
Formulas for ambient noise level and coherence
C. H. Harrison
BAeSEMA, Apex Tower, New Malden, Surrey KT3 4LH, England, United Kingdom

~Received 23 May 1995; accepted for publication 31 October 1995!

This paper investigates the various approximations commonly made in noise and noise coherence
models and shows that in many cases a very simple ray approach can produce the same answers as
full wave treatments such as RANDI-2. The solution presented here takes the form of a single angle
integral which is valid for range-independent environments. Some closed-form solutions are
presented, and the approach makes it very easy to understand such phenomena as the ‘‘noise notch.’’
The method can be extended to range dependence, and demonstrations are given of performance
near a boundary~inhomogeneous field! and in the presence of nonuniform horizontal distributions
of noise sources. ©1996 Acoustical Society of America.

PACS numbers: 43.30.Nb, 43.30.Re

INTRODUCTION

A fundamental aim of this paper is to throw some light
on what is, at first sight, a complicated subject, namely, mod-
eling ambient noise in the sea, its vertical directionality, and
spatial coherence. A review of existing models and tech-
niques is given by Hamson,1,2 and Kennedyet al.3 include
references to a number of noise models. Much of the
literature4–12either assumes isovelocity or resorts to numeri-
cal methods which are often computer intensive. Alterna-
tively some authors13 modestly believe their approach to be
oversimplistic when, in fact, they may be perfectly adequate
for more general regimes. Here we try to clarify some of the
assumptions that have been made and reconcile a simple ray
approach with normal mode approaches, more suitable for
low frequencies. In passing we find some closed-form solu-
tions for range-independent environments, and we present
some numerical comparisons with results from the literature.
The method can deal with uniform noise source distributions
as one might find with wind and rain, and nonuniform dis-
tributions more typical of shipping. It is important to realize
that these solutions do not require any normal mode or ray
tracing calculations. The main derivation is equally valid for
range-dependent environments, and these are pursued else-
where~Harrison14!. It is perfectly possible to obtain absolute
noise level from these formulas by employing experimental
noise source levels~see, for instance, Kuperman and Ferla15!
and this is discussed by Harrison.16

I. REVIEW OF POSSIBLE ASSUMPTIONS

We will consider the following assumptions. In order to
find a neat solution we will initially adopt assumptions A, B,
C, F, but we will show that it is possible to drop them all
without making the solution too cumbersome.
Assumption A: ray treatment
Assumption B: closely spaced hydrophone pair~1—in
depth, 2—in range!
Assumption C: neglect multipath modal interference
Assumption D: range-independent environment
Assumption E: isovelocity environment
Assumption F: azimuth-independent environment
Assumption G: neglect boundary reflections

Currently no formulas exist for arbitrary horizontal range
separation~B! nor for range-dependent environments~D!
though, of course, numerical solutions are possible. With
various combinations of these approximations we end up
with well known results, as follows: Cron and Sherman4 as-
sumed ~A1B1C1D1E1F1G!, Buckingham5 assumed
~D1E1F!, and, Kuperman and Ingenito6 assumed~D1F!. It
is stressed thatall the above formulas can be derived from
the simple ray approach of this paper. This gives one more
insight into the environmental dependence of ambient noise
and the behavior of phenomena like the ‘‘noise notch.’’ Also,
the model has scope for covering more complicated effects.
In particular we will concentrate on the azimuth-independent
~F!, range-independent case~D! with closely spaced hydro-
phones~B!, and with the aid of Appendices A and B we will
show precisely how to extend the formula to include modal
effects, thus avoiding assumption C. In Sec. V we briefly
drop assumption F and investigate azimuth dependence.

II. DERIVATION

Now we will derive a formula for the un-normalized
spatial coherence functionr initially making assumptions A,
B, C, F ~ray treatment in an arbitrary environment!. Later in
this section we will show that the effect of assumption C
~multipaths! is trivial and can be dropped. Similarly it will be
shown that it is possible to drop assumption B and assume
wide vertical separations. Thus we will arrive at essentially
the result of Kuperman and Ingenito,6 and we will have
scope for range-dependent extensions.

The amplitude from a unit source at horizontal ranger
and depth zero measured by a receiver at depthzr can be
written as a summation over all paths,

c~zr ,r !5(
p
Ap~zr ,r ,u r !e

iBp~zr ,r ,ur !, ~1!

wherep is the path index,ur is arrival angle at the receiver,
A is the~real! amplitude for each path, andB is the phase for
each path. Although this is a ray treatment~approximation A!
it allows for refraction and reflection at both boundaries.

The relevant geometry is shown in Fig. 1 by the slice at
azimuthf containing a noise source~at r ,f! and the center
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point of the hydrophone pair. One hydrophone is slightly
above the plane of the paper, the other just below. We adopt
Cron and Sherman’s notation for hydrophone spacingd and
elevation-angleg of the line joining the pair. Thus the hy-
drophone coordinates relative to the source are

z15zr1~d/2!sin g cosf,

r 15r1~d/2!cosg cosf,

z25zr2~d/2!sin g cosf,

r 25r2~d/2!cosg cosf,

and the coherence function is

r~d,g!5qE
0

`E
0

2p

c~z1 ,r 1!c* ~z2 ,r 2!g
2~us!r dr df.

~2!

We have allowed for a noise source~amplitude! directional-
ity g5sinm us as in Cron and Sherman and we integrate over
the entire sea surface. The number of these sources per unit
area is represented byq.

Note that in normal mode treatments~see Appendix A!
one typically assumes a unit~nondirectional! point source at
a depthz0 below the surface which results in the dipole
4k2z0

2 sin2 us . Thusq/4k
2z0

2 would represent the number of
this type of source per unit area. Furthermore, one could
equally well talk of a power per unit area resulting from
integration over allus . Thus unit power per unit area would
be represented by the beam pattern
„(2m11)/2p…3sin2m us . In subsequent equations in this
paper we will always takeq to be 1.

Now we neglect interference between multipaths~ap-
proximation C! which means we power-add ray contribu-
tions and neglect cross terms in the double sum. We assume
that the two hydrophones are close together~approximation
B! so that rays arriving from the same noise source via the
same family of rays are parallel at the hydrophones. The
complex amplitudes received at the hydrophones have the
same modulus but differ in phase bykd cosj wherek is the
wave number at the hydrophones and cosj is the direction
cosine between the incoming ray and the line joining the

hydrophone pair. Note thatk is a function of hydrophone
depth, but in the following analysis there is never any ambi-
guity so we avoid using a subscript:

r~d,g!5E
0

`E
0

2p

(
p

uAp~zr ,r ,u r !u2

3eik d cosjg2~us!r dr df. ~3!

The phase term can be written in terms of the angles from
Fig. 1 as

kd cosj5kd~sin u r sin g1cosu r cosg cosf!. ~4!

The termuAu2 is just the ray intensity which can be written
for each path as

uAu25
cosu r

r u~dr/du r !sin usu
QPn , ~5!

wherePn represents the cumulative~power! boundary and
absorption losses after thenth complete ray cycle. Note that
P051:

Pn5)
j51

n

Rs~us j!Rb~ub j!e
2asc j. ~6!

Here,Rs and Rb are surface and bottom power reflection
coefficients at the surface and bottom grazing angles,a is the
volume absorption, andsc is the path length of a single ray
cycle. The subscriptj acknowledges that in a range-
dependent environment the angles and cycle distance could
change from cycle to cycle. Additionally,Q takes care of the
losses along the first part cycle and includes a bottom turning
point loss for initially downward rays.

Substituting Eqs.~4!–~6! into Eq. ~3! we obtain

r~d,g!5E
0

2pE
2p/2

p/2

eik d sin ur sin geik d cosur cosg cosf

3S (
n50

Png
2~usn!/sin usnDQ cosu r du r df.

~7!

Remarkably ther dr cancels out. What is happening is that
the weakening of intensity due to ray spreading is exactly
compensated by the simultaneous increase in number of
noise sources with surface area. This was noted by
Chapman7 for an isovelocity environment but is actually true
even for range-dependent environments. Note that we have
cancelled the modulus ofr dr with r dr . This simply means
that in the integral overur all elements of the integrand have
to contribute positive amounts to the total. This actually hap-
pens quite naturally, and no special precautions are required.
The most important point is that Eq.~7! is valid for a range-
dependent environment with or without reflecting bound-
aries. We shall return to the problem of evaluatingSPn in a
companion paper.14 For the time being we will stick to
range-independent environments. In this caseSPn is simply
a geometric series~as Chapman observed for an isovelocity
environment!, and we can drop then subscript forus and
then perform the integration inf. Thus

FIG. 1. Geometry of the hydrophone pair.
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SPn5
1

12Rs~us!Rb~ub!e
2asc

.

To accommodateQ we separate the angle integral into two
halves and recombine them to an integral over half the angle
range, 0→p/2, with the result

r~d,g!52pE
0

p/2

@12RsRbe
2asc#21~eikd sin ur sin ge2asp

1Rbe
2 ik d sin ur sin ge2a~sc2sp!!

3J0~kd cosu r cosg!sin2m21 us cosu r du r , ~8!

wheresp is the part cycle path length~from receiver depth to
surface for one upward going ray.

This integral is easy to evaluate numerically, and some
examples are shown later. To investigate its behavior we will
look at several cases.

Notice that there is no explicit water depth dependence
and that receiver depth dependence is also weak, its main
effect being through limiting ray angles, as will be seen in
the examples in Sec. III.

In theory, as all losses tend to zero, there is a possibility
of a singularity in Eq.~8! if the term in square brackets goes
to zero. This will be familiar to astronomers as a 2-D version
of Olbers’ paradox where one might expect an infinitely
bright night sky to result from a uniform distribution of stars!
Even with finite losses that tend to zero only at grazing in-
cidence them50 case may result in a singularity, but the
mÞ0 cases will usually~but not always! avoid it. These
cases will be noted later.

For simplicity we assume thata is small and the reflec-
tion coefficientsRs andRb do not deviate far from unity.
Furthermore we will assume that eitherRs or Rb behaves
like e2a sinu where u is the appropriate boundary angle.
@Analytical solutions are still possible for large losses~by
assumingR512a sinu! but the solutions are not so neat.#
This is the same assumption~i.e., reflection loss proportional
to a sinu! that results in mode stripping and a signal fall-off
with range of r23/2 ~see Appendix A!. In the case where
boundary loss dominates, Eq.~8! reduces to

r~d,g!5E
0

p/2

4pa21 cos~kd sin u r sin g!

3J0~kd cosu r cosg!
sin2m21 us

sin u
cosu r du r .

~9!

Already there are some obvious simple cases for noise level
alone~d50!. For instance, dominance by surface loss with a
dipole noise source results in an integral only dependent on
ur and therefore not dependent on refraction details. Similar
simplification results in isovelocity water. Before investigat-
ing these cases in detail we briefly review the effects of
relaxing the approximations B and C. From here on we will
only deal with dipole sources,m51.

A. Allowances for large hydrophone separations

The derivation in Appendix A assumes arbitrarily spaced
hydrophones at depthsz1 and z2, and shows that for suffi-
ciently long ranges the vertical phase terms simply become
*z1
z2k sinu dz instead of k(z22z1)sinur5kd sing sinur .

This range restriction is comparable to the restriction on va-
lidity of the discrete normal mode sum. No such restriction is
required for closely spaced hydrophones.

B. Inclusion of multipath interference

Equation B~2! in Appedix B includes the multipath
terms for a single ray phase speed. If we were to integrate
this in range allowing for different up- and down-going ray
angles to each hydrophone we would obtain a condition
equivalent to Eq.~A4! in Appendix A. This states from nor-
mal mode arguments that, provided the decay~including
boundary losses! within one cycle is small one can neglect
cross terms or multipath interference. The resulting ray or
mode formula is therefore demonstrably incoherent. Despite
this there is still a systematic depth effect which manifests
itself as the mode shape@e.g., Eq.~A5! or ~A8! in Appendix
A# or the first cosine term in Eq.~9!. The only effects that are
ignored as a result of approximation C are the slight differ-
ences within a distancel/sinuc of the boundary~Bucking-
ham‘s ‘‘quasihomogeneity’’! and the discretization of the
angle integral due to modal propagation~see Appendix A!.
Furthermore, these effects are very easy to put back into Eq.
~8! without spoiling its simplicity.

III. SPECIAL CASES

A. Surface dominated losses

We assumeRb51, a50, andRs 5 e2as sinus, whereas

~assumed small! is related to the dB loss per radian per
bounceadBs

through adBs
54.343 as . We allow for these

conditions to apply over a limited angle range by generaliz-
ing the integration limits tou1 andu0. As will be seen, these
angle limits are simply determined by Snell’s law for the
given sound-speed profile~SSP!. Equation~9! becomes

r~d,g!5E
u0

u1 4p

as
cos~kd sin u r sin g!

3J0~kd cosu r cosg!cosu r du r . ~10!

The absolute noise levelI N for an environment with an arbi-
trary SSP consistent with the assumptions is simply the un-
normalized correlation function evaluated atd50. This can
be integrated to give

I N5
4p

as
~sin u12sin u0!. ~11!

In a surface duct, for instance, the only dependence on the
SSP is throughu1 which is the steepest ray angle at the
receiver sustainable by the duct~of maximum velocitycmax!:

u15cos21
„c~zr !/cmax….

If, despite being in a surface duct, there happens to be a
velocity maximum cu above the receiver, such that
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cmax.cu.c(zr), thenu0 is nonzero and given by

u05cos21
„c~zr !/cu….

Otherwiseu0 is zero.
The normalized coherence functionC is

C5E
u0

u1
cos~kd sin u r sin g!J0~kd cosu r cosg!

3cosu r du r /~sin u12sin u0!. ~12!

In the special case whereu15p/2 andu050 we can rewrite
the integral in its original form,

E
2p/2

p/2 E
0

2p

eik d cosj cosu du df.

Noting that this is an integral over all solid angles and chang-
ing coordinates so that the polar axis is aligned withj, we
obtain

E
0

p

eikd cosj2p sin j dj52p2
sin kd

kd

This result is, in fact, a version of the Sommerfeld integral.17

Thus the coherence function with surface dominated
losses and no angle restriction is

C5
sin kd

kd
. ~13!

At first sight it is surprising that this is the same as the result
for a uniform volume distribution of sources~see Cron and
Sherman4! and there is no dependence on hydrophone pair
orientationg. The reason for this is that the bottom loss law,
the dipole law, and the ray spreading jointly result in an
effectively angle-independent emission by the noise sources,
and regarding the multipaths as issuing from many image
planes we have surrounded the hydrophones by a uniform
volume of sources. Note that this result is valid for any SSP
with dominant surface losses provided the sound speed at the
receiver is greater than at any point in the SSP above it.

For other values ofu1,u0 we can solve the vertical array
case~g5p/2!, and

C5
sin~kd sin u1!2sin~kd sin u0!

kd~sin u12sin u0!
. ~14!

For largekd Eq. ~12! can be solved in many cases by the
method of stationary phase.

B. Bottom dominated losses

We assumeRs51,a50, andRb 5 e2ab sinubwhereab is
small. Ignoring the effect ofRb in the numerator of Eq.~8!
so that Eq.~9! still stands, and, again, allowing for a general
upper and lower angle limitu1,u0 we obtain

r~d,g!5E
u0

u1 4p

ab
cos~kd sin u r sin g!

3J0~kd cosu r cosg!
sin us
sin ub

cosu r du r .

~15!

Clearly all relevant rays must hit the surface and bottom, so
the lower limit is determined by the maximum velocity in the
entire SSP.

It is obvious from Eq.~15! that any environment with
us5ub behaves in exactly the same way as the surface loss
dominated environment. Also, the role of a critical angleuc
in the bottom loss is the same asu1 in Eq. ~11!. In fact for
isolvelocity we have the simple formula

I N5
4p

ab
~sin uc2sin u0!.

By invoking Snell’s law the absolute noise levelI N can be
written as

I N5
4p

ab

cs
cb

E
sin u0

sin u1SA1X2

B1X2D 1/2 dX, ~16!

where

A5
cr
2

cs
221, B5

cr
2

cb
221.

According to Gradshteyn and Rhyzik18 ~p. 276! this can be
evaluated in terms of elliptic integrals of the first and second
kind F andE under six conditions depending on the signs of
A andB and the relative magnitude ofA andB. These cor-
respond to the six ways of orderingcr , cs , andcb . Here we
show two of these solutions, one for upward refraction, and
one for downward refraction. To keep presentation neat we
show the integrals with the lower limitu0 set either to zero or
to sine of the appropriate limiting angle. In other words we
assume the minimum phase velocity to be max[cr ,cs ,cb].
From these, the integrals with any limit can be found. In each
caseus1,ub1 are the surface and bottom angles related by
Snell’s law tou1.

1. c b>c r>c s : Upward refraction

I N5
4p

ab

cs
cb

F cr
2

cscb

sin us1 sin ub1
sin u1

1~A2B!1/2

3„F~m,n!2E~m,n!…G , ~17!

where

cosu05cr /cb ,

m5arccos„~2B!1/2/sin u1…,

n5~12B/A!21/2.

2. c s>c r>c b : Downward refraction

I N5
4p

ab

cs
cb

F cr
2

cscb

sin us1 sin ub1
sin u1

2~B2A!1/2E~m,n!G ,
~18!

where

cosu05cr /cs ,

m5arccos„~2A!1/2/sin u1…,
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n5~12A/B!21/2.

C. Absorption dominated losses

A simple possibility is to assume isovelocity water with
Rs5Rb50 andaÞ0. Equation~9! then becomes

r~d,g!52pE
0

p/2

eikd sin ur sin gJ0~kd cosu r cosg!

3e2azr cscur sin u cosu r du r . ~19!

The absolute noise levelI N reduces to the exponential inte-
gral E3 ~Abromowitz and Stegun19!:

I N52pE3~azr !. ~20!

If we take insteadRs5Rb51 and make the approximation
thatasc is small, so that 12exp(2asc);asc , we obtain

r~d,g!54pE
0

p/2 1

asc
cos~kd sin u r sin g!

3J0~kd cosu r cosg!sin us cosu r du r ,

~21!

wheresc is a function of angle. We might consider two cases,
isovelocity and surface duct.

For isovelocity we have

sc52H/sin u

and the absolute noise level is

I N5
4p

a E
0

p/2 sin2 u

2H
cosu du5

2p

aH Fsin3 u

3 G
0

p/2

5
2p

3aH
. ~22!

For a surface duct we have

sc52
c

c8
tan us .

For small angles this gives the same result as for surface
losses except for a multiplication factor

I N5
4p

a

c8

2c E0
u1
cosu r du r5

2pc8

ac
sin u1 , ~23!

where we assume arrival angles in the rangeuur u,u1.

IV. GENERAL CASE

A. Rules of thumb

We start by deriving some rules of thumb that enable
complex environments to be tackled by the simple formulas
already derived; then we move on to some numerical evalu-
ations of Eq.~8! for realistic environments. If we consider an
arbitrary range-independent environment with any combina-
tion of a, Rs , andRb then the only possible regimes are
shown diagrammatically in Fig. 2 in terms of phase speed~a!
and noise intensity versus angle~b!.

Four velocities are shown: the value at the receivercr ,
the maximum value in the SSP above the receivercu , the

maximum value in the entire water columncmax, and the
bottom critical anglecc . These translate into the anglesu0,
u1, and u2 where cosu05cr /cu , cosu15cr /cmax, and
cosu25cr /cc , as shown in Fig. 2~b!. Clearly we must always
have cr<cu<cmax, so potentially there are no more than
four phase speed bands or angle ranges. Fromcr to cu ~if
cu>cr! there may be a noise notch~NN!; from cu to cmax ~if
cmax.cu! there may be a surface duct with upward refraction
~SD!; from cmax to cc ~if cc.cmax! there may be low loss
surface and bottom reflected paths~SB!; and abovecc there
will always be direct paths~D! and high bottom loss paths
~HBL!.

In Fig. 2~b! the SD and SB contributions are shown as
flat topped for upward rays and slightly drooping for down-
ward rays because of the extraRb term @see Eq.~8!#. In
addition, the intensity of the steep upward and downward
rays is proportional to sinu, since the quantity plotted is the
integrand of Eq.~8! ~omitting the cosu because this is part of
the solid angle element!.

Obviously the surface duct will never be influenced by
bottom reflections, but the SB band can be dominated by
surface, bottom or absorption. Since these losses are additive
in the denominator of Eq.~8!, the surface/bottom change
over is given by equating surface and bottom losses:

as sin us5ab sin ub .

From Snell’s law this translates to an angle at the receiver of
u r5usb :

cosusb5cr S as
22ab

2

cs
2as

22cb
2ab

2D 1/2 ~24!

and the phase speedcsb is

FIG. 2. ~a! Diagram showing the only possible phase speed bands for sur-
face noise sources in a range-independent environment. NN5noise notch,
SD5surface duct, SB5surface/bottom reflected paths, D5direct path, HBL
5high bottom loss paths.~b! Intensity contributions in the angle bands
corresponding to~a!.
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csb5cr secusb5S cs2as
22cb

2ab
2

as
22ab

2 D 1/2. ~25!

Use of this approach means that we can deal with arbitrary
environments~noise and coherence! without resorting to nor-
mal mode calculations or ray traces since all that is required
is Eq. ~8! with appropriate givenRs , Rb , a, and an ap-
proximate formula for the ray cycle complete path lengthsc
and partial path lengthsp . For instance we could use

sp5zr /sin„~u r1us!/2…

and

sc52H/sin„~ub1us!/2…, for bottom rays
sc5~2c/c8!sin us , for surface only rays.

B. Numerical examples

In the following examples we have evaluated Eq.~8!
numerically with given values ofd,g,a,Rs(us),Rb(ub), and
velocity profile. The cycle path lengthssp andsc were cal-
culated by a ray trace for one half-cycle from the sea surface,
respectively, down to the receiver depth and down to the
lower turning point~whether refracted or reflected!.

The environment is a Baltic case investigated at a fre-
quency of 800 Hz by Hamson7 using RANDI-2. RANDI11,12

is a noise model, based on a full wave solution, that can
include near-field effects as well as discrete point sources.
Figure 3 shows the sound-speed profile, and the bottom loss,
shown in Fig. 4, has been recalculated usingSAFARI.20 Fol-
lowing Hamson we take surface losses to be zero, and we

have a volume absorption of 0.0505 dB/km. The absolute
noise source level per unit area for wind sources follows
Kuperman and Ferla15 as does RANDI-2.

1. Noise intensity versus angle

Figure 5 shows noise intensity versus angle@i.e., the
integrand of Eq.~8! with d50 excluding the final cosur
which is part of an element of solid angle# plotted for three
depths 20, 40, and 80 m. Referring to the SSP, these are,
respectively, above the trough, in the trough, and below the
peak in the SSP. There are several interesting features here.
One is that the picture is asymmetrical because bottom losses
dictate that there is more energy coming from upward than
downward. Another is that at 40 and 80 m there is a clear
noise notch, and one can easily see the correspondence be-
tween the parts of this graph and Fig. 2~b!. The narrow
spikes for receivers above the peak in the SSP are low loss
contributions from the surface duct. The small hump at
around 15° corresponds to relatively low loss bottom re-

FIG. 3. Sound-speed profile for a Baltic environment.

FIG. 4. Bottom loss for the Baltic environment calculated withSAFARI.

FIG. 5. Noise intensity versus angle for three receiver depths: 20 m~solid!,
40 m ~dotted!, and 80 m~dashed!.
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flected paths, and the kink at about120° is the transition
between linear bottom loss and high fixed loss~the effective
critical angle!.

2. Noise intensity versus depth

The thick solid line in Fig. 6 is a plot of noise intensity
versus depth for the same environment. Notice that there is a
resemblance between the shape of the intensity and the SSP.
The main reason for this is that the width of the noise notch
increases, and therefore the intensity decreases, when the re-
ceiver enters a local minimum in the SSP. Hamson’s
RANDI-2 results are superimposed as a dotted line in Fig. 6.
The overall shape is the same, but there are more oscillations
because of wave interference effects, and ambient noise falls
to zero at the sea surface. As discussed in Appendices A and
B, it is possible to put back the second cos term@Eq. ~A8!,
Appendix A# in our numerical integral, and the result is the
thin solid line in Fig. 6. Considering the simplicity of the
approach~still a single integral! agreement is extremely
good. The remaining discrepancies are due to the discrete-
ness of the mode angles, which is clearly not represented in
the integral. The only penalty is that the extra term can be
highly oscillatory with angle, since the argument is 2
kzr sinur rather thankd sinur , and this requires finer sam-
pling.

3. Coherence versus hydrophone separation

Equation~8! can be evaluated for fixed receiver depth,
fixed hydrophone elevation angleg, but varying hydrophone
spacingd. For horizontal pairs~g5p/2! the imaginary part

of r is identically zero, and even in this Baltic environment
the variations are small as seen in Fig. 7~a! for depths 20, 40,
and 80 m. The corresponding plots for vertical pairs~g50!
are more interesting as seen in Fig. 7~b!.

V. NONUNIFORM SPATIAL DISTRIBUTIONS

Up until now we have assumed a uniform distribution of
noise sources in range and azimuth. So the earlier results are
suitable for wind and rain, but not directly for shipping. We
deal below separately with nonuniformity in range and azi-
muth.

FIG. 6. Noise intensity versus depth calculated from: Eq.~8! ~thick solid
line!; Eq. ~8! modified with additional cos term~thin solid line!; and
RANDI-2 after Hamson~dashed line!.

FIG. 7. Coherence versus hydrophone spacing for~a! a horizontal pair and
~b! a vertical pair at three depths: 20 m~solid!, 40 m ~dashed!, and 80 m
~dotted!.
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A. Range nonuniformity

We define our ‘‘nonuniform’’ distribution as uniform
within a thick annulus bounded by a minimum ranger 1 and
a maximum ranger 2. For the purpose of noise calculation
~or vertical array coherence! the fact that this is symmetrical
in azimuth is irrelevant, and the ships could just as easily be
concentrated in a limited spread of azimuth.

By arguments similar to that leading to~A4! in Appen-
dix A it is easy to show that multipath interference can still
be dropped under certain conditions. For instance, if we were
to localize the ships in range with a displaced Gaussian prob-
ability distribution of width w, the condition for validity
would be that for all elevation angles the cycle distancer c
should be less than the modal decay distancedn

21 ~i.e.,
r cdn!1! and that the cycle distance should be less than the
Gaussian’s width~i.e., r c!w!. Thus this condition of validity
translates to a minimum thickness for the annulus:
r 22r 1@r c for all elevation angles. This is likely to be satis-
fied in shallow water but possibly a poor approximation in
deep water when there may be convergence zones of 60 km
or more spacing.

In the earlier derivation leading to Eq.~8! we summed a
geometric series for the noise arrivals from zero to infinity.
The only difference now is that the series goes fromn1 to n2
where

n15INT~r 1 /r c!, ~26!

n25INT~r 2 /r c!, ~27!

and clearlyn1 andn2 are range dependent. We now simply
substitute a new geometric series in Eq.~8!:

(
n5n1

n2

Rn5
Rn12Rn211

12R
, ~28!

giving

r~d,g!52pE
0

p/2FRn12Rn211

~12R! G~eikd sin ur sin ge2asp

1Rbe
2 ikd sin ur sin ge2a~sc2sp!!

3J0~kd cosu r cosg!sin2m21 us cosu r du r ,

~29!

whereR5Rs(us)Rb(ub)e
2asc.

The effect of the extraRn terms is to emphasize low
angles; it is precisely the ‘‘mode stripping’’ effect,21 as is
easily seen. Assuming reflection loss to bea sinu we have
terms likeRn 5 e2na sinu, butn is range dependent according
to Eqs.~26! and~27!. For isovelocity we haver c52H cotu
so the termRn becomes exp~2ra sinu tanu/2H!. It is the
roughly Gaussian behavior~in u! that leads after integration
to mode stripping. Clearly numerical integration is again
straightforward, but for analytical purposes the Gaussian can
be thought of as a cutoff in angle atu.(2H/ra)1/2, provid-
ing a ~range dependent! value foru1 in the earlier integrals.

1. Numerical example

Taking the earlier environment we can demonstrate the
effect of range nonuniformity on intensity versus angle. We

assume the noise source distribution to be uniform except for
a circular area above the receiver where there are no sources.
Figure 8 shows the effect of enlarging this area for a receiver
at 20-m depth. Narrow angle surface duct returns are largely
unaffected whereas the wide angle bottom reflections are cut
out by mode stripping. The effect is shown as a function of
range at three depths in Fig. 9. The deepest depth, 80 m, is
attenuated most severely. The other two, 20 and 40 m, being
dominated by surface duct, fall off exponentially because of
absorption sinceR5exp~2asc! and n5r /r c giving Rn

.exp ~2ar!.
By convolving these curves, for uniformly distributed

wind sources but nonuniformly distributed shipping, with a
vertical line array beam pattern one can calculate an array
response, and favorable comparisons have been made16 with
RANDI-2 calculations by Hamson.9 The array response in

FIG. 8. The effect on noise directionality of removing noise sources from
ranges less than: 0 km~solid!, 5 km ~dotted!, 10 km ~dashed! for a receiver
at 20-m depth.

FIG. 9. The dependence of noise level on the range of the closest noise
source in a distribution that otherwise extends uniformly to infinity. Curves
for three receiver depths are shown: 20 m~upper!, 40 m~intermediate!, and
80 m ~lower!.
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any environment~assuming the array has enough angular
resolution! will always reflect the features of Fig. 8~with or
without a surface duct! since distant ships will result in tall
peaks near to the horizontal, whereas uniformly distributed
wind sources will give a broader response.

B. Azimuth nonuniformity

Returning to Eqs.~3! and~4! we see that it is the cosf
term in the exponent that leads to the Bessel function 2p J0
in Eq. ~7! after azimuthf integration. If we had superim-
posed an azimuthal dependencep~f2b!, whereb is a given
constant, we would have obtained instead

I ~A,b!5E
0

2p

eiA cosfp~f2b!df. ~30!

Numerically it is easy to tabulateI againstA for a given
constantb and to store the functionI (A,b) independentlyof
any other integrals in elevation angle.

Analytically we can solve Eq.~30! whenp is a Gaussian
beam of widthw, i.e., p~f!5exp~2f2/w2!, since the com-
plex exponential can be expanded in a series of Bessel
functions19 ~9.1.44, 9.1.45!:

I ~A,b!5wp1/2F S J0~A!12(
j51

`

~21! j J2 j~A!

3cos~2 jb!exp~2 j 2w2!D
1 i S 2(

j51

`

~21! j11J2 j21~A!cos„~2 j21!b…

3exp„2~ j21/2!2w2
…DG . ~31!

These series converge rapidly especially for largew ~e.g.,
w;1 rad!. For very smallw it is more convenient to use the
equivalent formula

I ~A,b!5wp1/2 exp~ iA cosb!

3exp~2~A2w2 sin2 b!/4!. ~32!

C. A shipping lane

A simple scenario is a uniform distribution of noise
sources~e.g., ships! on one side only of a horizontal straight
line displaced by a distancey from the receiver. From this
we can evaluate the effect of a finite width lane by subtrac-
tion. Taking the origin off as orthogonal to the shipping
lane we findRn is given by

Rn5exp~2ay sin2 u secf/2H !. ~33!

This is dependent onu andf so we need to reintroduce the
original f integral. However, it can be seen that the main
contributions come from smallu but a relatively large range
of f, say,f0. Thus roughly we can separate the function into
exp ~2ay sin2 u/2H! and an angle limit of6f0 in the f
integral. Using the earlier expansion of the complex

exponential19 generalized to exp~iA cosf! we can solve the
f integral.

The complete coherence function becomes

r~d,g!5E F~kd cosg cosu r ,b!e2ay sin2 ur /2H

3@12R#21~eikd sin ur sin ge2asp

1Rbe
2 ikd sin ur sin ge2a~sc2sp!!sin2m21 us

3cosu r du r , ~34!

where the functionF is the result of thef integral with
f05p/2:

F~A,b!5pJ0~A!12i(
j51

`
2

2 j21

3cos~2 j21!bJ2 j21~A!. ~35!

If b5p/2 so that the hydrophone pair is aligned with the
shipping lane the functionF reduces topJ0(A) and Eq.~34!
differs from Eq.~8! only in the multiplier ofp ~rather than
2p! and the mode stripping term exp~2ay sin2 u/2H! which
is determined by the closest point of approach,y. Thus, but
for the factor of 2, the solution is the same as that in Sec.
V A with n25` andn15y/r c .

If b50 so that the hydrophone pair points across the
shipping lane, the real part ofp and the absolute noise level
are unchanged, but there is an additional imaginary part con-
sisting of ever-decreasing odd-order Bessel functions.

VI. CONCLUSIONS

This paper demonstrates that a simple ray approach is
capable of modeling sophisticated noise level and coherence
effects, such as the noise notch, mode stripping, near bound-
ary inhomogeneity, and nonuniform source distributions. The
solution is essentially the same as the wave solution in
RANDI-2. Some closed-form solutions are given for special
cases including noise level and coherence in an arbitrary sur-
face duct @Eqs. ~11! and ~13!#. The general case can be
solved by a single numerical integral without the need for
detailed ray tracing or calculation of normal modes. It is
shown that the noise notch is quite a simple phenomenon
whose existence is determined by Snell’s law and the excess
in sound speed above the receiver. In an arbitrary range-
independent environment there can never be more than three
angle bands contributing to the noise, as shown in Fig. 2.
Figure 5 and 6 demonstrate that absolute noise source levels,
whose implementation is described in Harrison,16 can easily
be included in this approach. Harrison14 extends this simple
treatment to range-dependent environments.
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APPENDIX A: RELATION BETWEEN NORMAL MODE
AND RAY CALCULATION OF NOISE

We give a brief derivation of the discrete mode formula
for the coherence between two hydrophones in a stratified
medium in order to compare it with the ray treatment. It is
suggested that this derivation is much simpler than that of
Buckingham5 or Kuperman and Ingenito.6 We start with the
usual discrete mode sum with a noise source at depthz0 near
the surface such that the mode function

un.~2/H !1/2 sin~pz0n/H !.pz0n~2/H3!1/2.

The decay constant isdn :

c~z,r !5~2p!1/2eip/4(
n

N
un~z!

~Knr !1/2 S pz0n

H D
3S 2H D 1/2eiKnre2dnr . ~A1!

The coherence function is

r5E
0

2pE
0

`

c1~z1 ,r 1!c2* ~z2 ,r 2!r dr df

52pE
0

2pE
0

`

(
n

N

(
m

N
un~z1!um~z1!

~KnKmr 1r 2!
1/2 S pz0

H D 2 2nmH
3exp@ i ~Knr 12Kmr 2!#exp@2dnr 12dmr 2#r dr df.

~A2!

The relationship betweenr ~on which the polar coordinate
system is based! and r 1 and r 2 is shown in the top view in
Fig. A1.

Providedr is large compared with the horizontal projec-
tion of the array ~d cosg! we can put
r5(r 1r 2)

1/25(r 11r 2)/2 and r 12r 25d cosg cosf. The
imaginary exponent in Eq.~A2! can be rewritten as

Knr 12Kmr 25~Kn2Km!~r 11r 2!/2

1~Kn1Km!~r 12r 2!/2

5~Kn2Km!r1„~Kn1Km!/2…d

3cosg cosf.

Similarly the decay exponent is

dnr 11dmr 25~dn1dm!~r 11r 2!/2

1~dn2dm!~r 12r 2!/2

5~dn1dm!r1~dn2dm!d cosg cosf,

the last term of which we can safely neglect. Thus integrat-
ing in f we obtain

r5~2p!2E
0

`

(
n

N

(
m

N
un~z2!um~z1!

~KnKm!1/2 S pz0
H D 2 2nmH

3ei ~Kn2Km!re2~dn1dm!rJ0„~Kn1Km!d cosg/2…dr.

~A3!

We now rewrite the double sum as a single sum of the terms
that haven5m plus the double sum(n51

N (m5n11
N . When we

integrate the single sum inr the only range dependence is the
decay term which results in a factor~2dn)

21 to be multiplied
by the other terms. The equivalent range dependence in the
double sum is the term 2 cos„~Kn2Km)r …exp„2~dn1dm)r ….
It is easy to show that the integral of this quantity is

E
0

`

2 cos„~Kn2Km!r …exp„2~dn1dm!r …dr

5
2~dn1dm!

~dn1dm!21~Kn2Km!2
. ~A4!

Now Kn2Km.2p(n2m)/r c wherer c is the ray cycle dis-
tance. So the integral is

2~dn1dm!21@11~2p~n2m!/r c~dn1dm!!2#21,

and since we can assume that the decay over a ray cycle
r cdn,m is small it reduces to

2~dn1dm!213„r c~dn1dm!/2p~n2m!….

This is necessarily much smaller than~2dn!
21 for the single

sum so we are left with just the single sum, and the cross
terms can be neglected:

r5~2p!2(
n

N
n2un~z2!un~z1!

dnKnH
S pz0
H D 2J0~Knd cosg!.

~A5!

This is essentially the discrete mode part of Kuperman and
Ingenito’s solution. Buckingham assumes isovelocity water
with a vertical array ~g5p/2! and un(z)5(2/H)1/2

3sin(p zn/H). He also shows from the boundary conditions
that dn is proportional ton

2. Then2 in the denominator and
numerator cancel,Kn is more or less constant~.k!, and we
are then left with the simple sum of the mode product.

It is informative to translate Eq.~A5! into ray terms and
then compare it with Eq.~9! in the main text. This can be
done in a stratified medium~see, for instance, Brekhovskikh
and Lysanov22!, but we can make the same point more
clearly by taking the isovelocity case wherenl52H sinu.
The Buckingham assumption is equivalent to a loss per
bouncea sinu, as assumed in the text of this paper. The
resulting intensity after many bounces is proportional to

exp~2a sin ur /r c!5exp~2ar sin2 u/2H cosu!,FIG. A1. Top view of hydrophone pair and noise source.
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since r c52H cotu. This gives the familiar mode-stripping,
r23/2, propagation law.21 From the above, the amplitude de-
cay constant is

dn5a sin2 u/4H cosu5n2al2/16H3 cosu. ~A6!

In the normal mode solution a point noise source results in a
dipole strength

„2 sin~kz0 sin u!…2'4k2z0
2 sin2 u. ~A7!

We therefore need to divide the normal mode solution by
4k2z0

2 to obtain the ray solution, where we have assumed a
source strength of simply sin2 u. Making these substitutions
into Eq. ~A5! we obtain

r58pa21
l

2H (
n

N

sinS npz1
H D sinS npz2

H D
3J0~kd cosu cosg!

54pa21
l

2H (
n

N S cosnp~z12z2!

H

2cos
np~z11z2!

H D J0~kd cosu cosg!. ~A8!

Remembering that~np/H)(z12z2)5kd sing sinu, we see
that there are two differences between Eq.~A8! and Eq.~9!.
One is that we have an extra term that has insignificant effect
unless we are near a boundary, as discussed in Appendix B.
The other is that instead of*0

p/2 cosu du we have~l/2H)Sn
N.

Since sinu5nl/2H, if we were to treatn as a continuum we
would obtain*0

p/2 cosu du5l/2H*0
`. Therefore this remain-

ing difference is merely that the angles have been discretized
by the modes in Eq.~A8! and Eq.~A5! whereas they are
continuously distributed in Eq.~9!. The ray approximations
A and C are therefore very good. Although this demonstra-
tion assumes isovelocity, one can follow the argument
through equally well in a refracting environment, and the
arguments of the two cosine terms can be written in terms of
differences and sums of WKB phases, for example,
*z1
z2k(z)sinu(z)dz.

APPENDIX B: NEGLECTION OF MULTIPATH
INTERFERENCE

In this Appendix we identify and quantify terms that
were missed in the derivation given in the main text by re-
instating multipaths with phases. Apart from discretization of
the ray angle the only effect is found close to a boundary.

To investigate all the terms in Eq.~1! we retain here
phases and path losses~reflection and absorption! but other-
wise relative amplitudes in the termc. The phase along a
paths, making use of Snell’s law, is

E k ds5k cosur1E k sin u dz[k cosur1z,

~B1!

wherez represents the vertical part of the phase. We assume
that an upgoing ray from hydrophone 1 first hits the surface
with z5z1 and adds phasezc after each subsequent surface
reflection. We represent hydrophone 2’s terms by subscript 2.

We retain complex reflection coefficientsRs ,Rb and ampli-
tude absorption coefficienta. At sufficiently long range we
can always assume there is also a down-going ray with the
same angle connecting the same hydrophone and noise
source. Combining up- and down-going rays for eachu we
obtain

c13c2*5@ei z1e2s1a1Rbe
i ~zc2z1!e2~sc2s1!a#eik cosur1

3(
j50

`

~ei zcRsRbe
2asc! j@e2 i z2e2s2a

1Rb* e
2 i ~zc2z2!e2~sc2s2!a#e2 ik cosur2

3(
j50

`

~e2 i zcRs*Rb* e
2asc! j , ~B2!

c13c2*5@~ei ~z12z2!e2~s11s2!a

1RbRb* e
2 i ~z12z2!e2~2sc2s12s2!a!

1~Rbe
i ~zc2z12z2!e2~sc1s22s1!a

1Rb* e
2 i ~zc2z12z2!e2~sc1s12s2!a!#

3eikd cosg cosu cosf

3FU(
j50

`

~ei zcRsRbe
2asc! jU2G . ~B3!

Remembering thatzc must be a multiple of 2p ~and attenu-
ations small! for modal propagation we see that the first
square bracket in Eq.~B2! is simply the mode amplitude at
z1. For example withRb521 we obtain sinz1 which could
be expanded using Eq.~B1! ~essentially WKB!. Therefore
we obtain in Eq.~B2! precisely the product of mode values
at z1 andz2 as in Kuperman and Ingenito.6 When expanded
as in Eq.~B3! we can see exactly what was missed in the
main text by ignoring cross terms. The first two terms in the
square brackets of Eq.~B3! correspond to the two terms in
Eq. ~8!. In isovelocity water these would be
cos„(z12z2)pn/H… for the nth mode. The third and fourth
terms in the square brackets of Eq.~B3! are missing in Eq.
~8!, but are predicted by Buckingham5 as
cos„(z11z2)pn/H…. The first term outside the square brack-
ets is responsible for theJ0 and identical in Eq.~8!. The last
term in Eq.~B3! appears to contain cross terms, but in fact
the mode derivation~Appendix A! shows that they are insig-
nificant. Essentially the independence of the noise sources
when integrated over range~even without the assistance of
azimuth integration!! reduces the cross terms to zero.

So if we have a reasonably large number of modes~so
thatSn.* dn! then the only effect of the neglection of cross
terms in the ray treatment is the dropping of the
cos(z11z2)pn/H term from Eq. ~B3!. As Buckingham
pointed out, this term makes the coherence function slightly
depth dependent~‘‘quasihomogeneous’’! with particular ef-
fects near the boundaries. However, if there are many modes,
as we have just assumed, this term will be highly oscillatory
compared with the other terms in the angle intergrand, and
its integral will be zero. Because this term does not depend
on hydrophone spacing one might expect it to have a residual
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effect on noise level@i.e., r~0!#. Indeed it does, but a much
more familiar way of stating this is that the noise is propor-
tional to the square of the mode amplitude as demonstrated
by Eq. ~B2!, i.e.,

12cos„~z11z2!np/H…52 sin2„~z11z2!np/2H….

This is a simple correction to bear in mind having made
assumption C in the ray treatment of the main text. Bucking-
ham’s criterion for ‘‘quasihomogeneity’’ is that the distance
to the nearest boundaryz is given byz/H>3/(2m11) as-
suming there arem modes in water depthH. An equivalent
way of stating this is that

kz sin uc>3p/2

or

z> 3
4~l/sin uc!,

whereuc is the steepest, or critical, angle in the duct. In this
region, near the boundary, the noise intensity is reduced by
the factorf5„z~m1 1

2!p/H…
25~kz sinuc!
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