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A Bayesian method for estimating directional wave spectra from the Doppler spectra
obtained by HF radar is examined using data acquired during the SCAWVEX project.
Applicability, validity and accuracy of the Bayesian method are demonstrated compared
with the directional spectrum observed by a directional buoy. In addition the estimated
spectra are compared with Wyatt (1990) and the Bayesian method is found to be more
robust against noise. Necessary conditions of the Doppler spectral components to be used
to estimate a reliable directional spectrum for the present method are also discussed.

Keywords: HF radar: VHF radar; remote sensing; directional spectrum: wave observation:
wave data analysis; current measurement.

1. Introduction

The observation of ocean surface currents by means of HF radar is already in prac-
tical use, and a number of actual applications have been reported so far. On the
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other hand, the method for estimating directional wave spectra using HF radar still
requires further studies, and is not yet in practical use. Several estimation methods
of the directional spectrum from HF radar surface backscatter have been proposed
in the US, Australia and Europe, but so far the only successful cases that have
been published in any detail are results from the EC MAST SCAWVEX (Surface
Current And Wave Variability EXperiments) project (Wyatt et al., 1999) and the
EuroROSE (European Radar Ocean Sensing) project (Wyatt et al., 2002).

In Japan, Hisaki (1996) and Hashimoto and Tokuda (1999) proposed methods
for estimating the directional spectra from HF radar surface backscatter. However,
they only studied the theoretical possibility of the methods without examining the
applicability of them to actual observation data.

In this study, we apply the Bayesian method proposed by Hashimoto and Tokuda
(1999) to some of the above-mentioned SCAWVEX data, from which some reliable
estimated directional wave spectra are reported. We verify the applicability and
accuracy of the Bayesian method and discuss some results on further improvements
of the method for future practical use in operational wave measurements. Some
comparisons with the Wyatt (1990) method for extracting directional spectra from
HF radar surface backscatter are also presented. This was the method used during
the SCAWVEX and EuroROSE projects where good agreement with buoys has been
demonstrated.

2. Estimation of Directional Wave Spectra Using HF Radar
Surface Backscatter

The Doppler spectrum o(w) obtained by HF ocean radar represents the energy
distribution of the radio wave signal back-scattered at the angular frequency w
by the ocean surface waves, and is expressed by the summation of the first-order
scattering component ¢{!)(w) and the second-order scattering component ¢ (w),
ie. o(w) ~ oV (w) + 0@ (w). Each component can be expressed by the following
equations for deep-water conditions, respectively (Barrick, 1972):

oD(w) = 287k§ > S(—2mko, 0)d(w — mwp) (1)

m=d%1

oD (w) =257kg > / /_ ” IT|2S(m1k1)S (maks)

mi,mo==+1

X 0(w — my+/gk1 — ma+/gk2)dpdq (2)

where kg is the absolute value of the wavenumber vector kg of the radar waves,
S(k) = S(kg,ky) is the wavenumber spectrum, wp(= v2gko) is the Bragg angu-
lar frequency, and () is the delta function. The independent variables, p and g,
of the integration of Eq. (2) represent coordinates, parallel and orthogonal to the
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radar beam, respectively. The wavenumber vectors, k; and kg, are related to these
variables by the following equations:

kl = (p - kO)Q)’ k2 = (_p - kO) _Q) (3)
These relations indicate the Bragg’s resonance condition expressed by
k; + ko = —2ko (4)

The coupling coefficient, I', shows the degree of the contribution from the wave com-
ponents having the wavenumber k; and k; to the second-order energy distribution
of the back-scattered radar signal, and is commonly expressed by the summation of
the electromagnetic scattering effect, I'g, and the hydrodynamic scattering effect,
Ty, ie. I' =Tg+ 'y (Barrick, 1972).

Since the first-order scattering component a‘”(w) and second-order scattering
components (% (w) appear at different frequencies in the Doppler spectrum o(w),
they can be separated easily even when they are small in magnitude. Consequently,
valuable oceanographic information such as surface currents, waves and wind di-
rection can be obtained from the respective components of the Doppler spectrum.
Current measurement techniques are discussed by Paduan and Graber (1997). Wave
techniques are discussed by Wyatt (1997) and Graber and Heron (1997), whereas
the method for extracting wind direction is discussed by Fernandez et al. (1997).

As is evident from Eq. (2), two-component waves having the wavenumber vector
k; and k; are related to the second-order scattering component o(2) (w). There
are an infinite number of combinations of k; and ks relevant to the corresponding
Doppler frequency w under the constraint of § function in Eq. (2) and the resonance
condition of Eq. (4). This means that Eq. (2) includes the contributions of an infinite
numbers of component waves having different frequency w and propagation direction
8. and hence in principle, we can estimate the directional spectrum based on this
information. When we estimate the directional spectrum based on Eq. (2), however,
the following problems arise:

(1) Because of the constraint of the § function, the integration of Eq. (2) must
be executed along a curve on the “frequency-direction” plane into which the
wavenumber plane is transformed by the dispersion relationship. The digitiza-
tion of the integral of Eq. (2) is therefore complicated.

(2) This is a so-called incomplete inverse problem in which the number of unknown
parameters is much larger than that of equations obtained from the measure-
ments. This sometimes causes the problem that even a small measurement error
would seriously deteriorate the reliability of the estimate.

The estimation of wave conditions from the Doppler spectra observed by HF
radar surface backscatter was first carried out by Barrick (1972 and 1977). He pro-
posed the equations for calculating the significant wave height and period by: (1)
removing the wavenumber spectrum with the larger wavenumber included in Eq. (2)
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from the integral by assuming that it was known from the wave component that
caused the first-order scattering, and (2) obtaining an approximate integral equa-
tion by linearizing Eq. (2) with respect to the wavenumber spectrum having the
smaller wavenumber.

Lipa (1977), Wyatt (1990) and Howell and Walsh (1993) proposed a method for
estimating the directional wave spectrum based on the Barrick’s linearized integral
equation. Wyatt (2000) also extended her method to apply it to the nonlinear in-
tegral Eq. (2) without linearization although demonstrating that any improvement
in accuracy does not warrant the increase in computational complexity. The Wyatt
method is an iterative method that makes a first guess for the directional spectrum
and adjusts this at each iteration using the difference between the measured Doppler
spectrum and the spectrum obtained by integrating Eq. (2) with the latest adjusted
directional spectrum. Howell and Walsh (1993) developed a singular values decom-
position method to invert the matrix equation that results from a discretization of
Eq. (2). Lipa (1977) solved the matrix equation using a regularization method.

Recently in Japan, Hisaki (1996) proposed an alternative method for estimat-
ing the directional spectrum from the nonlinear integral Eq. (2). In addition to the
Eq. (2), he added a priori conditions that are desirable for the directional spectrum
to solve the above problems (1) and (2), and solved the nonlinear inverse problem by
an optimization method with a perturbation technique. His approach was similar to
a Bayesian approach developed by Hashimoto et al. (1987) for estimating the direc-
tional spectrum from the data of in situ measurements (e.g directional wave buoys).
In Hisaki’s method, however, the number of the a priori conditions exceeded that
of the unknown parameters. This was because the a priori conditions included not
only the expectation that the directional spectra were smooth continuous functions,
but also the conditions that the spectrum values changed at a known ratio with
respect to the frequency and the direction, and that they avoided taking negative
energy values. The problem of the proper setting of the weighting factors introduced
in each a priori condition was also left unsolved.

To solve such problems implied in the Hisaki method, Hashimoto and Tokuda
(1999) applied the Bayesian approach to develop a method for estimating the direc-
tional spectrum applicable to HF radar. To satisfy the condition that the directional
spectra avoid taking negative values, they assumed that the directional spectrum had
exponential forms having piecewise-constant functions with respect to the frequency
and the directional angle. They also added an a priori condition that the piecewise-
constant values of the exponential parts were on smooth continuous functions. The
number of the a priori conditions thus became equal to that of the unknown param-
eters. In addition to the above, they introduced the Akaike Bayesian information
criterion ABIC (Akaike, 1980) to balance the degree of satisfying Eq. (2) with that of
satisfying the a priori condition that the directional spectra were smooth continuous
functions. They then minimized the ABIC to estimate the optimum directional spec-
trum so that the desirable weighting factors were automatically acquired from both
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the viewpoints of the certainty of the solution and the smoothness. The following is
a brief explanation of the Bayesian method (Hashimoto and Tokuda, 1999).

3. A Bayesian Method for Estimating Directional Spectrum from
HF Radar

As mentioned above, the directional wave spectrum S(f, ) as a function of frequency
f and direction 8 is assumed to be an exponential piecewise-constant function over
the directional range from 0 to 27 and the frequency range from fiin to fmax-

M N
S(f,0)=a) > exp(i;)8;(f,6) (5)

i=1 j=1

where z; ; = In{S(fi,8;)/a}, M is the number of segments Af of frequency f, N is
the number of segments A# of direction 6, and

5:5(f,0) = {1 fiiiff<fiand 8;_1 <0<0; ©)

0: otherwise
a is a parameter introduced for normalizing the magnitude of z; ;, and is given by
max 2
[ [T S(f,0)df df
Jlm= o7 dfdo

(7)

The numerator on the right hand side of Eq. (7) is approximately given by the
following equation (Barick, 1977):

fmax  p2m ~2ff°°o{a(2)(w)/W(w/wB)}dw

where W (w/wp) = 8|T'?|/kZ is a weighting function and I is an approximate coupling
coefficient of I (Barick, 1977).

The frequency f and the direction 8 are discretized by the following equations,
respectively.

pi=Infi=Infi1+Af, 0;=0_1+A0 9)

Substituting Eq. (5) into Eq. (2) with the transformation of the variables from
wavenumber k-plane to (f,6)-plane using the dispersion relationship yields an in-
tegral equation including unknown variables, X = (z1,1,...,Zpm n)¢. Finally, after
some manipulations, by taking into account the errors £ of the Doppler spectrum
o (wy), the integral Eq. (2) can be approximated by the nonlinear algebraic equa-

tion including the unknown X = (z;,...,zpm n)', and is expressed by
o = Fi(X) + & (10)

where the suffix k¥ indicates a value at the Doppler frequency wy (k = 1,...,K).
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The errors e (k = 1,...,K) at every Doppler frequency wy are assumed to be
independent of each other and their occurrence probabilities can be expressed b{
a normal distribution having a zero mean and variance A2. Then, for a given ak
(k=1,...,K), the likelihood function of X and A? is given by

L(X;\?) = {0'(2) Fie(X))2 (11)

1

(VarnK P 2,\2
Note that the directional wave spectrum, S(f,#), has thus far been expressed by a
piecewise-constant function, with the correlation between the wave energy of each
segment of Af x Af not yet having been taken into account. However, S(f,8)
is generally considered to be a continuous and smooth function. This allows an
introduction of an additional condition that the local variation of z; ; (1 = 1,...,M;
j=1,...,N) can be well approximated by a smooth surface so that the value given
in Eq. (12) is expected to be small.

Tij+1 + Tig1,j + Tij-1 + Tim1,; — 445 (12)

In the upper boundary (¢ = M) and the lower boundary (¢ = 1) of the frequency f,
the value given in Eq. (13) is expected to be small as an a priori condition.

Tij41 — 2Tij + Tij_1 (13)

These additional conditions lead to

M-1
Y (@ijar + Tivrg + Tigor + Ticrg — 4302+ Y (T — 2205 + T15-1)>
=2 7 J

+ Z(iBM.jH — 22,441 + Tarj—1)? = small (14)
j
where z;0 = z; y and z; _1 = Ti N_1.
In a matrix form, Eq. (14) can be written as

IDX||? = small (15)

where || -« - || is the Euclid norm, and D is the coefficient matrix of Eq. (14).

It is, therefore, surmised that the optimal estimate of S(f,6) is the one max-
imizing the likelihood function of Eq. (11) under the condition of Eq. (15). More
precisely, the most suitable estimate is given as a set of X = (z1,1,...,2zpm n) which
maximizes the following equation for a given hyperparameter u.

In L(X; A?) — W||1:)X||2 (16)

The hyperparameter u is a type of weighting coefficient which represents the smooth-
ness of X, where large or small values of u, respectively, give an estimate of the
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directional wave spectrum having either smooth or rough shapes. It should be noted
that Eq. (16) corresponds to the Bayesian relationship expressed by the following
equation when we consider the exponential function having the power of Eq. (16).

pPOST(X|u27 /\2) = L(X; /\2)p(X|u2, )\2) (17)
where pooer (X|u?,A2) is the posterior distribution, and p(X|u?, A?) is the prior
distribution of X = (z1,1,.-.,Zs,J) expressed by

2 42 v \M u’ 2
= [ — -2 |IDX 18
pxt?, 3 = (o) exp{ - 3 IDX (18

The estimate X obtained by maximizing Eq. (16) can be considered as the mode of
the posterior distribution ppoer(X|u?, A2).

Now, if the value of u is given, then regardless of the value of A2, the values of
X that maximize Eq. (16) can be determined by minimizing

K
3 {62 - Fu(X))? + DX (19)
k=1

The determination of u and the estimation of A? can be automatically performed by
minimizing the following ABIC (Akaike’s Bayesian Information Criterion, Akaike,
1980) from the viewpoint of the suitability and smoothness of the estimate of X.

ABIC = —2In / L(X|A%)p(X|u?, A?)dX (20)

The details of computing this method are described in Hashimoto and Tokuda
(1999).

4. Surface Current And Wave Variability EXperiments Project
(SCAWVEX)

SCAWVEX was an EC joint research project conducted by the researchers from
four European countries including the UK. In SCAWVEX, various measuring instru-
ments, including an HF radar system, Synthetic Aperture Radar (SAR), microwave
altimeter, X-band radar system, wave gauges, current meters, water pressure gauges,
and Acoustic Doppler Current Profiler (ADCP), were used to measure the time and
space variations of the waves and the currents. The characteristics of each measur-
ing instrument were also studied. There were four SCAWVEX experiments, two at
Holderness in the UK and two in the Netherlands at Maasmond and Petten. For the
work reported here, we used only the data obtained with the Ocean Surface Current
Radar (OSCR) HF radar at 14:00 hours on December 21, 1995 during the second
Holderness experiment which ran from December 1995 to January 1996, since the
quality of the data was considered to be reliable enough to analyze and was surely
confirmed by Wyatt et al. (1999).
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Fig. 1. European weather map (21 December, 1995, 00:00GMT) (Unit: hPa).

Figure 1 shows the European weather map at 00:00 hours on December 21, 1995.
Before and after this date, the low-pressure system was stationary in the sea area
west of the UK. At Holderness, located on the east coast of the UK and facing the
North Sea, the bi-directional wave fields, consisting of swell from the north and wind
waves from the southeast, were formed. Figure 2 shows the observation area of the
HF ocean radar system. An OSCR HF radar system was installed at the Master and
Slave points in Holderness as shown in the figure, and observations were made almost
continuously for about one month. The OSCR HF radar system is of the pulse type
and different from the one adopted in Japan which uses the Frequency-Modulated
Continuous-Wave (FMCW) system (ex. Nadai et al., 1997) for the determination
of the observation distance. The observation was carried out for 5 minutes at each
station and repeated every twenty minutes providing 896 coherent samples at each
measurement point. To estimate the Doppler spectra, 512 sample FFTs were used
with a 75% overlap to provide 4 spectra for each five minute period. Three successive
five minute collections were then averaged to provide an hourly averaged (from 12
individual) Doppler spectrum. The mark ® in Fig. 2 indicates a wave observation
point by a buoy. In SCAWVEX, the method developed by Longuet-Higgins et al.
(1961) was used to analyze the directional wave data measured by the buoy. The
resultant Fourier coefficients for the directional spectra have been preserved as the
parameters of the directional spectra. Based on these Fourier coefficients, we applied
the method developed by Kim et al. (1994) to obtain the directional spectra using
the maximum entropy principle method (MEP) proposed by Kobune and Hashimoto
(1986), and compared them with the results estimated from HF radar.
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Fig. 2. Observation area of the OSCR HF ocean radar system. Backscatter is measured for all

locations indicated with a small open circle. The letters denote points where wave spectra are
compared.

5. Directional Spectrum Estimation

Figure 3 shows an example of the Doppler spectra of the site A in Fig. 2 measured at
the Master and Slave points with the OSCR HF radar (at a frequency of 25.4 MHz).
The angular frequency on the horizontal axis is normalized by the Bragg angular
frequency, i.e. @ = w/wp. The Doppler spectrum on the vertical axis is also normal-
ized by the area of the larger first order component, i.e. (@) = o(@)/ [ o(V(@)dw.
As discussed before, the second-order scattering components of the Doppler spec-
tra represent the contribution of an infinite number of combinations of the wave
components having different frequencies and propagation directions, and are related
to the directional spectrum by the nonlinear integral equations. It is therefore pos-
sible that the inverse computation of the directional spectrum from the Doppler
spectra becomes unstable and that the estimated values of the directional spectrum
may vary depending on which frequency components of the Doppler spectra we use.
We therefore examined the Doppler spectra by dividing the four frequency ranges
into the domains I, II, III, and IV shown in Fig. 3, excluding the neighborhood of
the first-order scattering frequencies (@ = +1) and the zero frequency of @ = 0.
Then, we estimated the directional spectra by changing the frequency range in each
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Fig. 3. An example of the normalized Doppler spectra of the backscatter at the site A from the
two radars.

domain, and investigated the conditions under which an accurate directional spec-
trum could be estimated. We also estimated the directional spectrum by changing
the combination of the frequency domains I, II, III, and IV. In the estimation of the
direct\iona.l spectrum through iterative computations, we used the same initial value
of zero for all the computations for practical convenience.

5.1. Necessary frequency ranges of Doppler spectra for estimation
of directional spectrum

The necessary conditions of the components of the Doppler spectra were exam-
ined by changing the frequency range criterion used in each domain for the reliable
estimation of the directional spectra. The following are the results:

(1) We used a fixed frequency range of 1.85 > |@| > 1.15 for the domains I and IV.
For the domains II and III, we used a frequency range of 0.85 > |&| > @min,
and changed the value @, from 0.15 to 0.75 to find its permissible range. As a
result, we found that the upper limit of the value &y,;, was about 0.45, and that
the directional spectra would diverge in the high frequency side if we set the
value of Wiy larger than this value. We could thus estimate a stable directional
spectrum by setting the value of &y, smaller than 0.45.

(2) We used a fixed frequency range of 0.85 > |@| > 0.15 for the domains IT and III.
For the domains I and IV, we used a frequency range of ¥max > |@| > 1.15, and
changed the value Wpay from 1.2 to 3.0 to find its permissible range. As a result,
we found that the lower limit of the value @na was about 1.4, and that the
directional spectra would diverge in the low frequency side if we set the value of
@min smaller than this value. We could estimate a stable directional spectrum
by setting the value of Wnax larger than 1.4.



Verification of a Bayesian Method 265

(3) We used a frequency range of 1.45 > |@| > &min for the domains I and IV, and
that of Wmax > |@| > 0.4 for the domains II and III, and changed the values of
@min and @max from 1.05 to 1.35, and from 0.95 to 0.65, respectively, to find the
ranges of the second scattering components to be considered in the neighborhood
of the first-order scattering frequency (|&| ~ 1). As a result, we found that the
upper and lower limits of the value Wi, in the domains I and IV were about 1.17
and about 1.07, respectively, and that the upper and lower limits of the value
Wmax in the domains IT and IIT were about 0.93 and about 0.83, respectively. The
directional spectra would diverge in the low frequency side if we set the values
of @min and &max beyond these ranges. We could estimate stable directional
spectra if we set the values of Onin and @y Within these ranges.

5.2. Necessary combinations of Doppler spectra for estimation of
the directional spectrum

Using the examined results of the above (1)—(3) of Sec. 5.1 as a reference, we used
a fixed frequency range of 1.15 < |@| < 1.85 for the domains I and IV, and that
of 0.15 < |@| < 0.85 for the domains II and III, and checked the accuracy and
the stability of the directional spectra with respect to combinations of the Doppler
spectra in the domains from I to IV. Findings were as follows:

(1) When using Doppler spectral components in all the domains from I to IV, we
could estimate stable directional spectra.

(2) We could estimate stable directional spectra as in the case of (1) only when
we used Doppler spectra in the domains containing second-order scattering
components that sandwiched the larger first-order scattering component of the
two.

(3) When we used only second-order scattering components that sandwiched the
smaller first-order scattering component, the computations became unstable.

(4) When using the Doppler spectra containing second-order scattering compo-
nents that sandwiched the larger first-order scattering component for one of
the two stations, and using second-order scattering component that sandwiched
the smaller first-order scattering component for the other station, we could es-
timate the directional spectra, but their peaks were estimated in the wrong
directions.

The conclusion of the above studies in Secs. 5.1 and 5.2 is that estimation of
stable directional spectra is possible if we use second-order scattering components
in a proper range of the Doppler spectra containing the necessary information for
the computation of the directional spectra, i.e. in the neighborhood of second-order
scattering components that sandwich the larger first-order scattering component.
It is also understood that the second-order scattering components in the range far
away from the first-order scattering components hardly improve the accuracy of
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the directional spectra. Therefore, we set a frequency range that gives convenient
computation time without losing the stability of the estimated values.

5.3. Necessary number of segments for frequency/directional angle
of directional spectrum

Since the Bayesian approach assumes that the directional spectra are expressed by
piecewise-constant function with respect to the frequency and the directional angle,
we need to solve the equation containing M x N unknown parameters where M
and N are the numbers of the frequency segments and the directional segments
respectively. For practical convenience to limit the computation time, we cannot
set the number of the segments too large. We hence calculated the two cases of
M =N =32and M = N = 16, and compared their accuracy. With respect to
the directional angle, we separated the range equally between 0 and 27, and with
respect to the frequency, we separated the range between 0.01 and 1.0 (Hz) on the
logarithmic scale as shown in Eq. (9).

Figure 4 compares the directional spectra observed by the buoy with those es-
timated by the Bayesian method, in the cases of M = N = 32 (Case 1) and
M = N = 16 (Case 2). The result of the buoy in Fig. 4 shows the bi-directional wave
field where the swell and the wind waves propagating in the directions of about 200°
and about 320° respectively. The results of both methods for the HF radar in Cases 1
and 2 show that the two energy peaks were estimated at the proper directions.

Figure 5 compares the frequency spectra and the directional functions in Case 2
with the estimated values observed by the buoy. The solid and dotted lines in Fig. 5
show the estimated values observed by buoy and those observed by HF radar re-
spectively. As shown in Fig. 5, the two distinctive peaks in the frequency spectrum
by HF radar appeared at the same frequencies in that by buoy. On the other hand,
the estimated peak directions in the directional functions by HF radar appeared at
the same directions in those by buoy except the case of f = 0.398 (Hz) where wave
energy is insignificant in the frequency spectrum. In spite of setting a small number
of segments in frequency and direction, the results above seem to be acceptable.

In the estimation of the directional spectrum using a Bayesian approach, an
ordinary personal computer takes tens of seconds to compute the directional spec-
trum in the case of M = N = 16, which is permissible for practical use. On the
other hand, it takes several minutes to compute in the case of M = N = 32, which
is presently impractical for real-time processing. We need to further improve the
method to reduce the computation time.

5.4. Other examples of the directional spectra estimated from
different Doppler spectra

To study the applicability and accuracy of the Bayesian method, we estimated the
directional spectra from the Doppler spectra of all 565 measurement points in the
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observation area shown in Fig. 2. There was only one case for which the iterative
computations diverged. In the cases of the other 564 measurement points, we could
get convergent values by the Bayesian method. But not all of the estimated spectra
were similar to those shown in Fig. 4. There were a variety of distributions showing
a single peak directional spectrum or a directional spectrum having more than two
peaks, etc.

As shown in Fig. 3, the energy levels of the second-order scattering components
of the Doppler spectra are much lower than those of the first-order scattering com-
ponents, and the second-order scattering components seem to be vulnerable to noise.
There is, therefore, no guarantee that we can estimate the proper directional spectra
from the second-order scattering components measured at all the observation points.
The results of our study, however, showed that the measurement points at which
proper directional spectra were estimated were widely distributed in the measure-
ment area shown in Fig. 2. Figure 6 shows examples of the estimated directional
spectra similar to that shown in Fig. 4. Each measurement point corresponds to the
point from A to I shown in Fig. 2. As seen in Fig. 6, reliable directional spectra are
successfully estimated at points widely distributed in the area.

Figure 7 shows examples of the directional spectra estimated by using the Wyatt
(1990) method. Note that in the implementation of the Wyatt method, the noise
level is checked and inversion proceeds only if there is sufficient signal (Wyatt, 2000).
As a result for these data, analysis only proceeded at points A to E. The examples
shown in Figs. 6 and 7 suggest that the Bayesian method is more robust in the
presence of noise both in terms of extracting useful information at lower signal to
noise ratios (at points F to I} and in terms of reducing noise in the measured spectra
(e.g. at points D, E and B).

Incidentally, Fig. 8 shows corresponding results of Fig. 5. The frequency spec-
tra and the directional functions estimated by using the Wyatt (1990) method are
compared with the estimated values observed by buoy. The solid and dotted lines
in Fig. 8 show the values observed by the buoy and those estimated by the Wy-
att method respectively. Although the frequency spectrum estimated by the Wyatt
method shows two distinctive energy peaks at the same frequencies in that of the
buoy, the energy distribution is overestimated especially at the higher frequency
side. In comparison with Figs. 5 and 8, the directional resolution of the Bayesian
method seems to be higher than that of the Wyatt method, which underestimates
the energy peaks of the directional distribution functions and shows some energy
leakage around the peaks as seen in Fig. 8.

6. Conclusion

We applied a Bayesian approach for estimating the directional spectrum from the
Doppler spectra acquired at the European project SCAWVEX. We have calculated
a number of directional spectra using the Bayesian method and thus verified its
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validity and applicability. The results showed that the Bayesian method is more
robust than the Wyatt (1990) method in the presence of noise both in terms of
extracting useful information at lower signal to noise ratios and in terms of re-
ducing noise in the measured spectra. We have also investigated and clarified the
necessary conditions of the Doppler spectral components to be used to estimate a re-
liable directional spectrum with respect to (1) necessary frequency ranges of Doppler
spectra, (2) necessary combinations of Doppler spectra, and (3) necessary number
of segments for frequency/directional angle of directional spectrum. Although the
drawback of the Bayesian method is that it requires a time-consuming iterative com-
putation, the computation time can be reduced without losing the stability of the
estimated values by taking into account those necessary conditions.
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