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A new method for estimating directional wave spectra from the Doppler spectra by HF
radar is proposed. This method is developed by introducing a Bayesian approach, previ-
ously proposed by one of the authors (Hashimoto et al., 1987). as one of the most accurate
and reliable methods for estimating directional wave spectra for in situ measurements. The
principal advantage of the new method is that it can be applied without introducing em-
pirical weighting coefficients. Applicability, validity and accuracy of the proposed method
are demonstrated with numerically simulated data for various wave conditions.
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1. Introduction

HF radar, for measuring ocean surface currents, has been in practical use, and
several examples have been reported so far. A method for estimating directional wave
spectra from the data obtained by HF radar has not yet been established, although
a few expedient methods have been reported. If an accurate and reliable method
for estimating directional wave spectrum from the HF radar data is developed, it
should enable the development of a more accurate and reliable wave model based
on the data obtained.

The difficulty in estimating directional wave spectra from HF radar is that the
fundamental equation to be solved is a nonlinear integral equation with respect
to the directional wave spectrum. Even when a solution can be obtained for the
nonlinear integral equation, there is still ambiguity because the solution obtained
may not be unique.

Recently, a method for estimating directional wave spectra using HF radar was
proposed by Hisaki (1996). He estimated directional wave spectra by solving the non-
linear integral equation iteratively with additional conditions. In Hisaki’s method.

137



138 N. Hashimoto & M. Tokuda

he introduced a prior: condition where the directional wave spectrum is assumed to
be a smooth and continuous function. In addition, he also introduced other condi-
tions that the directional wave spectrum has a value greater than zero and that the
directional wave spectrum changes according to the known ratio in both frequency
and directional angle. This can cause the a priori conditions to be in excess of the
number of unknown parameters and fundamental equations. There still remains the
issue of setting the empirical weighting coefficients imposed on each of the additional
conditions mentioned above.

In this study, a new method for estimating directional wave spectra from the
Doppler spectra measured by HF radar is proposed. This method was developed
by introducing a Bayesian approach, previously proposed by one of the authors
(Hashimoto et al., 1987), as one of the most accurate and reliable methods for es-
timating directional wave spectra for in situ measurements. In the formulation of
the equations from a Bayesian approach, a parameter which is called a hyperpa-
rameter is introduced to consider the balance of the two requirements imposed on
the estimate of the directional wave spectrum: (1) maximizing the likelihood of the
estimate and (2) maintaining the smoothness of the estimate. In order to select
the most suitable value of the hyperparameter for the given Doppler spectra, ABIC
(Akaike’s Bayesian Information Criterion, Akaike, 1980) is introduced as a criterion
to determine the most suitable estimate of the directional wave spectrum. Thus,
the proposed method can be applied to the data measured by HF radar without
introducing empirical weighting coeflicients. Applicability, validity and accuracy of
the proposed method are demonstrated with numerically simulated data for various
wave conditions.

2. Formulation of Equations

The Doppler spectrum, o(w), obtained by HF radar represents the energy distribu-
tion of the radio wave signal backward-scattered by the ocean surface waves at the
angular frequency w, and is expressed by the summation of the first-order compo-
nent, o (w), and the second-order component, ¢ (w), i.e. o(w) = o (w)+o@ (w).
Each component can be expressed by the following equations for deep water
conditions (Barrick, 1972):

oW(w) = 2°7ky > S(—2mko,0)d(w — muwp) (1)
m==%1

c®(w) = 297k} Z //_oo IT|2S (1 k) S (maks)

my,ma==%1

X 0(w — my1v/gki — may/gke)dpdg (2)
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where ko is the absolute value of the wave number vector kg of radio waves, S(k) =
S(kz,ky) is the wave number spectrum of ocean surface waves, wp(= V/2gko) is
the Bragg angular frequency. The independent variables, p and ¢, of the integration
represent coordinates, each of which is parallel to the axis of the radar beam and
orthogonal to the radar beam, respectively. The wave number vectors for ocean
waves, k1 and ks, are related to these variables by the following equations:

kl = (p - k'O,Q)3 k2 = (_p - k07 _q) (3)
These relations indicate the Bragg’s resonance condition expressed by
ki + ks = —2ko (4)

The coupling coefficient, I, shows the degree of the contribution from the wave com-
ponents having the wave number k; and ks to the second-order energy distribution
of the backward-scattered radar signal, and is commonly expressed by the summa-
tion of the electromagnetic scattering effect, I'z, and the hydrodynamic scattering
effect, Ty, i.e. ' = 'y + T'yy. Each is expressed by the following equations for deep
water conditions (Barrick, 1972):

Cwe L [(kn ko) (k2 - ko)/k3 — 2k; -kg]
"2 VK ks — kot

(5)

(6)

— S . 2 2
FH _ 7l |:k] +k2 _ (klkz kl kg)(w +wB)J

mymavkiks(w? — w%)

where, ¢ is the complex impedance of the sea surface, the absolute value of which
is small enough to be negligible.

Since the first-order scattering component o(!)(w) and the second-order scat-
tering component 0(2)(w) appear in different frequencies in the Doppler spectrum
o(w), they can be easily separated even though they are small in magnitude. Con-
sequently, valuable oceanographic information such as surface currents and waves
can be obtained from the respective spectrum components.

As shown in Eq. (2), the two component waves having the wave number vector
k) and k; are related to the second-order scattering component (@ (w). There are
infinite combinations of k; and k; relevant to the Doppler frequency w under the
restriction condition of § function included in Eq. (2) and the resonance condition
of Eq. (4). This indicates that Eq. (2) includes the contributions of infinite numbers
of component waves having different frequencies w and propagation directions 6;
thus, we will focus on the second-order component and introduce a method for
estimating directional wave spectra from ¢(®(w). In this study, deep water waves
will be examined. The method developed for deep water waves can be easily extended
to shallow water waves.
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For convenience, the parameters are nondimensionalized by the Bragg angular
frequency, wp, and the doubled wave number of the radio wave, 2ky, as follows.

@ = w/wp k = k/(2ko)
L =T/(2ky),  S(k) = (2ko)*S(k)

The integration of Eq. (2) with respect to the two variables p and ¢ can be
transformed into a single variable since the integrand includes the delta function
4. If the wave propagation direction 8; of the wave number vector k; is adopted
as a single independent variable for the integration, Eq. (2) can be transformed as
follows (Lipa and Barrick, 1982):

(7)

oL
(@) = A G(8:,&)do; (8)

where
G(6,@) = 16x(|T*{S(m k1) S(moks) + S(mik; %) S (mokox)}y|dy/dhlly=g (9)

-1

dy y(y* + cos 1)

=11+ : 10

dh ‘ mma (y* + 2y% cos §; + 1)3/4 (10)
and y = Vk;. §j can be obtained by solving Eq. (11).

@ —myg — ma(g* + 252 cos ) + 1)1 =0 (11)

k;* is the nondimensional symmetry wave number vector of k; with respect to the
radar beam axis (the p-axis). An upper limit of integration 4; can be given by
61, = m when @ < 2, and 6, = w — cos™!(2/&?) when & > 2, respectively.

The wave number spectrum S(k) in Eq. (9) can be transformed into the
frequency-direction spectrum (directional wave spectrum) S(f, ) as follows:

2
S(k) = #ﬁsm 6) (12)

Thus, by imposing the directional wave spectrum S(f, #), the second-order scattering
component ¢(?) (w) measured by the HF radar can be theoretically calculated by
numerical integration of Eq. (8). For the integration of Eq. (8), however, special
treatment is necessary around the singular point where the denominator of the
electromagnetic coupling coeflicient I'g approaches zero. Smaller size segments in
the numerical integration are therefore adopted around the singular point in an
attempt to prevent the deterioration of accuracy of the integration. Confirmation
that this approach is valid requires an analytical solution be obtained: however no
such analytical solution is currently available.

Figure 1 shows examples of the second-order scattering components &2 (&) of
the Doppler spectrum calculated for the wave condition having a Bretschneider-
Mitsuyasu-type spectrum (Mitsuyasu, 1971) with significant wave height H, /3 =
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Fig. 1. Examples of the theoretically computed Doppler spectra. (Thick line: 0° crossing angle, thin
line: 90° crossing angle).

3.0 m, significant wave period T},3 = 10.0 seconds and Mitsuyasu-type directional
spreading function (Mitsuyasu et al., 1975) of the directional spreading parameter
Smax = 10. In the computations the radar signals are assumed to be transmitted
with crossing angles of 0° and 90° to the mean wave propagation direction, respec-
tively. The thick and thin lines show examples of the crossing angle of 0° and 90°,
respectively. The frequency of the radar signal is assumed to be 24.515 MHz.

Contrary to the computation of &(?) (@) shown in Fig. 1, the problem for estimat-
ing directional wave spectrum with HF radar is to estimmate a non-negative solution
S(f,0) based on simultaneous integral equations of Eq. (8) set up for &3 (&).

Although the directional wave spectrum S(f,0) is S(f,6) > 0 in general, here
it is treated as S(f,8) > 0, being assumed to be exponential piecewise-constant
function over the directional range from 0 to 27 and the frequency range from f,in
to fmax (Hashimoto, 1987). This assumption is commonly employed in numerically
generating random waves.

1 J
S(f.0)=a) > exp(zi;)d:;(f.6) (13)

i=1 j=1
where z; ; = In{S(f;,0;)/a}, I is the number of segments Af of frequency f, J is
the number of segments A6 of direction €, and

{ltf;_1Sf<fialld9j_1S0<9j

6:5(f,0) = (14)

0 : otherwise

a is a parameter introduced for normalizing the magnitude of z; j, and is given by
*fmax 2
S st e

: 15
f{::* 2 df de (15)

The numerator on the right hand side of Eq. (15) is approximately given by the
following equation (Barrick, 1977):

Jmax r2m _ 2% 0P (w)/W (w/wp)}dw
/ /O SO == (16)

min
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where W(w/wpg) = 8|['?|/k2 is a weighting function and I is an approximate coupling
coefficient of I" (Barrick, 1977).

The frequency f and the direction @ are discretized by the following equations,
respectively.

pi=lnfi=Infi +Af, 0; =0;_1 + A0 (17

Substituting Eq. (13) into Eq. (8) yields an integral equation including unknown
variables. X = (z1,,...,27.)". After digitizing the Eq. (8) by replacing the inte-
gration with the summation Y. the integral equation can be approximated by the
non-linear algebraic equation.

The integral Eq. (8) is, however, a curvilinear integral where the integration must
be performed along a special path in (f,8)-plane due to the restrictions of Egs. (4)
and (11). As mentioned earlier, Eq. (8) includes a singular point, and has to be
integrated with smaller segments around the singular point. In discretizing Eq. (8),
the value of the directional wave spectrum along the path in (f, #)-plane is linearly
interpolated by the neighboring grid point values of the directional wave spectrum
in the same way as Hisaki (1996), and is expressed by

S, 0) = (1 = &)(1 = )S(ps,0;) + €(1 = €)S(ptite1,65)
+ (1 = €)CS (i, 0541) + ¢S (1tige1,0541) (18)

where £ = Inf, 0 < £ and ¢ < 1. Equation (8) can therefore be digitized with
respect to the grid point values of S(u;,6;) with the desired degree of accuracy.

Finally, by taking into account the errors £, of the Doppler spectrum, the integral
Eq. (8) can be approximated by the non-linear algebraic equation including the
unknown X = (zy,1,...,25,4)!, and is expressed by

57 = Fi(X) +ex (19)

where the suffix k indicates a value of the Doppler frequency wi(k =1,..., K).

The errors ex(k = 1,..., K) of every Doppler frequencies @y are assumed to be
independent of cach other and their occurrence probabilities can be expressed by
a normal distribution having a zero mean and variance A%, Then, for a given 6,(02)
(k=1,...,K), the likelihood function of X and A? is given by

K
: 1 1 - (2) 2
L(X;0) = ————exp |-z ) {6, - Fir(X 20
Note that the directional wave spectrum S(f,d) has thus far been expressed by a
piecewise-constant function, with the correlation betwecen the wave energy of each
segment of Af x Af not yet having been taken into account. As directional wave
analysis is commonly based on the linear wave theory, it can be assumed that each

energy on each segment is independent of each other. In actuality. however, it is
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not realistic to assume that the energy distribution over wave frequency f and wave
propagation direction ¢ can be discontinuous. Thus, S(f, #) is generally considered to
be a continuous and smooth function. This allows an introduction of an additional
condition that the local variation of z;;(i = 1,...,I;j = 1,...,J) can be well-
approximated by a smooth surface so that the value given in Eq. (21) is expected
to be small (Hashimoto et al., 1987, 1990).

Tijer + Tiv1,j + Tij-1 + Tio1j — 4Ti5 (21)

In the upper boundary (¢ = I) and the lower boundary (¢ = 1) of the frequency
f, the value given in Eq. (22) is expected to be small as a priori condition.

Ti 41 — 2:1:,"]' + Ti -1 (22)
These additional conditions lead to

I-1

2 2
DD (@iger + Tiwrg  Tijo1 + Ticry — 4wig)t + ) (T — 2281 + T1go1)
i=2 i

+ Z(xw"‘l -2z + 1:1,]-_1)2 — small (where z;0 = z; 4, Ti-1 = zij-1) (23)
J

In the matrix form, Eq. (23) can be written as
IDX |2 = small (24)

where D is the coefficient matrix of Eq. (23), and || || is the Euclid norm.

It is, therefore, surmised that the optimal estimate of S(f,#) is the one max-
imizing the likelihood function of Eq. (20) under the condition of Eq. (24). More
precisely, the most suitable estimate is given as a set of X = (zy,1,...,27 )" which
maximizes the following equation for a given hyperparameter u.

2
In L(X; A2) — 2“7||DX||2 (25)

The hyperparameter u is a type of weighting coefficient which represents the
smoothness of X, where large or small values of u, respectively, give an estimate of
the directional wave spectrum having either smooth or rough shapes.

It should be noted that Eq. (25) corresponds to the Bayesian relationship ex-
pressed by the following equation when we consider the exponential function having
the power of Eq. (25).

Ppost(Xlu®, A%) = L(X; 2)p(X[u?, A?) (26)

where ppogr(X|u?, A?) is the posterior distribution, and p(X|u?,A?) is the prior
distribution of X = (z1,1....,z1,7)' expressed by

M 2
. Uu U <
P10 = () e { - grzlDXIP (1)
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The estimate X obtained by maximizing Eq. (25) can be considered as the mode
of the posterior distribution ppogp(X[u?, A?).

Now, if the value of u is given, then regardless of the value of A, the values of
X that maximize Eq. (25) can be determined by minimizing

Z{a‘” Fi(X)}? + u?||DX | (28)

The determination of « and the estimation of A? can be automatically performed
by minimizing the following ABIC (Akaike’s Bayesian Information Criterion, Akaike.
1980) from the view point of the suitability and smoothness of the estimate of X.

ABIC = —2In / LX|N)p(X|u?, A%)dX (29)

3. Numerical Computation

Numerical computation to estimate the directional wave spectrum using a Bayesian
approach requires minimization of Eqs. (28) and (29). However, it is impossible to
minimize them analytically. Therefore, in the same way as Hashimoto (1987), the
linearization and iteration are applied for Eq. (19) to obtain the optimal estimate
of X.

Since the first term on the right-hand side of Eq. (19) is non-lincar with respect
to X, it is linearized using the Taylor expansion of Fi(X) around Xy, with Xg being
a value close to the estimated solution of X = (x1.1,...,z7 )", called estimate X.
It is expressed as

Fi(X) = Fr(Xo) + G(Xo)(X — Xo) (30)
where
Gi(Xo) = [OF(X)/0z1 1., OF (X) /01 shemro (31)

Substitution of Eq. (30) into Eq. (19) and rcarrangement in the matrix form give
the following linearized equation with respect to X.

B=AX+E (32)
where
A = [G1(Xo),-- -, Gk (Xo)]
= 6 = Fi(Xo0) + G1(X0)Xo, ..., 5 — Fk(Xo) + Gx(Xo)Xo]* p  (33)
= le1s.-- ek

Consequently, the optimal solution X can be estimated by the following procedure.
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(1) For a hyperparameter u and the initial value Xg of X, compute X using the
least-squares method to iteratively minimize W (X) defined by Eq. (34). That
is, for Xo, a new value of X(1) is obtained by applying the least-squares method
to Eq. (34). Then. by replacing Xp in Eq. (33) with X(!) and repeating the same
process, a new value of X(? is obtained. The iteration of Eqs. (33) and (34) is
terminated when the convergence condition is satisfied. Thus, the iteration of
these processes continues until X converges X for the given u.

W(X) = |AX - B + «*|IDX|* (34)

(2) Using the given u and X obtained in (1), compute the ABIC by the following
equation:

ABIC = K{1 +In(27A?)} + In{det(A'A + «’D'D)} — K In(u?)  (35)
where
32 = - {IAX - BJF* + w2IDX|) (36)

(3) Repeat (1) and (2) after changing u.

(4) From estimates for each u obtained in (1) ~ (3), select the value @ and A2, as
well as X, which yields the minimum ABIC.

(5) Substitute X obtained in (4) into Eq. (13) to determine S(f,8).

In this study, for the purpose of the practical computation, the initial value Xg
is simply set to be zero in all cases to confirm the stability of the computation
with respect to the initial value Xy. Note that introducing a parameter o defined
by Eq. (15) allows the initial value X to be set to zero in a rational way. As the
convergence condition of the iterative computation of Eq. (34), when the ratio of the
value of || X*+1) — X®)|| of (k + 1)th step to the value of | X®)|| of (k)th step is less
than 1072, then the computation is considered to be converged and the cstimate X
is determined.

The optimal hyperparameter u that minimizes the ABIC is determined via trial
and error by changing m in the following equation.

u=ab™ (m=1,2,...) (37)

where a and b are the search coefficients, here chosen for convenience as ¢ = 0.1 and
b=10.5.

4. Examination by the Numerical Simulation

Numerical simulation was carried out to examine the validity and accuracy of the
proposed method for estimating the directional wave spectrum from a Baysian ap-
proach described in Secs. 2 and 3. In the numerical simulation. first, the second-
order scattering component o(?) (w) was calculated by numerically integrating Eq. (2)
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for the benchmark directional wave spectrum. Then, an inverse estimation of the
directional wave spectrum was carried out based on the second-order scattering
component (2 (w) by using the method described in Sec. 3.

The frequency of HF radar was assumed to be 24.515 MHz. Various layouts of the
two sets of radar array were examined in the numerical simulations. Besides, various
sea conditions of wind waves and swell or their combination were also examined by
assuming the various shapes of directional wave spectra.

In addition, a single Doppler spectrum obtained by a single radar array cannot
distinguish between waves coming from the symmetrical direction with respect to
the beam axis. In such a case, an apparent energy peak may appear in the direc-
tional wave spectrum as shown in Hisaki (1997). However, according to the proposed
method, an apparent encrgy peak barely appears because of the restriction of the
additional condition of Eq. (23) although the true peak cannot be distinguished
from the apparent peak and vice versa.

Figure 2 shows an example of the bi-directional wave field where the dominant
energy peaks of the directional wave spectrum are assumed to be in different fre-
quencies. The significant wave period Tj/3 of each wave field is 5 seconds and 12
seconds, respectively. Each directional wave spectrum in Fig. 2 was estimated from
the two Doppler spectra obtained under the conditions where the radio signals were
transmitted toward the different directions on the sea surface using the two sets of
the radar arrays. The upper left panel in Fig. 2 shows the true directional wave
spectrum (True), and Case 1 to Case 5 are the directional wave spectra estimated
for the conditions where the crossing angle of the two beam axis of the radar signals
are 660 = 15°, 45°, 90°, 105° and 135°, respectively. Each estimated directional wave
spectrum shows good agreement with the benchmark directional wave spectrum
(True).

S1° ~ 10" S 10°
& True | £ = Case 2
£ 10" g 107 g 10
=3 2 3
(-4 -4 <o
s, - 66=15" | % 5 =45
10 T T T T 10 T T T T T W77 7T T 771
0 90 180 210 360 0 90 180 270 360 0 90 180 210 360
10° Direction 8 (deg.) 100 Direction & (deg.) 100 Direction 8 (deg.)
é Case 3 § Case 4 g Case 5
o > bl
2 3 =
o 13 o
v 66=90" | % 86=105" [ = 8 6=135°
W tr—T—T—TTTT W71 T 1T Wtr——T—1T—TTT"T 1
0 90 180 270 360 [ 90 180 270 360 0 90 180 210 360
Direction & (deg.) Direction & (deg.) Direction 8 (deg.)

Fig. 2. Examplcs of the estimated directional wave spectra where the dominant cnergy pcaks of
the directional wave spectrum are assumed to be in different frequencies.
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Fig. 3. Examples of the estimated frequency spectrum and directional distribution function (Thin
line: benchmark spectrum, thick line: estimated spectrum).

The left panel in Fig. 3 shows the frequency spectrum S(f) of Case 3 in Fig. 2,
and the right panel shows the directional distribution function G(6) at the fre-
quency f = 0.093 (Hz) of the same case. The thin lines in Fig. 3 represent the
true frequency spectrum and the directional distribution function, and the thick
lines represent the estimated ones. Although the estimated frequency spectrum is
underestimated around the energy peak and the estimated directional distribution
function is overestimated around the energy peak, the locations of the peaks are
properly estimated.

Figure 4 also shows an example of the bi-directional wave fields where the dom-
inant energy peaks are assumed to be in the same frequency. The other conditions
are set to be equal to those of Fig. 2. In this example, the accuracy of the esti-
mated directional wave spectra depends on the observation conditions because of
the complexity of the wave field. For example, a uni-directional wave field is esti-
mated instead of a bi-directional field in Case 1 where the narrow crossing angle of
radio signals of 66 = 15° is assumed. Figure 5 shows the frequency spectrum S(f)
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— T T T T 1 L e e e o L T T T
0 90 180 210 360 90 180 270 360 0 90 180 270 360
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Frequency f (Hz)
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} 5 9=90° } s0=105" [ = 5 9=135°
177 T 107 T T T 7T 0T T T 7T T
[ 90 180 270 360 90 180 270 360 0 90 180 270 360
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Fig. 4. Examples of the estimated directional wave spectra where the dominant energy peaks are
assumed to be in the same frequency.
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Fig. 5. Examples of the estimated frequency spectrum and directional distribution function. (Thin
line: benchmark spectrum, thick line: estimated spectrum).

and the directional distribution function G(f) in the frequency f = 0.093 (Hz) of
Case 3 in Fig. 4. A proper frequency spectrum and a directional distribution function
can be seen when a proper crossing angle of radio signals (60 = 90°) are used.

5. Concluding Remarks

We proposed a method for estimating directional wave spectra using HF radar, devel-
oped from a Bayesian approach. Accuracy, validity and applicability were examined
for numerically simulated data. The results demonstrate that the directional wave
spectra can be estimated with high accuracy on the basis of the Doppler spectra
obtained by HF radar, theoretically. However, for applying the proposed method
to the real Doppler spectrum acquired by field observations, more examination
must be carried out since there may be uncertain factors which were not consid-
ered in this study such as observational errors, estimation errors of the Doppler
spectra and others. We are now preparing for applying the proposed method to
field data and carrying out further studies for enhancing the practical use of this
method.
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