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Nonlinear interactions treated by the methods of theoretical
physics (with application to the generation of waves by wind)

By K. HASSELMANN

Institute of Geophysics and Planetary Physics, University of California,
San Diego

The ‘Feynman’ diagram method for analysing wave—wave interactions in random wave
fields is generalized to include non-conservative interactions between wave fields and
external fields. The particle interpretation is no longer applicable, but the transfer expres-
sions can still be conveniently summarized in terms of ‘transfer’ diagrams, which corre-
spond to collision diagrams in the particle picture. The method is applied to interactions
between gravity waves and the turbulent atmospheric boundary layer. The complete
set of lowest order transfer diagrams contains the Phillips and Miles mechanisms of wave
generation and an additional set of wave-turbulence interactions, which have not been
considered previously.

The closure hypothesis invoked in the derivation of the transfer expressions is discussed
briefly in appendix A. It is pointed out that Benney & Saffman’s recent derivation of
the transfer expressions without the usual closure hypothesis contradicts the irreversibility
of the transfer expressions and is valid only initially. The relevant statistical properties
depend on the distinction between coarse grained and fine grained distributions. This is
illustrated in appendix B by a discussion of the Gaussian property of linear, random wave
fields.

1. INTERNAL AND EXTERNAL INTERACTIONS OF A WAVE SYSTEM

We shall consider random wave fields whose statistical properties vary slowly with
time and position. The processes which effect these variations can then be treated as
small perturbations about the free field steady state.

An example of such a system is the set of surface gravity waves g, internal gravity
waves ¢ and seismic waves sin a nonrotating stratified ocean of finite depth (figure 1).
The complete motion of the ocean consists of the wave motions and a residual
horizontal shear flow A.

We shall consider also the interaction between the ocean and the atmosphere,
which we assume to consist of a mean flow m and a fluctuating turbulent flow f.
The mean flow is assumed to be independent of time ¢ and the horizontal coordinate
vector X = (x,,%,). Similarly, the turbulent flow is regarded as stationary and
homogeneous with respect to x.

As additional fields we may include physical inhomogeneities, such as a bottom
irregularity b. These fields will also be assumed to be random and homogeneous
with respect to x.

We denote the set of wave fields, g, 7, s, as the wave system. Interactions which
affect the wave system may then be divided into two classes: internal (wave—
wave) interactions, which involve wave components only, and external interactions,
which involve at least one of the nonwave fields 4, m, f, or b.1 We shall assume that
the energy and momentum of the wave system is conserved by the internal inter-

+ The fields # and b can also beregarded as degenerate wave fields of zero frequency (Hassel-
mann 1966a).

[ 77 ]



78 K. Hasselmann (Discussion Meeting)

actions, but not by the external interactions. Nonconservative interactions between
wave components will be regarded formally as external interactions.
Wave-waveinteractions were first treated in detail in Peierls’s (1929) fundamental
paper on the heat conduction in solids. They have since been studied extensively
in solid state theory and in other fields of physics, particularly in quantum field
scattering theory. The theory has been applied to plasma wave interactions by
Litvak (1960). Scattering in geophysical fields has recently received interest
through the work of Phillips (1960), Hasselmann (1960, 1962), Benney (1962),
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Ficure 1. Wave fields and ‘ external’ fields of a stratified ocean of constant depth. Wave
system: g, surface gravity waves; 4, internal gravity waves; s, seismic waves. External fields:
m, mean boundary layer flow; f, turbulent fluctuations; A, horizontal shear flow; b, bottom
irregularity.

Longuet-Higgins (1962) and others. The application of concepts developed in solid
state and quantum field theory to geophysical scattering problems is described in
Hasselmann (1966a).

In this paper we shall be concerned primarily with the generalization of these
concepts to include external interactions. As an application of the generalized
theory we shall consider the interactions between surface gravity waves and the
atmospheric boundary layer. The complete set of lowest order interactions will be
shown to contain Miles’s (1957) and Phillips’s (1957) theories of wave generation,
and a further set of wave-turbulence interactions which have not been considered
previously, but which may conceivably be the principal source of wave energy.

2. EQUATIONS OF MOTION
(@) Internal interactions
We assume that the state of the wave system can be described by a set of coordi-
nates g which in the linear approximation represent the amplitudes of the normal
mode eigenfunctions ¢§(z) ek %, where z is the vertical coordinate and k the hori-
zontal wavenumber.
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Let the evolution of the wave system itself, excluding the external interactions,
be governed by a Lagrangian

L(gy, 4%) = Ly+Lg+ Ly + } 21)

where L, = kzv%(q.ﬁq'v—k_ (©F)? 929" )
is the Lagrangian of the linear system and Lg, L,, ... are homogeneous interaction
Lagrangians of third, fourth, ... orders. The Lagrangian L, represents a system of
uncoupled oscillators. It is determined uniquely (except for normalization factors)
by the invariance of the system under horizontal translations and reflexions. For
convenience of notation K is treated in (2-1) as a discrete variable, but we shall
consider later the limiting case of a continuous spectrum. The interaction Lagran-
gians describe the nonlinear coupling. Examples for a number of scattering processes
in the oceanic waveguide are given in Hasselmann (1966a).

The equations of motion can be rewritten in a more convenient form by intro-
ducing the Hamilton function

H=3pig—L, with pg=oLog

and then transforming from the canonical variables ¢}, p} to the normal variables

ay = Jz(Z’ x— 10k ), } (2:2)
e’ =72 Je(PL + 0L g).
The equations of motion then become
0
ay = —iwf— (¥20). (2-3)
k k aa_k <

Equation (2-3) is valid for both signs of the index v, if for negative indices we define
Wy’ = — .
The Hamiltonian then becomes
H=H,+H;+H,+...,
with H, = > }(agaz}) (2-4)
and forn > 3 H, = ZDptirat- agn, (2-5)

where Dyi--}» are constant, symmetrical interaction coefficients.
The reality of H yields the conditions

aZy = (ap)* (2-6)

and Dzgzin = (D)™ (2:7)
The homogeneity of the field yields the further condition

Diin =0 for ki+...+k, +0. (2-8)

The equations of motion (2:3) are given explicitly by
dy +ivgay = —3iwp T DZPz atagz — ... — (p+ 1) i0fZ DTRL"2 ag...opp. (2-9)
The linear solution of equation (2-9), without the interaction terms, is

14 = ALexp{—iw}t}, Aj}const. (2-10)
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(b) External interactions
Interactions with external fields can be readily included in the above formalism.

We assume that the external fields can be described by a set of variables bi(t),
where in analogy with the linear wave solution (2-10)

bi(t) = Biexp{—iwft}, B const. (2-11)

Here p represents a generalized index which may be either discrete, continuous or
a combination of both.

For example, if the external field is a homogeneous, random irregularity ¢H
of the ocean depth H, we may write

0H(x) = X Byexp{ik.x}, B const.,

so that u = const., wf = 0.
If the external field is a stationary, horizontally homogeneous turbulent velocity
field u,(X, 2,t), we may write

u; = X Uk, 0,2)exp {i(k. X+ wt)} (2-12)
k, 0
so that x = (4,2, w) and 0ff = —w.
The reality condition corresponding to equation (2-6) becomes
b = (B)%, (213)

where J is the conjugate index of u, for which
of = —of.
In the case of the turbulent field, for example,
#=(,2,0) and I=(:,z2, —0)

Let us assume now that the external interactions can be expanded, in the same
way as the internal interactions, in a power series. Then the equations of motion,
including both internal and external interactions, have the general form

¥ - ) 1Y — VPV % 1% 3 v - 14 g
dp+ivgay = — iy E D atagz — ... —i(p+ 1) 0} X D= b g o
co— 20y T E o — 2i0p N B b
1 v —Vr1... Vg [ e fl v Vg B y22 .
c—i(p+ 1) wiE E—kkl...kqu%i’;...k@,“ki-'-“kgbkgif---bk;?--' (2-14)

where E-: are external interaction coefficients. The coefficients satisfy the reality
and homogeneity conditions

V—V1...—Vqg Hgi1...7 . — V1 Vg Rg1..Bp ) K .
By e, = (Bogd et fr) (2-15)

and Bpgsatest o = 0 for ky+...+k, + 0, (2-16)

in analogy with equations (2-7) and (2-8). But in contrast with the internal inter-
action coefficients D-:, they are not associated with a Hamiltonian and are therefore
not symmetrical in all indices. This is the principal difference between internal and
external interactions.
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3. INTERACTION DIAGRAMS

We assume that the first-order solutions ;o and the external fields b are O(«),
with & < 1. The internal coupling coefficients D32 are assumed to be O(1), and
the external coupling coefficients £=jj1- kR ke to be O(f) or smaller, with £ < 1.

We can then construct a solutlon to equatlons (2:14) by expanding the wave
fields in a perturbation series

O = 10+t .o, (3-1)
where a3 = O(a®). Each perturbation term ,a} can be expanded further with re-
spect to f#, but we shall not do this explicitly.

The ordering with respect to the parameters « and £ applies to the ocean, but
is not the most general case. A more consistent procedure would be to use a multi-
parameter expansion in which each field and coupling coefficient is characterized
by a different parameter. This is cumbersome, however, and not really necessary,
since the implicit dependence on individual parameters can be readily recognized
throughout the analysis .

Substituting the expansion (3-1) in the equations of motion (2-14), collecting the
terms of nth order, and integrating, we obtain

t
na};:fg{...—i(p+1)w§ p) Bogiwe 'on

(na+...+ng=n+n—0q)
X ) R0 B0 () . Jexp { iR — )} AE.  (3:2)

kg+1
We have assumed that the linear solution (2-10) has been chosen to satisfy the
initial conditions a}(0) = 4} rigorously, so that ,a}(0) = 0 for » > 2. Equation
(3-2) can be evaluated for successive n, since the right-hand side contains only
perturbation terms of orders lower than 7.

It is convenient to express the structure of the perturbation solution (3-2) in a
more condensed form in terms of interaction diagrams.

We shall denote wave components af, with » > 0, and external field components
b§ with wf > 0, by directed arrows equal to k. The complex conjugate (‘anti-’) com-
ponents a”}; (v > 0) and b% , (0¥ > 0) are denoted by cross-stroked arrows equal to k.
Terms with positive frequency are thus associated with ‘components’, terms with
negative frequency with ‘anti-components’. The sign convention is chosen such
that in both cases the arrows point in the propagation direction of the waves.
External fields are distinguished from wave fields by a cross at the base of the arrows
(cf. figure 2).

The contribution

t
80t = —i(p+ 1>w;f0E—;ag ol G (E) .. 03 Bt ... b
x exp { —iwj(t—1t')} d¢’
of the general term of equation (3-2) to the perturbation amplitude ,a}, is represented
by p arrows , ail... b entering a vertex and a single arrow J,a; leaving the
vertex (figure 2). On account of the homogeneity conditions (2-8) and (2-16),

the vector sum of the components minus the anti-components entering the vertex
is equal to the component (or minus the anti-component) leaving the vertex.

6 Vol. 299. A.
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By successively representing the components entering a vertex in terms of lower
order components, the component &,a}, can be represented by a cascade diagram
with 7 first-order inputs and one output. The component , af, is then given by the
sum over all possible cascade diagrams with » first-order inputs.

_L,/ N 3 g s
) N A

42 7
g

n=3
n=4

FieurE 2. Examples of interaction diagrams for perturbations of 3rd and 4th order. External
fields are denoted by crosses, anti-components by cross-bars and virtual components by
dotted lines.

The perturbation solution (3-2) represents the response of a linear oscillator to a
superposition of sinusoidal forcing terms. It is therefore also a superposition of
sinusoidal oscillations. Normally, these are small. However, the response is large
if the forcing frequency is close to the resonant frequency, and grows indefinitely
with time if the resonance is satisfied exactly. In diagram notation, resonance
occurs if the frequency of a component in a diagram is equal to the frequency sum
of any set of lower order components which generate that component (the
frequencies of anti components being counted negatively). We shall denote resonant,
free components in a diagram by full lines. Non-resonant, virtual components will
be denoted by broken lines. Free components satisfy the two conditions

)
SW = Zsjwj (s, 8; =1 1): (3'4)
)

where the sums on the right-hand sides are taken over the set of lower-order input
components. Virtual components satisfy only the first condition.

4. THE ENERGY TRANSFER DUE TO INTERNAL INTERACTIONS

The resonant perturbations represent an energy transfer between wave com-
ponents, in analogy with the beat phenomenon of linearly coupled, tuned oscillators.
If the fields consist of a finite number of discrete components, the evolution of the
fields can be determined by rewriting the secular terms in the perturbation expan-
sion as the slow rate of change of time-dependent wave amplitudes (cf. Benney
1962; Ball 1964; Bretherton 1964). In the case of random fields, we are concerned
with the evolution of the spectra. We shall adopt essentially the same approach:
from the perturbation equations we determine first the secular terms in the
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perturbation expansion of the spectra; these are then rewritten as the rate of change
of slowly varying spectra. (Intermediate between these two cases lies the problem
of the scattering of a discrete wave by random fields (cf. Chernov 196o; Tatarski
1961). Our theory yields the intensity relations for this problem, but not the
phase fluctuations.)

The linear wave system is completely determined statistically by the set of

energy spectra
Iy = ajazyy (= const.), (4-1)

where the cornered brackets denote ensemble mean values. This is valid in the
coarse-grained sense (see appendix B). The wave fields are Gaussian, and are there-
fore determined by the covariance matrix {(a}a{). They are furthermore stationary,
so that only the diagonal terms {a}a; ") are nonzero. The energy of the linear field vis

By = Hy = S (Fit Fe*) = 23 Ty, (4-2)

To determine the evolution of the spectra in the nonlinear case we expand F} in a

perturbation series
Fy = )+ P+, Fy+ ..

where o I = 30, aZ) = const., (4-3)
s = #0505, (4-4)
oI = 3o, 075 + A 501, 0”1 (4-5)

The spectral perturbations can be expressed in terms of the known linear ampli-
tudes ;ap by substituting the solutions (3-2) for the perturbation amplitudes in
expressions (4-3) to (4-5).

Retaining only the terms depending on the internal coupling coefficients Dyl 2,
we obtain

3Fl’; = %{—BiwZ DIy (AR AR AR Ay (0 — 0, — w,)}, (4-6)
= $0P B D Dy (A A AR AR Ay(0— 03— 03) AF (0 — 03— 0y)
+%" {Z — 18ww, D=z D-jura (AT} Apt Ay A Ag(0 — 03 — 04, 0y — 01 — 0,)}
+R{Z —diw D=ppes (AZp AR AR AR A (0 — 0, — 0y — wy)}, (4:7)

eivt __ 1
where A(w) = o (4-8)

Ay(w,0") = Al(w+agzl— A1) , (4+9)

and we have introduced the abbreviated notation v =wy, w; = wg.

Each term in equations (4-6) and (4-7) represents a quadratic product of two
perturbation components. The structure of the various terms is shown in diagram
notation in figure 3.

The spectral perturbations involve mean products of three or more initial
amplitudes Aj. We shall assume that the fields are initially Gaussian and stationary;

6-2
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the mean products can then be expressed in terms of the initial spectra ,#%. The
assumption appears reasonable, since the linear fields tend to a Gaussian, stationary
state, and the nonlinear interactions are weak. We shall discuss the basis of the
hypothesis in more detail later.

7 v
= v v // vl T
p_lby/l}’ Y, / % /’1‘\% ! /fJ
hs NN A T
7 T,,z
() (b (©) ()

Ficure 3. Interaction diagrams of the spectral perturbation 3I'y (equation (4-6)) and ,F?
(equation (4:7)). Diagram (a) represents the right-hand side of equation (4-6); diagrams
(b), (c), and (d) represent the 1st 2nd and 3rd terms, respectively, in the right-hand side

of equation (4-7).
\v \f
)
v 14 724 _
™
‘ - v Y <

(¥) () (d)

Ficure 4. Interaction diagrams of the spectral perturbation oI} for an initially Gaussian field,

equation (4-10). Diagrams ('), (¢’) and (d’) correspond to the 1st, 2nd and 3rd terms,
respectively; »” in diagram (c¢’) has been taken as a resonant component.

For a Gaussian initial field the cubic term ; F, vanishes. The only contribution to
the fourth-order perturbations , F, are terms in which the four amplitudes A;gﬁ can
be divided into two complex conjugate pairs. This yields

WFi=360" % P, P Do A (0— 0, — 0,)|?

k, k,
vive 2 0
v 13 ’ —v -y’ — 'y, ’ ’
— 720, Fy kz 2 I ' DL vy Db, Do(0 + 0y — 0, —0— 0y + 0 )}
vy, V’lz 0
—320,Fy ¥ GJFR DG A(0)),
ki, vy Z 0 (4:’10)
where 0 = o).

The diagrams corresponding to the three terms on the right-hand side of equation
(4-10) are shown in figure 4. We have assumed that the interaction coefficients
vanish if one of the wavenumbers are zero, which excludes one of the three possible
pair combinations for the second and third terms.
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For large t, the dominant contributions are due to the secular terms arising from
the resonant interactions. These are determined by the asymptotic behaviour of
the response functions A; and A,, namely

|As(0)|2 = 27td(w) (4-11)
and Ay, — w) = t(md(w) +iP(1]w)). (4-12)
Equation (4-12) is an abbreviated notation for the relation

+o0

—0

A0, —0) flw)dow —t (7Tf(0) +in'[(wg) da)) )

which is valid for any continuous f(w).

In evaluating the asymptotic form of ,F}, with the aid of equations (4-11) and
(4-12), we note that:

(a) on account of the symmetry of the coupling coefficients D::: and the reality
condition (2:7), the real part of the expression {...} in the second term in equation
(4-10) involves only the ¢ function contribution of A,, and

(b) the reality of the interaction Hamiltonian H, implies the reality of the coeffi-
cient D=~ . Thus the third term in equation (4:10) vanishes. Both of these
properties apply only for internal interactions.

The asymptotic relations (4-11) and (4-12) lead to an expression of the form

4Ff{ = tI(zFi}{"%

where I is a quadratic integral operator acting on the set of initial spectra ,Fp.
If the spectra are regarded as slowly varying functions, the equation may be

rewritten
oF;|ot = 1(FY).

Explicitly,
on,(k
3(t ) 2 . ff {T'(nyny — nmy — mny) 6(Ky + Ky — K) 007 + 0y — 0)
Yy Vg >
+ 2T (ny g+ nny — nny) 0(K; — Ky — K) 8(w; — 0y — w)} dk, dk,,  (4:13)
where
T, = 12100, 0,| D=35e |2, (4-14)
T = 7270w, 0, D=35z |2, (4-15)

and n,(k) = F,(k)/wy. We have introduced continuous spectra according to the
notation

'(k) dk.

Equation (4-13) represents the lowest order energy transfer due to quadratic
coupling. It was first derived by Peierls (1929) for interacting lattice vibrations.
In certain cases, such as surface gravity waves, the lowest order resonant conditions
have only trivial solutions, and the analysis has to be carried through to higher order
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(Hasselmann 1962). The resulting transfer expressions are similar in structure to
equation (4-13), but involve cubic rather than quadratic spectral products (cf.
Hasselmann 1966a).

The transfer expressions are valid for all time, provided the basic hypothesis
that the fields can be treated as approximately Gaussian remains valid. It has been
shown by Prigogine (1962) that this is indeed the case, provided the fields were
rigorously Gaussian initially, and the Gaussian hypothesis is applied only for the
development of the fields forwards in time.

Benney & Saffman (1966) have shown that the Gaussian hypothesis is not neces-
sary if the cumulants are assumed to be smooth in wavenumber space. It is shown in
appendix A, however, that this assumption contradicts the irreversibility of the
transfer expressions. The cumulants of an aged field are rapidly fluctuating fine
structure functions (appendix B).

5. THE ENERGY TRANSFER DUE TO EXTERNAL INTERACTIONS

We shall assume in this section that the external fields are statistically stationary,

homogeneous and orthogonal, i.e. that
OE+T) L)y =0 for k+k'+0 or u' +p
and
DYt +7) b7 (8)y = 2Gf exp { —iwjT},
where
Gf = (B¢ B" ) = const. (5:1)

We have assumed orthogonality for simplicity of notation. An arbitrary represen-
tation will generally not lead to orthogonal external-field components. For ex-
ample, the turbulence components U;(k,w,z) of the representation (2:12) do not
satisfy the condition

Uik, 0,2) U(—k, —0,2')y =0 for 445 or z#+z2.

Orthogonality can be attained by transforming to a new representation. Rather
than do this explicitly, we simply note that if a nonorthogonal representation is used,
expressions of the form Y Gf have to be replaced in the following by expressions

W
SKEGEr, where G = 3(bjb* ) ) and K is a coefficient matrix.
m

We shall assume further that the linear wave fields and external fields are statis-
tically independent. This can be deduced in the coarse-grained sense from an exten-
sion of the analysis in appendix B.

(@) Linear interactions
The linear interaction equation
@+ il = — 20wl DEIbY (5-2)
I

can be solved exactly, without expanding in perturbation series. For the general
theory the right-hand side of equation (5-2) must none the less be assumed to be
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a small perturbation (i.e. E=}4 = O(f), with £ < 1), since the analysis of the higher
order interactions is based on the free-wave solution of the homogeneous equation.
The solution of equation (5-2) is

ay = — 21wy X B BEA (0 — of) exp { —iwft}.
”
This yields a spectrum which grows linearly in time (equation 4-11). In accordance

with out previous notation, we may write this in the differential form

8F5£k) _ SW(W}”()z% [B=312 G (k) d(wh — wf), (5:3)

where we have used the continuous notation
f(}’ﬂ(k) dk for kz G,

The nonconservative linear wave interactions
al+ivkal = — 2wl S B ol (5-4)
<
yield a slightly different expression. Multiplying equation (5-4) by aZ}, adding the
complex conjugate equation, and taking mean values, we obtain
or,(k)
ot

Examples of transfer processes of the form (5-3) and (5-5) are Phillips’s (1957)
and Miles’s (1957) theories of wave generation by wind (§7).

= dop S (EZig) F(K), (5-5)

(b) Nonlinear interactions between waves and external fields

The analysis of nonlinear external interactions is similar to the analysis of wave—
wave interactions, except for some additional modifications due to the fact that
the properties (@) and (), which led to the simple transfer expression (4:13) from
equation (4-10), no longer apply.

A complication also arises if the expressions corresponding to equations (4-6) and
(4-7) contain more than two external field components. Although wave fields can
be treated as Gaussian, and wave and external fields as statistically independent,
the external fields are generally not Gaussian. Hence mean products containing
more than two external field components cannot be reduced to the external-field
spectra. This is not a basic difficulty, as the statistical structure of the external
fields may be assumed to be known, but it leads to more complicated transfer expres-
sions. In many cases, however, the Gaussian hypothesis may still be used to esti-
mate the order of magnitude of the energy transfer (for example, in the generation
of sound by turbulence, cf. Lighthill 1963). As we shall not be needing the exact
expressions in the following applications, we shall assume here for simplicity that
the external fields are also Gaussian. This means that the following expressions are
not rigorously correct whenever products of two external-field spectra appear
(equation (5-8)). Other expressions are not affected by the assumption.

It is convenient to divide the total transfer into three expressions according to
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the spectral products occurring in the integrals. The first expression involves
bilinear products of a wave spectrum and an external field spectrum,

Es =f S (P45, Gy TiFG,) 8(l; + ky— K) 8(0; + 0y — 0)
» >0
mwl > 0)

+ (T4 F,Gy— T3 FG,) 6(k; — Ky — K) 80 — 0y~ 0)
+ (T4 F, G+ T FQ,) 6(ky— Ky — K) §(w, — 0, —0) — T, FGy} Ak, dK,, (5-6)
where F, = F, (k,),G, = G, (Ky), F = F(K), w; = 0}, 0, = 0f,, 0 = 0y
and T = 36mw?| B3 |2,
7§ = 36702 B, |2,
Tg = 36mw2| B3 |2,
T4 = 36mww, Z{E= ﬁ’f{llﬁz AR
T3 = 36mw w2 {B 3", B=00.)
T4 = 36mwo, Z {B—3 3, BiBE b,
Bt Br Bl B, B, BAT,

W+ Wy — 0 Wy — Wy — W w1+w2+w

T, = +36w Y [wlPJ{

1>0
E_ 11){11/1:2 klk kz}} _ 32wj{E—vv/7,w }
p— — Kk ok S
The second expression represents the energy transfer due to nonconservative
wave-wave interactions. It is similar to equation (5-6) except that the index u
is replaced by v, and the external spectrum G, by F, = F, (k,). The number of pair-
ing combinations is larger for two wave spectra than for one wave spectrum and one
external-field spectrum ; this leads to additional factors 2 and 4, respectively, in the
transfer functions 7'% and 7% (j = 1, 2, 3). Similarly, the first and second terms of
T, are multiplied by factors 4 and 3, respectively. By reordering, the transfer
expression can be written in a form analogous to the transfer equation (4-13)
for conservative wave-wave interactions,

81?’3(tk)_ ff (T4 F,F,—TEFF,—T{FF,) 8 (0,4 0, — ) 8k, + Kk, —K)
»vy, >0
+2(T¢F, Fy+ TS FF,— Ty FF,) §(0, — w,— 0) 6(k, — k, — k)
— T, FF}dk, dk,, (5-7)
where

Tg = 727m)2lE—W1V2 |2

T3 = 12702 B |2

T4 = 12m00, R (B30 B2,

T4 = 12m0w, B {E-H 4 Bl s,

T7 = 12m00, R (B0 B,

Ty = 12n00, Z{E-3 2 B2 0,

By B Bowe Bopl  EoTuTa e

W+ 0,— Wy— W — O w1+w2+(u

}] 96w S {B -}

T, = 1440 Y [szJ{

v,>0
—Vp1—V

E kk11 2 kzk k
W — Wy —
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For symmetrical coefficients, equation (5-7) becomes identical with equation (4-13).
The third expression represents the transfer due to external field interactions
only,

oF,(k
6(t ) _ 3 {6060k + k= K) d(0; +0y—0)
(01, 03> 0)
+2T2G1G28(k1— kz—k) 6(&)1—Q)2_a))}dkldk2’ (5'8)
where T, = 12n0?| 3o,

- 2| pvms |2
Ty = T2m0?| B |2

Equations (5-3), (5-5), (5+6), (5-7) and (5-8) are the complete set of lowest order
transfer expressions involving products of not more than two spectra.

6. TRANSFER DIAGRAMS

It is convenient to summarize the transfer expressions derived in §§4 and 5 in
terms of energy transfer diagrams. In the special case of conservative wave-wave
interactions, these can be interpreted as collision diagrams in a particle picture
(Hasselmann 1966a). In the general case of nonconservative interactions, the
particle interpretation is no longer applicable, but several useful features of the
diagrams remain valid.

Each term in the transfer integrals can be associated with an arrow component
in a transfer diagram. Terms containing ¢ function factors, and the linear transfer
expressions (5:3) and (5-5), are represented by a diagram in which # components
enter a vertex and a single component leaves the vertex. (We have considered in
detail only the linear case n = 1 and the quadratic case n = 2.) Different sign
combinations in the ¢ functions are distinguished by components and anti-com-
ponents, in the same way as in the interaction diagrams (§3).

Thus the factor d(k, + k, — K) d(w, + v, — w) is represented by two arrows equal to
k; and k, entering a vertex and an arrow equal to k leaving the vertex. The factor
0(k; —k,—K) &(w; —w,—w) is represented by the same diagram, except that the
component K, is replaced by an anti-component. The summation rule for wave-
numbers and frequencies is the same as for interaction diagrams. Both ¢ function
factors can be represented by two further diagrams, in which either k, or k, is
chosen as the resultant component. We shall refer to the three diagrams of a given
0 function factor as a diagram sef. (The three diagrams which have outgoing anti-
components may be ignored; they are identical with the other diagrams except
that the signs of all components are changed.) Each diagram of a set represents
an energy transfer from the ingoing components to the outgoing component. If
the outgoing component represents a fixed external field, however, the transfer
is zero; these diagrams can be excluded. As in the interaction diagrams, the
arrows point always in the propagation direction of the waves. (To this end,
the transfer expressions were written in a form which contains only positive fre-
quencies.)

The last terms in equations (5:6) and (5-7), which contain no & function factors,
are represented simply by two arrows entering a vertex, without a resultant
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component. In this case no distinction is made between components and anti-com-
ponents.

The structure of the transfer expressions can be determined from the diagrams
by a single rule: the rate of change of the spectrum of any wave component or anti-
component in a transfer diagram is proportional to the product of the spectral densities
of the ingoing components.

Thus the linear transfer expressions (5-3) and (5-5) are represented by the linear
diagrams 5(a) and (b), respectively. The first two terms associated with the factor
d(k; +k,— k) 8(w, + w,— w) in equation (5-6) are represented by the two diagrams
(c). The third diagram of the set represents the generation of the external component
Mo and can be ignored. If u, is replaced by v,, one obtains the first three terms in
equation (5:7). In this case all three diagrams of the set contribute to the energy
transfer. If v; is replaced by x,, one obtains similarly the first term in equation (5-8).

, o, =T

v,
(@) Tﬂz.
(®) 7 f/“z
= ()
(c)

FreurE 5. Transfer diagram notation of energy transfer expressions. Diagrams (a) and (b) re-
present the linear transfer expressions (5-3) and (5-5), respectively. Diagrams (c) represent
the first two terms, containing the factor d(k; +k, —K) 0(w; + w, — w), in equation (5-6).
The third diagram of the set generates an external component, which yields zero transfer.
Other 0 function terms in equations (5:6), (5-7) and (5-8) are obtained by interchanging
either components and anti-components or wave and external-field components. Diagram
(d) represents the last term in equation (5-6).

Here only one of the diagrams contributes. The remaining terms of the transfer
expressions (5-6), (5:7) and (5-8) are obtained by replacing one of the ingoing
components by an anti-component. Diagram (d) represents the last term in equa-
tion (5-6). The diagrams (@), (c), (d), ete., will be referred to as the interactions
H =V, Vi by =V, Yy lhy, €tC.

In the case of conservative wave—wave interactions, the transfer rates for all
components of a diagram can be characterized by a single transfer coefficient, and
the same coefficient applies to all diagrams of a given set. Furthermore, there is a
close correspondence between transfer and interaction diagrams; the various con-
tributions to the transfer expressions can be classified directly in terms of inter-
action (Feynman) diagrams, and there is no need to distinguish explicitly between
the two types of diagram (Hasselmann 1966 a).

This simplicity is lost in the general case. The transfer rate is different for each
component of a diagram. The relation between the transfer diagrams and the
interaction diagrams, which describe the perturbation structure of the transfer
terms, is more involved. (For example, the transfer term corresponding to diagram
5(d) contains a fourth order coupling coefficient.) But the transfer diagrams none
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the less remain a useful tool for discussing the structure of complicated interacting
systems.

The application of transfer (Feynman) diagrams for conservative wave-wave
scattering processes is illustrated in a number of examples in Hasselmann (1966a).
In the following we shall consider a case involving nonconservative external inter-
actions.

7. THE GENERATION OF WAVES BY TURBULENT WIND

Let us apply the foregoing results to interactions between gravity waves g and
the atmospheric turbulent boundary layer. We assume that the boundary layer
consists of a mean flow m, which depends only on the vertical coordinate, and a
statistically stationary, horizontally homogeneous, fluctuating field f.

Miles (1957) Phillips (1957) wave-turbulence interactions
S
N NI,

X
Bl
= s
5

/ 9
Vd
S L g 2
5 AN
(_L,__g__,)
(@) (] (c)

Ficure 6. Transfer diagrams for interactions between gravity waves and
the atmospheric boundary layer.

\-7/7
4

The details of the analysis will be presented elsewhere. One finds that the inter-
actions between g and f can be expanded in a perturbation series of the form (2-14).
The mean flow m determines the form of the g — f coupling coefficients, but does not
enter as a perturbation. Hence we are concerned formally only with interactions
between the components g and f.

The complete set of lowest order transfer diagrams, containing not more than two
ingoing components, is shown in figure 6. (The diagrams g, g, — g5 and g¢,g,, which
should be included in the complete set, are not shown. The first diagram cannot
satisfy the resonance conditions (Phillips 1960). The second diagram can be shown
to be a higher order effect as compared with diagram (a) and can therefore be
neglected.)

The linear diagram (o), g — g, corresponds to Miles’s (1957) theory of wave genera-
tion through linear coupling between the waves and the mean boundary layer
flow. Each wave component produces a perturbation of the mean flow. The associ-
ated pressure perturbation feeds back positively into the wave component, making
it grow. The physical mechanism of this feed back has been discussed by Lighthill
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(1962). According to the transfer rule, the rate of growth of the spectral density
F(k) of the component g is proportional to F(k), so that

oF(K)/ot = BF(K), (7-1)

where § depends on the mean boundary layer profile. The wave growth is ex-
ponential.

The second set of diagrams (b) represents Phillips’s (1957) theory of forced wave
generation by turbulent pressure fluctuations p. The process can be represented
more simply by the linear diagram p — g. However, the pressure is a derived field;
it can be expressed in terms of interacting velocity components, which yields the
three diagrams (b). The transfer rate is proportional to the three-dimensional
spectrum G, of the turbulent pressure at the sea surface (Hasselmann 1960)

oF (k) mw?

R _Tq

ot 209 p(k, —w), (7-2)

where w is the frequency of the wave component k and p is the density of water.
The spectra are normalized such that

| [P0 ac = 3oy = 3.

where { is the surface displacement and £ the wave energy, and

f H Gy (K, ) dk,; dkydor = (pP.

Equation (7-2) yields a linear wave growth.

The remaining interactions, diagrams (c), have not been considered previously.
In the simplest case they represent a disturbance of the mean boundary layer
flow by the component ¢’, an interaction between this disturbance and a turbulence
component f, and a feedback of the pressure fluctuation due to this interaction into
the component g. According to the transfer rule, the resultant energy transfer is
of the form

OF(K)/ot = —yF(K) + f 3k, k') F(K')dK’. (7-3)

The first term represents the energy loss (or gain) of the component g’. It is pro-
portional to the spectral density of the component g’ itself. The second term
represents the energy gained by the component g, which is proportional to the energy
spectrum of the components ¢’ at other wavenumbers. The functions y and ¢ are
linear functionals of the turbulence spectrum at wavenumbers corresponding to the
turbulence components in the diagrams. The second term is always positive,
whereas the first term can have either sign.

It is difficult to decide from present data which of the three mechanisms is the
most important, as very few quantitative measurements of wave growth exist.
Snyder & Cox (1966) have measured the growth of waves of period 3-3s under
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various wind conditions. They find that the wave growth is initially linear, and that
the initial growth rate is not inconsistent with Phillips’s mechanism, if one assumes
that Priestley’s (1965) measurements of pressure fluctuations over land are repre-
sentative also for the ocean. The initial linear stage is followed by a period of more
rapid exponential growth, which is responsible for the major part of the wave
energy. The growth rate in this period is almost an order of magnitude larger than
predicted by Miles or by the earlier sheltering theory of Jeffreys (1925).

Itisnatural to suspect then that the wave-turbulence interactions, which complete
the lowest order interaction set, are the principal source of wave energy. Although
it is difficult to estimate the transfer rate (7-3) on the basis of present turbulence
measurements, the expression has certain qualitative features which appear to
agree with the observations. The turbulence spectra are peaked at lower frequencies
than the wave spectra, so that the frequency difference between the component g
and ¢’ in the interactions g'f — g, etc. will generally be small. Hence the energy
transfer is confined to neighbouring frequency bands of the wave spectrum. If the
waves are generated first at high frequencies, then the second term in equation
(7-3) will tend to generate waves of slightly lower frequency. When these are suffi-
ciently large, the adjacent lower frequency band will be generated, and so forth.
Observations seem to support this sequential development of the wave spectrum,
but other explanations have also been put forward (cf. Phillips & Katz 19671;
Hasselmann 1962).

Once the waves have been generated by the second term in equation (7-3),
the first term will either enhance or counteract their further development, depend-
ing on the sign of 8. The latter case is of some interest, as it is then possible to ex-
plain the observed equilibrium of the spectrum without invoking astrong momentum
transfer to ocean currents. It is usually assumed that in the equilibrium state the
transfer of momentum from the atmospheric boundary layer to the waves is of the
same order of magnitude as during wave growth, butis balanced by an equally strong
transfer of momentum from the waves to the mean ocean currents. On this assump-
tion, Snyder & Cox find that their observed wave growth rates yield an effective
shear stress several times the tangential wall stress found for boundary layers at
fixed walls. On the other hand, various measurements of the boundary layer over
the ocean have not indicated appreciable deviations (under conditions of neutral
buoyancy) from the stress and velocity profiles of the logarithmic ‘law of the wall’.
This difficulty would not arise if the equilibrium could be largely explained in terms
of the wave-atmosphere and nonlinear wave-wave interactions (Phillips 1960;
Hasselmann 1962)t, without invoking a strong dissipative process.

Further investigations of the atmospheric boundary layer, correlated more
closely with measurements of both wave spectra and spectral growth rates, would
help to resolve these questions.

1 The significance of wave-wave interactions for the energy balance of gravity waves is
indicated by the recent swell-propagation observations of Snodgrass et al. (1966).



94 K. Hasselmann (Discussion Meeting)

APPENDIX A

Benney & Saffman (1966) have shown that the transfer expressions can be de-
rived without invoking the Gaussian hypothesis if the cumulants are assumed to
be smooth in wavenumber space (or contain only certain ¢ function singularities).
However, Benney & Saffman’s derivation (if assumed to apply for all time)
contradicts the irreversibility of the transfer expression. It is impossible to derive
the transfer expression from purely local considerations without introducing a
statistical hypothesis which, in effect, determines the direction of time. This can
be deduced from the well known discussion of the paradox of irreversibility for the
Boltzmann equation.

Suppose that the transfer expressions are valid for all time ¢ > 0 for a certain
ensemble £ of wave fields. Then determine the spectrum F(k,¢ —7) at a time
t;—7 > 0 earlier than a given time ¢; > 0 by solving the equations of motion back-
wards in time, using the ensemble of states at time ¢, as initial value. Since the
equations of motion are reversible, one obtains the same spectrum if one reverses
the sign of the velocities gy, at time ¢; and then determines F(K, #, +7) by solving the
initial value problem for this new ensemble E forwards in time. If the transfer
expressions are assumed to be valid for both ensembles E and E, one obtains the
same spectrum at ¢, +7 for both & and . For the transfer expressions depend only
on the spectra, and these are independent of the sign of the velocity field. It follows
that F(k,t, —7) = F(K,t,+7) for the ensemble E. Thus the time evolution is sym-
metric about ¢,. In particular, there is a discontinuity of slope at ¢, with

%(k,t1—0)=—%?(k,tl+0). (A1)
This clearly contradicts the assumption that the transfer expressions are valid
for all ¢ > 0. Hence if the transfer expressions are valid for an ensemble E, they
cannot be valid for the ensemble £. The assumption that a given ensemble of
velocity fields corresponds to E rather than F is then necessarily a hypothesis
which cannot be decided without analysing the history of the field.

Clearly, any attempt to derive the transfer expressions locally at time ¢, must be
based on the distinction between the ensembles £ and E. If the class of initial
conditions allowed at time ¢, includes both & and E, the analysis must lead to a
cusp. Both Gaussian fields and fields with smooth cumulants represent sym-
metrical classes in this sense.t Since Prigogine (1962) has proved the validity of the
transfer expressions for all £ > 0, it follows that in general the cumulants are neither
zero nor remain smooth.

The behaviour of the cumulants is best understood from the analysis of the
linear field (appendix B). The continuous mixing of wave groups propagating in

1 The relation (A1) can be verified directly in Benney & Saffman’s case. The right-hand
side of Benney & Saffman’s equation (2-51) and similarly the first term on the right-hand side
of equation (2-56) take a negative sign if one goes to the limit ¢ - — co instead of £ —co. This
affects the right hand side of equation (2-44) for the energy transfer rate. Thus the spectral
derivative takes opposite signs depending on whether it is determined from past or future
states. The same conclusion follows for a rigorously Gaussian field.
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different directions leads to the degeneration of an initially smooth cumulant
field into a rapidly fluctuating fine structure in wavenumber space. In the nonlinear
case, the combination of mixing and weak coupling leads to a complicated fine
structure containing singularities.t The Gaussian hypothesis is equivalent to the
assumption that the fine structure can be ignored if one goes forwards in time. But
it cannot be ignored if one attempts to reconstruct the past. The connexion be-
tween irreversibility of the coarse grained distributions and the time asymmetry of
fine grained distributions is well known from other problems of statistical mechanics.

Physically, the significance of the fine structure can best be understood by re-
garding the interactions as taking place between large, but finite wave groups,
rather than infinite wave trains. The situation is then closely analogous to the
case of interacting particles (Appendix B).

AprPENDIX B. THE GAUSSIAN PROPERTY OF RANDOM LINEAR WAVE FIELDS

It is generally assumed that random, linear wave fields can be regarded as Gaus-
sian. The hypothesis has widespread support from observations and can be justified
intuitively by a loose application of the central limit theorem. A proof of the Gaus-
sian property, however, and a general understanding of the conditions on which
it is based, appear to be lacking.

The question has gained particular significance through recent work on non-
linear interactions in random wave fields. Spectral analysis techniques have been
extended to higher orders to determine nonlinear transfer functions (Hasselmann,
Munk & MacDonald 1963; Hasselmann 19660). In contrast with the linear case,
the higher order methods depend heavily on the assumption that the first order,
linear fields are Gaussian. In the present context, however, we shall be concerned
primarily with recent discussions of the Gaussian hypothesis in connexion with
the derivation of the transfer expressions of §§4 and 5. Several misunderstandings
in this discussion can be traced directly to a misconception of the nature of the
Gaussian property of linear wave fields.

It has occasionally been stated (cf. Benney & Saffman 1966) that the Gaus-
sian hypothesis appears no more tenable for interacting wave fields than for a
turbulence field; in both cases the interactions destroy the Gaussian property of a
given initial state in a time scale comparable with the time scale of the energy
transfer. The analogy ignores an important property of linear wave fields: it is
shown in the following that a set of homogeneous, linear wave fields which are non-
Gaussian initially, and which have smooth cumulants in wavenumber space,
asymptotically approach a Gaussian state (and furthermore become stationary and
mutually independent). Thus the Gaussian property is not merely consistent with,
but is a consequence of the linearity of the wave fields. In the case of weak non-
linear interactions, the linear tendency to a Gaussian state may then be expected

+ The author derived the same result as Benney & Saffman in the course of a discussion
about the Gaussian property with F.P.Bretherton three years ago. It was pointed out
by Bretherton that the singularities generated by the resonant interactions violated the

assumption of smooth cumulants. The inconsistency of the assumption follows still more
simply from the development of a fine structure.
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to maintain the fields approximately Gaussian, despite the counteracting influence
of the nonlinearities.

The approach of the linear fields to a Gaussian state holds in the ‘coarse-grained’
sense: it applies to spectral moments that have been smoothed by convolution with
an arbitrarily narrow, but finite filter. The fine structure remains nonGaussian,
but the frequency resolution required to detect it increases indefinitely with time
and ultimately exceeds all attainable resolutions. Although unobservable, the
fine structure is none the less important, for it explains the irreversible behaviour of
the coarse grained distributions in both the linear and nonlinear case.

REPRESENTATION OF THE FIELDS

Consider a set of random, real fields ¢,(x,t), where x is the coordinate vector in
a space of dimension 6. The fields can be characterized by the set of mean products

Rul... v <¢,1(X1, tl) ce ‘pvn(xn, t'n)>: (B 1)

where the cornered brackets denote ensemble mean values. We assume that the
fields are statistically homogeneous, so that

va...un = va...un(gl' . 'E.m—l? tl

where E,, = X,,—X,, m = 1,...,n—1 is the difference coordinate. For simplicity,
we set (¢) = 0. Alternatively, we can introduce the Fourier-Stieltjes representa-
tions

(X, 1) = fdgs K, f)eik-x (B2)

and describe the field by the set of mean products

(g, (Ky,ty) ... dg, (K, 1)) = Gy oKy Kyt ) 8Ky + oL+ ) Ay,
(B3)

where

le...vn (k kn—l’ 27T — 1)§f val Vn Em nl

exp{—i(k,.&;+...+k, ;.5, ;)}dE,...d§, ; (B4)

is the Fourier transform of &, _,, .

The & function in equation (B 3) is characteristic for homogeneous fields. It arises
formally because the mean products {(p, (X1,t)...¢,,(Xy, t,)) remain finite as x,, -0
for fixed ,. For similar reasons, the mean products <d¢,, (ky,ty) ... Ao, (K, t,)>
generally contain further ¢ functions which may be associated with the asymptotlo
behaviour of (g, (Xy1,t)..-¢,,(Xy, t,)) for large x;. The singularities may be factorized
out by expanding the moments in terms of cluster functions, or cumulants.

We shall assume that the mean products satisfy the asymptotic condition

(p1)...p(n)y = {p(1)...p@))pP+1)...0(9))-- Lp(s +1)...p(n)),  (B5)
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with p(a) = ¢,,(X,, {,) if the separations between individual clusters of an arbitrary
cluster set (Xy...X,), (Xp41.--Xp)...(X411...X,,) tend to infinity. The cluster functions S
are then defined by the recursive relations

8, ={p,»(=0),
Sv vg =‘RV v, —SVSV’
18 172 1 V3
Svlvzva = RV1V2V3_SVISV2V3_SV2SV1V3_SV38V1V2_SVISlleVa (B(j)

...............................................................

=R — S S
Svl...vn V3.V cluzsger oy..opS BBy Syl...yx’
sets

which are constructed such that under the condition (B5) all 8,,...,, tend to zero
if any difference coordinate &, approaches infinity. We shall assume further that
8,,..», approaches zero sufficiently smoothly to ensure a continuous Fourier
transform

H, oKy Ky, ty.nity) = (2m) 000 f "‘J‘Svl...vn (E1---Bnsta-oty)

xexp{—i(ky.& +... +k, 1.8,4)}dE;...dE, ;. (B7)
Comparing equations (B 6), (B7) with equations (B3) and (B4) we can then write

<d¢v1(k1’ ty).. d¢vn(kn7 tp)) = dkl . 'dkn
LB Byt ootk ) By o+ Ky )

cluster
sets

X Hy, (Ko Ky obyoit)on Hy (K Ky )

0geenllp 10 S p—10 Yt
where o; = Ve Vi = Voo (B8)

Asymptotic properties of wave fields

Let us assume now that the fields ¢, are wave fields whose Fourier components
satisfy a harmonic oscillator equation

dg,(k) + w(k) dg,(k) = 0, (B9)
with solutions
do,(k,t) = dg;f (k) elovt - dgh, (k) eiovt, (B10)
For real ¢,
deg,f = (dg; (—Kk))*. (B11)

The mean product (B 3) then takes the form

(dg,,(ky,ty)...dg,, (K, 1,)) = X (dgpi(k,)...dgs(k,))
e x exp{—i(s; 0, t;+... +8,0,t,)} (B12)
where \
dgpuky)...dgpk,)) = G5 (k.. K, ;) 0K, + ... +k,) dk,...dk, (B13)

Vi...Vn

is given by the initial statistical distribution.
From equations (B 3) and (B 8) we obtain similar relations for the cumulants

H, ., K. K gt 8,) = X Hlgnk.. kK, )exp{—i(s;0, t+... +5,0, t,)},

VieeVp Vi..Vn

81...8pn (B 14)

v Vol. 299. A.
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where HEt:--$ is the set of initial cumulants associated with the set of initial moments
Gy e

We shall assume that the initial distributions are arbitrary, except for the restric-
tion that the cumulants H3L:::5» are continuous.

For Gaussian fields, all cumulants higher than the second vanish. It follows
immediately from equation (B 14) that for arbitrary initial conditions a set of wave
fields cannot approach an asymptotic Gaussian state in the strict sense, since the
right-hand side of equation (B14) contains a finite number of constant-modulus
terms, which in general do not cancel. Consider, however, the observable spectral
moments, which are obtained by convolution of the theoretical moments with
finite-width filters,

Hv1 vn(k kn—l’ TyeeTp—1 n) = f f V1. vn I 7,z—1= Tl+tn: cees Tn—1+tn, tn)
7(k1 - 1’ cee 7’7,——1 - kn—l) dk, dk'),z—l: (B 15)

where y(k;...k,_;) is a finite, continuous filter function normalized such that

f f (K, K, _,) dk,...dk, ; = 1.

In practice, y is effectively non-zero only in a small region around the origin
kl = O, ""kn——l = 0.
Let us investigate the limit of H,

VieeVp

Tj = tj_t‘n(j = 1,...,1’1,—1).

as t,, — oo for fixed time lags

According to equation (B 14),
Hyppy= S [ [ By k)0l K-k
S1e+8n

x exp{—i(s;w; + ... +8,0;) trexp{—i(s;0, T+ ... + 8,105, T, 1)}dK;...dKk; ;.

Since Hst:$n and y are continuous functions, the integral over the rapidly fluctua-
ting factor exp{—l sla) +...+8,0, )t,} tends to zero as #, — oo unless the sub-
space 8,0, +...+8,0, =0 yields a ﬁmte contribution to the integral. Assuming
nondegenerate modes

w,(k) + w,(k) for v=+u, and dw,[ok; + 0,

this is the case only if (a) & = 1, 0,/k = ¢ = const. for some v, vy = Vy... =, =¥,
and s; = ... =8, =5, or (b) n =2, §; =—8,, v; ="V, Case (a) represents a one-
dimensional, nondispersive wave field. The wave field is then a superposition of
two wavetrains which propagate in opposite directions without changing shape.
An asymptotic approach to a Gaussian state is clearly not possible.

Excluding this case, only the second cumulants given by the index combinations
(b) remain finite as ¢, — oo. Thus the observable fields tend to an asymptotic
Gaussian state. The conditions s; = —s, and v; = v, imply further that the fields
are stationary and that different modes are statistically independent.

If we had investigated the cumulants in physical space, instead of wavenumber
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space, the smoothing problem would not have arisen. The integral transform from
k to x space automatically yields smoothed cumulants § in x space. The difficulty
is transformed into an anomalous behaviour of S for large separations §,,, such that
in the limit £,, — oo the Fourier transforms of § no longer exist.

The asymptotic behaviour of the cumulants S and H is best understood by
regarding the random wave fields as a superposition of a large ensemble of finite
wave groups, rather than infinite wavetrains.

Gaussian fields are equivalent to statistically independent wave groups. The
assumption that the cuamulants H of an initially non-Gaussian state are continuous
implies that the initial dependence between wave groups approaches zero smoothly
as the separations between groups tend to infinity. Later, the wave groups occupy
different positions in space, but retain their statistical dependence. Hence the fields
cannot approach a Gaussian state rigorously. But the separations between depen-
dent wave groups increase indefinitely with time, so that the statistical information
disperses to infinity and can be recovered only by continually extending the spacial
domain of the analysis. This is equivalent to increasing the spectral resolution.

Essentially the same situation applies if the wave groups interact with one
another. The coupling between interacting wave groups which satisfy the resonance
conditions leads to a small energy transfer and a weak statistical dependence
between the wave groups. After interacting, the wave groups propagate away from
one another and the statistical correlations disperse into a fine structure. The Gaus-
sian hypothesis implies that the fine structure can be ignored for the development
of the field forwards in time. Or in other words, in subsequent interactions (involving
new sets of wave groups which interact for the first time) the interacting com-
ponents can be regarded as statistically independent. The hypothesis is clearly
closely analogous to the Boltzmann hypothesis of statistical independence of
interacting particles.

If the field is allowed to interact for a certain time and then all velocities are
suddenly reversed, the field will develop back into its original state. After the
reversal, the wave components are no longer statistically independent before
interacting, and the transfer expressions are not valid. Similarly, in the linear case
the fine structure cannot be ignored after the reversal of the velocities, and it is
possible for an apparently Gaussian field to develop back into a non-Gaussian field.
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