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ABSTRACT

Simple expressions are presented for the corrections to the classic Ekman pumping law W, = 3-curl(7o/f)
due to nonlinear advection effects in the surface boundary layer. These involve products of the surface Reynolds
stress T, and the underlying ocean currents vy (x, y, ¢) and their derivatives, and products of 7o(x, y, ¢) and its
own derivatives. The former interaction is independent of the turbulence closure, while the latter is obtained
using solutions for a constant eddy viscosity. The corrections are usually small, as is assumed when the linear
Ekman pumping relation is applied in ocean modeling. However, they can become significant in circumstances
involving very high wind stresses (e.g., a hurricane), or in situations where a strong narrow oceanic current
flows under a region of moderate but perhaps relatively uniform surface stress.

1. Introduction

A fundamental concept of dynamic oceanography is
the notion of Ekman pumping, where horizontal diver-
gence of the vertically integrated flow in the subsurface
turbulent boundary layer generates by mass continuity
a weak vertical suction velocity W, at the bottom of the
layer. This pumping velocity is usually derived by con-
sidering a neutrally stratified turbulent layer extending
a small distance 6 down into an ocean that is subject to
Coriolis accelerations proportional to f(y), where fis
the Coriolis parameter and y is the meridional distance
referred to a nonequatorial base latitude. The boundary
conditions are that the mean velocities approach the
interior values upon leaving the boundary layer, and
that the turbulent momentum fluxes at the top of the
boundary layer match those accompanying the wind
stress above. This situation is illustrated schematically
in Fig. 1.

A central feature of the derivation of the well-known
pumping rule '

Wiz ~ —8) = 2-curl(7(/f), (D

which may be found in most standard textbooks (e.g.,
Gili 1982; Pedlosky 1987; Tomczak and Godfrey
1994), is the assumption of weak wind stresses and
low Rossby number flow in and below the boundary
layer. This makes the Ekman layer problem linear and
allows, as a consequence, a direct integration across the
boundary layer that gives (1) without the necessity of
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introducing any turbulence closure assumptions. Al-
though the Rossby number ¢ = U/fL, where U is a
characteristic flow velocity, and L is the horizontal
length scale, is usually quite small in the ocean interior,
there are local regions where it may approach a few
tenths. Under conditions of high surface wind stress the
wind-driven mean currents in the boundary layer itself
can have substantial Rossby number as well. Therefore,
it is of some practical importance, as well as of aca-
demic interest, to determine the precise form of cor-
rections to Eq. (1) when finite Rossby number effects
are included in the boundary-layer dynamics. Follow-
ing our derivation, which yields an analytical result
through application of regular perturbation theory,
some oceanographic situations with significant second-
order corrections are cited. In addition to these specific
illustrations, it is useful to have a more accurate surface
layer pumping formula for use in conceptual and com-
putational models.

In a previous paper (Hart 1995), the question of
nonlinear corrections to bottom-layer Ekman pumping
was addressed by a regular perturbation method. The
modified Ekman suction law for W, above a rigid sta-
tionary bottom wall is
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where ¥(x, y, t) is the streamfunction for the interior
flow such that v = —V X 2¥, wy = VAV is the vertical
vorticity of the interior motion, and J is the Jacobian
operator defined by J(g, h) = g.h, — g,h,. Thus, as
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Fi1G. 1. Sketch of the upper boundary layer of thickness 6, in
which turbulence is driven by a spatially variable surface stress
7o. There is flow vo(x, y, ) between the first isopycnal (or bottom)
and z = —6.

=_H—/"_

expected, in regions of strong vorticity or vorticity gra-
dient, the correction terms to the usual linear-in-vortic-
ity suction law can be significant. For this bottom
boundary-layer model, a turbulence closure is made. In
particular, the result (2) reflects the analogy with lab-
oratory flows where the momentum diffusion of the
mean currents goes like prV?v, so that v is to be in-
terpreted as a constant eddy viscosity.

A similar second-order-accurate equation for the sur-
face layer pumping is easier to derive, and many of the
terms in it are be obtained without any turbulence clo-
sure assumptions. The purpose of this note is to de-
scribe this calculation, and to discuss briefly some con-
sequences of the result.

2. Analysis
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where 7(x,y,2,1t) = (T, T,) = —(Ev:, ﬁ) gives the

turbulent stresses associated with deviations in velocity
from the means v, f(y) = f, + By is the Coriolis pa-
rameter on the usual £ plane, p is the dynamic pressure,
D/Dt = 8/0t + v-V, and p is the constant water den-
sity. The second equality in (3a)—(b) is the usual
Newtonian friction assumption and is used in part of
the derivation presented below.

The suction velocity W, at the base of the Ekman
layer may be determined by integrating the vertical vor-
ticity equation formed from (3) across the boundary
layer. This vorticity equation can be written as

_foow 9 (81, Or.\__ D
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When the Rossby number € and the surface stress 7o = 7
(x,y,z=0,1t) are small, and By/f; = €, we can view the
right-hand side of (4) as a small, but finite, correction to
the usual linear balance obtained by setting the left-hand
side equal to zero. We write the Ekman suction as this
linear part wy plus a correction wy, and represent the Ekman
layer flow as a sum of its interior and boundary layer
(primed) parts: u = up(x,y,t) + u'(x,y,2, 1), v = v(x,
y,t)+v'(x,y,2z,t),andw = w'(x,y,z,t). An integration
from z = 0 to z = — 6, followed by application of boundary
conditions # = 79, w=0atz=0,and u’ =v' =0atz

The equations of motion for the mean velocities in = —o gives
the neutrally stratified boundary la taken to b 1
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where the vertical integration has been extended to —o
when the integrands involve primed variables because
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these become zero below z = — §; Do/ Dt is the interior
advection operator 9/90t + (vy-V,).
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The last term in (6) is canceled when the interior
vertical vorticity equation is integrated from the first
stratification level (or the bottom) z = —H, up to z
= — 6, in order to obtain the effect of the Ekman pump-
ing on the interior vorticity. That is, this integration is
usually done from — H to 0, neglecting the thin contri-
bution over the height §. Considering first-order terms
in 6/H, it is consistent to replace f/(H — §)Ow/0z in
the interior vorticity equation with the usual f/ How/8z
because the § contribution to this stretching effect is

~ balanced by the final term in (6). Thus, if we remember
to use H as the stretching distance for the interior ver-
tical vorticity, then the 4[...] term in (6) may be
dropped.

Many terms remain to be calculated. The lowest-or-
der boundary layer dynamics gives

- T - T
v'dz ==, f w'dz = — =%,
J:) Jo 0 ~ fo

which here are written in a form that can be used in
(6), that is, the left-hand sides are the negatives of the
usual Ekman (1905) transports. Equation (7) can now
be used to evaluate all the terms in (6) that are linear
in the primed variables because the interior flow vari-
ables are independent of height and can be taken out-
side the vertical integration. Combining the resulting
w, flow with (1) leads to the partial conclusion
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There is an interaction between the integrated Ekman
transport in the boundary layer, which is proportional
to 7y, and the interior flow. If 8 = 0, the first term
reduces to 2V X 74/(fy + wy). For this term the net
stretching of interior relative plus planetary vorticity,
which is (fy + wo)W,./H, is exactly the same as before
the correction. The time derivative is the so-called is-
allobaric effect (e.g., Gill 1982, p. 328). However,
V- 7, is typically quite small and the Lagrangian de-
rivative of the divergence of the surface stress may of-
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ten be neglected. When this is the case, the most im-
portant correction to (1) represents an interaction be-
tween the wind stress and perpendicular gradients of
the interior vorticity. Equation (8) reflects a net force
balance across the boundary layer is obtained without
the necessity to introduce any turbulence model or clo-
sure assumption!

We are left with corrections arising from products of
primed variables in (6), and these cannot be so simply
integrated. However, the primed variables, resulting
from the solution of the boundary layer equations at
order €°, depend only on 7, not on v,. Nonetheless,
an explicit model must be used to find their z distri-
butions. One way to proceed, in order to get an indi-
cation of how stress interactions enter the pumping
rule, is to use the simple closure expressed by the sec-
ond equality in (3a,b). To lowest order the boundary
layer dynamics are described by

, 62ul
—fu' = 522 (9a)
o’
fu' = R (9b)
with the standard solution
u' = ae” cos(n) + be” sin(n),
v’ = ae” sin(n) — be" cos(n), (9¢c)
where
fo 1
=42, a= T+ T7y),
=2 G TR
b= — ' (9d)

m (Tx - Ty)-

The continuity equation yields w’'(x, y, z, t), and then
all the remaining terms in (6) that involve products of
primed variables can be integrated. The integrations
and subsequent algebraic reduction is expedited by us-
ing the symbolic manipulator MAPLE. Combining
with a slightly more compact version of the previous
partial pumping formula (8) yields the total e-accurate
(etror of order €?) suction. Let £ = 2-V X 7, be the
curl of the surface stress, and let D = V-7, be the
divergence of said stress. The final result is

s To(X, ¥, 1) 1//0 .
We=2:V X (f(y) + w(x,y,t)) +f%{<3t+ Yo V>D}
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which is written in a form to highlight the different
contributions from the divergence and curl of the ap-
plied surface wind stress.

An alternate way to derive (10) is to vertically in-
tegrate the horizontal divergence of the Ekman trans-
ports, after finding these latter objects by solving the
quasi-linear momentum equations in which v-Vv + (f
X v) is replaced with (w + f) X v + V(v-v)/2. The
integrated w’ is proportional to V-7, and this may
usually be assumed small. The gradient term vanishes
at lowest order when cross differentiating to form the
horizontal divergence of the primed flow, so that the
dominant correction term as far as the pumping goes is
just (wo + f)(Z X v'). The first term on the right side
of (10) then falls out right away after solving the mo-
mentum equations for v, then integrating the resulting
horizontal divergence to get W,. This shows that the
boundary layer flow feels a Coriolis force associated
with the planetary plus relative interior vorticity.

3. Discussion

For most oceanic conditions, the last bracketed term
in (10) is quite small. If we calibrate v by setting the
boundary layer depth § =~ (v/f;)""?, then the ratio of
these stress-squared interaction terms to the leading
pumping velocity £/f, is of order £/8f 3 (assuming £
> D). Large-scale curls of 7, are about 2 X 107
cm®s~" on a 1000-km wind scale. Taking a surface-
layer thickness 6 ~ 20 m shows that this ratio is around
107%. So unless the wind stress curl is locally very
much bigger than the value used here, the effect of
nonlinear self-advection of the boundary layer com-
ponent of the flow on the Ekman pumping is quite
small. For the classic nondivergent westerly wind stress
‘model 7 = — 7% cos(my/L),ony = [0, L], the f-plane
pumping is

Tom . [Ty Tir? (27ry>
W, = — —sin| —= _ —1}. 1

, I, <L>+\/§L2f3¢5cos 7 ) (D
Thus, with negative wind stress curls (7, > 0) the cor-
rection induces more downward pumping at the merid-
ional midpoint of the gyre and shrinks the meridional
extent of the gyre (a defined zero line of W,) by a
kilometer or so.

More significant stress—stress interactions are pos-
sible at larger values of 7., such as occur locally under
strong cyclonic storms. The problem of the oceanic re-
sponse to hurricane-force winds has been studied using
numerical calculation (O’Brien and Reid 1967) and
linear theory (Geisler 1970), among others. Equation
(10) allows a direct estimate of the importance of non-
linear Ekman transports in such situations (assuming a
modest Rossby number for the ocean response and a
slow wind evolution timescale, relative to f~'). We
compute the predicted Ekman flux for a boundary layer
30-m deep at 25° latitude, in a resting (v, = 0) ocean
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under a cyclonic surface wind consisting of an azi-
muthal flow that has a radial structure given by r/L
exp(—r/L). The peak wind speed is set to 35 ms™'.
We use L = 50 km and let the actual wind vector in-
clude a component with identical r dependence that
is oriented at an angle of 20 deg into the low. The
wind stress is calculated using the drag rule =g
= —1075(0.75 + 0.067v)vv, (Garratt 1992) with v
= abs(v). Figure 2 shows that although the suction is
still dominated by the standard relation [i.e., Eq. (1)],
the nonlinear corrections are significant. The curve la-
beled w, reflects the { }-terms in (10) arising from
wind stress curls £ (i.e., what is left after setting D
= (), while that labeled w{ shows the suction velocity
arising from nonzero divergences D of the surface
stress. Both corrections reduce the upwelling below the
core of the storm. The negative divergence term comes
from the £D contribution to (10). An anticyclone with
the same structure has enhanced downwelling, since
both second-order corrections are unchanged upon re-
versal of the sign of 7y, while the lowest-order term is
opposite to that for a cyclonic (positive £) excitation.

The ratio of the surface-stress vorticity-gradient in-
teraction, which from (10) is proportional to V7,
X Vwy, to the leading pumping velocity (1) is of order
x = UL,/ fyL.>. Here L, is the scale of variation for the
stress and L, is the scale of variation for the interior
oceanic current, which has characteristic velocity U. In
a 1 m s~! boundary current that is 40 km wide,  is
considerably greater than unity, indicating that the suc-
tion velocity may be dominated by the stress—current
interaction rather than the lowest-order curl-stress/
planetary vorticity term. This will certainly be true in
regions where a strong wind stress is relatively curl
free. Consider a simple case with 7, = const, 7, = 0,
and uy = U(y). Then the surface-stress vorticity-gra-
dient term leads to a suction velocity

—
°

W,(m/sec)

05 1 L5 k3 2.5

4— -0.0005 W

FiG. 2. Vertical suction velocity into the surface Ekman layer under
a cyclonically swirling and weakly converging wind: wy is the lowest-
order suction [Eq. (1)], w) is the correction due to the rotational part
of the wind stress £, while wj is the correction due to the divergent
part of the stress D. See text for parameter values.
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If both the stress and the jet (e.g., U = 1 m s ! sech®(y/
L,) are eastward, then there is upwelling above the y
= () axis of the jet into the boundary layer and down-
welling out in the wings beyond the locations of zero
curvature of U(y). For L, = 20 km (a 40-km jet
width), an anemometer height wind of 15 ms™' at
45°N, and a drag law as described above, the peak ver-
tical velocity above the core is about 0.2 mm s ™' (16
m day ~"), while the downwelling in the wings peaks
at about half this value. From (11) the gyre-scale Ek-
man suction peaks at about 107> mm s~! for L = 10°
m and the same wind. Thus, the stress vorticity-gradi-
ent interaction can produce significant upwelling ve-
locities in situations like this, which has a maximum
local Rossby number of about one-third.

The way in which this part of the nonlinear Ekman
pumping affects the ocean currents depends on the
other terms in the interior vorticity equation. However,
if the current has depth H, is over a strongly stratified
thermocline that isolates it from drag on the bottom,
and is parallel and oriented east—west, the full vorticity
equation for ocean flow under a uniform east—west
stress 7,(y) becomes

(12)

(13)

The general exact solution for constant U, is simply w .

= w;(y + ct), where w; is the initial vorticity distri-
bution of the jet. The nonlinear suction therefore causes
the current system to drift south (for U,, > 0) at rate ¢
= C,|U,|U,/Hfy. For the parameters used above and
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H = 800 m, the drift is about one-half kilometer
per day.

These examples suggest that although the nonlinear
corrections to Ekman surface layer pumping are gen-
erally small, there are special situations involving high
wind stresses and/or narrow currents where the sec-
ond-order effects described analytically in this paper
are important. Equation (10) may be useful in theory
or simulations of ocean circulations that require a
more accurate surface layer suction law than that rep-
resented by the classic linear Ekman pumping rule ex-
pressed in (1).
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