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ABSTRACT

Measurements of fetch-limited wave spectra from various sources indicate an approximate invariance
of the normalized spectral shape with fetch. It has been suggested from investigations of the spectral energy
balance that this can be explained by the shape-stabilizing influence of nonlinear resonant wave-wave
interactions, which are also responsible for the migration of the spectral peak to lower frequencies. Analyses
of a series of further data sets obtained under non-uniform, non-stationary wind conditions show that the
invariance of the spectral shape is not restricted to uniform-wind, fetch-limited situations, but applies
generally for a growing wind sea. The observed shape invariance is exploited in a wave prediction model
by projecting the full transport equation for the two-dimensional spectral continuum onto two variables
characterizing the energy and frequency scales of the spectrum, Inspection of the resultant equations
reveals further simplifications, enabling the system to be reduced to a single prediction equation for one
scale variable, the peak frequency. This is feasible because of the rapid adjustment of the spectrum to a
quasi-equilibrium level in which the atmospheric input is balanced by the nonlinear transfer of energy
out of the central region of the spectrum to higher and lower frequencies. The balance occurs sufficiently
rapidly to be treated as a local response process, thereby providing a relation between the energy level
of the spectrum (characterized, for example, by Phillips’ constant «), the peak frequency fm, and the
local wind speed U (the latter two occurring only in the non-dimensional combination »y=U f/g).

The directional distribution of the wave spectrum is also established locally and can be regarded as a
given function of the non-dimensional frequency f/fm and ». For the remaining independent scale param-
eter, the peak frequency, the dominant source term in the transport equation is determined by the non-
linear energy transfer, which can be computed rigorously. To lowest order, the one-parameter wave model
is independent of the relative contributions of the atmospheric input and dissipation in the central region
of the spectrum. However, because of lack of (consistent) direct measurements of the atmospheric input or
dissipation, the quasi-equilibrium relation inferred between « and » must be calibrated empirically, for
example, by comparison with fetch-limited data. Within the scatter of the data, all data sets analyzed
(with two exceptions, where the data were considered .questionable) were reasonably consistent with a
common a—» relation. The residual scatter of the data is thought to be associated largely with small (sub-

grid) scale inhomogeneities of the wind field and may represent a natural limitation of the accuracy achie-

vable with deterministic wave models. A complete wave model would need to combine the proposed para-
metric model for growing wind seas with a swell propagation model.
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1. Introduction

Numerical wave prediction models have traditionally
been based on a synthesis of empirical wave-growth
data, theories of wave dynamics, and hypotheses, where
both theory and data are lacking. This approach will
be needed as long as our knowledge of the principal
processes controlling the energy balance of the surface-
wave spectrum itself remains incomplete. However, it
may be expected that the models will be successively
improved as more data become available and a clearer
picture of the structure of the spectral energy balance
emerges. Since the development of the first generation
of wave models based on the transport equation by
Gelci et al. (1957), Pierson et al. (1966), Barnett (1968)
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and Ewing (1971) [see also the review by Gelci and
Devillaz (1970)], many wave measurements have been
made, including extensive wave-growth studies under
well-defined wind conditions during the Joint North
Sea Wave Project [JONSWAP, Hasselmann el al.
(1973); referred to in the following as J]. These have
clarified some of the principal mechanisms controlling
the evolution of the wave spectrum, and the time there-
fore appears appropriate for a fresh look at the wave
prediction problem.

The need for a modification of existing wave models is
underscored by the basically different explanation of
earlier wave-growth data resulting from the JONSWAP
study as compared with the original interpretations on
which these models were based. In the past, wave-
growth data have normally been fitted with linear-
exponential growth functions, in accordance with a
combined Phillips-Miles generation mechanism (Snyder
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and Cox, 1966 ; Barnett and Wilkerson, 1967). However,
the atmospheric input into the wave field inferred in
this manner was found to be considerably larger than,
and therefore incompatible with, the known total mo-
mentum transfer across the air-sea interface (cf. Snyder
and Cox, 1966). This paradox was resolved in J, where
it was shown that the rapid growth of waves on the
forward face of the spectrum was associated primarily
with the nonlinear energy flux across the peak due to
resonant wave-wave interactions (Hasselmann, 1962,
1963a,b). Moreover, it was found that the nonlinear
energy transfer controlled not only the rate of growth
of the newly developing waves, but also the form of the
spectrum, in particular the development of a pro-
nounced peak, and the migration of the peak toward
lower frequencies. Atmospheric forcing has little direct
influence on these processes and is important only in
determining the overall level which the spectrum attains
until the atmospheric input in the central region of the
spectrum can be balanced by the nonlinear energy trans-
fer out of this region to lower and higher frequencies.
With regard to wave prediction, these findings are
significant not only for the proper description of the
source function in the transport equation, but also for
the choice of appropriate numerical techniques. As soon
as the nonlinear transfer becomes a non-negligible term
in the energy balance, some form of parameterization
of the spectrum becomes necessary, since the exact
evaluation of the Boltzmann integrals describing the
nonlinear interaction rates far exceeds the time avail-
able for numerical integration of the transport equation.
In previous prediction models, the nonlinear resonant
transfer terms were either ignored entirely (e.g., Gelci
et al., 1957; Pierson et al., 1966) or were parameterized
in a rather simple manner (cf. Barnett, 1968; Ewing,
1971). The remaining propagation, input and dissipa-
tion terms, all of which were normally regarded as
decoupled processes with respect to wavenumber, were
then treated numerically by the standard procedure of
discretizing the two-dimensional wavenumber (or fre-
quency-direction) spectrum. However, to the extent that
the nonlinear energy transfer turns out to be a control-
ling process in the overall energy balance, there appears
little point in describing the remaining terms in the
transport equation—or the spectrum itself—in greater
detail than the nonlinear terms. Accordingly, we shall
consider in the following a parametric wave model in
which the complete transport equation in the frequency-
direction domain is projected onto the very much
smaller parameter space used to represent the nonlinear
energy transfer. A general projection technique is de-
scribed in J. We shall be concerned here with a simple
version of the general procedure which is based on the
observation that for growing seas all wave spectra ap-
pear to have a rather similar shape. It is found that the
average shape of underdeveloped spectra measured by
different authors under a wide variety of conditions
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corresponds fairly closely to the mean JONSWAP
spectrum. Assuming that this similarity also applies
to the directional distributions, the parameter space
needed to describe the properties of a growing wave
spectrum can be reduced to only two parameters de-
fining the energy and frequency scales of the one-di-
mensional spectrum. The nonlinear terms in the result-
ing parametric transport equations can be computed
rigorously; the remaining terms can then be obtained
by calibration against the JONSWAP data. To close
the problem, it is assumed first that the atmospheric
input is linear with respect to the wave spectrum and
that dissipation, although important as a high-wave-
number sink, is negligible in the main part of the
spectrum.

Investigation of the transport equations reveals that
for normal (not excessively variable) wind fields all
solutions lie rather close to a single curve in the param-
eter plane. This implies that the two scale parameters
are related, and the prediction problem can be reduced
still further to the determination of a single wave
parameter, e.g., the peak frequency.

Physically, the description of the wave field in terms
of only two scale parameters is possible because of the
stabilizing effect of the nonlinear interaction on the
spectral shape (cf. J) and the further reduction to a
single parameter because of the rapid adjustment of
the spectrum to a quasi-equilibrium level at which the
atmospheric input in the central region of the spectrum
is balanced by the nonlinear energy transfer. However,
across the peak the nonlinear source function changes
very rapidly from positive to negative values and is
unable to balance the positive, more smoothly varying
source function for the atmospheric input. The im-
balance in this narrow frequency band results in the
migration of the peak, and the prediction problem re-
duces essentially to the determination of this rate of
shift. For the one-parameter approximation it is irrele-
vant whether or not dissipation contributes to the
energy balance in the central region of the spectrum,
provided that the sum of input plus dissipation, which
together must balance the nonlinear transfer, is tuned
such that the equilibrium level observed in the fetch-
limited studies is correctly predicted, since the shift of
the peak is controlled entirely by the known nonlinear
transfer. Fortunately, therefore, the present ignorance
of the structure of the input and dissipation source
functions is not critical for the model.

Measurements of growing waves collected from
widely differing sources are found to cluster fairly well
along the predicted universal curve in the two-param-
eter phase plane. However, the proposed simple predic-
tion model should be regarded only as a first approxi-
mation to more sophisticated models containing a larger
number of parameters. The approximation assumes that
the characteristic relaxation times associated with the
shape stabilization and energy-level equilibrium are
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small compared with other time scales, such as the
propagation time of the waves through the wind field.
While the wave data presented below for growing and
nearly fully developed wave spectra appear to support
this assumption, there also exist cases in which the
approximation is clearly invalid.

An obvious example is swell. Here the atmospheric
input needed to support the spectrum at a level at which

the nonlinear interactions become effective is lacking, -

and the wave energy is accordingly reduced so far that
the individual wave components are dynamically al-
most completely decoupled. Thus in contrast to the
wind-sea model, the shape of a swell spectrum is not
universal but depends’on the details of the time, position
and extent of the wave source. The superposition of
swell, which is nearly always present in the ocean, on
a developing wind sea should not affect the application
of the model to the wind-sea region of the spectrum,
since resonant nonlinear interactions between swell and
wind sea are extremely weak (Hasselmann, 1963b). In
principle, swell and wind sea can interact also through
WKB-type (radiation stress) interactions (cf. Phillips,
1963 ; Longuet-Higgins and Stewart, 1964 ; Hasselmann,
1971) but attempts to discover this effect in field experi-
ments have so far been unsuccessful [ Snodgrass et al.,
1966 ; J—see however Mitsuyasu (1966) and Reece and
Shemdin (1974) who have found an influence of longer
gravity waves on shorter wind-generated waves in a
wind-wave tank]. The field evidence indicates that
well-dispersed swell can be regarded as decoupled from
the wind-sea components considered in our model.
However, there also exist less obvious transitions be-
tween wind sea and swell where the assumption of a
universal spectral shape will presumably break down.
Examples are rapidly turning winds, such as in fronts,
producing cross seas of comparable frequency, or the
rebirth of ‘a swell field as a wind sea in a freshening
wind situation, when the wind speed parallel to the
direction of propagation of the waves begins to exceed
the swell phase speed. In the latter case the wind-sea
spectrum will generally contain two peaks, the normal
high-frequency wind-sea peak and the former swell
peak. As the low-frequency peak begins to gain energy
under the influence of the wind, the two peaks will
begin to interact nonlinearly and the spectrum will
presumably readjust to the universal equilibrium form.
However, the relaxation time depends on the separation
of the peaks and will generally be larger than the relaxa-
tion time for the redistribution of energy within a peak.
A general wave-prediction model will probably need
to combine a more sophisticated multi-parametric treat-
ment of the wind-sea region of the spectrum, including
multiple peaks, with a traditional characteristic method
of swell prediction. The simple model presented here
may nevertheless be adequate for many applications in
which the detailed structure of the spectrum is not too
critical ; an example involves the computation of wave-
climate statistics from existing wind-field statistics.
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2. The shape-invariance of wind-sea spectra

Nearly all fetch-limited frequency spectra measured
during JONSWAP could be fitted closely with a func-
tion of the general form

Im

5 4
E(f)=agt(2m) 4/ exp{ —;( f) iy

(f—fm)z
XCXpI: ——E;;};Z—:] ], (21)
where

={U¢1 fom
Tby f?fm

The function contains five free parameters, two scale
parameters {f. the frequency of the spectral peak and
« Phillips constant) and three shape parameters (the
peak-enhancement factor y which is ratio of the peak
value of the spectrum to the peak value of the corre-
sponding Pierson-Moskowitz spectrum with the same
values of f, and a, o, the left peak width, and o, the
right peak width). The form (2.1) is derived from the
Pierson-Moskowitz (PM) (1964) fully developed spec-
trum by multiplying with the peak-enhancement

function
o l:- (f_fm)z]
Y €Xp _—““%2 1.2 .

It reduces to the PM spectral shape for y=1. The scale
parameters for the PM spectrum itself have the fixed
values a=0.0081,

0.74\%
fﬁ(m) ¢/ (2nU)=0.14 g/U,

where U is the wind speed (defined by Pierson and
Moskowitz as the 19.5 m anemometer height wind,
but we shall refer all winds in the following to an
anemometer height of 10 m).

It has been pointed out by Kitaigorodskii (1962), for
the simple geometry of a uniform, stationary wind
blowing perpendicularly off a straight shore line, that
all wave field variables, when non-dimensionalized in
terms of g and U, should be functions only of the single
non-dimensional variable £= gx/ U2 Both field and lab-
oratory data conform fairly well with Kitaigorodskii’s
scaling relation over a wide range of non-dimensional
fetches (cf. J). The possible influence on wave growth
of other external parameters such as the air-sea tem-
perature difference and local currents has often been
discussed, but attempts to find such correlations within
the range of external conditions encountered during
JONSWAP were unsuccessful.

Over the non-dimensional fetch range 10~1<£<10%,
encompassing both wind-wave tank data (10~1<£<10")
and field data (10*<§£<10%) from many sources, the
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fetch dependence of the non-dimensional peak frequency
v=Ufm/g and a can be described fairly well by the
power-law relations (J)

y=3.5 08,

a=0.076 02,

(2.2)
(2.3)

It will be found useful to consider also the variance of
the surface displacement 8= S E(f)df, or its nondi-
mensional form e=8g2/U*, as an alternative scale pa-
rameter. In the same fetch range this shows a linear
fetch dependence, i.e.,

e=1.6X10"" £, (2.4)

Power laws very similar to (2.2), (2.3) or (2.4) have
been proposed also by other works (cf. Mitsuyasu, 1968,
1969, 1973; Wilson, 1965). The western Atlantic data
set can also be examined in this manner and yields
va £79% and e« 1. The Phillips parameter «, however,
showed little fetch dependence for the rather large fetch
present. The shape parameters v, ¢, and o exhibited
appreciable scatter, but no significant mean dependence
on fetch. An alternative shape parameter which depends
on average spectral properties and is thus less affected
by individual variations of the peak shape parameters
may be defined as A= ev*/a. The relations (2.2), (2.3)
and (2.4) imply A~ £791, but this weak fetch dependence
is not discernible within the scatter of the JONSWAP
data.

The mean shape of the JONSWAP spectra agrees
well with the shape of other fetch-limited spectra mea-
sured (e.g., Barnett and Wilkerson, 1967; Mitsuyasu,
1968, 1969, 1973; Ross et al., 1970; Ross and Cardone,
1974; Schule et al., 1971). The same shape has also
been observed in wind-wave tank experiments (e.g.,
Mitsuyasu, 1968, 1969). Recently, Snyder (1974) has
found that the form (2.1) [with oo= 0] gives good fits
to his spectra measured in the Bight of Abaco and to
spectra observed by Elliott (1972) and Dobson (1971)
on the Spanish Banks, Vancouver. Liu’s (1971) spectra
in Lake Michigan also correspond to the form (2.1).
These spectra were all obtained under stationary,
fetch-limited conditions, but in most cases for winds
that were not perpendicularly offshore. To compare
with these measurements, we have analyzed a number
of additional JONSWAP spectra for non-perpendicular
offshore winds; they could again be fitted satisfactorily
with the function (2.1).

An equally good fit is found for growing wind-sea
(duration-limited) spectra measured away from limiting
boundaries. These include high wind spectra measured
by shipborne wave recorders of the UK weather ships
Weather Explorer and Weather Reporter, and from the
U. S. Navy Argus Island research platform (Pickett,
1962; Manasseri, 1967; DeLeonibus e al., 1974). A
good fit was also obtained for wave data measured by
one of us during Pacific hurricane Ava in 1973, and by
the oil industry during hurricane Camille (Patterson,
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1974). Good agreement in the case of the hurricanes is
especially notable considering the moving, circular na-
ture of a hurricane wind field. Some examples of the
above spectral fits are given in Fig. 1.

A summary of the shape variables for typical sets of
field measurements is given in Table 1. Also shown are
the corresponding values for a composite data set con-
sisting of a superposition of all data with the exception
of the sets marked with an asterisk (which are discussed
below). (The last two column groups in the table refer
to the energy-scale variables @ and ¢, which will be
discussed in Section 10.) For each data set the depen-
dence of the shape parameters s=1y, g4, 05, A on the state
of development of the wave field was investigated by
fitting least-square regression lines

logs=r (logv —logwe)+logso

through plots of logs versus the logarithm of the non-
dimensional frequency ». The reference frequency
rp=0.251 (logro= —0.60) was defined as the mean of
logy over all data sets; the regression line then deter-
mines the exponent » and factor so for a power law fit
s=59(»/vo)7 for each shape parameter s. The uncertainty
intervals represent the standard deviations in the de-
termination of the regression line parameters from a
finite sample size (cf. Jenkins and Watts, 1969). The
standard deviations listed separately in the table refer
to the rms deviation of individual values of logs from
the regression line, expressed in equivalent percentage
variations of s. Winds used in the calculations of di-
mensionless parameters were either measured at 10 m,
or adjusted to this height using the technique suggested
by Cardone (1969).

Plots of v and A for the composite data set are shown
in Figs. 2 and 3. The statistical uncertainty of the re-
gression line is indicated by two hyperbolas representing
the envelopes of the family of lines obtained by varying
soand 7 between limits set by their standard deviations.
Note that the peak enhancement factor ¥ (as all shape
parameters dependent primarily on the shape of the
peak) is more strongly scattered than the integral shape
parameter A. The standard deviations listed in Table 1
indicate that the scatter for the composite data set is
not significantly greater than for individual subsets,
including highly filtered data such as set A, which is
restricted to stationary, uniform, orthogonally offshore
wind fields. Inspection of individual generation cases
for this data set suggests that the scatter is not due to
hidden external parameters but is associated with small
(subgrid) scale inhomogeneities of the wind field (cf. J).
Table 1 and Figs. 2, 3 show no systematic dependence
of the shape parameters on the state of development
of the spectrum, although for data sets D and F the
regression lines do suggest decreasing peak-enhance-
ment factors as one approaches the limiting frequency
v=0.14 for a fully developed (Pierson-Moskowitz)
spectrum. However, these data are limited to a rather
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narrow » range and the slopes of the lines are not well
determined. '

The mean values of all shape parameters listed in
Table 1 do not differ appreciably from the mean
JONSWAP values

y=33, ¢,=007, ¢,=0.09, \=16X10-.

We shall adopt these values in the following in order
to make use of the nonlinear energy transfer calcula-
tions which were carried out for the mean JONSWAP
spectrum in J.
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Data sets E, H and I were excluded from the com-
posite data set. The Weather Adviser spectra E yield
very small ¥ values. These might be attributed to rather
high values of a (cf. Section 10). We can offer no obvious
explanation for this discrepancy (apart from possible
calibration problems of the shipborne wave recorder at
high frequencies), but the data appear somewhat
questionable and were therefore discarded. Anomalous
a values were also found for the short fetch data H
obtained for the Spanish Banks and the Bight of Abaco.
The a values for the Spanish Banks were highly
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F16. 1. Examples of spectra and analytical fits for data sets B (western Atlantic), F (Argus Island)
and G (hurricanes Ava and Camille), (a)-(d), respectively.

scattered (possibly due to refraction by currents, which
is particularly effective for short waves), and the Bight
of Abaco a data were anomalously low (cf. Section 10).
Although the data were excluded for these reasons from
the composite data set, the shape parameters themselves
do not in fact show any anomalies compared with the
other data.

The spectral set I deserves special mention. It is a

subset of the spectra used by Pierson and Moskowitz
(1964) to derive their formula for the fully developed
spectrum. Since the JONSWAP and other fetch-limited
spectra showed no marked decrease of v toward 1 with
increasing fetch, as to be expected if the spectra ap-
proach the fully developed Pierson-Moskowitz form for
large £, the Pierson-Moskowitz spectral set was reana-
lyzed using the same parameter-fitting scheme as ap-
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J, COMPOSITE DATA SET

x 1 Swell

s data sets A,B,C
+ data sets D,F
odata set G

F16. 2. Peak enhancement factor v versus non-dimensional peak frequency v=fnU/g
for the composite data set J.

plied to the JONSWAP and other spectra. Inspection
of the PM spectra revealed that a little more than half
contained multiple peaks, particularly for low wind
speeds. Although the weather maps for these cases in-
dicated uniform, stationary wind fields, we suspect that
possibly they were in fact generated by weakly variable
wind fields and represented transitional development
stages of wind sea and swell. Multiple-peak spectra
were accordingly excluded from the analysis. The re-
maining spectra yielded a mean peak-enhancement
factor y=1.40. It should be pointed out that the
Pierson-Moskowitz mean spectrum was obtained by
superimposing all spectra within a given wind-speed
interval (2.5 m s71), which tends to smooth individual
peaks, whereas we have averaged the shape parameters

as determined from the individual fits for each spectrum.
Thus the “shape of the average spectrum,” as con-
sidered by Pierson and Moskowitz, might be expected
to differ from the ‘‘average shape of the spectrum,” as
considered here. The fact that both the Pierson-
Moskowitz and our average v value agree rather closely
supports the conclusion that a fully developed spectrum
is indeed considerably flatter than a growing wave
spectrum, and that this feature is not an artifice of the
particular averaging technique applied. Since we shall
be concerned here with growing rather than fully de-
veloped seas, the set I was also excluded.

The fact that most fetch-limited studies yield v
values considerably higher than 1 for values of » only
slightly higher than the fully developed Pierson-

J, COMPOSITE DATA SET

10 s data sets A,B,C
+ data sets D,F
Y odata set G
161
Swell s * * s s
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10
16° ' . . . r ——pr——
0.4 014 02 03 0.4 05 1
v

Frc. 3. Shape parameter A versus non-dimensional peak frequency v= f,,U/g for the composite data set J.
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energy density

Fic. 4a. Structure of spectral energy balance for the case of a
minimal input into the wave field. The dissipation is negligible
for f<2fm (see Fig. 2.22 in JONSWAP).

Moskowitz value (»=0.14) indicates that the transition
to the fully developed spectrum occurs in the very final
stages of development. The transition process is not
included in the simple constant-shape wave model con-
sidered in the following. A modification of the model to
allow for this effect is basically straightfoward. (Quali-
tatively, the peak flattening can be readily explained
in terms of the shape dependence of the nonlinear energy
transfer and the decrease of the atmospheric input in the
peak of the spectrum as the fully developed state is
approached.) However, in practice, this shortcoming of
the constant-shape model may not be serious, since the
transition to the fully developed state apparently occurs
very gradually and in a very late development stage.
In most cases, particularly for high winds, the extent
and duration of the uniform-wind region is insufficient
to achieve a fully developed state, and the waves are
transformed directly from an underdeveloped state into
swell as the wind decays or the waves propagate out of
the generation region (see also Section 9).

energy density
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3.. The spectral energy balance

From the JONSWAP data, it was inferred that the
general form of the energy balance of the fetch-limited
wave spectrum must lie somewhere between the two
limiting cases shown in Fig. 4. Here S denotes the net
source function of the one-dimensional transport
equation

d a
—E — =
Py N+ axE(f) S, @3.1)

obtained by integrating the two-dimensional transport
equation

0 7] '
—F(f,0)+v—F(f,0)=T 3.2)
ot 3xk

over the propagation direction 6; and where

E(f)= f F()do,

5= / oF (£,0)d8/ E(f)

is the directionally averaged group velocity in the x,
direction parallel to the wind, and

S=/'Td0.

The other source functions in the figures represent the
three individual constituents of the net source function,

S= Sin+Snl+Sd17 (3-3)
where ;. denotes the input from the atmosphere, Sy,

Fic. 4b. As in Fig. 4a except for a maximal input. The dissipation is in accordance with
the white-capping model of Hasselman (1974, cf. Fig. 2).
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the nonlinear energy transfer due to conservative wave-
wave interactions, and Sy, the energy loss due to dis-
sipative processes (including non-conservative nonlinear
interactions associated, for example, with wave breaking
or WKB-type interactions).

Of the four source functions S, S;,, Sui, Sqs, the net
source function S can be measured directly through the
left-hand side of (3.1), and the nonlinear source function
Sni can be computed, leaving two unknown terms S;.,,
Sae related by only one equation [(3.3)]. In principle,
the input .S;, can be determined directly through simul-
taneous measurement of the surface pressure and sur-
face displacement, which yields the work done by the
wind pressure forces against the waves. However, such
experiments have not yet been made simultaneously
with wave growth studies, and existing results from
different workers (Dobson, 1971; Elliott, 1972; Snyder,
1974) are difficult to reconcile. Dobson found that
essentially all of the momentum transfer across the
air-sea interface goes into the waves, Elliott obtained
a value of about 0.5 for the ratio of the wave-induced
momentum transfer 7, to the total transfer r, and
Snyder finds the far smaller ratio 0.02. Thus in the
present situation the complete energy balance cannot
be inferred from wave-growth studies without further
assumptions regarding S;» or Sas.

Fig. 4a represents qualitatively the form of the energy
balance which results if one chooses S:» as small as
possible, i.e., if the wave-induced drag coefficient
Cw=174/8,U? is a minimum consistent with the given
functions S and S,; (cf. J). The dissipation is taken as
zero everywhere except at high frequencies, where a
sink is needed to balance the positive nonlinear transfer.
In the central part of the spectrum the energy losses
associated with the negative lobe of S,: are balanced
by the atmospheric input S;,. It is assumed that the
input is small in other regions of the spectrum, but
positive. It is also assumed that the central region of the
spectrum receives no energy from the short-wave region
of the spectrum through WKB-type interactions. If the
modulation of short waves by long waves is such that
the short-wave energy is largest on the forward side of
the long waves, as generally assumed, the direction of
energy transfer for these interactions is from long waves
to short waves (Hasselmann, 1971). Thus, if anything,
these interactions would require a larger input to bal-
ance the losses in the central region of the spectrum,
and it is consistent to ignore them in considering the
minimum input energy balance. Applied to the
JONSWAP data, the energy balance of Fig. 4a corre-
sponds to ¢,=~0.2)X 1073 for moderate to large fetches,
£=10°—10% and ¢, ~ 1072 for small fetches (¢=10?).

Fig. 4b represents the alternative limiting case in
which all of the momentum transfer across the air-sea
interface is wave-induced (c,=107%) at all fetches. In
this case the increased input in the central region of
the spectrum for moderate and larger fetches must be
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balanced by dissipation. [The distribution of S,
shown in the figure corresponds to the particular form
S¢e= —constant X f2E derived for a white-capping
model (cf. Hasselmann (1974).]

In both cases (Figs. 4a and 4b), the shape of the
spectrum is independent of the detailed distribution of
the input and dissipation functions, and is controlled
primarily by the nonlinear energy transfer. Computa-
tions of the nonlinear energy transfer for various spec-
tral shapes (J; Sell and Hasselmann, 1972) show that
for a spectrum which is less sharply peaked than the
mean JONSWAP spectrum the low-frequency positive
lobe of S, shifts from the forward face of the spectrum
to a position immediately below the peak, causing the
peak to grow. Alternatively, if the peak becomes nar-
rower than shown in Fig. 4b, the nonlinear source
function S,; develops an additional narrow positive
lobe immediately to the right of the peak, and the peak
broadens again. Thus, the spectrum adjusts to a self-
stabilizing form which is continually maintained by the
nonlinear transfer.

For the minimal input case, most of the momentum
input 7, to the waves is balanced by the nonlinear
momentum transfer 7,; into the positive, high-fre-
quency lobe of S, For a self-similar spectrum this
scales as

' Ths=constant X p,0? fn2g%,

or, in terms of a drag coefhcient, as

Thi
=Ad’v2,

Chy= 34)

paU?

For the mean JONSWAP spectrum, computations
yield 4=3.6 (cf. ]).

The power laws (2.2) and (2.3) for @ and » correspond
to a fetch-independent drag coefficient ¢zr=0.13X 1073,
Adding to this the momentum stored in the wave field
and advected away, which accounts for about 5%, of
total momentum transfer across the sea surface, one
obtains a net wave-induced drag coefficient ¢,=~0.2
X 1073, as quoted above for medium and large fetches.
The larger JONSWAP values ¢,~ 1072 for small fetch
are due to o values higher than the mean power law
(2.3) in this range. However, taking all fetch-limited
data from both wind-wave tank and field experiments
in the range 107'<¢<10* into account, one finds an
average value of ¢;;=0.1—0.2X1073,

For constant c¢s; (and given spectral shape) Eq.
(3.4) implies generally

0.13X107%
(25—

H
) vi=0.033,1. (3.5)
A

Expressed in terms of the nondimensional energy,
e=Fg2/U* in place of o, where ev'/a=A=1.6X107,
Eq. (3.5) may also be written

= 5.3 10-5,7190, (3.6)
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It will be shown below that the relations (3.5) and (3.6)
are not limited to the ideal case of a stationary wind
blowing orthogonally offshore, but appear to apply
generally for all developing wave spectra, independent
of the space-time structure of the wind field and ‘the
form of the upwind boundaries. The relations imply
that in a growing wind sea the wave spectrum always
attains a level for which the nonlinear transfer of
momentum from the central region of the spectrum to
higher frequencies accounts for about 10-209, of the
total momentum transfer across the air-sea interface.
The precise value of this ratio is not critical for the
constants in (3.5) and (3.6) since cs; enters only to
the § power. In the following sections we shall develop
a simple parametric wave model from which the general
validity of (3.5) and (3.6) for growing wind seas can
be derived quantitatively.

4. The parametric transport equations

In order to incorporate the nonlinear energy transfer
in a numerical wave model, the complex Boltzmann
integral expression for S,; needs to be parameterized.
Various schemes are conceivable. Apart from methods
for approximating the integral itself, the usual approach
Is to carry out exact integrations of S,; for a subclass
of spectra F(f, 8; a1, @2, . . ., an) characterized by # free
parameters a1, 4z, . . ., @, and to approximate the non-

-linear source function for the true spectrum F by the
source function from a neighboring member of the
class F. The source functions for F may be either stored
or approximated by some analytical function of
ay, a2y ..., Qn.

The method yields a satisfactory parameterization of
Sar only if the class of the spectra F' yields good ap-
proximations for all spectra which arise during the
integration of the wave model. If this is the case, how-
ever, it is consistent to extend the parameterization
technique beyond its immediate application to the non-
linear transfer to all terms in the transport equation.
In this manner the true spectrum can be replaced by
an appropriate approximation F everywhere in the
transport equation, and the prediction of the two-
dimensional continuum F is reduced to the prediction
of a finite number of parameters ay, a, ..., @n.

A method for projecting the full transport equation
onto a set of prognostic equations for ay, @s, ..., @, is
described in J. To approximate a given spectrum F by
a member of the class /¥ some set of algorithms ¢; must
be introduced which define the best-fit parameters a;
for any given F, i.e., a;=¢;(F). A variation éF in F will
then induce a variation éa; in a;, which will be related
to oF through a linear “projection operator,” the func-

tional derivative of ¢, i.e.,
da;=,(oF). (4.1)

Substitution in (4.1) of the specific variation 8F=
(3F/3a;)8a; for a spectrum from the class F yields
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the relation

(oF
¢1<-——) =0 (4.2)
da;
The transport equations for the parameters ¢; can now
be derived by applying the projection operator ¢; to
the transport equation (3.2) in the form

oF rda;  da;
Atrz)
da;\ d¢ dxy

in which the spectrum F has been replaced by its
parameterized form F. Applying the relation (4.2) to
the time-derivative term, one obtains

6a.» 6a,~
—+D,~,~k—~=S,-, (43)
ot Bxk

where the propagation velocities D;;; and source terms
S; are determined by the advection and source terms in

the original transport equation:
./ oF

Diik=¢t(vk—>,

aaj

Si=¢:(T).

(4.4)

@.5)

A discussion of some of the properties of (4.3) for the
case that aj, a5, ..., @, correspond to the five param-
eters of the spectral family (2.1) (with fixed directional
distribution) is given in J.

We consider here the simpler case in which both the .
directional distribution and the spectral shape are pre-
scribed, so that the spectrum contains only two free
scale parameters a4 and a,. It would be incorrect, how-
ever, to derive the prognostic equations for ¢; and a,
in this case simply by truncating (4.3) at n=2. The
two-parameter approximation is justified, not because
the source functions for the shape parameters a3, ay, . . .,
vanish, but because the deviations of the shape param-
eters. from their equilibrium values immediately give
rise to large restoring terms which rapidly return the
shape parameters to their equilibrium values.

This relaxation process will normally be accompanied
by a change in the scale parameters a;, a;. Thus any
terms in the original transport equation (3.2) which
tend to change the shape parameters (wind input,
dissipation or advection terms) will produce instead
indirect changes in the scale parameters. It can be
shown that the resulting equations for the evolution of
a3, as are still of the form (4.3) with = 2, but the closure
procedure yields relations for the propagation velocities
and source functions which are more complex than (4.4)
and (4.5) and depend on the projection operators ¢’
for both scale and shape parameters. An exact evalua-
tion of these relations requires a detailed description of
the nonlinear relaxation process responsible for the
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shape invariance. Although this is feasible, for the
purpose of this paper we shall adopt a simpler closure
scheme which reproduces the main features, if not all
details, of the relaxation process.

For an invariant spectrum of the form (2.1), the
shape parameter A=8f.*/(cg?) remains constant, so
that variations of the scale parameters f., a and e are
linearly related, i.e.,

da 88

6]',,, B

4" =0

fm «

In general, the various contributions to the source
function T, together with the advective term, will
produce changes 6F of the spectrum in the time incre-
ment & which are projected in the parametrical repre-
sentation into changes da;=¢,(8F) of the parameters.
If the rates of change of the three scale parameters
fm, @ and e are determined in this way, the contributions
to 8fm, da and de from different source terms will
normally not satisfy (4.6). Nor will the net change
satisfy (4.6) unless the shape-restoring nonlinear trans-
fer terms induced by small changes in the shape param-
eters are specifically included. In other words, the
quasi-constancy of the shape parameters comes about
dynamically only by specifically including shape-pa-
rameter variables in the source functions. It is clear
that a rigorous elimination of the shape parameters in
a two-parameter wave model must therefore be based
oh a two-timing treatment, in which the full parametri-
cal equations are integrated over a time ¢* which is
large compared with the shape response time but small
compared with the time scales characterizing the rate
of change of the scale parameters. Instead of carrying
this out, however, we assume here simply that the
changes &f,,, 6/, 88’ of the scale parameters, as com-

4.6)

Sin

1/dv v 1 0
-(—+-Pw_“)+Pwa__=
v\OT a7 a dn

1/0a da
_(~+Paa >+Pav_ —=Iy3—

a\dr an
(PVV Pva) ( 1

Puu Pl \0AT

and 9/dr=(U/g)(8/ 1), 3/dm= (U/g)Vn-V, with V,,
parallel to the wind direction, |V.|=gqg/(4xfn),
¢=0.85. The dimensionless gradient 8/d9 corresponds
to the rate of advection of properties with the group
velocity V., of waves in the spectral peak. The correc-

tion factor ¢ arises from averaging over the directional
distribution of the spectrum, which was taken here as

v On
where
—0.07

0.2
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puted from §F by application of their associated pro-
jection operators ¢;, are modified after carrying out the
intermediate time-scale integration over /* through ad-
ditional changes éf,,, 6a’/, 88", such that the net change
Sfm=0f.t8f. Oa=0.+0L 08=388'+358" satisfies
(4.6). To make the corrections unique we introduce the
minimal condition

8fm\? [8a/'\E [0F'\?
(—) +(—) +(—) =min, 4.7)
fm 24 F
which yields the solutions
8fm fm
= 4y
fm m
da  8d
—=—p 4, (4.8)
[+ [+
8F 6%
F 7 J

where

1/ 6fn oo’ 88
e Gy
18\ fu o &

The technique could be carried further by requiring
the invariance of additional shape parameters, but in
view of the arbitrariness of the side condition (4.7) this
hardly appears justified. The shape parameter A was
chosen in order to obtain mutually consistent wave-
model representations using either the a-» or e-» param-
eter plane.

Carrying out the computations (4.4), (4.5) and apply-
ing (4.8), we obtain for the parameter pair v= f.U/g
and o the prognostic equations

non-uniform

Sl wind field
170U oU

—N,o?v + —+—), 4.9)
ar In

N a%—l——( ) (4.10)

), N,=054, N.=5 I=51X10"%,

frequency independent and proportional to the square
cosine of the angle 6 relative to the local wind direction
for |0 <w/2, and zero in the upwind half-plane
7/2< | 6| € 7. Most measurements indicate a frequency-
dependent directional distribution with increasing
spread at higher frequencies (cf. Mitsuyasu et al. 1973,
1975; Tyler et al., 1974). However, the coefficients in
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(4.9) and (4.10) are not strongly dependent on the
directional distribution, and this effect was ignored.
The approximations involved in assuming a fixed di-
rectional distribution relative to the mean local wind
(thereby eliminating all directional parameters in the
prognostic equations) are discussed in Section 7.

Sin

1/dv dr\ 0.07 de
—(—+0.72—-)— —=
ANGT a7, e dn

e\dr a7 v O

with
N=N,—4N,=2.84.

Egs. (4.11) and (4.12) follow directly from (4.9) and
(4.10) using the relation A= e»*/a= constant=1.6X 104,

The appearance of spatial and time derivatives of the
wind field as source terms on the right-hand sides of the
equations is due to the use of non-dimensional scale
parameters depending on U. These terms do not occur
in the original parametric equations (4.3), which refer
to variables defined in terms of the wave spectrum alone.
However, the transformation from f,. to v=Uf,./g, for
example, gives rise to additional wind-dependent source
terms through relations of the form

1 0fm 13y 10U

—————— — etc.

fm ot vot U ot

Theé remaining source terms are associated with the
direct atmospheric input or the nonlinear transfer, as
indicated.

The steps involved in projecting the full transport
equation (3.7) onto the transport equations (4.9) and
(4.10) [or (4.11) and (4.12)] for two scale parameters
may be summarized as follows:

a. Definition of the parameters o, 8 and fo,

We have defined the parameter « here as the mean
value of the whitened spectrum E(f) fig2¢ ), including
the influence of the shape function

ol S L7

in the range 1.35f, < f<2fm. Thus « is determined by
the level of the spectrum in the immediate falloff region
beyond the peak, rather than by the asymptotic, high-
frequency range of the spectrum. This is motivated by
applications, for which it is generally more important
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It should be noted that the derivatives 9/dr, 9/dn
merely represent convenient abbreviations for the non-
dimensionalized derivatives with respect to ¢ and the
coordinate x, parallel to the local wind direction ; 7 and
7 are in general non-integrable.

If a is replaced by the energy-scale parameter
e= 8¢/ U%, the equations become

non-uniform

Sn1 wind field
N, % 1/6U oU
! \ 1 ), (4.11)
A2 U\dr 99
4 83U 383U
, (4.12)
A2 Uodor U o

to predict the properties of the energy-containing re-
gions of the spectrum than the short waves. For the
same reason & is defined as the variance of the surface
displacement in the range f<2f,. The region beyond
2fm yields only a negligible contribution (59) to the
total variance, and the use of the same cutoff for a and
8 has the advantage that in evaluating the source
functions one needs consider only processes which affect
the spectrum in the frequency range f<2f,. Thus the
cutoff in § is introduced primarily as a conceptual
simplification for the derivation of the dynamical trans-
port equations. In practice, it is irrelevant, and in the
data presented in Section 10, § represents the complete
variance of the wave field. The peak frequency f, is
defined as the frequency of the maximum of E (not of
the whitened spectrum).

b. Calculation of the propagation and nonlinear source
terms

Having prescribed the algorithms for determing f,
and & for a given spectrum, the propagation terms Dijx
and the nonlinear source terms can be computed ac-
cording to (4.4) and (4.5). It may be noted that the
nonlinear source function for & in (4.12) is negative
rather than zero, as may have been expected from the
conservative properties of resonant nonlinear interac-
tions. This is because the positive lobe of the nonlinear
source function in the region f>2f, (cf. Fig. 2) is
excluded through our definition of §. The functional
forms of the nonlinear source terms in (4.9) and (4.10)
follow from the scaling properties of the exact integral
expressions for S,i; the coefficients were determined
from numerical computations for the mean JCNSWAP
spectrum (cf. J and Sell and Hasselmann, 1972).

c. Correction for shape invariance

Next, the propagation and nonlinear source terms
were corrected for shape invariance in accordance with
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(4.8). The corrected values differed from the original
terms by less than 109, suggesting that the use of
(4.8) instead of a more rigorous two-timing analysis is
not very critical.

d. Input source functions

To close the energy balance, the input source func-
tions were then computed. The energy balance was
taken to be of the form indicated in Fig. 4a, with
vanishing dissipation in the main region of the spectrum
(f<2fm). (It is shown in Section 8, however, that the
neglect of dissipation in the range f<2f,, is unnecessary
for the subsequent analysis in which the two-parameter
model is further reduced to a single parameter.) In
accordance with most theories of wave generation based
on linear feedback mechanisms, S;, was assumed pro-
portional to the wave spectrum, ie., S:;\=BfE(f),
where B is a function of the parameter Uf/g only. This
yields an input source function for « of the form o (v),
where the function ¢ (v) depends on the functional form
of 8. The influence of the atmospheric input on the
rate of shift of the peak frequency » was negligible
compared with the nonlinear terms in (4.9) and (4.10).
The rate of shift of the peak is controlled by the dif-
ference in energy gained on both sides of the peak. If 8
is a reasonably smoothly varying function, the input
source function, being proportional to the spectrum
itself, will be approximately symmetrical relative to the
peak. On the other hand, S,; has an extremely pro-
nounced plus-minus asymmetry across the peak. For
typical B functions the rate of migration of the peak
induced by S,; is two orders of magnitude larger than
the contribution from ;.. Since the dissipation source
terms were assumed zero in the range f<2fn, this
leaves ¥(») as the only unknown function in the para-
metric equations, and this can then be determined by
comparison with fetch-limited growth data. For con-
sistency, the empirical power laws (2.2) and (2.3) were
slightly modified to the power laws

y=2.84 03,
a=0.0662 £-92,

(4.13)
(4.14)

to yield a fetch-independent value of 1.58 X 10~* for the
shape parameter A, as required for shape invariance.
[On elimination of the fetch, Egs. (4.13) and (4.14)
yield the same relations (3.5) and (3.6) between the
scale parameters as before. ]

5. Special solutions

The integration of Eqgs. (4.9), (4.10) or (4.11), (4.12)
for an arbitrary wind field U(x,) under appropriate
boundary and intitial conditions can only be carried out
numerically However, it is instructuve to consider two
special classes of wind fields for which solutions can be
given analytically. If the wind field depends on only
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fetch «x or duration ¢ according to power laws
@) U=Uo(gr/Us)P, (¢.1)
(b) U=Us(gt/Un)s, (5.2)

with Up= constant, the parametrical transport equa-
tions permit simple power-law solutions of the form

(@) v=A(x/UMH™, m=752p—1), (5.3)
(b) v=A(gt/Uy)*, n=3/7(q—1), (5.4)
where in both cases
a= Bt (5.5)
e=Cy™10/3, (5.6)

with constant 4, B and C.

Eq. (5.6) and the coefficient C= B\ follow from
(5.5) and shape invariance, A=er*/a=constant. The
remaining coefficients are given by

J'A=2.84(1+1.63p)3“° G.7)
141.50p\1

(@) B=0.033(————P> (5.8)
{ 14+1.63p

Or CA=168(1-+151g)"" 5.9)
b) 4 141.33g\}

®) B=0.031(——q-> . (5.10)
{ 14+1.51¢

The solutions satisfy the initial condition of vanishing
energy §=eU%/g*=0 at x=0 [case (a)] or =0 [case
(b)] for p>—3% or ¢>—5/9, respectively. If the ex-
ponents become more negative than these values the
singularity of the wind field at =0 or /=0 becomes so
strong that the wave-field solutions also become singular
initially.

For p=0, case (a) reduces to the uniform-wind,
fetch-limited case, and Egs. (5.3) — (5.8) become identi-
cal with Egs. (3.5), (3.6), (4.13), (4.14), and (2.4).

It is interesting to note that the power-law relations
between a, € and » are independent of the exponents p
or g and are identical for the fetch-limited and duration-
limited cases. Moreover it is apparent from Fig. 5 that
the coefficient B (and therefore also C) varies by only a
few percent within a wide range of exponents p, ¢ and
is almost the same for both cases (a) and (b). Thus for
practical purposes the wave field can be characterized
for both classes of wind fields by the fetch or duration
dependence of a single parameter, », say (Fig. 6). It is
shown in the following that the reduction of the two-
parameter description of the wave field to a single
parameter applies generally and is not limited to the
particular solutions considered here.

6. The single-parameter approximation

The reason for the weak wind-field dependence of the
relations (5.5) and (5.6) becomes apparent on inspection



214

0.04 K\
{a) fetch limited, B=8(p}
c ~—
0.03 1 =
Bo=0032 {b) duration limited, B=B(q)

0.02 1

0.01

0 T T T
-05 o] 1 2
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Fi16. 5. The coefficient B in the relation o= By for the case of
(a) a fetch-limited wave field with wind field U= U,(gx/U#)* and
(b) a duration-limited wave field with wind field U=U,(gt/Uq)1.
The value Bo=0.032 corresponds to the quasi-equilibrium
relation (6.1).

of (4.9) and (4.10). The nonlinear interaction term for
v in (4.9) is an order of magnitude smaller than the
corresponding nonlinear source term in (4.10) for a.
On the other hand, the propagation terms on the left-
hand sides of the equations are governed by the re-
sponse scales of » and a with respect to 7 or 7, and for
power-law solutions are of the same order for both »
and a. The source terms due to the wind-field variation
are also of this order. Thus the nonlinear interaction
term in the prognostic equation for « is large compared
with both the propagation and wind-variation terms,
and can be balanced only by the remaining wind-
generation term. To first order, Eq. (4.10) therefore
yields

Bo= (I/N4)}=0.032. (6.1)

The equivalent expression in terms of the energy is
given by

o= Bov*,

e=Co™ 3, Co=BoA=5.1X10"¢, (6.2)
Egs. (6.1) and (6.2) lie within a few percent of the
exact solutions (5.5)-(5.10) for power-law wind fields
[and the empirical relations (3.5) and (3.6)].
Physically, the quasi-equilibrium relations (6.1) and
(6.2) express the fact that the dominant balance de-
termining the level of the spectrum in the central region
of the spectrum is between the atmospheric input and
the nonlinear transfer of energy away from the central
region of the spectrum to high frequencies (beyond 2f.)
and to frequencies lower than the peak frequency. The
adjustment process is stable, since the energy input is
linear with respect to the wave spectrum, whereas the
nonlinear transfer is cubic. Thus an increase in the input
through an increase in wind speed increases the spec-
trum to a new level at which the more rapidly increasing
nonlinear transfer is again able to balance the input.
Estimates given in the next section indicate that this
energy-level adjustment occurs almost as rapidly as the
nonlinear shape stabilization. Since the distributions of
the nonlinear and input source functions differ in detail,
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the balance applies only in an average sense, not as a
detailed equilibrium for each frequency. In particular,
the narrow plus-minus signature of the nonlinear source
function in the vicinty of the peak cannot be matched
by the more smoothly varying input and results in a
net transfer of energy from the rear to the forward face
of the peak. However, the migration of the peak to low
frequencies is a slow process compared with the adjust-
ment of the spectrum to its stable quasi-equilibrium
shape and level. Thus to first order the latter can be
treated as local equilibrium processes, and on the time
and space scale of typical wind fields the prediction
problem reduces to the integration of the peak-fre-
quency equation.

The quasi-equilibrium relations (6.1) and (6.2) sug-
gest a simple perturbation method for constructing ap-
proximations to the general solutions of (4.9) and (4.10)
[or (4.11) and (4.12)] by expanding « and » in series:

a= oyt Aar+ Ao+ . . .,
y= 1/0+ AV1+ A2V2+ ceny

gt/y,
(b)

Fic. 6. Development of the non-dimensional peak frequency
v=U fu/g as a function of (a) fetch and (b) duration for various
power-law wind fields U="Uolgr/Ue?)? and U=Uo(gt/U0)9,
respectively.
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where A1, a,=0(ag), va=0(), and ao, vo satisfy
(6.1). The coefficient A represents the ratio of a typical
term in the transport equations (4.9) and (4.10) (for
example, the nonlinear interaction term N,o% in the »
equation) to either of the two dominant terms in the
a equation (for example, the nonlinear interaction term
Nqe2v). In the following we set A= N,/N,. Substituting
the perturbation series in Eqs. (4.9) and (4.10) and
ordering in powers of A, one obtains a sequence of
uncoupled equations which can be solved individually
at each expansion step.

Expressing a, in Eq. (4.9) in terms of v using (6.1),
the zero-order equation for v is obtained as

1 61/0 6v0 1 GU aU
—(—+Po—)=—Novo7/3+—<~+-), 6.3)
vo\OT on U\or oy

where
Py=P,+2P,,=0.95,

No= N,,B02= SSX 10—,

The subsequent higher order equations are linear. For
a3, one obtains

1 aal 6a1 [45] 02 6U
—+Paa—)+ — Lo t——, (64)
ag\ o1 on T 0l U ay

where

Te= (2Naa021’0)~1

Oorg dve
aa"_) +P av—

1 6ao
L () =——(—~+P
an

oo\ 01 on

1 6110 aVo
=‘<0.67—-—+O.51—>
Vo or dn
The solution of (6.4) can be substituted in the next
order equation for v to obtain a correction term », for
v, from which a second-order correction a, can be de-
termined, and so forth.

For practical purposes the zero-order prognostic
equation (6.3) for », together with the equilibrium
equation (6.1) for «, should yield an adequate approxi-
mation. An advantage in terminating the expansion
after the lowest order is that it can be shown that the
zero-order equations are independent of the hypotheses
made in closing the spectral energy balance (cf. Sec-
tion 8), whereas the higher order corrections depend on
the details of the input and dissipation source functions
balancing the nonlinear energy transfer in the central
region of the spectrum (cf. Figs. 4a and 4b).

(6.5)

7. Response scales

The equation for the first-order perturbation «; is
of interest, as it describes the rate at which « returns to
its near-equilibrium value @, if the wave state is slightly
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perturbed from its quasi-equilibrium level [Eq. (6.1)].
Thus it defines the conditions for the validity of the
local equilibrium relations (6.1) and (6.2). Changes in
the peak frequency and wind field produce forcing
terms, represented by the right-hand side of (6.4),
which induce changes in « relative to its quasi-equilib-
rium value ap. The left-hand side of (6.4) then defines
a non-dimensional relaxation time (or equivalent space
scale) 7. for the response of & to these terms. Ignoring
for the present the influence of the changing wind field,
the ratio of the relaxation time 7, to the characteristic
time scale 7,= (Novo"®)~! for the migration of the peak
frequency [as determined by the zero-order equation
(6.3)] is given by 7./7,=N,/2N.=A/2. Thus the re-
sponse of the perturbation & to the frequency forcing
term on the right-hand side of (6.4) is an order of mag-
nitude faster than the rate of change of the zero order
fields vy and . To lowest order «; is therefore given by
the quasi-stationary equilibrium solution

0.2 3U
a1=7ea0[—L(V0)+__ —]) (7'1)
U 9

U]

for which the assumed inequality a;<<ao can be verified
directly. If the characteristic space or time scales L, T
of the forcing term associated with the wind field are
smaller than the corresponding peak-frequency scales,
the condition 7./7,<<1 for the validity of (7.1) must be
replaced by the appropriate space or time response
inequality (whichever is the more stringent)

4wy gL vg
7&K —==30—L (7.2)
qPaa U? U?
or
8
r&—T, (7.3)
U

where g=0.85 is the direction correction factor defined
after Eq. (4.10). Substitution of (6.5) and (6.1) yields

3 2
L>> y—10 /3,
4

100U

(74)

yT18,

> (7.5)

g

For a growing sea, v lies typically in the range 0.15
<y<1. Taking the least favorable (nearly fully de-
veloped) value »=0.15, Eqgs. (7.4) and (7.5) yield
[3>1.6X10°U2/g and T>>8X 108U/g. For U=10m s7%,
for example, the o response can therefore be regarded
as quasi-local if Z>>16 km and 7>>2.3 h. The corre-
sponding conditions for a less fully developed sea with
»=0.3 become L>>1.7 km and 7>>0.5 h. The values
suggest that except for very rapid wind changes and
well-developed wind seas, the energy level of the spec-
trum can be determined to good approximation from
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the peak frequency using the local equilibrium relation
(6.1).

The rate of adjustment to the equilibrium level may
be compared with the rate at which the spectrum attains
its equilibrium shape. The expression for the rates of
change of the shape parameters s;j=+, o or o due to
the nonlinear energy transfer can be shown to scale in
the same way as the corresponding nonlinear source
terms for the parameters », @ and e: ds;/di=N;a?v,
where the coefficients V; depend on the shape parameter
only. By assumption, all V; vanish when the shape
parameters take their equilibrium values sj. The rate
of return to the equilibrium shape for a-deviation from
the equilibrium depends on the initial deviation. For
small displacements from the equilibrium, the coeffi-
cients N, can presumably be expanded in a Taylor
series: N;= Mjy(sy—sg), where M= dN,;/ds:; at the
equilibrium point. Thus the shape response of the
spectrum near equilibrium is governed by the linear set
of equations :

ds 7
—=M,~k(sk—s§).
dt

This. will generally have three eigensolutions, whose
eigenvalues A; define three relaxation times 7;= ;7.

A systematic analysis of the structure of M, has not
been carried out, but numerical experiments with vari-
ous initial deviations from the equilibrium shape (which
will normally correspond to a superposition of eigen-
solutions) yielded relaxation times typically of order %
of the relaxation time 7. for the adjustment to an equi-
librium energy level. Thus the conditions for a local
shape equilibrium appear to be still better satisfied than
for a local quasi-equilibrium of the spectral energy
level (as implicit in our derivation of the one-parameter
model via a two-parameter model).

In conclusion, we note that the concept of a local
quasi-equilibrium spectrum justifies a posteriori the
treatment of the directional parameters as given rather
than independent prognostic variables. Since the ad-
justment of the spectrum to its equilibrium level is
governed by the local balance between atmospheric
input and nonlinear transfer, the directional distribution
in the central equilibrium region of the spectrum will
adopt a universal form (depending on the directional
properties of these balancing processes) in which the
mean propagation direction of the waves must be de-
termined by the only external directional parameter,
the mean wind direction. Furthermore, the migration
of the peak of the spectrum is determined by the non-
linear transfer of energy from the central region of the
spectrum across the forward face of the spectrum. Thus
the central region of the spectrum determines the refer-
ence direction for the newly generated waves at lower
frequencies, and hence these will also have directional
properties defined relative to the local wind direction.
Within the approximation of a quasi-equilibrium spec-
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trum, the directional distribution of the entire wave
spectrum can therefore be regarded as a given function
(depending in general on the nondimensional frequency
f/fm and peak frequency ») which is oriented with
respect to the local mean wind direction.

8. Independence of the single-parameter model on
the energy balance closure

Tt was pointed out in Section 3 that measurements of
the spectral energy balance in fetch-limited wave-
growth studies yield only the sum S,= S+ S, of the
input and dissipation terms of the net source function
S=3Sint+ S+ Ss., and that direct measurements of the
atmospheric input are still too uncertain to establish
the relative contribution of the input and dissipation
to S,;. Fortunately, the zero-order single-parameter pre-
diction equation turns out to be independent of the
structural form of S..

The analysis of the previous sections was based on a
minimal-input energy balance with vanishing Sy, and
a linear dependence of S, on F in the main region of the
spectrum (' 2f»). Consider now the modifications
incurred if the function S, is arbitrary. In the projection
of the complete transport equation (3.2) onto the
parameter plane », a, the » equation remains unchanged,
since the argument in Section 4 that the nonlinear
source function dominates the rate of migration of the
peak is independent of the detailed structural form of
S;» and Sz,. The o equation now becomes

1/0a da 14dv
_(—+Paa_)+Pav_ "-=7_Naa21'

a\dr a7 v dn
027U aU
U\adr 9y

where the previous input source function in (4.10) has
been replaced by an arbitrary function r(a,v) deter-
mined by the sum source function S,. (If the dynamics
of surface waves depends only on the external param-
eters g and U, it follows by dimensional analysis that
for a constant-shape spectrum the dependence of 7 on
the wind speed can enter only in combination with the
peak frequency f. in the form of the non-dimensional
parameter »= f,,U/g. A possible dependence of wave
growth on additional external parameters, or on
wind speed independent of fm, was investigated in
JONSWAP, but not detected.)

Asin Eq. (4.10), the nonlinear term Nao?v in Eq. (8.1)
is an order of magnitude larger than the observed rate
of change of « or the source term arising from the vari-
able wind field. It follows that to first order this term
must be balanced by the combined input and dissipa-
tion, 7{a,»)= Nao2v. The relation can be solved for «
to yield a=a(»). The functional dependence of a on »
can then be determined empirically from fetch-limited
wave-growth data, which yields as before the power-law
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Fi16. 7. Evolution of the wave field in the a-» phase plane. The thick line represents
the quasi-equilibrium relation (6.3). Tick marks on the line denote fetch values for
the fetch-limited solutions (4.11). Converging thin lines represent solutions of the
two-parameter model for non-equilibrium initial states. Also shown are the initial

displacements induced in the wave state by a step function change in the wind

field by a factor of 1.5 or 1/1.5. The parallel constant ¢, lines apply for the case
of a minimal-input energy balance.
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relation (3.5) [or (6.1)]. This forms the basis of the
one-parameter model and the subsequent analysis
follows unchanged. Thus the existence of a quasi-
equilibrium between the nonlinear transfer and the

16°

10° :

combined influence of atmospheric input and dissipa-
tion always implies a universal relationship between a
and », independent of the detailed structure of the input
and dissipation source functions.

0.1 0.14 0.2

03 04 05 06 07 08 09 1

N

Fi6. 8. Evolution of the wave field in the e-» phase plane. The notation
is the same as in Fig. 7.
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F16. 9. a-» plots for the data sets A through J listed in Table 1. Straight lines flanked by hyperbolas represent regression lines and
their standard deviation envelopes. Parallel lines correspond to constant wave-induced drag coefficients ¢, for a minimal-input energy

balance.

The calculation of the relaxation time 7. for the
establishment of the quasi-equilibrium in Section 7
depends numerically on the form of r(a,»), but the order
of magnitude is insensitive to the structure of r. Essen-
tial for the existence of a stable equilibrium is that an in-
crease da in a produces an increase 8 (V,0%v)= 2N avda
in the nonlinear source term in (8.1), which is larger
than the increase é7= dr/dq.dc induced in r. A small
deviation from equilibrium then results in a positive
restoring force. For small perturbations, the return to
equilibrium is a ‘decaying exponential, and the as-
sociated relaxation (e-folding) time is given by
7¢=[2N.0®v—a(dr/da) . This is of the same order
as the expression considered in Sections 6 and 7 for the
special case 9r/da=0 provided that the two terms in
the brackets do not approximately balance, i.e., pro-
vided the equilibrium is not marginal. (In fact, if
includes nonlinear dissipative terms, it may be expected
that » increases more slowly with « than in the case
that r consists of the atmospheric input alone. The
equilibrium is then stabler and the relaxation time 7.,
smaller than estimated in Section 7.)

9. The phase plane

It is helpful to visualize the parametric wave growth
relations in the e-» and e-v phase planes (Figs. 7 and 8).
The thick lines represent the quasi-equilibrium relations
(6.1) and (6.2), while the thin curves converging to the
quasi-equilibrium lines describe the approach to equilib-
rium for wave states which lie off the equilibrium curve
initially. The curves represent solutions of the two-
parameter model (Section 4) for the case of a constant
wind field. In order to describe the convergence toward
equilibrium through characteristic curves in the phase
plane, the general two-dimensional 7, # dependence of
the solutions has to be reduced to a single parameter
7 or 7 by assuming a duration-limited or fetch-limited
geometry. The characteristic curves in Figs. 7 and 8
correspond to the duration-limited case in which a
uniform deviation from equilibrium is assumed at some
initial time. Qualitatively similar curves are found also
for the fetch-limited case, where a time-independent
non-equilibrium initial wave state is prescribed along
some upwind boundary orthogonal to the wind direc-
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tion. After adjustment to the asymptotic equilibrium
curve, the wave field develops along the equilibrium
line in the direction of decreasing » with increasing
duration or fetch, as indicated in the figures. [In fact,
the equilibrium curves for the duration-limited and
fetch-limited cases differ slightly, but the difference is
only a few percent; cf. Egs. (5.5)-(5.10) for p=¢=0.
In the one-parameter model, the distinction between
the two equilibrium curves is, of course, lost.]

To interpret the effect of a variable wind field, con-
sider now the simplest case in which a sudden step-
function change in the wind field occurs with respect
to fetch or duration (depending on the particular
initial-value problem considered) in an otherwise uni-
form stationary wind field. Since the response of the
wave field to the change in wind requires a finite time,
the immediate effect of the step-function change is to
shift the wave state from a point on the equilibrium
line (assuming equilibrium had been established) to an
off-equilibrium position simply through the wind speed
dependence of the nondimensional variables » and ¢ (cf.
Figs. 7 and 8). Subsequently, the point will then move
back to a new position on the equilibrium curve along a
converging characteristic trajectory. If the rate of con-
vergence is sufficiently rapid, a continuous sequence of
small changes in the wind speed will produce only a
small net displacement from the equilibrium line, but
because the direction of the displacing and restoring
forces differ, the wave state will wander along the
equilibrium line. The net movement along the equilib-
rium line is given by the sum of the wind-variability
and nonlinear transfer terms in (6.3). An increasing
wind tends to offset the decrease of » due to the non-
linear transfer and can even lead to an increase of »
with fetch or duration, as demonstrated by the power-
law solutions (5.3) for $>% and (5.4) for ¢>1 (cf.
Figs. 6a and 6b). Conversely, a decreasing wind speed
produces a still more rapidly decreasing v. For example,
the rate of decay of the wind speed rather than the
nonlinear transfer is normally the dominant term de-
termining the speed of transition from the wind-sea
region (v>0.14) into the swell region (»<0.14) of the
phase plane near »=0.14.

For the case of a minimum-input energy balance
(Fig. 4a), the equilibrium lines in Figs. 7 and 8 corre-
spond to a wave-induced drag coefficient ¢,,~0.2X10~3
(about 209, of the total drag coefficient ¢y~ 1073). The
stability of the equilibrium line can be inferred from the
set of displaced equilibrium lines resulting from a
changed energy input corresponding to the (minimal)
wave-induced drag coefficients c,= 10~4, 102 and 10-2.
To alter the equilibrium level significantly, rather large
changes in the input from the atmosphere are required.
An alternative energy balance with appreciable dis-
sipation in the central region of the spectrum would
affect the values of the wave-induced drag coefficient
inferred from the equilibrium line, but, as pointed out
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in the previous section, the stability of the equilibrium
line itself remains of the same magnitude (or, if any-
thing, is increased).

Figs. 7 and 8 should be kept in mind in interpreting
the data presented in the next section. Most points lie
between the parallels ¢,= 102 and ¢,= 10~%, which is
not surprising when one considers that this band spans
a 100:1 change in the equivalent atmospheric input to
the wave spectrum.

10. Comparison of the quasi-equilibrium relations
with field data

Figs. 9 and 10 show the data distributions in the
a-v and ev phase planes for the data groups listed
in Table 1. Also shown are the log-log regression lines
and the associated standard-deviation hyperbolas
(cf. Section 2). The regression line parameters are in-
cluded in Table 1 (the notation is the same as used for
the shape parameters). To avoid congesting the figures,
the theoretical equilibrium lines (6.1), (6.2) are not
shown, but they lie approximately midway between the
parallel lines corresponding to the (minimal) wave-
induced drag coefficients c,=10"° and c,=10"5 (cf.
Figs. 7 and 8).

Because of anomalous v values the Weather Adviser
data set E has not been included in the composite data
set J. Similarly, the large scatter of the a values for
the Spanish Banks data and the small « values for the
Bight of Abaco spectra let this data set appear rather
suspect, and it has therefore also been excluded from ]J.
The wave model is not applicable to the fully developed
spectra I, which are shown only for comparison and are
similarly not incorporated in J.

Plots of the regression line parameters 7, logap and 7,
logeo for all data sets except E, H and I are shown in
Figs. 11 and 12. Rectangles with half-side length equal
to the standard deviations of 7, logay or 7, loge, indicate
the statistical uncertainty of the regression line esti-
mates. It should be noted that the indeterminacy of the
regression line parameters reflects not only the scatter
of individual data points, but also the size of the en-
semble for which the regression line is defined. The
standard deviations are approximately proportional to
the inverse square root of the number of data points.
Thus large data sets tend to have better defined re-
gression line parameters. (Since the parameter devia-
tions are generally correlated, it would have been more
correct to draw rectangles oriented with respect to
rotated axes corresponding to statistically orthogonal
variables. However, this was not done as the rotation
angles were typically only a few degrees.) The scatter
of the individual points of a data set relative to the
regression line is indicated by the vertical error bars.
The half-lengths of the error lines represent the stan-
dard deviation of the vertical displacements of the points
from the regression line. It is possible to represent this
scatter in the regression-line parameter plane, since the
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F16. 10 e-» plots for the data sets A through J listed in Table 1. Notation as in Fig. 9.

deviation of a particular point from the regression line
may also be regarded as the vertical distance that the
regression line must be displaced in order to pass
through the point. This corresponds to variations in the
regression line constants loga or logeo, which are plotted
as ordinates in Figs. 11 and 12.

If all data sets could be regarded as selected randomly
from a common data set, all error rectangles should lie
in the vicinity of the rectangle for the composite data
set J. This is clearly not the case. At the 959, confidence
limit, which would be represented by rectangles ap-
proximately twice the size of the standard deviation
rectangles, the rectangles for two out of six data sets
in Fig. 11 and three out of six sets in Fig. 12 would fail
to overlap with the composite set J. Thus it appears
that there exist statistically significant differences be-
tween individual data sets, and therefore also statisti-
cally significant deviations of individual data sets from
the equilibrium relations (6.1) and (6.2). However, a
comparison of the standard deviations for each data
set (and inspection of the actual data distributions in
Figs. 9 and 10) suggests that these differences are im-
material in practice: the standard deviations for the
individual data sets are not significantly lower than the

standard deviation of the composite data set. For ex-
ample, for the six data sets separately, the (unweighted)
average standard deviation of logey is 0.132, whereas
for the composite data set the corresponding value is
0.168. The corresponding numbers for logeo are almost
identical—0.132 and 0.172, respectively. In terms of
percentage variations of ap or €, these values correspond
to approximately 309, for the individual data sets and
409, for the composite data set. Thus for prediction
purposes, the use of a common regression line [or the
relations (6.1), (6.2), which lie close to the regression
lines for J] is not significantly poorer than separate
best-linear-fit relations for each data set.

The question then arises whether the scatter of the
data is associated with the approximations of the one-
parameter model and could be reduced by a more
sophisticated treatment of the energy balance of the
wave spectrum, or whether it originates in effects which
cannot be included in any realistic numerical model and
which must therefore simply be accepted as external
noise.

In all data considered, the scales of the mean wind
(eld were sufficiently large that the inequalities (7.4),
fi7.5) were well satisfied. Thus the local-equilibrium ap-
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proximation of the one-parameter model should have
been applicable. That the (meso- and synoptic-scale)
non-stationarity and inhomogeneity of the mean wind
field cannot be the major cause for the observed scatter
is also indicated by the significant variability of the
JONSWAP data set A, which was selected with regard
to high wind field uniformity. Inspection of individual
JONSWAP generation cases suggests that the vari-
ability for this data set was probably due to small-scale
gustiness of the wind field rather than hidden external
parameters (J). A theoretical analysis indicated that
wind field inhomogeneities in the 5-20 km length scale
range could well have produced the observed effects.
The residual variability due to subgrid-scale wind
field inhomogeneities may well represent a practical
predictability limit for numerical wave forecasting and
hindcasting. It would be of interest to pursue this
question further with more sophisticated wave model

=175

log
%o
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studies including spectral shape parameters as free
variables.

11. Conclusions

A simple wave model for growing seas has been pro-
posed which is governed by a transport equation [ (6.3)]
for a single parameter v=Uf /g, where f. is the peak
frequency of the wave spectrum and U is the wind
speed at 10 m height. The model is based on the premise
that the response of the wave field to the wind input
can be described by two processes which occur at dif-
ferent rates: 1) the rapid adjustment of the spectrum
to a universal shape and an energy level such that the
input by the wind in the central region of the spectrum
is balanced by the nonlinear transfer (and, possibly,
dissipation) ; and 2) the slower migration of the peak
toward lower frequencies due to the nonlinear energy
transfer across the peak.

~1.8

-1.91

Relation
(6.1)

-20-

-2.14

-2.24

-2.3 T T
0

1
p 2

Fi1c. 11. Slopes » and constants logao of the regression lines loga=r(logy—logro)
—+logae [corresponding to the power law a=ay(v/vo)r] for the data sets plotted
in Fig. 9, excluding sets E, H and I. A fixed reference value logro= —0.6 is chosen
for all data. Half-sides of rectangles represent standard deviations of p and logas.
The 95% confidence limits are approximately twice as large. Error bars correspond
to the standard deviations of the ordinates of individual data points from the

regression line.
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[corresponding to the power law e= es(v/vo)r] for the data sets plotted in Fig. 10,
excluding sets E, H and I. Notation as in Fig. 11. '

The relaxation time of the first process is sufficiently
small that the equilibrium can be regarded as essentially
local. Thus the energy of the spectrum, characterized
for example by Phillips’ constant e, is a function of only
the local wind speed and the frequency scale of the
spectrum, determined by f.. For dimensional reasons
these parameters can occur only in the non-dimensional
combination Uf,./g. The quasi-equilibrium also applies
to the angular distribution of wave energy in relation
to the local wind direction, which must then be a uni-
versal function of the non-dimensional frequency f/fn
and ». This leaves only a single free parameter » to
characterize the spectrum. The rate of change of »,
described by the transport equation (6.3), is an order
of magnitude slower than the process responsible for
the quasi-equilibrium, so that the position of the peak
frequency represents a true integral response of the
wave field to the entire wind field which must be de-
termined in general by numerical integration of (6.3)
under appropriate initial and boundary .conditions.

Field measurements support the spectral shape in-
variance and energy-frequency relations (6.1), (6.2) on
which the model is based. However, a test of the one-
parameter transport equation (6.3) for more complex
situations than the uniform-wind, limited-fetch cases
against which it was calibrated is still lacking. This
must await further wave measurements combined with
detailed simultaneous documentation of the space-time
structure of the generating wind field. Nevertheless, it
is encouraging that the source terms in (6.3) determin-
ing the rate of migration of the peak could be derived
rigorously from theory without adjustable constants.
The only empirical input is the a-v relation (6.1),
which was tested against many different wind field cases.

The model is limited to growing seas and cannot be

extended into the swell range. Swell represents the
dynamically complementary situation to a growing
wind sea in which to first order all wave components
are decoupled and can be tracked independently along
their propagation paths. Because of this decoupling,
the swell limit is again mathematically tractable, but
the appropriate numerical techniques for a swell model
(characteristic mapping) are not immediately compati-
ble with the parametric approach.

A complete wave model would probably need to use
both representations in different parameter ranges.
Apart from its usefulness for extensive wave climate
computations, a simple combined model could be de-
veloped at a considerable savings in computer time over
existing spectral techniques and would be ideally
adapted to global wave forecasting, should the current
efforts to obtain surface wind and wave data from satel-
lites ultimately lead to an operating global system.

In conclusion, it may be mentioned that the energy
balance relations (6.1), (6.2) on which the wave model
is based may also have useful applications in the inter-
pretation of remote sensing data itself. Although tech-
niques have been proposed for the measurement of the
full two-dimensional wave spectrum from space (cf.
Ruck et al., 1972), the tested simpler methods yield
information on only a few parameters of the sea surface.
For example, the average return pulse shape of nadir-
looking short-pulse radar altimeters contains informa-
tion on the rms wave height. The angular dependence
of radar backscatter cross sections near vertical inci-
dence can be used to determine the rms wave slope, and
the cross sections for larger incidence angles yield the
energy level of the spectrum in the centimeter—deci-
meter wavelength range. For a given spectral shape,
these quantities can be related to ¢, « and U, and with
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the aid of relations (6.1) and (6.2) one can then recover
both the surface wind and the wave spectrum.

REFERENCES

Barnett, T. P., 1968: On the generation, dissipation and predic-
tion of ocean wind waves. J. Geophys. Res., 73, 513-530.
—,and J. C. Wilkerson, 1967: On the generation of ocean wind
waves as inferred from airborne radar measurements of

fetch-limited spectra. J. Marine Res., 25, 292-328.

Cardone, V. J., 1969: Specification of the wind field distribution
in the marine boundary layer for wave forecasting. Rept.
TR 69-1, Geophys. Sci. Lab., New York University.

Chakrabarti, S. X., and R. H. Snider, 1974: Wave statistics for
March 1968 North Atlantic storm. J. Geophys. Res., 79,
3449-3458.

DeLeonibus, P. S., L. S. Simpson and M. G. Mattie, 1974:
Equilibrium range in wave spectra observed at an open-ocean
tower. J. Gecphys. Res., 79, 3041-3053.

Dobson, F. W., 1971: Measurements of atmospheric pressure on
wind-generated sea waves. J. Fluid Mech., 48, 91-127.

Elliott, J. A., 1972: Microscale pressure fluctuations near waves
being generated by the wind. J. Fluid Mech., 54, 427-448.

Ewing, J. A., 1971: A numerical wave prediction method for the
North Atlantic Ocean. Deut. Hydrogr. Z., 24, 241-261.

Garrett, J., 1969: Some new observations on the equilibrium
region of the wind wave spectrum. J. Marine Res., 21,
273-271.

Gelci, R., and E. Devillaz (1970): Le calcul numérique de 1’état
de la mer. Houille Blanche, 25, 117.

—, H. Cazalé and J. Vassal, 1957: Prévision de la houle. La
méthode des densités spectroangulaires. Bull. Inform. Comité
Central Oceanogr. &Etude Cotes, 9, 416—435.

Hasselmann, K., 1962: On the non-linear energy transfer in a
gravity-wave spectrum. 1: General theory. J. Fluid Mech., 12,
481-500.

——, 1963a.: On the non-linear energy transfer in a gravity-wave
spectrum. 2: Conservation theorems, wave-particle corre-
spondence, irreversibility. J. Fluid Mech., 15, 273-281.

——, 1963b : On the non-linear energy transfer in a gravity-wave
spectrum. 3: Computation of the energy flux and swell-sea
interaction for a Neumann spectrum. J. Fluid Mech., 15,
385-398.

——, 1971: On the mass and momentum transfer between short
gravity waves and larger-scale motions. J. Fluid Mech., 50,
189-205. .

—, 1974: On the spectral dissipation of ocean waves due to
white-capping. Bound.-Layer Meteor., 6, 107-127.

——, T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright,
K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P.
Kruseman, A. Meerburg, P. Miiller, D. J. Olbers, K. Richter,
W. Sell and H. Walden, 1973: Measurements of wind-wave

. growth and swell decay during the Joint North Sea Wave
Project (JONSWARP). Deut. Hydrogr. Z., Suppl. A, 8, No. 12.

Jenkins, G. M., and D. G. Watts, 1969: Spectral Analysis and its
Applications. San Francisco, Holden-Day, 525 pp. (see pp.
109-110.)

Kitaigorodskii, S. A., 1961: Applications of the theory of simi-
larity to the analysis of wind-generated wave motion as a
stochastic process. Izv. Akad. Nauk SSSR, Ser. Geofiz.,
No. 1, 73-80.

Liu, P. C., 1971: Normalized and equilibrium spectra of wind
waves in Lake Michigan. J. Phys. Oceanogr., 1, 249-257.
Longuet-Higgins, M. S., and R. W. Stewart, 1964: Radiation
stress in water waves, a physical discussion with applications.

Deep-Sea Res., 11, 529-562.

Manasseri, R. J., 1967: The use of the Kolmogorov-Smirnov test
to determine the existence of a fully developed sea (part 1).
The mean spectrum for a fully developed sea recorded at

MULLER AND SELL 227

Argus Island (part 2). Informal Rept. No. 67-36, Naval
Oceanogr. Office, Washington D. C.

Mitsuyasu, H., 1966: Interaction between water waves and winds
(I). Rept. Res. Inst. Appl. Mech., Kyushu Univ., No. 14,
67-89.

———, 1968: On the growth of the spectrum of wind-generated
waves. 1. Rept. Res. Inst. Appl. Mech., Kyushu Univ., No. 16,
459-465.

——, 1969: On the growth of the spectrum of wind-generated
waves. 2. Rept. Res. Inst. Appl. Mech., Kyushu Univ.,
No. 17, 235-243.

——, 1973: The one-dimensional wave spectra at limited fetch.
Rept. Res. Inst. Appl. Mech., Kyushu Univ., No. 20, 37-53.

——, A, Tasai, T. Suhara, S. Mizuno, M. Ohkusu, T. Honda
and K. Rikiishi, 1973: Studies on techniques for ocean wave
measurements (2). Bull. Res. Inst. Appl. Mech., Kyushu
Univ., No. 40, 295-329.

—_ —, ——, ——, ——, —— and —— 1975: Observations
of the directional spectrum of ocean waves using a cloverleaf
buoy. J. Phys. Oceanogr., 5, 750-760.

Moskowitz, L., 1963: Estimates of the power spectra for fully
developed seas for wind speeds of 20 to 40 knots. Tech. Rept.,
Navy Oceanogr. Office Contract N62306-1042, New York
University, School of Engineering and Science.

——, W. J. Pierson, Jr., and E. Mehr, 1962: Wave spectra
estimated from wave records obtained by the OW.S Weather
Explorer and the OWS Weather Reporter (I). Tech. Rept.,
Navy Oceanogr. Office Contract N62306-1042, New York

University, School of Engineering and Science.

, —— and ——, 1963: Wave spectra estimated from wave
records obtained by the OWS Weather Explorer and the
OWS Weather Reporter (II), Tech. Rept., Navy Oceanogr.
Office Contract N62306-1042, New York University, School
of Engineering and Science.

Patterson, M. M., 1974: Oceanographic data from Hurricane
Camille. Proc. Offshore Technology Conf., OTC 2109.

Phillips, O. M., 1963: On the attenuation of long gravity waves
by short breaking waves. J. Fluid Mech., 16, 321-332.

Pickett, R. L., 1962: A series of wave power spectra. Informal
manuscript report, No. 0-65-62, Naval Oceanogr. Off., 111 pp.

Pierson, W. J., Jr., and L. Moskowitz, 1964: A proposed spectral
form for fully developed wind seas based on the similarity
theory of S. A. Kitaigorodskii. J. Geophys. Res., 69,
5181-5190.

——,L. J. Tick and L. Baer, 1966: Computer based procedure
for preparing global wave forecasts and wind field analysis
capable of using wave data obtained from a spacecraft. Proc.
Sixth Symposium on Naval Hydrodynamics, Washington,
D. C., 499 pp.

Reece, A. M., and O. H. Shemdin, 1974: Modulation of capillary
waves by long waves. Proc. Symposium on Ocean Wave
Measurement and Analysis, ASCE, New Orleans, La.

Ross, D. B., V. J. Cardone and J. W. Conaway, 1970: Laser and
microwave observations of sea-surface conditions for fetch-
limited 17- to 25-m/s winds. IEEE Trans. Geosci. Electron.,
GE-8, 326-335.

——, and ——, 1974: Observations of oceanic white caps and
their relation to remote measurements of surface wind speed.
J. Geophys. Res., 79, 444452,

Ruck, G., D. Barrick and T. Kalisvewski, 1972: Bistatic radar
sea state monitoring. Battelle Tech. Rept., Columbia
Labortories, Columbus, Ohio.

Schule, J. J., L. S. Simpson and P. S. DeLeonibus, 1971: A study
of fetch-limited wave spectra with an airborne laser. J.
Geophys. Res., 76, 41604171,

Sell, W., and K. Hasselmann, 1972: Computations of nonlinear
energy transfer for JONSWAP and empirical wind wave
spectra. Unpubl. Ms., Inst. Geophys., University of Hamburg.

Snider, R. H., and Chakrabarti, 1973: High wave conditions ob-




228

served over the North Atlantic in March 1968. J. Geophys.
Res., 78, 8793-8807.

Snodgrass, F. E., G. W. Groves, K. F. Hasselmann, G. R. Miller,
W. H. Munk and W. H. Powers, 1966: Propagation of ocean
swell across the Pacific. Phil. Trans. Roy. Soc. London, A259,
431-497.

Snyder, R. L., 1974; A field study of wave-induced pressure

fluctuations above surface gravity waves. J. Marine Res., 32,
497-531.

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 6

——, and C. S. Cox, 1966: A field study of the wind generation of
ocean waves. J. Marine Res., 24, 141-178.

Tyler, G. L., C. Teague, R. H. Stewart, A. M. Peterson, W. H.
Munk and J. W. Joy, 1974: Wave directional spectra from
synthetic aperture observations of radio scatter. Deep-Sec
Res., 21, 989-1016.

Wilson, B W 1965: Numerical prediction of ocean waves in the

North Atla.ntxc for December 1959. Deut. Hydrogr Z., 18,
114-130.



