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Abstract. The energy transfer due to weak nonlinear interactions in random wave 
fields is reinterpreted in terms of a hypothetical ensemble of interacting particles, anti- 
particles, and virtual particles. In the particle picture, the interactions can be conven- 
iently described by Feynman diagrams, which may be regarded either as branch 
diagrams of the perturbation expansion or as collision diagrams. The derivation of the 
transfer expressions can then be reduced to a few general rules for the construction of the 
diagrams and the associated collision cross sections. The representation follows closely 
the standard treatment of nonlinear lattice vibrations, but the particle picture differs 
from the usual phonon interpretation of lattice waves. It has the unreMistie property 
that the energies and number densities of antiparticles are negative. This is offset by 
simpler interaction rules and a closer correspondence between the perturbation graphs 
and collision diagrams. The method is illustrated for scattering processes in the oceanic 
wave guide involving surface and internal gravity waves, horizontal currents (turbu- 
lence), seismic waves, and bottom irregularities. 

INTRODUCTION 

The energy transfer due to weak nonlinear interactions between wave com- 
ponents can be an important factor in the radiation balance of a number of slowly 
varying geophysical wave fields. Recent investigations have led to a clearer un- 
derstanding of several of these scattering processes. 

Nonlinear interactions between surface gravity waves have been studied by 
Phillips [1960], Hasselmann [1962; 1963a, b], Longuet-Higgins [1062], Benney 
[1962], Bretherton [1064], among others. Computations of the energy transfer 
for a random wave field were found to be in qualitative agreement with the ob- 
served decay of ocean swell [Snodgrass et al., 1965]. 
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Scattering from gravity waves into elastic waves is one of the principal 
sources of microseisms. The conversion can occur either through direct nonlinear 
interactions between gravity waves [Longuet-Higgins, 1950] or through the 
interaction of gravity waves with an inhomogeneous ocean bottom [Wiechert, 
1904]. Both processes have been quantitatively confirmed by measurements by 
Haubrich et al. [1963] [Hasselmann, 1963c]. 

The generation of long gravity waves with periods in •he minute range ('surf 
bea•' [Munk, 1949; Tucker, 1950]) may be a•tributed to a nonlinear gravity 
wave interaction plus a bottom interaction [Longuet-Higgins and Stewart, 1962; 
Hasselmann et al., 1963; Gallagher, 1965]. 

Sca•ering between surface and in•ernal gravity waves has been investigated 
by Ball [1964], Thorpe [1966], and Kenyon [1966]. Kenyon has computed •rans- 
fer ra•es for both gravity wave and Rossby wave interactions. 

Nonlinear interactions between surface gravity waves and quasi-s•eady cur- 
ren•s or •urbulence have been s•udied by Longuet-Higgins and Stewart [1961] 
and Phillips [1959]. 

Sca•ering processes very similar •o •hese geophysical examples have also 
been considered in o•her fields. 

In a fundamental paper on •he hea• conduction in solids, Peierls [1929] 
investigated •he •ransfer effects due •o secular interactions between random lattice 
vibrations. Nonlinear interactions between ligh• waves and lattice vibrations, firs• 
investigated in •he classic papers of Brillouin [1922] and Raman [1928], have 
la•ely received renewed interest •hrough •he advances in laser technology. Stur- 
rock [1957], Litvak [1960], and o•hers have considered plasma wave interactions. 
The scattering formalism of quantum field theory may also b.e regarded as a 
generalized theory of nonlinear wave fields. 

In the present paper, we apply some of the concepts developed in these fields 
to geophysical scattering problems. By using normal mode coordinates, the scat- 
tering theory is first presented in a Hamilt.onian form analogous to the usual 
treatment of lattice vibrations. Because of the analogy to quantum field theory, 
the transfer expressions can then be reinterpreted in terms of collision processes 
between hypothetical 'particles,' 'antiparticles,' and 'virtual particles.' This leads 
to a convenient description of the scattering processes in terms of Feynman dia- 
grams, which may be interpreted either as perturbation graphs or as collision 
diagrams. By relating the formal perturbation expansion to the physical energy 
and momentum transfer rates, the diagrams enable the transfer expressions for 
all scattering processes t.o be reduced to a few general interaction rules. 

The present particle picture differs from the usual phonon interpretation of 
lattice vibrations. In solid-state theory, the concept of a phonon is obtained by 
regarding the classical field as the limit of a quantized field. Our interpretation 
is analogous to Dirac's concept of positive-energy particles and negative-energy 
antiparticles (or positive-energy 'holes') introduced prior to the method of sec- 
ond quantization. This leads to simpler interaction rules and a closer correspond- 
ence between perturbation and collision diagrams. The interpretation yields nega- 
tive number densities for antiparticles, but this is immaterial in the present 
context, since the particle picture is used only as an abstract description of the 
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effects of wave interactions. (The interpretation corresponds closely to the particle 
picture associated with the Klein-Gordon equation in ordinary quantum theory. 
I• is well known that the negative number densities caused SchrSdinger to 
abandon the relativistic Klein-Gordon equation in favor of the nonrelativistic 
equation which came to be known by his name.) 

The method is illustrated for the case of scattering between surface gravity 
waves, internal waves, seismic waves, horizontal flows (turbulence), and physical 
inhomogeneities in the oceanic wave guide. Coupling coefficients for some of the 
processes not given previously in the literature are derived in the appendix. 

1. WAVE INTERACTIONS 

Equations o[ motion. Consider a eon[inuous, conservative sys[em which is 
homogeneous with respect to either two or three of the space coordinates x•, x2, xa. 
To first order, let the system be described by linear equations of motion with 
normal mode solutions of the form 

or •(xs) exp [i(k.x 4- •t)] k: (k•, k2) x: (x•, x2) (1.1) 
• exp[i(k.xq-o•t)] k = (k•,k•,ks) x = (x•,x,•,xs), r = 1,2, ... 

The dimensionality of x and k is irrelevant for the following. 
We assume that the set of eigenfunctions •ke is complete in the sense that 

the amplitudes q• of the eigenfuncfions may be used as generalized coordinates 
to describe the state of the linear system. We assume further that the real, non- 
linear system can be described by the same set of coordinates q• in a suitably 
extended representation. 

Let the evolution of the real system be described by a Lagrangian L(q•, •). 
Introducing the generalized momenta p• = •L/• and the Hamil•onian 

H = 

we may write the equations of motion in the Hamiltonian form 

• : 3H/3p• •5• = - 3H/3q• (1.2) 

For an infinite system, k is a continuous variable. We shall regard k as dis- 
crete by the usual device of considering only periodic fields. In the final expres- 
sions the continuous case is recovered by letting the period approach infinity. 
The functions L and H are normalized by dividing by the volume of the periodic 
cell. 

The linear system is described by a quadratic Lagrangian L2. For a homo- 
geneous system, L• is independent of x and therefore contains only products of 
terms with equal and opposite wave numbers. For normal mode solutions of the 
form (1.1), the Lagrangian is then 

L2 = Ck •q• • 2 q•:qkk 
, 

We assume the • to be normalized such tha• the constants C• = 1. 
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wi•h 

The corresponding Hamiltonian is 

= kw• q• .3) 

' a[ = (a2•)* (1.9) 

We assume now that •he Hamiltonian of the real system can be expanded 
in a Taylor series of the form 

H H•+ y]n ............ = ••.a},•a•a•. + ... (1.10) 

where in suitable units •he coupling coefficients are 0(1), and the field components 
a• are 0(X•), with X• << 1. We shall consider only lowest-order effects with respect 

The reality condition is 

Since H• is real, the components q• and p• satisfy the relations 

q[• = (qSk)* p[• = 

The linear solution is 

•q• = A• exp (iw•t) q- B[ exp (-iw•t) (1.4) 
•pS}, = iw[A[ exp (iw•t) - iw•B• exp (-iw•t) 

where A• and B• are determined by the initial conditions. 
Equation 1.4 represents a superposition of waves traveling in positive and 

negative directions relative to k. It is convenient to introduce the transformation 
[cf. Peierls, 1929] 

1 

a[• - N//• (pSk - iw• q;) (1.5a) 
1 

a• • - •/• (pS• q- iw•q•) O' = 1, 2, ...) (1.5b) 
which in the linear case separates components traveling in opposite directions, 

•a[ = a• exp (-iw[•t) •a• • = (aS•)* exp (•w},t) a• = constant (1.6) 

Note that equation 1.5b defines a• for negative as well as positive r. 

The equations of motion transform to 

d,• = --iw• OH/Oa2• (r = 4-1, +2,...) (1.7) 

where for negative r the frequencies are defined by w_-• = -w•. 
The Hamiltonian of the linear system becomes 

•_• (1.8) 
k 

v--+l,+2, ..o 
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•o •he parameters L bu• make no assumptions abou• •he relative magnitudes 
of k• for differen• •. 

The coupling eoe•eien•s may be assumed symmetrical in •he index pairs (•). 
Because of •he homogenei•y and reality conditions we further have 

D•k2":[[. = 0 for k• + ks + ... + kn • 0 (1.11) 

Dk•k, 'kn -- '- ' 

The equations of mo%ion 1.7 lake %he form 

= Dk•k,-kak•ak, + "' (1 13) ak -- •kak -- 3•wk ß 

with initial conditions 

a;(0) = a• (1.14) 

Perturbation expansion, interaction diaqrams. We seek a solution to equa- 
tion 1.13 in the form of a perturbation series 

a• = •a• + 2a• + .-- (1.15) 
where 

a • = o(x;) 

The first-order solution is given by (1.6). It satisfies the initial condition 
rigorously. Higher-order solutions are obtained by successively substituting known 
lower-order solutions in the right-hand side of (1.13) and integrating, 

p ß p plpa-p •ak(t) dr' exp [--i•[(t t')]{ 3• • Dk•k•_k •ak,(t') • • (t') • -- -- ak• 

..... (p d- 1)i,o[ 
YI,Y2, 

k• k2,.,,,k• 
n• + ß ß ß +rip =n 

..... (n + 
vl,v•, 

k• ks,''',kn 

yl, 

kx ka 
•1 +•2 --• 

Yl ß ß 'yp-y rl /,) rp 

Vx.oovn•v Vl ! o Vn (1.16) 

is represented by p arrows (the components •a•} ... n,a•;) entering a vertex and 
a single arrow (the component A,a•) pointing away from the vertex. It follows 
from condition 1.11 that the vector sum of components minus anticomponents 

The structure of the perturbation solutions can be conveniently represented 
in terms of interaction (Feynman) diagrams. We denote a wave component 
with positive • by an arrow equal to k. The complex conjugate 'antiwave' com- 
ponent .a_-• is represented by a cross-stroked arrow equal to k. The notation is 
chosen such that in both cases the arrows point in the propagation direction of the 
waves. 

The general term in equation 1.16, 

A •ak = --i(p d- 1),o; dr' exp [-ioo[(t- t')] n•' .... -• • , • •,•,•...•,•_•, •a•,•(t) ... 
(1.17) 
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entering a vertex is equal to the component (or minus the anticomponent) leaving 
the vertex. 

By successively representing components entering a vertex as interactions 
of lower-order components we obtain a cascade diagram with n first-order inputs 
and one nth-order output. The nth-order perturbation term is then the sum over 
all possible cascades with n first-order inputs (Figure 1). 

We shall distinguish between 'virtual' and 'free' components of a cascade. 
Any pth-order component within a diagram is the product of a subcascade with p 
first-order inputs. If the frequency sum of the first-order input components is 
equal to the eigenfrequency of the resultant pth-order component, we shall refer 
to the component as 'free.' If it is not, we shall refer to the component as 'virtual.' 
Free components represent nonstationary resonant perturbations that may be 
interpreted as secular variations of the linear normal modes. Virtual components 
are forced, stationary waves that enter in the scattering calculations only as 
intermediate terms. In the lowest-order scattering theory we shall be concerned 
only with diagrams in which the final product is a free component and all internal 
components are virtual. 

The resonance mechanism. Consider the second-order perturbation solu- 

(o) (b) 
Fig. 1. Interaction diagrams for (a) second-order and (b) third-order perturbations. Anti- 
wave co.mponents are represented by crossed arrows, virtual waves by broken arrows. Further 
third-order interactions can be obtained by replacing wave components by antiwave com- 

ponents. 
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tion, obtained by explicit integration of equation 1.16, 

v v ß vl v• v 2ak = 3Wk • •k•_ka-_k ak•__ak• [exp [--t(wk• -+- Wk•)t] -- exp (--iwkt)] (1.18) Vl v• v 

k•,k• 

(a• = a• (0), equation 1.4). 
The terms in the sum represent stationary oscillations except for values of 

k• and ks for which the denominator (w•} q- w•; - w•) vanishes. In this case we 
obtain resonant oscillations that grow linearly in time. The resonant terms have 
the same frequencies as normal modes and may thus be interpreted as a continuous, 
slow variation of the first-order normal mode field. If we include equation 1.11, 
the resonant conditions may be written 

k• +k•-k = 0 wk• + v,• _ v = • wk• wk 0 (1.19) 

It follows from the symmetry of the resonance conditions that, if a• is excited 
by a resonant interaction between a• and a•, the component a__-• (= (a•)*) is 

•2 - .... by • a_-•. The three components excited by ak., a_k and the component a_k. ak•, 
form a mutually interacting triad. 

Similarly, the expression for the third-order perturbation amplitude con- 
tains resonant terms representing interactions between coupled quadruplets, and 
so on. Generally, the nth-order resonance conditions may be written 

kl-]- ... -]-k•-k•+l ..... k•+•-k= 0 
.20) 

vp vp+l vp+q v 

(p + q = n, v• >0). 

The resonant interactions produce a slow, continuous redistribution of the 
•node energies. I[ is inconvenien[ to analyze the finite changes arising in this 
manner in terms of a perturbation expansion with respect to the initial values of 
the field. This would require a cmnplete expansion [o all orders. The usual proce- 
dure is [o derive from the perturbation expansion an equation for the rate of 
change of the field a[ any given time, from which the finite secular change can 
be obtained by integration. This is feasible only in the limiting cases of a small 
number of discrete modes or a large s•a[is[ical ensemble. 

For a finite number of modes the expressions for the resonant: perturbation 
terms may be simply rewritten as slow rates of change of •he mode amplitudes 
[ef. Benney, 1962; Ball, 1964; Bretherton, 1964; McGoldrick, 1965]. For a sys- 
tem of three modes the resulting nonlinear equations can be integrated explicitly 
in terms of elliptic functions. 

In the case of a statistical ensemble the perturbation equations yield [ransfer 
expressions for t. he rate of change of the energy spectra [ef. Peierls, 1929, 1955; 
Prigogine, 1962; Hasselmann, 1962; Lityak, 1960]. For geophysical applications 
the statistical model is normally the more relevant. We shall be concerned here 
only with this case. 

2. THE ENERGY TRANSFER 

Consider the effect of weak nonlinear interactions in a statistical, homogene- 
ous wave field. 
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For linear fields it can be shown that under very general conditions (smooth 
initial cumulants) the field tends asymptotically to a stationary, Gaussian state 
[Hasselmann, 1966]. This is valid in the coarse-grained sense that for finite 
spectral resolution the field cannot be distinguished asymptotically from a station- 
ary, Gaussian field. Geophysical wave fields can be determined statistically (and in 
fact meaningfully defined) only with respect to a finite resolution. They may 
therefore always be regarded as stationary and Gaussian in the linear approxima- 
tion. 

A Gaussian field is determined by its second-order mean moments. In the 
case of the linear field (1.6) the only second-order mean products that are in- 
variant under time and space translations are 

where 

(a•(t)a2•:(t q- •)) = 2F• exp (i•) 

F• : «(a[,(t)a_-•:(t))= constant 

The angle brackets denote ensemble mean values. 
The linear field is thus determined by the set of energy spectra F•. We shall 

regard equation 2.1 as definition of F• for both positive and negative •, so that 
F_-• = F•. The mean energy of the field is then 

k ,•,•o 

The total energy density of the normal mode • (• > 0) is 2F•. 
In the nonlinear case, the spectra no longer remain constant because of the 

energy transfer produced by the resonant interactions. For a field that is ini- 
tially stationary and Gaussian, the initial rate of change of the spectra is a func- 
tion of the spectra only, since the spectra completely specify the initial field. We 
shall assume that the resulting transfer expressions are in fact valid for all time. 
The evolution of the field is then statistically closed at the level of the energy 
spectra. The assumption implies that the resonant interactions produce a con- 
tinuous redistribution of the energy but leave the statistical structure of the field 
essentially unchanged. It is not immediately apparent that this is mathematically 
consistent. A proof based on the derivation of the general term in the expansion 
of the master equation has been given by Prigogine [1962]. The self-consistency 
• fho (•-•ussian (random phase) hypothesis can be readily understood on physical 
grounds, as will be discussed later. 

To determine the effect of the nonlinear coupling on the energy spectra we 
expand F• in a perturbation series 

where 

F• = 2F• •-3Fk •- -'- 

F • i • -• 2 k -- •(lak la_k)= constant 

(2.2) 

4F;: = «{(,a; aa--;} q- (aa•: aa-•:} q- (aa; 
ß 

ß 
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The second- and •hird-order amplitudes can be expressed in •erms of •he 
first-order components by means of equation 1.16. 

The third-order perturbation of the spectrum is then a cubic expression of 
the first-order field, which vanishes in the mean if the first-order field is Gaussian. 

The term •F• contains quadruple first-order products, which may be expressed 
as quadratic products of the initial spectra. The resonant terms of •.a• and •a• 
yield nonstationary contributions to •F• which grow linearly in t for times large 
in comparison with a wave period. The nonstationary terms involved energy 
transfer only between free waves, so that the secular perturbations may be in- 

F • This leads to an terpreted as a modification of the initial free wave spectra a •. 
energy transfer of the form 

OF•/Ot = I;(F•',) (2.3) 

where I• is a quadratic integral operator acting on the set of spectra F•'. 
The transfer equation 2.3 can be expressed more simply in terms of the 

' number densities' 

n; = F•/• (2.4) 

In the limit of continuous k we use the notation 

•n•fn•(k)& k 

Equation 2.3 can then be written explicitly 

Z f 
' {T•,•k(nln2 -- nn• -- nn2) + 2T•'l•,•k(nln2 + nn• + nn2)} 

ß ß ß • • • • •_ • (n•nan• -- nnana -- nn•na -- nn•na) 
•l , 2 , 3 >0 

+ 3Tk•_•_k•_kkn•na • -- nnan•. + nn•na + nn•na)} + • .. (2.5) 

where n = n•(k), n• = n•,(k•) and 

v, -'- (.Ok, 

(2.6) 

(2.7) 

with w i = w•, w 

The firs[ in[egral in equalion 2.5 represen[s [he energy [ransfer due to res- 
onan[ quadra[ie in[eraetions be[ween wave [riads, the second in[egral is due [o 
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cubic interactions between wave quadruplets, and so on. The resonance conditions 
find their expression in the $ functions in equations 2.6 and 2.7. 

The cubic interactions could be neglected as compared with the quadratic 
interactions if all mode energies and coupling coefficients were of the same order 
of magnitude. In practice, the energies and coupling coefficients can vary by many 
orders of magnitude from one mode to another, so that the order of an interaction 
is not a reliable indication of the interaction rate. The third-order energy transfer 
between gravity waves, for example, is considerably larger than the second-order 
energy transfer from gravity waves to seismic waves. 

The expression for the third-order transfer coefficient 

k•k2k•k• 

is valid only for mode combinations in which no quadratic resonant interactions 
occur between the modes v•, v2, and •3. The quadratic resonances produce non- 
integrahie singularities in the right-hand side of equation 2.6. It can be shown 
that in this case the quadratic interactions, which are already included in the first 
integral in (2.5), are always large as compared with the cubic interaction, regard- 
less of the relative intensities of the modes. A similar situation holds for the 

fourth- and higher-order interactions. To lowest order, the sums in the right-hand 
side of equation 2.5 may therefore be restricted to the irr½o•c•bl½ mode com- 
binations that contain no lower-order resonant subsets. 

The integrals in equation 2.5 also diverge for interactions involving only 
components of a single, nondispersive mode. In this case the volume of the res- 
onant subspaces defined by the $ functions becomes infinite. The theory is not 
applicable to these interactions. It can be shown that, if the field is initially 
Gaussian, the quadratic interactions produce a spectral perturbation that grows 
initially as t 3/2 instead of as L The physical reason for the breakdown of the 
theory in this case will be discussed later. The theory remains valid for inter- 
actions involving different nondispersive modes or combinations of dispersive and 
nondispersive modes. 

The transfer expressions are also valid--under certain restrictions mentioned 
below--for interactions including degenerate, non-Gaussian modes of zero fre- 
quency. This is useful, for example, for scattering processes involving physical 
inhomogeneities or turbulence. 

3. INTERACTION RULES 

Equation 2.5 has the general form of a Boltzmann integral for interacting 
particles of momentum k and energy w, where n•(k) corresponds to the number 
density in x-k phase space of particles of type • and T is proportional to the 
differential scattering cross section. The resonant interaction conditions correspond 
to the conservation equations for momentum and energy. 

The form of the individual interaction terms is not consistent, however, with 
the classical picture of an ensemble of positive-energy particles in which the prob- 
ability of a collision is governed by the number densities of the approaching par- 
ticles. The discrepancies can be removed either by assuming that the interaction 
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rate is dependent on the number densities of particles both before and after an 
interaction or by introducing negative-energy particles. 

In the first approach, the transfer expression 2.5 is derived from the scattering 
formulas of quantum field theory by regarding the fields as the classical limit of 
quantized fields [cf. Peievls, 1955]. As in quantum theory, the transition probabili- 
ties are then dependent on the number densities of particles both before and after 
a collision. The energy of the particles is positive. This is clearly the only accept- 
able particle picture for systems in which quantum effects can be significant, 
such as in solid-state lattices. 

For our purposes, we may ignore the implications of quantum theory and 
choose the particle picture that has the simplest interaction rules. This is obtained 
by introducing negative-energy antiparticles. We can then retain the classical 
expression for the collision probabilities. The interpretation also leads to a closer 
correspondence between the perturbation diagrams and the particle collision 
processes. 

The transfer expression 2.5 may be regarded as the Boltzmann equation of a 
particle ensemble with the following properties' 

1. The system consists of particles v of momentum k and energy •, and 
antiparticles -v (or •) with negative momentum -k and energy -•. The num- 
ber density of particles and antiparticles is n• (k), and n_• ( - k) = -n• (k) (equation 
2.4). Negative energies and number densities can be avoided by interpreting anti- 
particles in the Dirac sense as 'holes' in a 'sea' of negative-energy particles. For our 
purpose this is not necessary. The energy spectrum for both particles and anti- 
particles is the same, F•(k) = •n•(k). 

2. Particles and antiparticles can be annihilated and created by collision 
processes. The interactions conserve energy and momentum. The processes either 
terminate in a single outgoing particle or begin with a single incoming anti- 
particle. The second processes may be regarded as the 'antiprocesses' of the first. 
We need consider only processes that terminate in a single particle; the 'anti- 
processes' can be automatically taken care of by the rule that the creation or 
annihilation of an antiparticle is accompanied by the annihilation or creation of a 
particle (and vice versa). We need then keep track only of the number of particles 
n•(k); the number of antiparticles is always -n•(k). 

3. The differential interaction rate of the process rl, r2, '" , r•, •+1, ''' , 
•,• --+ r, in which p particles and q antiparticles are annihilated and a particle v 
is created, is 

Yl, '",•p,-•p+l, 
k •, ß ß ß, k•,--k• +•, ß ß ß,--k• +q,--k 

ß l•(k•) ... •,(k•)•_•+•(-k•+•) ... •_•+•(-k•+•) I dk• ... dkv+• dk (3.1) 

The coe•cient T is given explicitly for the cases p q- q = 2, 3 by equations 
2.6, 2.7. The general expression may be obtained from the interaction (Feynman) 
diagrams (Figure 1), which we now interpret as collision diagrams. (We refer to 
the interaction diagrams as Feynman diagrams because of the general analogy 
to the Feynman diagrams and interaction rules of quantum field theory. The 
details differ; for example, in our case there is no vertical time orientation [cf. 
$chweber, 1961].) 
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Each vertex of a diagram represents the annihilation of two or more particles 
or antiparticles and the creation of a new particle •' or antiparticle -•'. The 
energy w' and momentum k of the new particle are determined by the conserva- 
tion laws. If w' and k' do not satisfy the energy-momentum (dispersion) relation 
w' = w•', we refer to the new component as a virtual particle (or virtual anti- 
particle). Virtual particles occur only as intermediate products within a diagram. 

Each vertex is associated with a propagator. The propagator of the vertex 
representing the annihilation of l particles and m antiparticles and the creation 
of a particle (antiparticle) • •' is given by 

w •'''•,--•,+•'''--•,+m;•' (3.2) 

The last vertex is an exception. In this case the propagator is 

P = (1 • m • 1) •'•""'-"•'"'-"•-' (:].3) •kx ß ß .k l--k l+x .... k l+m--k 

The produc• of sll propsgs½ors of s disgrsm yields ½he disgrsm amplit•de A•. 
The general expression for ½he collision transfer coe•cien½ is ½hen 

•,...•_•+...._•+•_• = •(p + q)l 2 •+• ]•, ... 

ß IZ A. + ... + - .... - k) 

ß + ... + - .... - 

where the sum is t•ken over all diagrams with given initial •nd final components. 
Equation 3.4 is v•lid for irreducible processes in which •11 internM com- 

ponents of • diagram •re virtual. Processes containing real internal components 
c•n be neglected as compared with the two lower-order processes obtained by 
splitting the interaction diagram •t the re•l component. 

4. If we write the process •, ß ß ß , r•, p•+•, ß ß ß p•+• • • •n interaction equation 

then •11 processes obtained by rewriting the equation with •n •rbitr•ry positive 
term on the right-hand side have the s•me transfer coe•cient (principle of detailed 
bMance). This is not an independent rule but follows from equation 3.4 and the 
symmetry of the coupling coe•cients. 

We shall denote the process set associated with a given transfer coe•cient by the 
symmetrical symbol (•, r:, ... •, p•+•, .-- p•+•, p). (The terms in the transfer 
integrals (2.5) •re •rr•nged according to process sets.) 

5. The transfer expressions •re v•lid for processes containing degenerate 
modes of zero frequency, with the following restrictions: (a) the processes involve 
not more th•n one zero-frequency component •nd (b) components belonging to 
d•erent zero-frequency modes are statistically orthogonal. Condition (b) can 
normally be satisfied by suitable choice of representation. 

The •bove rules determine the form of the transfer integrals for •11 irre- 
ducible scattering processes. Apart from su••rizing the transfer expressions, 
the rules •re useful for estim•tMg net scattering effects from the energy and 
momentum bMance of discrete processes (section 6). 
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Although •he particle picture is s•ric•ly an abstraction, i• is convenien• •o 
in•erpre• •he particles in a loose sense as sinusoidal wave •rains of finite ex•en•. 
The ra•io of momentum •o energy for any wave •rain is k/•, and so •he wave 
•rains can be normalized in accordance wi•h •he particle relations •o have mo- 
mentum •k and energy •, where • is a (small) constant. A 'missing' an•ipar•icle 
may be interpreted in •he same way as a particle. A homogeneous wave field 
can •hen be regarded as a spa•ially uniform ensemble of a large number of wave 
•rains. 

The in•erpreCa•ion provides a heuristic jus6fica6on for •he use of •he Gaus- 
sian hypothesis in deriving •he •ransfer expressions. The field is Gaussian if •he 
wave •rains are s•a•is•ically independent. The energy •ransfer is •he ne• resul• of 
continuous interactions between sets of wave trains that have intersecting propa- 
gation paths and satisfy the resonance interaction conditions. The coupling during 
the limited period of interaction normally results in a weak statistical dependence 
between the components of a given set. After interacting, however, the com- 
ponents propagate into different regions of space and there interact with different 
wave trains, which may again be assumed to be statistically independent, and so 
forth. Hence the situation is essentially the same as for a low-density ensemble of 

ß 

interacting particles, for which the Boltzmann equation is also derived heuristically 
on the assumption of statistical independence of interacting particles. 

The argument breaks down if the interacting components propagate in the 
same direction and at the same speed. This is the case if the components belong 
to a single nondispersive mode. The resonance conditions for quadratic inter- 
actions can then be satisfied only by components traveling in the same direction, 
and all components propagate with the same velocity. The theory is not applicable 
to this case, as was pointed out in the previous section. 

Similarly, stationary wave trains of zero frequency cannot be assumed to be 
statistically independent, as they do not mix. But stationary and nonstationary 
components remain independent. In this case the transfer expressions remain 
valid under the restriction of rule 5. 

The zero-frequency modes then need not be Gaussian. This has a useful 
application: the scattering formulas for finite discrete disturbances can be derived 
from the homogeneous case by considering a field that is a random superposition 
of widely spaced, discrete disturbances. 

4. GENERAL PROPERTIES OF THE TRANSFER EQUATIONS 

Invariants. An immediate consequence of the particle interpretation is 
that a given process conserves not only energy and momentum but also the quan- 
tities 

q• = m•N•- m•N• (4.1) 

where N• = f n•(k) dk and m• is the net change in the number of particles • due 
to a discrete process (antiparticles are counted negatively). The invariance holds 
both for individual processes and for process sets. If m• = 0, N• itself is invariant. 
The invariancc properties can be helpful in estimating net interaction effects 
[cf. Hasselmann, 1963b]. 

Stationary solutions. Distributions for which the intogrands of the transfer 



14 K. HASSELMANN 

integrals vanish identically remain constant. The distributions are of the general 
form 

n•(k) = (aw q- b.k) -• (4.3) 

where a and b are constants. The same constants apply for all modes. 
The stationary solutions (4.3) were first given by Peierls [1929] for the case 

of three-component interactions in solid-state lattices. If the processes leave the 
net number of particles of each mode unchanged, the solution is of the more 
general form 

n•: (ao• q- b.k q- c) -• (4.3') 

(for example, four-component gravity wave interactions [Hasselmann, 1963a]). 
For the number density (4.3) to remain positive, all phase velocities must 

remain greater than Ibl/a (assuming a > 0 and • = •(lkl)). Thus, if the phase 
velocity of any mode approaches zero (e.g., internal waves or surface gravity 
waves without capillary forces), the only feasible distributions are the equi-energy 
distributions n = (a•) -•. (In the case of solid-state lattices, b = 0 follows from 
the finite folding wave number of the periodic lattice [Peierls, 1929].) 

Irre•ersibility. The distributions (4.3), or (4.3'), are the only stationary 
solutions of the transfer equations; all other distributions approach these ir- 
reversibly. 

Consider the quantity 

f n•(k) $H = -- • lnn[(k ) dk (4.4) 
o (k) is the distribution at time t = to. •H corresponds to an entropy differ- where n, 

ence. The entropy yln n,& itself is infinite, as expected for a system with an 
infinite number of degrees of freedom. 

The rate of change of •H is governed by equation 2.5. After suitable permu- 
tation of the integration variables we find 

d ff { [•11] a dt •H = • ß ß ß dr 1 &a dka nlnana • .... ..... >o 3 •k•k • , , • a- • n2 

q- • ''' dkl dk. dka dk• 

aq, .... _•_•, 1 1 1 
n2 ns 

n3 

4 

For most dispersion relations the distribution (4.3) yields infinite energies 
at high frequencies. Hence the general trend of nonlinear scattering processes is 
to transfer energy toward higher frequencies. 

Processes involving zero-frequency components z require more careful con- 
sideration, since the number density n,(k) is infinite. The distribution (4.3) re- 

It follows that d/dt/•H > 0 unless n•(k) is of the form (4.3). 

]2} I q- -" (4.5) 
n4 
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mains valid for the finite-frequency components •, provided that the process 
contains at least three nondegenerate components. For quadratic processes of 
the form (•z•2) the energy distributions approach equidistributions at any fixed 
frequency, but there is no energy transfer between different frequencies. 

5. THE OCEANIC WAVE GUIDE 

The Linear System 

Consider a stratified fluid of constant depth h over a horizontally layered 
elastic medium. In the linear approximation the motions are composed of the 
following 'normal modes' [Eckardt, 1960; Ewing et al., 1957]: 

1. Surface gravity waves, g. 
2. Internal gravity waves, i. 
3. Horizontal flows (turbulence), t. 
4. Seismic waves, consisting of trapped 'organ pipe' modes s, trapped Love 

modes a, leaking'organ pipe' modes s', and leaking Love modes a'. 
5. Physical inhomogeneities, b. 

Horizontal flows t and physical inhomogeneities b represent degenerate modes 
of zero frequency. 

The dispersion curves are shown schematically in Figure 2. The phase ve- 
locities satisfy the order of magnitude relations 

Ct, Cb << Ci • Cg • Ca, Cs, Ca,, Cs, 

Let •.(r, rs) be the Lagrangian displacement of a particle (r, rs), where (r, rs) 
is the undisturbed equilibrium position of the particle. The eigenfunctions • and 
displacements are related as follows (eigenfunctions are normalized in accordance 
with equation 1.3): 

1. Surface gravity waves. 

• cosh k(x• q- h) (5.2) q•k -- 
(pg)•/%• cosh kh 

o• = (gk tanh kh) •/" (5.3) 

iki .k .r (5.4) 

•3 • g ik or •ke (5.5) 

where •' = O•/Ox3, p = fluid density, g = gravitational acceleration. The weak 
influence of density stratification and compressibility has been neglected. 

2. Internal gravity waves. The eigenfunctions and frequencies are solutions 
of the eigenvalue equations 

o?(p•')' q- p(N •-•)k• = 0 for -h <r3 <0 (5.6) 
gk•,•--•v' = 0 for rs = 0 (5.7) 

v=0 for ra=-h (5.8) 
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b,t 

Fig. 2. Schematic dispersion curves of oceanic wave guide modes. b _- 
'bottom' wave, t -- horizontal flow (turbulence), i _-- internal gravity wave, 
g • surface gravity wave, s _-- trapped 'organ pipe' mode, s' m leaking 
organ pipe mode. Love modes are not shown [cf. Eckardt, 1960; Ewing 

et al., 1957]. 

where N = (-g p'/p)•/" is the V/•is/d/• frequency. The normalization condition is 

0 2 p•J,•--o -- p'• drs - •o (5.9) 
• g 

The displacements are 

ik• ß 
•i = • (•) 'e•k" 

i •k .r 

(• = •, 2) 

(5.10) 

Surface gravity waves are particular solutions of (5.6)-(5.8), but will not be 
classified as internal waves. 

3. Horizontal flows. The eigenfunc•ions are members of a complete se• in 
-h < rs < O, which is normalized such that 

•k,r3)•-k(r3) dr3 = •,•, (5.11) 
h 

The displacements are 

-•/2 • ,•.,• 2) (5.12) • = p .•,•e (•= 1, 
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(5.13) 

where n is the unit horizontal vector perpendicular to k. 
The Hamiltonian is 

t t 

H' • PkP-k 
which corresponds to the Hamiltonian (1.3) for a set of zero-frequency modes. 
The solutions of •he Hamil•onian equations are 

constant qL = constant (t- to) (5.14) 

Transformation to the coordinates a• yields the Hamiltonian (1.8) with 
•he solutions 

t --t 

ak = ak = constant 
t t t --t • 

The covariance matrix R t = (aka_k} for an arbitrary function set satisfying 
(5.11) is in general not diagonal. A diagonal matrix in accordance wi•h rule 5(b), 
section 3, can be obtained by •ransforming •o a new function set 

,, (5.15) 

where S•" is a unitary matrix 
tt'' t't'' 

•2] Sk S_k = •,,, 

The horizontal flow represents a quasi-stationary current system, or hori- 
zontal turbulence. An attempt to describe these flows in the linear approximation 
appears at first sight unusual. The linear description is valid only for times tha• 
are small in comparison with the characteristic 'eddy' time T = L/U, where L 
is the horizontal length scale and U a characteristic velocity of the flow. This is 
of little value if we wish to determine the evolution of the flow itself. But we 

shall be concerned here only with the interaction between the flow and other 
wave fields (the self-interaction of the flow is excluded by rule 5). In this case the 
linear description as a 'frozen' Lagrangian flow is valid provided that the charac- 
teristic eddy time is large in comparison with the periods of the interacting wave 
fields. 

The nonlinear interaction between the shear flow and the wave field can be 

treated as a perturbation if the time scale of the energy transfer is large in com- 
parison with the wave periods. This is the same condition as in wave-wave coupling. 
If the condition is not satisfied, the wave field cannot be meaningfully distin- 
guished from the horizontal flow. This can be the case for internal waves. If the 
density stratification is strong, the nonlinear coupling is weak and the fluid motion 
is separable into internal (and surface) gravity waves plus a residual horizontal 
flow. If the stratification is weak, the coupling is not a small perturbation; it is 
then more appropriate to speak of a three-dimensional flow modified by a density 
gradient. 

4. Seismic waves. The eigenfunctions of the seismic modes are more compli- 
cated and will not be given here. We refer to Ewing et al. [1957]. 
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5. Physical inhomogeneities. The interpretation of physical inhomogenei- 
ties as normal modes of zero frequency will be deferred to the discussion of the 
nonlinear system. 

The Nonlinear System 

The normal mode solutions satisfy the equations of state only to first order. 
The total particle displacement in the linear approximation is 

- qk• •k•k)e (5.16) 
k,y 

where L: is a linear oberator acting on the •th eigenfunction. The equations of 
state can be satisfied to higher order by expanding the displacements in a per- 
turbation series 

where Q•2 •', ... are quadratic and higher-order operators. The Lagrangian L 
of the coupled system is obtained as a function of q•, • by evaluating the total 
potential and kinetic energy of the system for the displacement field (5.17). From 
L the Hamiltonian H(.-. a• -..) is obtained by the transformations described 
in section 1. 

The evaluation of the coupling coefficients is rather tedious. Coupling co- 
efficients for fourth-order gravity wave interactions and third-order interactions 
between gravity waves and seismic waves are given in Hasselmann [1962] and 
[1963c], respectively. Additional coupling coefficients for third-order interactions 
between surface gravity waves, internal gravity waves, horizontal flows, and 
bottom irregularities are given in the appendix. 

Interactions due to physical inhomogeneities may be treated in the same way 
as nonlinear wave interactions. The equations of state consist of the stress-strain 
relations (for surface and internal gravity waves, these may be replaced by the 
incompressibility condition), to which we add the boundary conditions at the 
free surface and the fluid-solid interface. Physical inhomogeneities represent 
perturbations in these relations. For example, assume that the fluid-solid interface 
contains random perturbations •x3 relative to the mean interface x3 = -h. Let 

$x• = •'• a•:e ,1•.: (5.18) 
k 

where $x• is a homogeneous field with spectrum 

F• • • • = •(al•a_l•) (5.19) 

We introduce the negative index quantities 
b 

a• b = ak F• b = F• .20) 

in formal analogy with the relations for a zero-frequency mode. Then 

<•x]) = • (F• + F• •) (5.21) 
k 

The total energy H is a function of the normal coordinates a•, which are 
solutions of the equations of motion (1.7), and the external parameters a•, which 
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are prescribed constants. We can remove the distinction between internal and 
external variables by associating the external parameters with normal modes of 

ß = = o, zero frequency. For co2 = 0 the equations of motion yield ak 
so that a• is indeed constant. 

A few complications arise from the fact that for zero-frequency modes the 
positive and negative index components are identical. The HamiltonJan originally 

b b 

contains only positive index components ak; the representation in terms of ak 
b 

and a• b is not unique. The components a• and a• b are, furthermore, not sta- 
tistically independent, as in the case of finite-frequency modes. The correct transfer 
expressions are obtained by using only positive index terms in the Hamiltonian. 
In applying the interaction rules of section 3, it is then assumed that the same 
interaction coefficient applies for both positive and negative indices. 

6. SCATTERING IN THE OCEANIC WAVE GUIDE 

We shall denote wave components by letters g, i, t, ... corresponding to 
the mode indices introduced in the previous section. Antiwave components will 
be denoted by the symbols (g, •, •, --.). Different modes of the same mode type 
will be distinguished by indices, for example il, is, i3, .-- . 

(gggg) interactions. The simplest scattering processes involving only surface 
waves are the quadratic processes (ggg). It has been shown by Phillips [1960] 
that these processes cannot satisfy the resonance conditions (1.19). The lowest- 
order interactions that conserve energy and momentum are the set (ggg•). The 
Feynman diagrams for these interactions are shown in Figure 3 (note that all 
processes belonging to (g•gg) are of the same form g•g --• g). Coupling coefficients 
and some computed transfer rates for typical ocean wave spectra are given in 
Hasselmann [1962, 1963b]. For most spectra there is a strong transfer from inter- 
mediate frequencies to higher frequencies and a weak transfer from intermediate 

Fig. 3. Feynman diagrams of (ggg•) interactions. 
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frequencies to lower frequencies. The scattering computations are in good qualita- 
tive agreement with the observed 'red shift' of wave spectra shortly to lee of 
generating regions [Snodgrass et al., 1965]. 

The 'sur[ beat' interaction g•b --• g. If one of the components g in the diagrams 
of Figure 3 is replaced by a bottom wave component b, we obtain the process 
g•b -• g. This is the 'surf beat' interaction, the generation of low-frequency gravity 
waves by difference interactions between gravity waves over a shoaling bottom 
[Munk, 1949; Tucker, 1950; Longuet-Higgins and Stewart, 1962]. The dominant 
interaction is given by the diagram in Figure 4. The quadratic interaction among 

Fig. 4. The 'surf beat' interaction g•jb -• g. 

g, •, and the virtual component g' has been verified experimentally by bispectral 
analysis methods [Hasselmann et al., 1963]. The complete process has been com- 
puted by Gallagher [1965], who found good agreement with observations by Snod- 
grass et al. [1965]. (Gallagher used as model a constant-slope bottom. For this 
case the theory needs to be modified, since the bottom variations cannot be re- 
garded as perturbations relative to a bottom of constant depth.) 

(g•), (ii•), and (i•2•) interactions. Surface and internal gravity waves can 
interact in conservative three-component processes. There are four conceivable 
process sets, of which only one (gg•) is incompatible with the conservation laws. 
The Feynamn diagrams (Figure 5) are determined by the high energy-to-mo- 
mentum ratio (phase velocity) of surface waves as compared with internal waves. 

To satisfy both energy and momentum conservation, the components g and • 
in a (g•) process must have almost equal and opposite energies but different 
propagation directions (diagrams a, b). It follows that very little energy is trans- 
fered to the i component, the main effect being to change the angular distribution 
of the surface gravity waves. (The process can nonetheless be significant for internal 
waves, since internal waves generally have less energy than surface waves.) For 
the same reason, the i components of an (ii•) process must have almost equal and 
opposite momenta (diagrams c, d). In this case the total momentum of the in- 
ternal wave field is almost invariant, but there is a finite energy transfer between 
surface and internal waves. (ixk•) processes require two different internal mode 
branches. The components i•, • are almost equal and parallel (diagrams e, •). 

The process g• -• i (diagram a) is the only process that can produce internal 
waves in the absence of an initial internal wave field. If internal waves are present, 
the processes d and [ are basically more efficient for internal wave generation. 
On the other hand, the low-frequency g component of these interactions lies in 



WAVE.WAVE SCATTERING PROCESSES 21 

_ i 
g 

(a) (b (c) 

....g 

i i• 2 

g g 

(d) (e) 

Fig. 5. 

(f) 
Feynman diagrams of interactions between surface and 

internal gravity waves. 

• very low density region of the spectrum, so that the relative importance of the 
interactions is difficult to estimate. 

Interactions between discrete surface waves and internal waves have been 

studied by Ball [1964] and Thorpe [1966]. The statistical case is being investigated 
by Kenyon [1966]. 

(imin•z) interactions. In analogy to (g•gO) processes we expect the interactions 
(imi,•Z) tO produce an energy transfer in the direction of smaller scales. Since the 
dispersion curves have negative curvature, three-component processes are possible 
only if at least two different modes are involved [Hasselmann, 1962]. Computations 
for several mode combinations have been made by Kenyon [1966]. 

(gt•), (gt•), and (it•) interactions. Since the energy of turbulent components 
is zero, the net effect of a t component in a three-component interaction is to scatter 
energy between two wave components that have equal frequencies but 'different 
propagation directions. The turbulent flow remains unchanged. 

Processes containing an incoming t component are infinitely more probable 
than processes in which t components are created. This follows from the infinite 
number density of zero-frequency components (equation 2.4). The infinite number 
densities are balanced by zero transfer coefficients in the transfer integrals; the 
transfer expressions remain finite, but the contributions from processes terminating 
in a t component vanish. 
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(a) 
Fig. 0. 

(b) (c) 
Feynman diagrams of (gt•) interactions. The process i# -• t (diagram c), 

has zero probability. 

Feynman diagrams for the (gti) interactions are shown in Figure 6. The 
•i -• t process (diagram c) has zero probability. 

Phillips [1959] has estimated scattering between surface gravity waves and 
turbulence. Interactions between surface gravity waves and discrete currents 
have been considered by Longuet-Higgins and Stewart [1961]. 

(gb•), (gb•), and (ibm) interactions. These are similar to interactions involving 
t components. Since both t and b components have zero energy, they can be inter- 
changed without affecting the Feynman diagrams. The gb --• i process has been 
suggested by Cox and Sandstrom [1962] as a possible source of internal waves. 

The gg --• s and gb --• s interactions. The gg --• s interaction is analogous 
to the process ii --• g (compare Figures 7a and 5c). In order to create a high phase 
velocity component s, the incoming g components must have almost equal and 
opposite momenta. The energies o• are then also approximately equal, so that 
the energy of the resultant s component is 20•. The particle interpretation ex- 
plains the main features of Longuet-Higgins' [1950] theory of the origin of micro- 
seisms' the seismic waves are generated by standing gravity waves, their frequency 
is twice the gravity wave frequency, and the generation is isotropic. 

By replacing one of •he g components by a b component we obtain the process 
gb --• s (Figure 7b). This corresponds to Wiechert's [1904] theory that microseisms 
are generated by the action of ocean waves in shallow water along coasts. Since 

g 

g 

g 

b 

(a) (b) 
Fza. 7. Generation of microseisms through the 
interactions gg .--) s (Longuet-Itiggins) and 

gb ---) s (Wiechert). 
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• = 0, •he interaction yields seismic waves of •he same frequency as •he gravity 
w•ves. 

Computations for both processes were found to be in good agreement with 
observations by Haubrich et al. [1963] [Hasselmann 1963c]. 

(sb•), (sb•'), and (sb•') interactions. Microseismic spectra of Love modes 
frequently show a correlation with the locM s-mode spectrm Since gravity waves 
cannot interact directly with Love modes, the simplest explanation is scattering 
from s modes into a modes via (sb•) interactions. Scattering into leaking modes 
occurs through the •teractions (sb•') and (sb•'). The energy loss is linear in the 
s-mode energy and can hence be described by an effective Q which is a property 
only of the medium. 

APPENDIX. COUPLING COEFFICIENTS 

A. Gravity wave coupling. The particle displacement for a fluid motion 
consisting only of surface and in•ernal gravity waves is 

• = Z q• •• (•) 'e•'• (• = 1, 2) (A.I) 
= q•e (A.2) 

where • is the eigenfunction of a gravity wave mode, equations 5.6-5.10. We shall 
not distinguish explicitly between surface and internal modes (h = g or i). 

Neglecting compressibility effects, the displacements satisfy the continuity 
equation 

[Ox•/Or• = 1 (A.3) 

where x• = r• + •. Ordering equation A.3 in powers of •, we obtain 

where (A•,) is the subdeterminant matrix of (0•/0r,). (Greek indices run from 
1 to3.) 

The displacements (A.1 and A.2) satisfy equation A.4 only to lowest order. 
To obtain exact solutions we expand the displacements in a series 

ik• ½eik.r = qk•qk•ik•k•e 

qk•qk•qk•vik•k•k•e + ß ' ' (A.5) 

•a = qk•ke + qk•qk,•k•k•e 

+ • k• k2 ka •k•k2ka i(k•+k2+ka)'r 

in which the coe•cients F:"., G'" are functions of r•. Without loss of generality 
we may assume 

x•x• k •F 

t' ikxk2k3 • 3 
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Substituting equations A.5 •nd A.6 in Equation A.4 we obtain the conditions 

ß •, , • •x, • (•,)'(1 + k•k• ] 

- •,(•,)"-,•- •,(•,)" (•.s) k• k• 

* 3] k•kuk, 

= (•k•) (•k•) • + •k•k•k•) • • •e . o• 
indiees 

twX,X, / X, xtt (kl'ka q- 
•F •'• '• •(k, k• • k•'ks) 

(• (•)' • - • • 

_ (•;), • , • (•1.•)(•.•) - 
klk• 

with the boundary conditions 

and 

(A .9) 

(A.10) 

•,•,•., = 0 for ra = -h (A.11) 

Equations A.8, A.9, ... do not determine the coefficients F":, G'" uniquely. 
An arbitrary solution of the homogeneous equations may be superimposed at 
each order. However, the homogeneous solutions satNfy the linear continuity 
equation O•/Or• = 0 and may hence be included in the definition of the linear 
field. This is equiwlent to a nonlinear transformation 

= •k,k,kqk,qk, + ''' (A.12) 

to new coordinates q•. (The same applies to the generalization of expressions A.7. 
In this case the nonlinear transformation would involve shear flow components.) 
A nonlinear •ransformation of the form (A.12) yields new nonlinear coupling co- 
e•cients. It is readily verified, however, that the coupling coe•cients remain 
invariant for wave-number combinations •hat satisfy the resonance conditions. 
Hence •he scattering expressions are independent of •he choice of solution of 
equations A.8-A.11. 

The kinetic energy of the field is 

17 = fi drap 
.X 

, k•+ku+ka=O 
X• ,X• 
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where 

fh dra 
denotes the mean value of the integral 

f: dr• h 

with respect •o r. The form of the quadratic term follows from equations 5.6-5.8 
and the normalization condition (5.9). 

The potential energy is 

U = g dr•p• 
h 

= g q•q• dr•pG• • g q•q•q•. dr•pG•• . 
k•+ka=0 h kx+ka+ks=0 h 

The quadratic term has the expected normal form (equations A.8, 5.6-5.9) 

The cubic term is determined by equation A.9. For kx + k• + k• = 0 the 
expression simplifies, 

• - • ks- k•ka + 1 -- Gkxk -- Fk•k 
. 

petra. 

The Lagrangian L = V - U is thus of the form 

L = L• + • {A •' • •' •' ,•x,x• • .•, .• 
kx+ku+ka=0 

with coupling coe•cients 

'z•' k xk ak s 3 c . h 
perre. 

- - 
o 

h 

F•?• and , ,•, are arbitrary solutions of equation A.8 and the boundary condition 
(A.10), for example 

k•k' -- 2(k• + k=) (•k)'(•)' 1 -- -i'• ' + •k•t•k,½ 1 + kz ] 
•k, 1 + (A.18) 

x•x, _ x x• x, , ,.x,x (A.19) 
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The cubic coupling coefficient of the Hamiltonian (1.10) is obtained by 
transforming to the coordinates a• x. We obtain 

r•X•x•x•, i { A••' B•: •' B•' • ,-- 1 2ks 
•k,k,k, 6 •2 3 -- -- -- (A.20) •1•2•3 •1 •2 

with • = •,, • = I•1, • • 0. 

The coupling coe•cients can be determined by quadrature if the eigen- 
functions are known. Expressions for specific models are given by Ball [1964], 
Thorpe [1966], and Kenyon [1966]. Coupling coe•cients and transfer rates for 
fourth-order (g•g•) interactions between surface gravity waves are given in Hassel- 
mann [1962]. 

B. Interactions between gravity waves and 'bottom' waves. Let the fluid 
bottom be x• = -h + •x•, where 

•X 3 • b ik 'x = ake (5.18) 
k 

The boundary condition for the fluid displacement at the bottom is 

•x•(r) + •(r,-a + •x•(r)): •x•(r + •(r, -a + •x•(r))) (B.•) 

Expanding (B.1) about r and r• = -h, we obtain 

• + •xs•] O•xs 1 OaSxs • ..... 0 (B.2) - Ox• • 20x• 
Consider a linear flow that consists only of gravity waves, equations A.4, A.5. 

To obtain a displacement field satisfying the exact continuity equation A.4 and 
the boundary condition (B.2) we expand as before 

= • • (• + •a•)••e • E q• ••• (•) 'e•k + i E q•ak• 1• 
qk• qk•(kl• + kai)Fk•k•e 

qk,q•,a•,(kli + k•i + k•i)F•k •e ak 

+ ... (g.3) 

q•e + • q• = •ak•k• •e 

Substituting in (A.4) and (B.2), we find 

•)'- (kl + •a: ,. • = 0 (B.5) 

with the boundary condition 

Xb ( kl Gk•k• -- (e•)' 1 +--•--] for ra = --h (B.6) 
and for kl • k2 • k3 • 0 

eX•X•b M •Xab Xa Xxb • + (• ) } + co,rant (B.7) • ek•ka 
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The constant is determined by the boundary condition 

- • for r• = -h (B.8) 

We may again choose arbitrary solutions of (B.5) and (B.6), for example 

= 0 

In analogy to equations A.13-A.17, we obtain a Lagrangian 
Akxkab Xx ka b kxkab .ka b L L• + • {•• q•q•a• +B•• • : • • • qk•ak• 

where 

Ak,k2k3 -- arapg•k,k2k3 (B.9) h 

0 

Bk•k,k -- ß 
h 

The corresponding coupling coefficient of the HamiltonJan (1.10) is •hen 

fA*•*•* } •k•k ka(: •kakak •kak•k ) • • •1•2 
xi where wi = wki, •i = [Xi , and X• • 0, as before. 

The transformation from the variables q}, •} to the coordinates a}, a[ x yields 
a coupling coefficient D x•x•* k•k,k. which is defined only for positive b. To obtain the 
correct transfer rates from the interaction rules of section 3, equation B.11 must 
be taken to apply for both positive and negative b. 

The total energy transfer due to (XbX) scat[ering processes may then be 
written in the form 

OFx(k) f ,) &, at - x,>•o Kxx,(k, k') lFx,(k') - Fx(k)}a(w - w (B.12) 
where the kernel 

Kxx, = 32•r 3wDX•'?•,x,_kl2 Fb(k") k" = k - k' (b > 0) (B,13) 

C. Interactions between surface gravity waves and horizontal shear flows. I• 
is inconvenient •o investigate higher-order secular interactions between gravity 
waves and horizontal flows in a Lagrangian coordinate system, since the first- 
order Lagrangian amplitudes for •he horizontal flow appear formally as secular 
terms. We therefore use Eulerian coordinates. Later we shall construct a Hamil- 

tonian •hat yields the secular •erms of •he Eulerian perturbation equation. (This 
is feasible, although the transformation from Lagrangian to Eulerian coordinates 
is noncanonical.) The analysis is thus again reduced •o the general theory outlined 
in sections 1-3. 
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and take p = constant. The equations of motion, continuity equation, and bound- 
ary conditions are then 

Ou . Ou . I 
__ 

Ot + u• Ox• p Ox. g/i.a ( h < xa < O) (C.1) 
Ou. _ 0 (-h < x• < 0) (C.2) 

o•. o•. 
ot u• + u• •x• = o (x• = 

go = 0 (x• --' •') 

u• =0 (x• = - h) 

where g is the surface elevation. 
Expanding equations C.3 and C.4 about xa = O, we have 

.3) 

(c .4) 

(c .5) 

0•' Ou____• 0•' 
ot u• - Ox• •' + u• •x• + .... 0 (x• = o) (C .3') 

.... o 
From (C.1) and (C.5) we obtain the subsidiary condition 

(x• = 0) (C .4') 

O•o/Oxa = -- g (xa = - h) (C.6) 

The fluid motion may be represented as a superposition of an irrotational 
'wave' motion u• and a residual rotational flow ur. We define u• as the irrotational 
flow satisfying the boundary conditions u•(0) - u(0), u•(-h) = 0. For a homo- 
geneous field the boundary conditions determine u• uniquely except for an arbi- 
trary additive solution u = (a•, a0, with a• = constant. We assume a i = O. 

The general solutions of the linearized equations are: 

(C .7) 

(c.s) 

(C .9) 

(C.10) 

where 

wave motion 

and 

q• = A• exp (- i.,• t) + B• exp (i.,• t) (A•, B• constant) 

(o.,• = (gk tanh kh) •/') 

(C.11) 

(C.12) 
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shear flow 

u• 

where p• and p• are constant, • and • are complete sets of functions in 
-h < xa < 0, and n is the unit horizontal vector perpendicular to k. 

The functions • satisfy the boundary conditions •(0) = • (-h) = 0. 
They correspond to internal waves in the case of a stratified fluid. For simplicity 
we take p• = 0, so that •he rotational flow is purely horizontal. The functions • 
are •ssumed normalized in accordance with equation 5.11. 

The time dependence of the variables q•, p•, and p• corresponds •o the solu- 
tions of the free HamiltonJan 

H• = • • + 2 q• + 2 
In the nonlinear case the expressions C.7-C.9 and C.13-C.15 for the velocity 

field and the surface displacement remain valid, but the pressure field and hence 
the time dependence of the variables q•, p•, and p• are modified. 

The pressure field may be expressed as the superposition of a hydrostatic 
field and two fields • and 

where 

and 

Let 

Then 

• -- --pgx3 q- •)a + •b 

2 •a = o (-a < x• <o) 

a(o) = 

O •)a/ OX3 (-- h) --- 0 

V '• •b = -- p Ox • cqx• (-h < x3 < O) 

= o 

= o 

•)(0) = • •k(t)e 'k'x 
k 

p,, = •'• •k cosh k(xs q- h) k cosh kh 
ik ox 

e 

(C.17) 

(C.18) 

(C.19) 

(c .20) 

(C.21) 
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Similarly, if 

k 

02U 
-- POx,, Ox• = • Q•,[x•, t)e •"x 

sinh [k(xs - x])] 
k dx• + cosh k(x, + h) Qk(x•) 

cosh kh h 

(C .22) 

sinh kxg k dx• 
(C .23) 

The rate of change of the coordinates q• and p• is determined by equation 
C.1 (with a = 3, x, = 0) and the boundary condition (C.3'). Eliminating g2 with 
the aid of equations C.4', C.17-C.23, we obtain 

pSk = --(co•)'q• + • A go' ,p5 •,• • •, + .-. (C.24) 
k•+k,:-k 

= ••,q•p_•. (C.25) 
k•+k•:-k 

where we have written only the cross terms relevant for (gt•) interactions. 
The coefficients are 

A• •, i(k.?) {co ' g(k•- 2k.kl) f: cosh • k(x, + h) - + 
cok co• h cosh kh axe} (c.26) 

kk•k. = --i--7 (k.,•)•(O) (C.27) 
(.o k 

Introducing the coordinates a• and a• • in accordance with the transfor- 
mation (1.Sa), (1.Sb) and writing 

1 

(equation 1.5a for a zero-frequency mode), we obtain 

(c.28) 

i 
"•' (a• -- a•)a • -•,•,1•,, • •, (g > O) 

¾2 

(C.29) 

For the scattering calculations only the resonant values of the coefficients 
A •' and •, ,_,•, are of interest. In the present case the resonant condition is 
co• = co• or, equivalently, k• = k. For these values the coefficients satisfy the 
symmetry relations 

Aggt kk•k= -- -A aa' • -k•-kk• (c.3o) 

Bg•' - "•' (C.31) kk•k• -- --L•-k•-kk• 

It follows from (C.30) and (C.31) that the secular s3lutions of (C.28) and 
(C.29) are identical with the secular solutions of the equations 

c• = --• OH/Oa_-• (g • O) 
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where 

k•+ke+ka=O 

with the symmetrical coefficient 

Dgxg• t •'•tgxg2 • • kakak• -- •k•k•ka) 

(C .32) 

f K(k, k'){F•(k') - F•kk)} •(•0 - •0') dk' (C.34) 

K = 32•r • z Ft(k") (C.35) 
t>o 

(k" = k - k', > 0). 

Computations of (C.34) for suitable horizontal flow models would be of 
interest, but they have not yet been made. Experimentally, (gt,•) interactions are 
difficult to distinguish from (g,•g,•) interactions, since both produce a beam broaden- 
ing of ocean swell [Snodgrass et al., 1965]. 
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