, so that the poles of I'(s) and those
of T'(—=s—k—m+%$)T'(—s—k+m+%) are on opposite sides of it. The
integral can be evaluated by the method of residues. When & = m = 1, the
poles at which the residues have to be found are simple poles at s = —4, —2,
together with double poles at s =%, 4, 5, .... The latter series gives rise to

logarithmic residues. Carrying' out the calculation, we obtain

3 oc
— =2, ,—af2 [ =32 —2) 2 3 a/2{ L'(p+3)
Wi = 7710 < +2ac > iz “e log a > F(p+1)I‘(p+ 5)

; T(p+3)
Los [y — —— 2
+ L <ry 21log 2 >+Zoc AN CESINCET) (62)
where « is Euler’s constant 0-5772.... The coefficients may be put into

alternative forms morve suited for calculation ; for instance

d  T(p+d)
dp T(p+ 1T (p+3)
_1.3.5..2p—1)xt
20.pH(p+2)!

For numerical calculation we have

1 p+21
log2ps_ 1 1
{_ —2log 2+2 nEn—1)" T

=§ "1/2 3/2 /'—a/2 {AS__ % ; n 5 11 2 7 r3
Wi = g™ CaatTotag “Taga” tegee o

1280
—(74-10g1a><1+;.,a+ Loog Loy > (63)
\ 4°/\7 67 32 192
The expansion may be confirmed by comparison with the fundamental
solutions of the differential equation given in (60); we find that
(8/3)m Wiy = (2 log 2—y— 1) 1 =g
For large values of « the general asymptotic expansion of Wy, ,, is available ;
and in this case we have
s s e S
VOL. XCIIL—A. 9

(64)
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9. With (63) and (64) we can now calculate the resistance R from (58).
For a given depth f, the variation of the resistance with the velocity is shown
in the following curve, for which R has been caleulated for various values of

o/ / (9f)-

1 C/"/ff??‘) 1 Il
1 ! 2

The curve is very similar in form to the two-dimensional case of a circular

cylinder. For small velocities, that is « large, if we take the first term of the

asymptotic expansion (64), we have

R =/ (27%"]f) . paSc=de 21,
which may be compared with (30) for the cylinder. It is of interest to
notice the similar law of variation of wave resistance with speed for the few
cases of rigid bodies which have been worked out. The method adopted here
can be applied to bodies of different forms, and it is hoped to illustrate later

some interference effects.




