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On the Nonlinear Mapping of an Ocean Wave Spectrum Into a 
Synthetic Aperture Radar Image Spectrum and Its Inversion 
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Max-Planck-Institut fiir Meteorologie, Hamburg, Germany 

A new, closed nonlinear integral transformation relation is derived describing the mapping of a 
two-dimensional ocean wave spectrum into a synthetic aperture radar (SAR) image spectrum. The 
general integral relation is expanded in a power series with respect to orders of nonlinearity and 
velocity bunching. The individual terms of the series can be readily computed using fast Fourier 
transforms. The convergence of the series is rapid. The series expansion is also useful in identifying 
the different contributions to the net imaging process, consisting of the real aperture radar (RAR) 
cross-section modulation, the nonlinear motion (velocity bunching) effects, and their various interac- 
tion products. The lowest term of the expansion with respect to nonlinearity order yields a simple 
quasi-linear approximate mapping relation consisting of the standard linear SAR modulation expres- 
sion multiplied by an additional nonlinear Gaussian azimuthal cutoff factor. The cutoff scale is given 
by the rms azimuthal (velocity bunching) displacement. The same cutoff factor applies to all terms of 
the power series expansion. The nonlinear mapping relation is inverted using a standard first-guess 
wave spectrum as regularization term. This is needed to overcome the basic 180 ø mapping ambiguity 
and the loss of information beyond the azimuthal cutoff. The inversion is solved numerically using an 
iteration technique based on the successive application of the explicit solution for the quasi-linear 
mapping approximation, with interposed corrections invoking the full nonlinear mapping expression. 
A straightforward application of this technique, however, generally yields unrealistic discontinuities of 
the best fit wave spectrum in the transition region separating the low azimuthal wave number domain, 
in which useful SAR information is available and the wave spectrum is modified, from the high 
azimuthal wave number region beyond the azimuthal cutoff, where the first-guess wave spectrum is 
retained. This difficulty is overcome by applying a two-step inversion procedure. In the first step the 
energy level of the wave spectrum is adjusted, and the wave number plane rotated and rescaled, 
without altering the shape of the spectrum. Using the resulting globally fitted spectrum as the new 
first-guess input spectrum, the original inversion method is then applied without further constraints in 
a second step to obtain a final fine-scale optimized spectrum. The forward mapping relation and 
inversion algorithms are illustrated for three Seasat cases representing different wave conditions 
corresponding to weakly, moderately, and strongly nonlinear imaging conditions. 

1. INTRODUCTION 

Sea state can be completely characterized statistically by 
the two-dimensional directional wave spectrum F(k) de- 
scribing the distribution of wave energy with respect to the 
wave propagation wave number k. All statistical properties 
of an ocean wave field at any given location and time can be 
derived from this function. Unfortunately, however, the 
two-dimensional wave spectrum has proved notoriously 
difficult to measure. Verifications of wave models, which 
routinely compute the space-time distributions of F(k), have 
therefore been based largely on one-dimensional frequency 
spectra derived from wave buoys or wave staffs. More 
recently, directional wave buoys, which provide at least 
some integrated information on the directional distribution, 
have been more frequently deployed, but even these data 
have been limited to relatively sparsely distributed locations. 
Measurements of the full two-dimensional spectrum have 
been obtained only at selected sites and for restricted time 
periods using large wave-staff arrays [e.g., Donelan et al., 
1985], or special remote sensing systems onboard aircraft 
[Plant, 1987], such as Radar Ocean-Wave Spectrometer 
(ROWS) [Jackson, 1981; Jackson et al., 1985a, b], the 
surface contouring radar [Kenney et al., 1979; Walsh et al., 
1985, 1987, 1991], or stereophotography [Holthuijsen, 1983]. 
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The sparsity of directional wave data (together with the 
limited availability even of one-dimensional frequency spec- 
tra or integrated wave height data) has not only handicapped 
the verification of wave models, but has also deterred wave 
modelers from seriously addressing the problem of assimi- 
lating wave data into their models. 

This situation could change dramatically in the 1990s. We 
look forward in this decade to extensive, in some cases 
continuous, global measurements of the two-dimensional 
wave spectrum from synthetic aperture radars (SARs) flown 
on satellites such as ERS 1 and 2, Radarsat, shuttle missions, 
and polar platforms. These data will be augmented by global 
significant wave height measurements from radar altimeters 
on ERS 1, 2, Topex-Poseidon, Spinsat, and other satellites. 
Furthermore, global sea surface wind data from satellite 
scatterometers and altimeters will provide improved wind 
fields as input for wave models. The simultaneous assimila- 
tion of these wind and wave data into global wave models 
and atmospheric forecast models offers exciting new oppor- 
tunities and perspectives for wave modelers, but also pre- 
sents major challenges to the wave- and weather-forecasting 
community. 

This is exemplified by the SAR wave data. The potential of 
space-borne SARs for imaging two-dimensional ocean wave 
fields from space has been convincingly demonstrated by 
Seasat (cf. Alpers [1983], Beal et al. [1983], and other papers 
in the Seasat issue, Journal of Geophysical Research, vol- 
ume 88, 1983) and the shuttle SIR-B mission [cf. Alpers et 
al., 1986; Brining et al., 1988; Monaldo and Lyzenga, 1988]. 
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The theory of the SAR imaging of a moving ocean wave 
surface is now also rather well understood (cf. MARSEN 
SAR review [K. Hasselmann et al., 1985], referred to in the 
following as MSR). The theory has been verified in a number 
of field experiments with air-borne SARs as well as in Seasat 
and SIR-B hindcast studies. Nevertheless, the routine inter- 
pretation and application of SAR wave data is still generally 
regarded as a major unresolved problem because of the 
inherent complexities of the basically nonlinear imaging 
process. 

A fundamental difficulty is that not all of the wave spectral 
information is mapped into the SAR image plane. Since SAR 
images provide only a snapshot of the instantaneous sea 
surface, they can determine the wave propagation direction 
only to within a sign. (The ambiguity can be removed, 
however, by correlating successive looks of the same scene 
[cf. Rosenthal et al., 1989; Vachon and Raney, 1989]. A 
more serious loss of information is incurred by the nonlinear 
distortion induced by motion effects. These result in an 
azimuthal high wave number cutoff of the spectrum. The 
nonlinearities also produce significant shifts of the spectral 
peak and other distortions of the spectrum [Alpers and 
Briining, 1986; Briining et al., 1988, 1990]. 

Most of these limitations, if properly understood, can be 
suitably dealt with if the SAR ocean wave image data are 
assimilated into a wave model. However, this is feasible only 
if there exists an accurate, operationally feasible method of 
computing the SAR image spectrum for a given wave spec- 
trum, together with an associated technique for inverting the 
mapping relation. An essential first step toward the applica- 
tion of SAR wave data in wave models must therefore be the 

derivation of an efficient and accurate method for computing 
the mapping from a surface wave spectrum into a SAR 
surface image spectrum. Subsequently, a method must be 
devised for dealing with the loss of information incurred in 
the forward mapping relation and recovering the wave 
spectrum from the measured SAR image spectrum. Both of 
these questions are addressed in this paper. 

Since the basic imaging mechanisms are known, a straight- 
forward method of solving the forward mapping problem is 
to compute the SAR image for any given instantaneous 
realization of the sea surface pixel-by-pixel for each (mov- 
ing) scattering element of the surface. Monte Carlo compu- 
tations of the spectrum of the SAR image for a given 
two-dimensional wave spectrum using an ensemble of such 
deterministic mapping computations have been carried out 
by Alpers [1983], Alpers et al. [1986], Alpers and Briining 
[1986], Lyzenga [1986], Briining et al. [1988, 1990], and 
Hasselmann et al. [1988]. The transformation of the input 
wave spectrum into the output SAR image spectrum is 
determined in this method by generating an ensemble of 
individual surface wave field realizations for the prescribed 
surface wave spectrum, computing the image pixel-by-pixel 
for each realization, carrying out the Fourier transform for 
each SAR image, and finally forming the SAR image vari- 
ance spectrum by averaging the modulus squared Fourier 
amplitudes over the ensemble of realizations. 

In this paper we follow an alternative approach to develop 
a new, closed nonlinear integral mapping relation directly for 
the spectra. The closed relation circumvents the need for 
deterministic pixel-by-pixel transformation computations of 
individual images and is free of the inherent statistical 

sampling uncertainty of the "brute force" Monte Carlo 
approach. 

Although the transformation is strongly nonlinear, the 
notorious closure problem of strongly nonlinear statistical 
systems does not arise, as the Gaussian property of the input 
wave field is not affected by the nonlinearities. This enables 
the expectation values of all higher-order nonlinear functions 
of the input wave variables occurring in the general relation 
for the output image spectrum to be reduced to closed 
expressions of the input wave spectrum. 

The final integral transformation relation can be expanded 
in a Fourier transform series, which can be rapidly evaluated 
using fast Fourier transform (FFT) algorithms. The expan- 
sion also provides useful insights into the contributions to 
the net imaging process from the separate cross-section 
modulation and surface motion terms, together with their 
various interaction combinations. 

Finally, with the availability of a closed, noise free, 
rapidly computable transformation expression, it is now 
possible to address the inverse problem of deriving the wave 
spectrum from the SAR spectrum. Because of the loss of 
information beyond the azimuthal cutoff and the 180 ø ambi- 
guity, a rigorous inverse mapping solution does not exist. 
However, regularization can be achieved in the usual man- 
ner by minimizing a cost function which penalizes not only 
the deviation between the observed and predicted SAR 
spectrum, but also the deviation between the modified wave 
spectrum and a first-guess wave spectrum. The iterative 
inversion method developed in this paper generally con- 
verges within three or four iterations. The computations 
should be sufficiently rapid for application in an operational 
SAR data assimilation system. 

The paper is structured as follows: section 2 reviews the 
different imaging mechanisms and defines notation. The 
basic nonlinear mapping relation is derived in section 3. 
Section 4 describes the inversion method. The results of 

sections 3 and 4 are illustrated in section 5 for three selected 

SAR images from Seasat, taking as first-guess input spectra 
the wave spectra derived from a global wave hindcast using 
the WAM third generation wave model [WAMDIG, 1988]. 
Section 6, finally, summarizes the principal results and 
conclusions of the study. An appendix describes the gener- 
alization of the pure velocity bunching theory presented in 
section 3 to higher order processes such as acceleration 
smearing. 

2. SAR IMAGING OF OCEAN WAVES 

After many years of debate, a rather wide consensus has 
emerged regarding the principal mechanisms governing the 
imaging of a moving ocean wave surface by a SAR (cf. 
MSR). The backscattered return may be represented gener- 
ally as a superposition of the statistically phase uncorrelated 
returns from a continuous ensemble of small-scale backscat- 

tering surface elements. Although open questions still re- 
main regarding finer details of the backscattering mecha- 
nism, it is generally agreed that in the range of incidence 
angles between 20 ø and 60 ø typical for satellite and most 
research aircraft SAR operations, the backscattered return 
from each surface element (facet) is dominated by Bragg 
scattering from short ripple waves. The ripple waves in turn 
are modulated in their orientation, energy, and motion by 
longer waves, thereby enabling the SAR to image normal 
wind-generated ocean waves. 
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The three basic modulation processes arise through (1) the 
change in the local incidence angle (tilt) of the facet through 
the long wave slope, (2) the hydrodynamic interaction be- 
tween short and long waves, which modulates the energy 
and wave number of the short Bragg scattering waves, and 
(3) the advection of the backscattering facet by the long 
wave orbital velocity, which produces a Doppler shift in the 
return signal and induces an azimuthal displacement of the 
scattering element in the image plane. 

For all processes, it can be assumed that to first order the 
backscattering ripple waves and the modulating ocean waves 
are widely separated in wavelength scale. On the basis of 
this two-scale description, a rather complete theory of SAR 
imaging of a random ocean wave field can be developed 
[Alpers and Rufenach, 1979; Swift and Wilson, 1979; Valen- 
zuela, 1980; Alpers et al., 1981; Raney, 1981; Tucker, 1985; 
MSR]. 

An important feature of the theory is that SAR imaging is 
typically nonlinear. Although the hydrodynamic and tilt 
modulation can usually be approximated as linear processes, 
the so called velocity bunching mechanism associated with 
the orbital motion of the long waves is frequently strongly 
nonlinear, particularly for wind seas and short waves. Ve- 
locity bunching arises through the variations in the azimuthal 
displacements of the imaged backscattering elements in- 
duced by the variations of the orbital velocity within the long 
wave field. The alternate bunching and stretching of the 
apparent scatterer distribution in the image plane produces 
an image of the long waves, even in the hypothetical case 
that the backscattering cross section itself is not modulated. 
When the displacements are small compared with the char- 
acteristic wavelength of the long waves, the mechanism can 
be treated as a linear process, characterized by a velocity 
bunching modulation transfer function (MTF), in analogy 
with the hydrodynamic and tilt MTFs. For larger displace- 
ments, however, the process becomes nonlinear, and when 
the displacements significantly exceed a wavelength (for 
example, for short wind waves traveling in the azimuthal 
direction), the image can become completely smeared out. 

Since the velocity bunching nonlinearity normally strongly 
dominates over any nonlinearities of the tilt or hydrody- 
namic modulation, we shall simply ignore the latter to avoid 
unnecessarily complicating the analysis, although higher 
order tilt and hydrodynamic modulation terms (to the extent 
that they are known) can in principle be readily included [cf. 
Hasselmann et al., 1990]. 

In the following it will be convenient to regard the SAR 
wave image as produced by two consecutive imaging pro- 
cesses: the frozen surface (or real aperture radar, RAR) 
imaging mechanism, governed by the hydrodynamic and tilt 
modulation, and the additional motion effects, which are 
specific to a SAR and do not affect the RAR image. 

where ?r denotes the spatially averaged specific cross sec- 
tion, •o = (gk)2/2 is the gravity wave frequency, and the 
cross-section modulation factor m k and wave amplitude ;k 
are linearly related through the RAR modulation transfer 
function Tk • , 

m k = TkR•'k (3) 

(Note that the MTFs refer here to the wave height compo- 
nents, ;k and not, as often defined, to the wave slope IklCk.) 

A discrete Fourier sum notation has been chosen rather 

than continuous Fourier, or more rigorously, Fourier- 
Stieltjes, integrals, as we shall be considering later deriva- 
tives with respect to individual Fourier components. The 
discrete representation avoids the rather cumbersome func- 
tional derivative notation required for continuous integrals. 
The transition to continuous integrals is carried out at the 
end of the analysis. 

For the general theory presented in the next section, Tff 
need not be further specified. However, for later numerical 
applications, Tk • needs to be evaluated in more detail by 
decomposition into its tilt and hydrodynamic modulation 
components, 

rk •= r•+ rk h (4) 

For a Phillips k -4 high wave number spectrum, the tilt 
MTF can be approximated for large dialectric constants 
(which for seawater are of the order of 80), by the expres- 
sions [cf. Wright, 1968; Lyzenga, 1986] 

Tt(k) = 4ik I cot 0(1 + sin 2 0)-I 0 -< 60 ø 
(5) 

rt(k) = 8ikl(sin 20 )-• 

for vertical polarization (VV) and for horizontal polarization 
(HH), respectively, where 0 is the radar incidence angle and 
k I the component of the incident wave number vector in the 
radar look direction. 

The hydrodynamic MTF can be derived from a two-scale 
model of hydrodynamic short wave-long wave interactions. 
A simple relaxation type source term, characterized by a 
damping factor /x, is normally introduced to describe the 
response of the short waves to the long wave modulation [cf. 
Keller and Wright, 1975]. Feindt [1985] found that a better 
agreement with laboratory measurements could be obtained 
by including an additional feedback term, characterized by a 
complex feedback factor Yr + i Yi, representing the long 
wave modulation of the wind input to the short waves. This 
yields a hydrodynamic MTF 

The Frozen Surface Contribution 

In the framework of linear modulation theory, the surface 
elevation •(r, t) and the variations of the local (specific) 
backscattering cross section a(r, t) sensed by a RAR may 
both be represented as a superposition of propagating wave 
components, 

•'(r, t)= E •'k exp (i[k ß r-wt]) +complexconjugate (1) 
k 

Tkh= •o--ilx (ky 2 ) w 2 +/x 2 (4.5)kw + Yr + i Yi (6) 
Coordinates are chosen such that the x axis points in the 
SAR flight (azimuthal) direction and the y axis forms a 
right-handed coordinate system with x (thus y points in the 
positive or negative look direction I for a left or right looking 
SAR, respectively). 

To first order, both RARs and SARs produce quasi- 
instantaneous images of the surface at a fixed time, t = 0, 
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say. We shall ignore for simplicity the distortion effects due 
to the fact that a side looking radar does not, in fact, take an 
instantaneous snapshot but builds up an image from a 
sequence of consecutively imaged range strips. Thus, mov- 
ing waves are imaged with slightly Doppler displaced "wave 
numbers of encounter." This straightforward geometric ef- 
fect applies equally for a RAR and a SAR and should be 
distinguished from the SAR motion effects summarized in 
the following subsection. It can be important for more slowly 
moving aircraft SARs but is generally negligible for space- 
borne SAR imagery. In the same spirit, we shall ignore 
effects arising from the time delay between individual images 
in multilook images, which can be used, for example, to gain 
information on the wave propagation direction, as men- 
tioned above. 

Since both RARs and SARs produce quasi-instantaneous 
images of the surface at time t = 0, say, the Fourier 
decomposition of the image modulation intensity I(r) (after 
subtraction of the mean) has the form 

I(r) = • Ik exp (ik-r) (7) 
k 

where 

I k = (l_k)* (8) 

The structural difference between the Fourier representa- 
tions (1), (2), and (7) is sometimes overlooked. In contrast to 
the standard two-dimensional Fourier form (7), equations (1) 
and (2) really represent three-dimensional wave number- 
frequency spectra. They can be represented as two- 
dimensional distributions, however, because the frequencies 
are constrained to lie on the two free gravity wave dispersion 
surfaces w = --+ •9k. Thus in (1) and (2) Fourier components 
of opposite sign in k represent different waves traveling in 
opposite directions, and are not related, in contrast to (7), 
where the components are related through (8). (For the same 
reason, (1) and (2) include a second explicit complex conju- 
gate sum, whereas in (7) the complex conjugate wave 
number pairs are already included implicitly in the single 
sum over positive and negative k.) 

For a RAR, the image intensity is directly proportional to 
the specific cross section. Thus if the image modulation is 
normalized by the mean image intensity, we have 

IR(r)-- •r(r, 0)/& - 1 (9) 

and (1)-(3), (7), and (8) yield 

Ik • = TK •; k + (T•-K; -k)* (10) 

We have not explicitly introduced the RAR (SAR) system 
transfer function into (9) and (10). This may be represented 
simply as an additional multiplicative factor in the right-hand 
side of (10). We shall assume in the following that the system 
transfer function has already been incorporated in the defi- 
nition of Tk • . 

We have also not considered clutter effects. To first order, 
these may be represented simply as an additional clutter 
noise spectrum superimposed on the image spectrum con- 
sidered here [cf. Alpers and Hasselmann, 1982]. 

In terms of the ocean wave and RAR image variance 
spectra Fk, P k •, defined by 

k k 

= = (Ik Ik ) (12) 
k k 

where the angle brackets denote ensemble means, the linear 
relation (10) yields 

1 R2 R 2 
= T_ k F PK • •{[TKI FK+I -k} (13) 

Motion Effects 

We consider now the modification of the frozen image 
induced by the surface motion. This is normally described by 
two effects: the azimuthal displacement s c of the apparent 
position of a backscattering element in the image plane, and 
an azimuthal smearing or broadening Ax of the image of the 
(theoretically infinitesimal) backscattering element. 

According to standard SAR imaging theory, the azimuthal 
displacement s c of the backscattering element is proportional 
to the range component v of the long wave orbital velocity 
with which the backscattering element is advected, 

= t3v 

where 

/3 = (slant range p)/(SAR platform velocity U) (15) 

,,c,e as the time average 
over the period during which the scattering element is 
viewed by the SAR. Normally, the SAR illumination time is 
small compared with the wave period, so that to first order, 
v may be set equal to the instantaneous orbital velocity in the 
center of the viewing window. 

From classical surface wave theory [Lamb, 1932], 

v= Z T•rk exp (ikr) + c.c. (16) 
k 

where the range velocity transfer function is given by 

( kl ) T• = -to sin 0 I-• + i cos 0 (17) 
We have neglected for simplicity the small additional 

Doppler shift due to the finite phase velocity of the Bragg 
scattering ripples. This can be readily included in the theory 
but encumbers the notation. We shall also neglect the 
Doppler shifts due to the dynamics of the ripple waves, 
which are smaller than the phase velocity terms by another 
order of magnitude, and would appear formally in a smearing 
term (cf. MSR). 

The smearing term Ax is normally represented as the sum 
of a second-order acceleration term and a velocity spread 
term (cf. MSR). 

The acceleration smearing arises through the variation of 
the instantaneous orbital velocity during the SAR viewing 
interval. This yields slightly different effective displacements 
s c for the beginning and end of the SAR illumination period. 
The term is generally an order of magnitude smaller than the 
velocity spread term [cf. Alpers and Rufenach, 1979; Alpers 
et al., 1981; MSR]. To simplify the presentation, it will not 
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be considered in this section. However, the extension of the 
theory to include this effect is basically straightforward and 
is presented in the appendix. 

The velocity spread term is identical in physical origin to 
the azimuthal displacement term. It is generally introduced 
as a separate term primarily for conceptual purposes [cf. 
Tucker, 1985; MSR], although the distinction also has im- 
portant practical implications for Monte Carlo simulations. 
In the present theory, however, there is no need to treat the 
velocity spread term separately from the general velocity 
bunching formalism. The term has nevertheless played some 
role in the discussion of the azimuthal cutoff of SAR images, 
which will be considered in the following section, and is 
therefore briefly described here. 

The velocity spread term arises through the introduction 
of a second separation scale, the SAR resolution scale LSAR, 
into the SAR imaging model. The scale LSAR is typically of 
order 20 m and is therefore an order of magnitude larger than 

the basic separation scale L hy d of the standard hydrody- 
namic interaction and Bragg backscattering two-scale 
model. The scale L hy d lies between the wavelength of the 
Bragg scattering ripples and the long waves and is thus 
generally of order 1 m. Since the SAR is unable to distin- 
guish between individual backscattering facets within a SAR 
resolution cell, the entire ensemble of backscattering facets 
within a resolution cell is mapped into a single image pixel. 
The mean azimuthal displacement of the pixel is given by 
• = tiff, where ff is the mean orbital velocity of the cell facet 
ensemble. The deviations • - • of the individual facet 
displacements relative to this mean value then produce the 
"velocity spread" smearing of the image of the resolution 
cell. 

In Monte Carlo simulations, this subresolution smearing 
can be treated as a statistical process which can be repre- 
sented simply as an effective degradation of the SAR system 
MTF. The long wave spectrum can then be subdivided at the 
scale L SAR, and only waves with scales greater than L SA R 
need be included explicitly in the simulation. The mapping 
computations can therefore be carried out at the relatively 
coarse resolution of the SAR rather than at the much finer 

resolution scale L hy d of the backscattering facets. 
In the present analysis, however, the subdivision of the 

wave spectrum at the SAR separation scale L SAR is unnec- 
essary, since the theory can be carried through uniformly up 
to the high wave number cutoff (Lhyd) -1 of the backscatter- 
ing-hydrodynamic two-scale model. We may therefore re- 
gard the SAR image directly as the superposition of the 
(statistically independent) images of all subresolution scale 
backscattering facets, without clustering these elements 
together to larger entities of the dimension of the SAR 
resolution cell. 

The relation between the SAR and RAR images in the 
present "pure velocity bunching" model is obtained by 
simply mapping each facet at position r' into its correspond- 
ing position r = r' + sr-(r ') in the image plane, 

iS(r) = f [R(r')8[r- r'- •(r')] dr' (18) 
where • = a•, a denotes the unit vector in the azimuthal (x) 
direction, and 

/s'R(r) = 1 + IS'n(r) (19) 
is the total normalized image intensity. 

Integrating out the 8 function, (18) yields 

iS(r) = {[n(r') 
dr • 

r' = r - lj(r') 
The Jakobian velocity bunching factor 

dr • 
= 1+ 

d•'(r') 
dr • 

-1 

(20) 

(21) 

represents the variation in the effective density of backscat- 
tering elements in the image plane due to the compression or 
stretching of the originally homogeneous distribution of 
facets. As pointed out, this enables the S AR to image ocean 
waves even in the hypothetical situation in which the RAR 
transfer function vanishes, i.e., I•(r) = 0. 

For the case 

<< 1 (22) 

(21) can be expanded in a power series and truncated after 
the linear term. Equations (20) and (21) yield then for the 
SAR image amplitude spectrum, applying (14) and (16), 

I• s If + [T•,b•'k + ( •b ,] = T_k•_k) (23) 

where the velocity bunching modulation transfer function 

T• b = - i l3 kx T • 

=-fikxw(COS 0- i sin 0 kl/k) 

Thus in the linear approximation 

Ik s = Tk sck + (TS-kC-k)* 

(24) 

(25) 

and the image variance spectrum is given by 

Pt s = irsl2 Fk s 2 + Ir-kl 
F_ k 

(26) 

with the net SAR imaging modulation transfer function 

Tk s = Tk • + T• b (27) 

The condition (22) is generally satisfied for swell. How- 
ever, in many situations, in particular for short wind seas, 
the inequality does not hold or is even reversed [cf. MSR; 
Briining et al., 1990]. Moreover, even for sea states for 
which (22) applies in a spectrally averaged sense, the ine- 
quality breaks down for short azimuthally propagating 
waves. Thus in all cases, (18) and (20) represent a strongly 
nonlinear transformation either for all or at least part of the 
spectrum, and we must address the general problem of 
deriving the fully nonlinear transformation relation between 
the surface wave spectrum and the SAR image spectrum. 

3. GENERAL NONLINEAR MAPPING RELATION 

To determine the dependence of the SAR image Fourier 
components I• on the wave Fourier components in the 
general nonlinear case, we first apply a Fourier transform to 
the basic mapping relation (20): 
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1/ { Ik s = • dr exp (-ik. r) /R(r') 
dr • 

r' = r - •(r') 
1/ - dr'/R(r ') exp {-ik. Jr'+ e(r')]} 

A 
(28) 

Here A denotes the finite rectangular area of the sea surface 
corresponding to the discrete Fourier representation (in the 
final expression, A -• o•). 

Substituting the Fourier representation (7), (10) for I • into 
(28), we obtain 

Ik s = • dr' 1 + •'• (Tk •, C •' + T-k, C *-•) 
k' 

ß exp ik'. r'}exp [-ik. r' - ik. l•(r')] 
This yields for the SAR image variance spectrum 

(29) 

ß exp {-ik' (r' - r") - ik. [½(r') - ½(r")]) 

R* ik' ß r' / ß 1 + • (Tk•,Ck, + T_K,C*_K,)e 
k' 

ß 1 + Z (Tk" C + T_k,C_k,)e (30) 
k" 

The nonlinearity of this integral expression appears solely 
in the factor 

N k = exp {-ik. [½(r') - ½(r")]) (31) 

The term occurs in the following mean product combina- 
tions: 

E•, = (Nk,' Ok') Ek b' = (Nk'' C*-k') (32) 

E•,•,, = (N k ß Ok'Ok") E•'bk" = (Nk' Ck'C*-k") (33) 

ba ' *---k' Ek'k" = (Nk ; •'k") Ekb'bk" = (Nk' ;*-k';*-k") (34) 
To evaluate these expressions, we decompose N k into a 

sum over a set of terms each of which is composed of two 
statistically independent factoi's. The first factor consists of 
an infinitesimal expression containing the specific wave 
components which appear in the products (32)-(34). The 
second factor contains the remaining components of the 
wave field. Since for a Gaussian wave field all wave compo- 
nents are statistically independent, the second factor in each 
term is statistically independent of the first factor, and the 
mean products (32)-(34) can therefore be immediately eval- 
uated. 

The Fourier representation of the azimuthal displacement 
difference 

/Xs• = s•(r ') - s•(r ") (35) 

appearing in the exponent of N k may be written in the form 

A• = Z (Kk"'•k'" + C.C.) (36) 
kttt 

where 

Kk .... [3r•.,(eik .... r'_ eik .... r") (37) 

(cf. (14), (16)). Splitting off from the sum (36) the subset S of 
infinitesimal wave components which appear in the products 
(32)-(34), and denoting the residual sum Z' by R, we have 

A• = (K•,,•'•,, + K•,,,•'•,,, + K_k,•_ k, + K_k,,•k,, + C.C) 

+ Z' (Kk'"•k"' + C.C) 
k m 

= S + R (38) 

Since S is infinitesimal, we may expand N k = exp 
(-ikxAO in a Taylor series 

( s2 ) Nk = e -it•xR 1 - ikxS - kx 2 -•-+'" (39) 
The rest sum R contains only wave components which are 

statistically independent of the wave component factors X 
appearing in (32)-(34). Thus the expectation values in these 
expressions may be factorized in the form 

{N k ß X) = (e -il•xR) (X) - ikx(SX ) - kx 2 (40) 

The first term (X) in (40) vanishes, since (Srk,) = 0, (•'k,•'k,,) 
= O, (•'k,f*-k,,) = 0 (except for the subset k' + k" = 0, which 
has zero integral measure in the limit of a continuous 
spectrum). The second term (SX) is proportional to the 
wave spectrum, while the third term (S2X) represents a 
quadratic wave spectral product. Since X is either linear (32) 
or quadratic ((33) and (34)), only the first two terms in the 
expansion (39) contribute to (40). (In the general theory 
including acceleration smearing presented in the appendix, 
however, the full expansion (39) is needed.) 

The first factor (e -ikxR ) in (40) may now be replaced 
again by (Nk), since the two expressions differ only by the 
negligible infinitesimal components S. The term can be 
evaluated by again making use of the Gaussian property of 
the wave field. Since/x• is a linear function of the wave field, 
the variable is normally distributed, and one obtains by 
direct integration over the probability distribution 

(Nk) = (exp (-ikxA•)) = exp (-kx2(As•2)/2) (41) 
From (36), we have further 

{As •2) = 2/3 2 f Ir•,l 2 F(k)[1 -cos k(r'-r"] dk 
= 2s •' 211 - {v 2) -lf•(r' - r")] 

where 

(42) 

fø(r) = (v(x + r)v(x))= / F(k)lT•,12e ik'r dk 
is the orbital velocity covariance function and 

(43) 
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•,2= {•2)= •2{lv2 ) = iT•,i 2 F(k) dk (44) 
is the mean square azimuthal displacement of a scattering 
element. We have introduced at this point the continuous 
spectral notation 

FK 

F(K) = •-• = (2•r)-:AF k (45) 
After some straightforward algebra to evaluate the mean 

products within the parentheses in (40), equation (30) yields, 
together with (42)-(44), the closed nonlinear spectral trans- 
form expression 

es(k) = (2•)-2 exp [-k•' 2] 

ß f dre -ik'r exp [kx2• ' 2{v 2)-lfV(r)] 
x {1 + f•(r) + ikx13[fRv(r) - fRv(--r)] 

+ (kxfi)2[fRv(r) -- fRv(0)][fRv(--r ) -- fRv(0)] } 

(46) 

where ps(k) = pkS/Ak and 

fR(r) = (IR(x + r)I•(x)) 

if {r(k)l rkl 2 
f•V(r) = (I•(x + r)v(x)) 

+ F(-k)lT•_kl2}e ik'r dk (47) 

if .r 2 {F(k)Tk•(T•)* + F(-k)(T•-k)*TVk}eik dk (48) 
represent the autovariance function of the RAR image inten- 
sity I•(x) and the covariance function of I•(x) and v(x), 
respectively. 

Apart from the second exponential factor, the integral (46) 
has the form of a Fourier transform. It can be reduced to a 

series of Fourier transforms by expanding the exponential in 
a Taylor series, 

exp [k•2• ' 2{V2)-lfv(r)] 

= [1 + k•2s •' 2{V2) -lfV(r) +'' '] (49) 

This yields a spectral series expansion of the form 

o• 2n 

ps(k) = exp (-kx2• ' 2) Z Z (kx•)mpnSm(k) (50) 
n=l m=2n-2 

where the index n indicates the nonlinearity order with 
respect to the input wave spectrum and the index rn the 
order with respect to the velocity bunching parameter /3 
(which is seen to occur always in combination with the 
azimuthal wave number kx). Explicitly, the spectral expan- 
sion terms are given by 

pS2n = •n Ifv(r) n} n, [ n! (51) 

pS _ l] {i[fRV(r) - f•V(-r)]fV(r)n-1.} n,2n - I -- n ( Yl -- 1)! 
(52) 

P n,2n - 2 - (n- 1)! 
• fR(r) fV(r) n-I 

1 
+ [ f•'(r) -- f•'(0)] 

(n - 2)! 

ß [f•(-r) -fRv(o)]fr(r)n- 2 (53) 

where •'•n is the Fourier transform operator 

fin--(2rr) -2 f dr exp (-ik. r) (54) 
(for the integers 0, -1 the factorial function is defined as 
0! = 1 and [(-1)!] -• = 0). 

We have left out a term P0,0 in the sum representing an 
irrelevant 8 function contribution at k = 0 associated with 
the mean image intensity. 

An expansion with respect to nonlinearity only can be 
obtained by summing over the velocity bunching index rn for 
fixed nonlinearity order n, 

ps(k) = exp (-kx2sC'2)(p•s(k)+ p2s(k) 

+.''+pnS(k) +''') (55) 

The linear term P •s is found to be identical (as it must be) 
with the linear SAR spectrum of (26). 

It should be noted that the terms pnS(k) in (55) do not 
represent the direct expansion of p S(k) in powers of the 
input wave spectrum, as the common (nonlinear) azimuthal 
cutoff factor exp (-kx 2 s c' 2) has been taken out of the sum. 
This is an important feature of the theory. 

The first term in the expansion (55) yields the quasi-linear 
approximation 

pqS/(k) = exp (-kx2s c' 2)p•s(k) (56) 
The significance of the azimuthal cutoff factor is well 

illustrated by this term. The approximation P •s (k) of purely 
linear SAR imaging theory, without the cutoff factor, always 
breaks down for high azimuthal wave numbers, even for 
very low waves, since real wave spectra (and therefore also 
the computed linear SAR image spectra) fall off as a power 
law at high wave numbers, rather than exponentially, as 
required by (55). In contrast, the lowest order quasi-linear 
approximation, including the azimuthal cutoff factor, repre- 
sents a uniformly valid approximation for the entire spec- 
trum. 

In a hindcast study of 34 Seasat SAR spectra covering a 
wide variety of sea states (C. Brfining et al., manuscript in 
preparation, 1991), it was found that the quasi-linear form 
(56) yielded an acceptable first-order description of the SAR 
spectrum for about half of the cases analyzed and captured 
the qualitative features of the spectrum (although with 
displaced peaks, etc.) in all cases. The robustness of the 
quasi-linear approximation will be used in the next section to 
develop an iterative scheme for inverting the fully nonlinear 
transformation (55). 

The decomposition of the quasMinear spectrum p qS l into 
its contributions of different velocity bunching order yields 
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Fig. 1. Orientations of the tilt, hydrodynamic, velocity bunch- 
ing, and net RAR and SAR MTFs in the complex plane for a given 
wave component and different sign combinations of the SAR flight 
and look directions: (a) kx > O, ky > O, kt > 0 (left looking SAR); 
(b) change in sign of flight direction (kx < O, ky < O, kt < 0); (c, 
d) same as Figures la and lb for a right looking SAR (kt = -ky). 

s R D int P ql = P ql + $ ql + P •l t' (57) 

R 
where the pure RAR spectrum Pql, the pure quasi-linear 
velocity bunching spectrum P•, and the quasi-linear inter- 

r• int ference spectral term .qt are given by 

piq•t• = exp( kx2• (kxl3)p•Sl 

Applying (26) and (27), this may be written 

(58) 

Fk F-k 
ß = ' + H-• (59) e•l Hi 2 2 

(for any index R, int, vb, or S), where 

IHf l ITkRI 2 
Hiknt[ R T•b* R* n[o[ ½xp (T. + T. To) - iT•,0l 2 (60) 

L-SJ IT• 2 
The orientations in the complex plane of the various MTFs 

which determine the filter factors H•' are indicated in Figure 
1. The MTFs apply for a given surface wave component and 
various sign combinations of the SAR look and flight direc- 
tions. Figure l a applies to a wave component traveling in 
the positive quadrant of the xy plane (kx > 0, 
ky > 0) and a left looking SAR (kl = ky). Figure lb applies 
for the same left looking SAR viewing the same wave 
component but for a SAR platform flying in the opposite 
direction (kx < 0, ky = k I (0). Figures lc and ld 
co•espond to Figures l a and lb, respectively, for a right 
looking SAR (kl = -ky). The resultant SAR MTF is seen to 

be strongly dependent on the orientation of the SAR look 
and flight directions. This has been confirmed by aircraft 
SAR measurements [e.g., Hasselmann et al., 1989]. 

The strong dependence on the viewing geometry is at first 
sight perhaps surprising, since the moduli of the individual 
velocity bunching, tilt, and hydrodynamic transfer functions 
are invariant with respect to the four viewing combinations 
shown in Figure 1. The modulus of the net RAR transfer 
function is also only weakly dependent on the look and flight 
direction (through the imaginary component of the hydrody- 
namic MTF, which, in contrast to the imaginary tilt MTF, is 
invariant with respect to the look and flight direction). 

Since the moduli of the separate filter functions Hk • and 
H• b for pure RAR and pure velocity bunching imaging, 
respectively, are approximately or exactly independent of 
the sign combinations of the viewing geometry, the strong 
viewing geometry dependence of the net SAR filter function, 

= •_/int Hk s Hk R nt-'•'•k nt- (61) 

must come about through the interference filter function 
int 
k ß 

This is illustrated by the plots of the four filter functions 
Hk R, Hik nt, H• • and Hk s shown in Figure 2. The cutoff scale 

k cutoff - 1 - 1 was chosen as s e' = 70 m, or .-x = (s v) = 0.014 m , 
corresponding to the Seasat value/3 = 113.5 and a Pierson- 
Moskowitz [Pierson and Moskowitz, 1964] fully developed 
wind sea spectrum for a wind speed at 10 m height of 10 m/s 
((V2) 1/2 = 0.62 m/s). The damping factor in Tk hyd (equation 
(6)) was set at tx = 0.5 s -1 and no wind input modulation 
terms were included (as in the Seasat computations in 
section 5). 

The filter function H• • is seen to be exactly symmetrical 
with respect to a change in sign of kx or ky, the filter function 
Hk • is exactly symmetrical with respect to a change in sign of 
kx and approximately symmetrical with respect to a change 
in sign of ky, while the filter function H• nt is exactly 
antisymmetrical'with respect to the transformation ky 
--ky. The net filter function Hk s is therefore approximately 
symmetrical with respect to a change in sign of ky, but has 
pronounced asymmetries with respect to the transformation 

The general structures of the filter functions shown in 
Figure 2 are independent of the parameters chosen. It will be 
useful to keep Figure 2 in mind later in discussing the origin 
of the various distortions and asymmetries found in com- 
puted and observed SAR image spectra. 

As pointed out, the common azimuthal cutoff factor ap- 
plies not only to the quasi-linear spectral terms but also to 
the entire series expansion (50) or (55). This has a useful 
practical implication. The azimuthal cutoff of an observed 
SAR spectrum is usually a relatively well-defined feature. Its 
experimental determination, independent of the details of 
the mapping process, yields an important integral property 
of the wave spectrum, the mean square orbital velocity (cf. 
(44)). 

Beal et al. [1983], Lyzenga [1986], and Monaldo and 
Lyzenga [1986, 1988] have verified experimentally the pro- 
portionality of the azimuthal cutoff scale to the rms orbital 
range velocity component, or some related integral property 
of the wave field. Previously, this finding has been difficult to 
interpret theoretically. The SAR two-scale model using the 
SAR resolution scale as separation scale yields a cutoff 
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factor due to velocity spreading which is determined by the 
rms orbital velocity in the subresolution short wave spectral 
band between the SAR resolution scale and the facet scale. 

Tucker [1985] computed the contribution of this velocity 
spread smearing and obtained an azimuthal cutoff factor 
which was indeed identical to our form, but with •' replaced 
by the rms azimuthal displacement (the "velocity spread") 
of only the short subresolution scale waves. The present 
closed theory implies that the nonlinear velocity bunching 
mechanism in the "deterministic" wave number region, 
below the SAR resolution wave number, not only distorts 
the spectrum in this region, but must also contribute to the 
azimuthal cutoff. When this effect is combined with the 

velocity spread term, one obtains the simple result that the 
net azimuthal filtering can be represented by a common 
Gaussian cutoff factor which acts on all terms in the nonlin- 

ear spectral expansion. 
We conclude this section by summarizing again the basic 

three computational steps needed to determine the SAR 
spectrum according to (50): 

1. Computation of the three autovariance and covariance 
functionsfV(r), fR (r), andfRV(r) using the Fourier transform 
relations (43), (47), and (48). 

2. Computation of the covariance product expressions 
appearing in (51)-(53). 

3. Computation of the Fourier transforms (51)-(53). If 
only the final SAR spectrum is of interest, without regard for 
the separate contributions from different nonlinearity order, 
the covariance products of different nonlinearity order n for 
given velocity bunching order rn (power of /3kx) can be 
collected together and Fourier transformed in a single oper- 
ation. 

Since only Fourier transforms are involved, the computa- 
tions are rather fast (less than 1 s on a CRAY-2, for 128 x 
128 pixel scene using full FFT representations). Good con- 
vergence was normally attained even for strongly nonlinear 
spectra with a truncation at nonlinearity order n -- 6. The 
higher order terms contribute mainly to the resolution of the 
(normally not very important) details near the azimuthal 
cutoff (cf. section 5). 
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4. INVERSION 

A unique formal inversion of the forward mapping relation 
cannot exist in view of the 180 ø ambiguity of the SAR image 
and the loss of information beyond the azimuthal cutoff. The 
standard procedure for resolving such underdetermined in- 
version problems is to introduce a regularization term which 
makes use of additional information from a first-guess wave 
spectrum P(k). 

Following this approach, we define the optimal fit wave 
spectrum F(k) as the spectrum which minimizes the cost 
function 

J = [P(k)- P(k)] 2 dk +/x L • •- P(k)] dk 

(62) 

where P(k), P(k) are the observed and fitted SAR spectra, 
respectively (the index S has been dropped, as there is now 
no need to distinguish between the SAR and RAR spec- 
trum), /x is some suitably chosen weight reflecting the 
relative confidence ascribed to the observed SAR spectrum 
and the first-guess wave spectrum (which will normally be 
provided by a wave model), and a small positive constant B 
has been introduced into the normalizing denominator in the 
second integral to avoid numerical infinities for P(k) = 0 
(formally, infinities in normalizing factors are acceptable, as 
they merely express an infinitely hard side condition). 

Equation (62) can be generalized by introducing wave 
number dependent weights within the integrals or a nondi- 
agonal metric. The rationale for such generalizations is 
normally provided by maximum likelihood considerations. 
Since the required input for these generalizations (the error 
covariance matrix for the combined data set P(k), P(k)) 
cannot be readily estimated in our case, these options were 
not further pursued. 

However, to enhance the agreement of the computed and 
observed SAR spectra in the neighborhood of the SAR 
spectral peaks, we considered also the alternative cost 
function 

J'= • [P(k)- P(k)]2p(k) dk 
/ [F(k) - P(k)]} 2 dk + Ix f [ •; •(--• (63) 

with an additional factor P(k) in the first integral. It should 
be stressed that at this time both cost functions (62) and (63) 
should be regarded only as rather arbitrarily selected candi- 
dates which will need to be further tested and possibly 
modified in more extensive studies. 

The solution of the general nonlinear variational problem 

•J 
• = 0 (64) 
/•F(k) 

was obtained by an iterative technique which made use of 
the approximate quasi-linear mapping relation (56), as fol- 
lows. 

Starting from a first estimate Fl(k) = P(k), let Fn(k), 
p n(k) represent the approximate solution after n iteration 
steps, where pn(k) is the associated SAR spectrum for the 

wave spectrum Fn(k) in accordance with the fully nonlinear 
mapping relation (55), 

pn__ Mnl(F n) (65) 

Construct now an improved solution 

F n + 1 = F n + AF n (66) 

by assuming, in a first step, that the increment AF n leads to 
a modified SAR spectrum 

pn + 1 = pn + Apn (67) 

for which the change AP n is related to AF n through the 
approximate quasi-linear transformation (equations (56) and 
(26)), 

1 

= -kx• n [[rs(k)12AFn(k) Apn(k) • exp ( 2 ,2) 
+ IrS(-k)12AFn(-k)] (68) 

Substituting these new estimates for F, P into (62), one 
obtains 

j = • [Apn_ (p _ pn)]2 dk 
+ tx• [AF n- (P- Fn)] 2 dk (69) 

The solution of the variational equations for J with respect to 
AF n , with AP n given by (68), can be immediately found: 

[A_k(Wk•P + /x•F k) -Bk(W_k•p + /x•F_k)] 

AFn = [A KA -k -- e k 2] 

where 

/•P = P(k) - pn(k) = P(-k) - Pn(-k) 

(70) 

(71) 

•F k = P(k) - Fn(k) (72) 

A k = Wk 2 + 2/2 (73) 

B k = W kW_ k (74) 

and 

Wk- ITS(k)l 2 exp (-kx2s c'2) (75) 

Having determined AF n and the new wave spectrum 
F n+l , the iteration step is then completed by computing the 
associated SAR spectrum, using the fully nonlinear transfor- 
mation relation pn+ 1 = Mnl(Fn+l). 

The technique can be applied equally well to the form (63). 
In computing the perturbations AF n, AP n, the additional 
factor P in the first integral in J is set equal in this case to P n. 

The iteration scheme was found to converge in all cases 
studied, including cases with strongly nonlinear and poor 
first guesses, provided/x was not chosen too small, namely, 
/x >•/x 0, where 

/z o = 0.1Pma x (76) 
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In most applications, we chose Ix = Ix0. The constant B was 
set at 0.01Pma x. 

In the Seasat cases discussed in the following section, the 
SAR calibration was not known. This can be readily accom- 
modated in the inversion formalism by including the depen- 
dence on the unknown calibration factor explicitly in the 
expression for J and minimizing the cost function simulta- 
neously with respect to both F and the unknown calibration 
factor. The minimization with respect to the calibration 
factor can be given analytically and was carried out after 
each iteration step. 

Other unknown or poorly known parameters aj (for ex- 
ample, in the hydrodynamic MTF) can be treated in the same 

way. If first-guess estimates •j of these parameters exist, 
deviations from these values can be penalized by adding 
standard penalty terms to J of the form Zj tzj(aj -- •j)2. 

The basic inversion formalism can be generalized also in 
other ways. In practice, it was found that a straightforward 
application of the inversion method just described yielded 
wave spectra which successfully reproduced the observed 
SAR spectra, but were nonetheless clearly unrealistic. The 
inversion modified the wave spectrum within the wave number 
region kxl < k cutoff containing valid SAR information but left X x ' 

the first-guess wave spectrum unchanged in the high azimuthal 
wave number region beyond the cutoff. Although entirely 
consistent with the intended operation of the cost function, the 
resultant spectra exhibited dislocations along the transitional 
azimuthal cutoff bands which were obviously spurious. 

The origin of these problems is clearly the lack of dynam- 
ical constraints in the inversion formalism. In reality, the 
development of dislocated spectra is prevented by nonlinear 
wave-wave interactions, which maintain an approximately 
universal spectral shape in the wind sea region of the 
spectrum [cf. Hasselmann et al., 1973, 1976; Komen et al., 
1984]. The difficulty would not arise if the inversion tech- 
nique were imbedded in a general wind and wave data 
assimilation scheme in which all modifications of the wave 

spectrum were attributed to modifications in the wind field. 
These would automatically ensure dynamically consistent 
changes in the wave spectrum through the application of a 
wave model. This is the ultimate goal of the assimilation 
program of the Wave Modeling (WAM) Group. However, 
for the present intermediate level of inversion, without direct 
coupling to the wind field, some form of dynamical con- 
straints are needed. These were introduced using the follow- 
ing simple two-stage procedure. 

As the high wave number region of the spectra is strongly 
coupled to lower wave numbers through the nonlinear 
transfer, we restricted the modification of the spectrum in 
the first inversion stage to transformations which apply 
uniformly to the entire wave spectrum. The simplest such 
transformation is a rotation tb0 in the wave number plane 
combined with scale changes A, B in the energy and wave 
number, respectively. 

where 

F' (k) = AF(k') (77) 

k•, = B(kx cos tb0- ky sin tb0) 

k} = B(kx sin tb0 + my COS qb0) 
(78) 

After minimizing the cost function with respect to the 
parameters tb0, A, B, the original minimization procedure 
without constraints was then applied in a second stage. 

The first stage normally yielded a close fit to the SAR 
spectral peak, while ensuring continuity of the overall spec- 
tral distribution. The second stage then provided further 
fine-scale adjustments within the azimuthal wave number 
band for which detailed SAR information was available. 

Since a reasonable first-order fit was achieved already in the 
first stage, the second stage no longer produced significant 
dislocations in the azimuthal cutoff region. 

As pointed out earlier, the energy scale parameter A can 
be determined rather reliably (for given B, tb0) from the 
observed azimuthal cutoff scale •", which is independent of 
the details of the SAR spectrum. In practice, the least 
squares minimization routine was therefore applied in the 
first stage only to the parameters tb0 and B, while A was 
determined explicitly from tb0, B, and •" using the relation 
(44) for the azimuthal cutoff scale. 

5. SOME EXAMPLES FROM SEASAT 

The computation of the forward transformation relation is 
illustrated in Figure 3 for a typical Seasat case. The case was 
selected together with the two other cases discussed in this 
section from a larger set of SAR image spectra analyzed in 
the course of a wave hindcast study using the WAM third- 
generation wave model [WAMDIG, 1988; Hasselmann et 
al., 1988]. 

The individual panels show the hindcast WAM wave 
spectrum, the SAR spectrum computed from the WAM 
spectrum, and some typical spectral terms of the nonlinear 
spectral expansion. The case is only weakly nonlinear, so 
that only little of the azimuthally traveling short wave energy 
is lost in the SAR image, while most of the wave energy 
propagating in the range direction is retained. The quasi- 
linear approximation, consisting of the sum of the first three 
quasi-linear contributions is seen to yield a fairly good 
approximation of the fully nonlinear image. 

The splitting of the single-wave spectral peak into two 
peaks in the SAR image spectrum is a common feature in 
SAR images of predominantly range traveling waves. It 
arises because the velocity bunching MTF, which normally 
dominates over the RAR MTF, vanishes in the range direc- 
tion (cf. section 3 and Figure 2). 

The asymmetry of the SAR response about the look 
direction due to the interference term (cf. Figure 2) is evident 
in the quasi-linear and fully nonlinear SAR spectra and in the 
interference term itself. In general, all terms with odd 
powers of (kx13) contribute to the asymmetry. As pointed 
out in section 3, the asymmetry is dependent on the look and 
flight directions, so that different SAR image spectra are 
obtained, for example, if the same wave field is viewed from 
the upwind or downwind direction [Hasselmann et al., 
1989]. In comparing Figures 2 and 3, it should be noted that 
the SAR spectrum is formed from both positive and negative 
k contributions (cf. (26)). Thus in contrast to the filter 
functions of Figure 2, which apply for only one wave 
component, the spectra of Figure 3 are symmetrical with 
respect to the transformation k --> -k. 

The higher order terms in the expansion are proportional 
to the product of a high power of (kx13) with the exponential 
azimuthal cutoff factor and are therefore normally strongly 
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Fig. 3. Hindcast wave spectrum and computed (hindcast) SAR spectra for August 21,0740, at 57øN, 9øW (top row). 
Also shown are various spectral expansion terms (see text). The x axis points in the satellite flight direction, and the 
y axis in the negative look direction (right looking SAR). 

peaked along the azimuthal cutoff band. These terms do not The three cases were selected to illustrate different de- 
contribute significantly to the structure of the SAR spectrum grees of nonlinearity and different directions of wave prop- 
in the neighborhood of the spectral peak, so that the effective agation relative to the SAR look direction. The first case is 
convergence of the series in the main part of the spectrum is' weakly nonlinear, with predominantly range propagating 
rather rapid (see also Figure 5, discussed below). 

Figure 4 shows a comparison of the observed SAR spectra 
and the computed wave and SAR spectra before and after 
inversion for the three Seasat cases. Through the combined 
effects of the azimuthal cutoff, the strongly varying modula- 
tion transfer functions (cf. Figure 2) and the nonlinear 
distortions, the observed and computed SAR spectra (first 
and third columns, respectively) show relatively little simi- 
larity with the hindcast first-guess wave spectra (second 
column). The first-guess SAR spectra computed from the 
hindcast wave spectra reproduce the azimuthally banded 
structure of the observed SAR spectra but nonetheless still 
show significant deviations. 

The fourth and fifth columns show the best fit wave 

spectra and the associated computed SAR spectra derived 
by the inversion method. The agreement between the best fit 
and observed SAR spectra is now seen to be markedly 
improved. The parameters of the hydrodynamic MTF (6) 
were chosen in all cases as/x = 0.5 s -• and 7 = 0. This is 
consistent with field and laboratory measurements [cf. 
Keller and Wright, 1975; Plant et al., 1983; Feindt et al., 
1986; Schr6ter et al., 1986], but no attempt was made to 
optimize these parameters. The inversions were based on 
the peak-enhanced cost function (63). 

waves. The second case is moderately nonlinear and repre- 
sents a wave field propagating at an angle between the range 
and azimuthal directions. The third case, finally, is strongly 
nonlinear and was chosen also as an example of a more 
complex sea state, consisting of a superposition of swell and 
wind sea components propagating at nearly 90 ø relative to 
one another. The azimuthally propagating major swell com- 
ponent is seen to be almost entirely lost due to the azimuthal 
cutoff. 

The individual modifications introduced into the best fit 

wave spectra through the two-step inversion procedure 
(summarized in Table 1) can be clearly recognized. 

1. The spectra have been rotated and the wave number 
scales adjusted to reproduce the positions of the SAR 
spectral peaks. 

2. The energy scales have been adjusted (together with 
the wave number scales) to reproduce the observed azi- 
muthal cutoffs. This effect is evident in the changed azi- 
muthal limits between the first-guess and best fit SAR 
spectra (columns 3 and 5 of Figure 4). 

3. The subsequent modifications of the detailed struc- 
tures of the spectra, acting separately on all components of 
the wave spectra, have resulted mainly in some sharpening 
of the spectral peaks, which were generally too broad in the 
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Fig. 4. Observed Seasat SAR spectrum, first-guess (hindcast) wave spectrum, computed first-guess (hindcast) SAR 
spectrum, and best fit wave and SAR spectra for the case shown in Figure 3 (top row), for August 19, 0620, 60øN, 6øW 
(second row) and for September 30, 0000, 60øN, 9øW (bottom row). 

original wave spectra. (The finite 30 ø resolution of the WAM 
model, together with the discrete interaction approximation 
of the nonlinear transfer source function [cf. S. Hasselmann 
et al., 1985], are known to result in somewhat too broad 
peaks in the model spectra.) 

The third example illustrates a basic limitation of the 
present simplified approach, in which a single linear coordi- 
nate transformation is applied to the entire spectrum in the 
first stage of the inversion. The coordinate transformation 
was governed in this case by the wind sea region of the 
spectrum, represented by the broad higher frequency peak in 
the range direction. The peak needed to be rotated about 30 ø 
to the left to achieve coincidence between the computed and 
observed SAR peaks. However, the rotation modified also 
the azimuthally propagating swell components of the original 
hindcast wave spectrum, although the swell hindcast was 
presumably not directly affected by errors in the wind sea 
hindcast. This deficiency could in principle have been over- 
come by considering a more sophisticated class of transfor- 
mations. However, this was not pursued further, since, as 
has been pointed out, it is anticipated that the present 

two-stage inversion procedure will be ultimately superseded 
by a comprehensive data assimilation scheme in which the 
measured SAR spectrum is used to modify the wind field 
rather than the wave spectrum directly. 

The convergence properties of the spectral expansion (50) 
for the three cases considered are indicated in Figure 5. 
Terms of different nonlinearity order n for a given velocity 
bunching order rn (which appear in the same Fourier trans- 
form contribution) have been collected into a single term. 
The curves show the maximal spectral values for each 
mth-order spectrum of the expansion. Since these values, as 
already mentioned, tend to lie near the relatively unimpor- 
tant azimuthal cutoff limits for the higher order expansion 
terms, the effective convergence is in fact better than implied 
by the figure. In practice, good convergence was achieved in 
all cases studied with a truncation of the series at m = 

12(n = 6, 7). 

6. CONCLUSIONS 

The new closed, nonlinear integral transformation relation 
derived in this paper, together with its expansion in a 

Seasat 
Case Swath 

a 794 
b 762 
c 1359 

TABLE 1. Inversion Parameters of Seasat SAR Spectra 

Latitude, Longitude, Time, 
deg N deg W Date UT 

qb0, 
deg 

57 9 Aug. 21 0740 
60 6 Aug. 19 0620 
60 9 Sept. 30 0000 

64 

33 

-28 

1.2 
1.1 

1.5 

0.75 

1.6 

1.3 
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Fig. 5. Convergence of the spectral series expansions with 
respect to velocity bunching order m. Plotted are the maximal 
values of each spectrum. Squares denote the partial sum, dots the 
contribution of the last term in the sum. Solid and open points refer 
to even and odd m, respectively. The convergence in the neighbor- 
hood of the spectral peak of the net SAR spectrum is faster than 
indicated by the individual maximal values. 

5. It provides the necessary basis for inverting the trans- 
formation using standard inverse modeling techniques. 

Because of the 180 ø ambiguity of the spectral mapping 
relation and the loss of information beyond the azimuthal 
cutoff, an inversion of the wave-to-image transformation will 
in general be feasible only if a first-guess wave spectrum is 
available. This implies that the interpretation and application 
of SAR wave image data will normally require the applica- 
tion of a wave model. 

The inversion technique developed in this study provides 
an optimal wave spectral estimate for a given first-guess 
wave spectrum and observed SAR spectrum. The examples 
shown demonstrate that SAR ocean wave images can indeed 
provide valuable information to correct modeled wave spec- 
tra. 

No attempt was made at this stage to correct for possible 
deficiencies in the wind field driving the wave model, which 
will normally be the principal cause of discrepancies be- 
tween observed and predicted SAR spectra. The present 
inversion technique requires additional ad hoc assumptions 
to replace the dynamical constraints which would be intro- 
duced automatically if the inversion method were integrated 
in a general wind and wave data assimilation scheme. The 
inversion technique presented here should therefore be 
regarded only as an intermediate step toward the develop- 
ment of such a comprehensive data assimilation system. 

APPENDIX: EXTENSION TO ACCELERATION 

SMEARING AND GENERAL DISPERSIVE 

MAPPING 

The pure velocity bunching theory presented in section 3 
is nondispersive: an infinitesimal cross-section element •r(r') 
dr', which in the absence of motion effects would corre- 
spond to an image element ]R(r') dr' = •r(r') dr'/Cr, is 
mapped one-to-one into a displaced infinitesimal element 

rS(r) dr = ]R(r') dr' (A1) 

in the SAR image plane, where 

spectral series with respect to nonlinearity and velocity 
bunching order, presents a number of advantages. 

1. It can be computed rather rapidly using fast Fourier 
transforms and is free of the statistical sampling errors of 
Monte Carlo methods. It should thus make feasible the 

operational processing of SAR wave images which will be 
obtained from future satellites such as ERS-1, 2, and Radar- 
sat. 

2. It provides a clearer insight into the imaging mecha- 
nism by identifying the different contributions from the RAR 
modulation and nonlinear velocity bunching processes and 
their various interference terms. 

3. It yields a simple expression for the azimuthal cutoff 
in the form of a Gaussian filter factor which acts on all terms 

in the series expansion. The azimuthal cutoff scale is given 
by the rms azimuthal velocity bunching displacement. The 
observed azimuthal cutoff therefore yields a useful integral 
constraint on the wave spectrum. 

4. The lowest order quasi-linear term of the spectral 
series expansion, consisting of the product of the standard 
linear SAR spectrum and the azimuthal cutoff factor, yields 
a useful first-order approximation of the fully nonlinear 
mapping relation. 

r = r' + t•(r') (A2) 

and 1} = a/3v (equation (14)). 
In the general SAR theory of ocean wave imaging for 

arbitrarily moving scattering elements, the mapping is dis- 
persive (cf. MSR): an infinitesimal element on the sea 
surface is mapped into a finite patch in the SAR image plane. 
The form (A1) must accordingly be generalized to the 
integral relation 

iS(r) = f ]•(r')M(r- r" r') dr' (A3) 
The mapping function M(r - r'; r') represents a finite width 
distribution with respect to the primary spatial separation 
variable r - r' and depends in general also on the details of 
the motion history of the scattering element at r'. To a good 
approximation, the shape of M is given by the shape of the 
Doppler spectrum of the backscattered return signal (MSR). 

In the nondispersive velocity bunching model, the Dop- 
pler spectrum is a line spectrum, and M therefore reduces to 
a • function, 

M(r- r'; r') = 8Jr- r' - l}(r')] (A4) 
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In the general case, the time dependence of the backscat- 
tering elements cannot be represented simply as the constant 
advection of a frozen scatterer, and the Doppler spectrum 
and mapping function M have finite width. 

For Bragg scattering, the assumption of a constant advec- 
tion velocity given by the instantaneous orbital velocity in 
the center of the viewing window nevertheless remains a 
good first approximation. The pure velocity bunching theory 
is therefore normally generalized by expanding the change in 
orbital velocity during the SAR viewing interval -r/2 < t < 
r/2 in a Taylor series, 

v(r, t) = v(r, 0) + ta(r, O) +... (AS) 

Ik s = • drtS(r) exp (-ik. r) 

-- dr dr']R(r')M(r- r'; r') exp (-ik. r) 
A 

(AlO) 

or 

if ,R Ik s = • dr' (r')Gk(r') exp (-ik. r') (All) 

where 

where a(r, 0) = [dv(r, t)/dt]t= o represents the orbital 
acceleration (in the range direction) in the center of the 
viewing window. It is assumed that r is small compared with 
the wave period. 

The linear drift of the orbital velocity during the SAR 
illumination time leads to an approximately uniform azi- 
muthal smearing of the scattering element in the image plane 
over the interval s • - /lal/2 < x < e + /lal/2. The 
mapping function in this case becomes 

Mh(r_ r,. r,) = 8(y _ y,)H(x - x' - •(r')) ' •i•[; (/31air)-, 
(A6) 

where H(r/) denotes the top hat function 

1 

H(r/) = 1 Ir/[-< • 

1 

H(,/) = 0 Ivl>- 
2 

(A7) 

In place of (A6), a Gaussian distribution 

Mg(r - r'; r') 

= (2rr)-'/2(Ax)-' exp { [x - x' - •(r')]2} 
(A8) 

with the same rms width 

Ax(r') = 2(3)1/2 (A9) 

as the top hat form (A6) is sometimes used [cf. Alpers and 
Briining, 1986]. This simplifies the treatment of acceleration 
smearing within the framework of a more general analysis, 
including the effects of the antenna pattern and the matched 
filter and other SAR system characteristics. 

The distinction between (A6) and (A8) is immaterial in the 
present context. We shall show that if the function M is 
known, regardless of the model used, the surface wave-SAR 
image spectral mapping relations can be derived as before in 
closed form. 

Starting from the general form (A3), the expression (28) 
for the Fourier components of the SAR image now becomes 
(for k • 0, so that l(r) may be replaced by [(r)) 

Gk(r') = f dpM(p; r') exp (-ik. p) (A12) 
The nonlinearity of the imaging relation (All) arises 

through the dependence of the weighting function Gk(r') on 
the local wave field at r'. 

For the two forms (A6) for M h or (A8) for M g, we obtain 
the weighting functions 

h 
Gk(r') = exp [-ik. ½(r')] 

sin [(3)1/2k x Ax ] 
(3)l/2kxlAx (A13) 

g, (-kx2Ax2) Gk(r ) = exp [-ik. •(r')] exp 
2 

(A14) 

Thus the velocity bunching mapping factor exp [-ik ß •(r')] 
in (28) is replaced now in the general case by a mapping 
factor 

G k h 'g = e xp [ -- ik. •(r ') ]D h ,g (A15) 

which contains an additional azimuthal acceleration smear- 

ing term 

sin [(3)V2kxlAx ] 
D h = (A16) 

(3) •/2k x Axl 

or 

D g = exp (A17) 

The further analysis proceeds as in section 3, with the 
velocity bunching weighting function exp [-ik- •(r')] re- 
placed by the general weighting function G k. The expression 
(30) for the SAR image variance spectrum becomes 

pkS=A-2(ff dr' dr" exp [-/k(r' - r")] 
ß NkO(r')O(r") 1 + • (Tf,•k, + T-K'• )e r' 

k' 

ß 1 + Z (rkR"*;•" + r-k";-k")e (A18) 
k" 

The expression differs from (30) only through the inclusion 
of the acceleration smearing factors D(r')D(r"). 
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To evaluate the expectation value occurring on the right- 
hand side of (A18), the same technique may be applied as 
before. The product D(r')D(r") is first expanded in a power 
series with respect to the wave Fourier amplitudes. For the 
forms (A16) or (A17), this is straightforward. The expecta- 
tion value of the product of Nk with the various wave 
amplitude products occurring in the rest of the integrand in 
(A18) is then again computed by expanding N k with respect 
to the particular infinitesimal wave amplitude components 
appearing in any given product. 

The only difference between the extended theory and the 
previous pure velocity bunching theory is that the wave 
amplitude products with which Nk is now correlated are no 
longer limited to linear and quadratic expressions, as in 
(32)-(34), but consist of an infinite series. Since it was 
already found convenient, both theoretically and computa- 
tionally, to expand the closed integral expression (46) for the 
pure velocity bunching case in a spectral power series, the 
present extension involves no significant algebraic or com- 
putational overhead. The expansion algebra can be readily 
incorporated in the (computer coded) algebra used to gener- 
ate the expansion (50) with respect to velocity bunching and 
nonlinearity order. The structure of the expansion remains 
basically unchanged except for the appearance of a third 
expansion parameter, the ratio of the SAR illumination time 
r to the mean wave period. 
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