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Ocean Propagation Models 

C. H. Har r i son  

YARD, Scientific House, 40--44 Coombe Road, New Malden, Surrey KT3 4QF, UK 

A BS TRA C T 

Four approaches to underwater sound propagation modelling are reviewed 
including rays, normal modes, Green's function integral, and parabolic 
equation. Specific programs are discussed. Particular reference is made to the 
problems in running models and the applicability in various regimes, 
especially deep-water environments. 

1 INTRODUCTION 

The wave equation and the Helmholtz equation occur in many branches of 
physics, and the basic types of solution are always the same. However, the 
problems in different fields vary tremendously because of emphasis on 
different types of source, receiver, environment, geometry and so on. 
Whereas propagation of light and radar in air is relatively straightforward, 
underwater sound propagation can be extremely complex and calculations 
may require several hours of computation on a CRAY-size computer. In the 
underwater environment there are many different types of problem, some far 
simpler than others. These include detecting distant ships or submarines, 
echo sounding, short baseline location, seismic surveying and acoustic 
tomography. 

A typical problem of interest in this paper is to calculate intensity (and 
phase) from a receiver somewhere in the water column separated by 
distances of 1-100km in water of depth 100-5000m. The water is usually 
assumed to be stratified (i.e. depth-dependent sound speed with constant 
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density), the sea surface is treated as a perfect pressure-release reflector, and 
the sea bed may be treated as a reflector or multiple-layered refracting 
medium with arbitrary density, sometimes demanding inclusion of shear 
wave effects and surface scattering. A number of models are capable of 
tackling range-dependent environments in which the bathymetry and sound 
speed structure are allowed to vary relatively slowly in range. A few can 
handle three-dimensional effects to a limited extent. 

The aim of this paper is to provide a review of some of these programs for 
the non-specialist in underwater acoustics. The examples are taken from 
various underwater environments, and are woven into the discussion which 
emphasises some of the practical problems in running the models. Some 
rules-of-thumb are suggested for deciding which model is appropriate. 

The review also refers to some comparisons, tests and a few unusual 
applications. The models considered are some of the well known ones 
developed with physical understanding in mind and minimal approximation 
or empiricism. These are: GRASS (ray); SNAP and SUPERSNAP (normal 
mode); SAFARI and FFP (Green's function); and PAREQ and IFD 
(parabolic equation). 

2 REGIMES AND ENVIRONMENTS 

It is difficult to appreciate the complexity of propagation modelling without 
understanding the many environments and propagation regimes. These are 
distinguished partly according to the various mathematical approaches and 
partly according to oceanography and geophysics; many references discuss 
the subject.l - 5 On top of this there are variants of these environments and 
other applications of the usual models such as propagation from air to 
water,6-a propagation in air, 9 seismic modelling, 1° ultrasound, 1° and radio 
propagation over undulating terrain (the multiple-knife-edge diffraction 
problem which is often tackled fairly crudely l~). Despite the complications 
of diffraction and wave treatment the phenomena that need to be modelled 
can be understood very simply by considering the corresponding ray paths. 

2.1 Shallow water 

The term 'shallow water' is often taken as synonymous with the Continental 
Shelf where it has special strategic significance. For shipping-line fre- 
quencies of less than a few hundred hertz, where the wavelength is a 
significant proportion of the water depth, shallow water behaves like a 
waveguide in which propagation is dominated by bottom reflection. Ray 
paths may be relatively steep, and consequently relatively straight, in the 
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water column so that the influence of the water column velocity profile is 
minimal. On the other hand, the propagation may be strongly influenced by 
the structure of the sediment and the underlying rock since sudden changes 
in velocity and density and the inevitable gradual increase in velocity with 
depth provide strong reflections, particularly if there is a critical angle, and 
upward refracted paths with potentially low losses. 

Absorption in the sediment increases with frequency and typical values 12 
are between 0.05 and 0.5dB/m/kHz, i.e. at 100Hz the loss might reach 
l0 dB after a 1 km path length. By contrast, the losses in water are extremely 
low, although they still rise with frequency. At 100 Hz a 10 dB loss is reached 
after l0 000 km. The corresponding ranges for 10 kHz, though, are 10 m for 
sediment and 10 km for water. 

An additional factor in shallow water is the possibility of a solid rock sea 
bed which supports shear waves. Under certain conditions the boundary 
between the solid and fluid layer (whether water or sediment) may exhibit 
interface waves, the effects of which are significant for sources and receivers 
near the bottom. 13 A common phenomenon is the result of the fact that the 
shear critical (grazing) angle, if it exists, is always smaller than the 
compression wave critical angle, so that there is a tendency for energy to leak 
into the bottom by generation of downward-propagating shear waves. This 
effect can be screened out or toned down by an intermediate layer of fluid 
sediment between the rock and water. 

2.2 Deep water 

In deep water propagation can be very complex because there are so many 
different types of path. The sound speed increases roughly linearly with 
depth, temperature and salinity. The salinity in the oceans usually plays a 
minor role, although in the polar regions, in landlocked seas such as the Baltic, 
and in the vicinity of some ocean fronts and eddies, there are significant 
effects. In the North Atlantic in winter there is typically a well mixed warm 
surface layer, several hundreds of metres thick which, when superimposed 
on the depth effect, causes a minimum in sound speed at about 1000 m with a 
maximum at several hundred metres. Above this maximum there is a surface 
duct where rays from a shallow source can be trapped by upward refraction 
and surface reflection. 

Below the maximum is a deep sound channel centred on 1000 m, bounded 
entirely by refraction. However, to make use of this regime both source and 
receiver need to be at depths below the maximum. Steeper rays from a near- 
surface source travel more deeply, and the roughly linear increase of velocity 
with depth causes upward refraction. There is often a slight focusing effect so 
that the rays that nearly hit the bottom bunch up near the surface at around 
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60 km. This region of sudden high intensity is known as a 'convergence zone' 
and it repeats at multiples of about 60 km. 

Two extremely important phenomena resulting from refraction are 
caustics, where initially adjacent rays converge, and shadow zones, where 
adjacent rays diverge. In the velocity profile just described a shallow source 
might form a wedge-shaped shadow extending from the velocity maximum, 
which defines the bottom of the surface duct, to the downward-refracted 
ray below. Conversely, a shallow receiver would not be able to see a source in 
this shadow zone via the direct refracted path. However, a downward- 
looking or omnidirectional beam receiver would also be sensitive to bottom 
reflections (bottom bounce) or bottom refracted paths which would fill the 
shadow in. Consequently, the nature of the sea bed can be extremely 
important for near-surface sources and receivers. 

The Atlantic in summer has a more gradual change in temperature with 
depth, so that the profile is closer to a parabola. In all seasons very shallow 
surface ducts (30 m or so) may form by mixing during the day, and these may 
have significant effects above a few kHz where the duct thickness is greater 
than a few wavelengths. From the modelling point of view it should be 
remembered that the surface mixing that gives rise to the isothermal layer 
constituting the duct is caused by wind and wave action, which necessarily 
makes the surface rough. At frequencies of several kHz (wavelength less than 
1 m), scattering effects are certainly significant and difficult to model from 
first principles since the mechanisms are a complicated mix of surface shape 
effects and surface-modulated volume scattering by entrained bubbles. 1'~4 

A topic of increasing interest is Arctic and under-ice propagation. 15'16 
Here the profile is virtually linear, giving rise to an upward-refracting deep 
surface duct. Two of the complications added by ice cover are the roughness 
of the lower surface and the effects of shear waves propagating in the ice. 

2.3 Range dependence 

An improvement over the assumption of a stratified medium is made by 
including changes of velocity profile and water depth (bathymetry) with 
range. Slow changes in bathymetry may deflect bottom-reflected paths into 
the sound channel and vice versa. Relatively abrupt changes are 
encountered with ocean fronts where there may be significant changes over a 
horizontal distance of 100 m. As will be seen, there are a number of models 
that can handle range dependence, but not many that can cope with abrupt 
changes. In any case, it is extremely hard to validate range-dependent 
models against real data, and it is also difficult to devise analytical 
benchmarks. 
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2.4 Three-dimensional effects 

Clearly, refraction effects are also possible in the horizontal plane, especially 
in the vicinity of  ocean fronts. Increasing computer  power has made it 
possible, for instance, to investigate the horizontal effects of  an eddy passing 
across a fixed source 17 (made tangible by cine film of  a very large number of 
runs showing intensity at a fixed depth in the horizontal plane). A less 
obvious horizontal bending, shadowing and focusing effect is caused by 
propagation across a slope, each bot tom reflection causing a slight 
horizontal deflection.18-2o In fact, the horizontal curvature can be viewed 
as stemming from the differing phase velocities of the vertical normal modes 
in the varying-depth waveguide. 21 

Although there are clearly three-dimensional effects which are important  
for some of  the time, propagation modelling in this domain is still in its 
infancy. A lot of recent effort has gone into deriving exact solutions for the 
wedge, 22 and a conical seamount, 2a and confirming these experimentally. 24 
There is no truly general three-dimensional propagation model although 
there are some close approaches. 25 

3 M O D E L L I N G  T R E A T M E N T S  

The two most widely used concepts in understanding propagation problems 
are rays and normal modes. Naturally, the approaches to modelling have 
followed these concepts, but emphasis in the past 20 years has been on 
computer-intensive wave treatments which are broader in scope than the 
normal mode approach. Nevertheless, in reconciling results from different 
types of  model one still has to resort to simple ideas and calculations using 
rays, modes, images, flux and so on. 

It is natural to use whichever approach is computationally most efficient 
for the circumstances, and so in shallow water or in a duct where there are 
vast numbers of  reflected rays it is most useful to think in terms of  modes. 26 
Conversely, at short range or in deep water there may be only a few 
'eigenrays' connecting the source and receiver but a very large number  of  
modes, so it is advantageous to think in terms of  rays. 

One can group propagation models into seven types as follows, although 
the first four are in more common usage than the subsequent two, and the 
last is much more special-purpose. 

(1) ray tracing; 
(2) normal mode; 
(3) Green's function types; 
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(4) parabolic equation types; 
(5) coupled-mode types; 
(6) finite element types; 
(7) empirical. 

The first six types have been reviewed by De Santo 27 and the first four by 
Jensen. 2s This review will restrict itself to the first four types although some 
references are given for coupled mode, 29-33 finite element 27'34'35 and 
empirical 1,36 - 3 8  models. 

Examples of computer codes are given below: a more complete list is given 
in references 39 - 4 2  : 

ray, GRASS, 43'.4 PLRAy45; 
mode, SNAP, 46 SUPERSNAp47; 
Green's function, SAFARI, 4s-s° FFP51,s2; 
PE, PAREQ, 53.54 IFD. 55'56 

There are other models such as FACT 57 and RAYMODE ss that do use ray 
concepts, although transmission loss is calculated without going through the 
motion of tracing the rays. These models are designed to be used 'hands-off" 
and so mode calculations are inserted automatically as appropriate, source 
and receiver may be swapped, etc. Therefore for the research user it is often 
difficult to control what calculations are executed. 

A brief description of the four approaches is given below, but more detail 
can be found in Refs 2-4, 27-28 and 59-61. All four can be derived from the 
inhomogeneous Helmholtz equation, i.e. the wave equation with a point 
harmonic source, 

V% + k2(r)4, = - ~(r) (1) 

where k = w/c is the local wavenumber. 

3.1 Ray tracing 

In the limit of high frequencies the Helmholtz equation can be reduced to an 
Eikonal equation which describes the path swept out by rays in three 
dimensions. 6° In an inhomogeneous medium the changes in direction cosine 
(0q fl, y) for an incremental step, ds, in the ray are given by39: 

oc oc 1 (1 - t  Uy-y  

df l=  ~-~[(1 fl2)~y Oc o~flOc] 
- - - ) ' f l - ~ z  - O x [  (2) 

d y =  ds[(1  2 ~c Oc fl ~c7 
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A convenient assumption in a marine environment (and several others, 
such as air) is that the medium is horizontally stratified, and then one can 
directly calculate range, r, and delay time, t, from 

r = S cot 0 dz t = S (c sin 0)- 1 dz (3,4) 

using Snelrs law, that csec 0 is constant for each ray. Also, the radius of 
curvature of the ray, R, can be written in terms of velocity, its gradient and 
the grazing angle at one depth as 

R = c see O/(dc/dz) (5) 

The intensity, /, relative to the intensity at unit distance Io is usually 
calculated from the horizontal spread of the rays. With an initial ray 
elevation angle and sound speed 0o, Co and a local angle and sound speed 0, c, 
the formula is 

I = Ioco/(Cr sin 0 IOr/O0o I) (6) 

With the exception of the vicinity of focuses and caustics this gives 
adequate representation of the loss. In these regions corrections can be 
applied. '.3 

There are a number of other useful ray or hybrid concepts such as ray 
invariants,18- 21 and flux. 26'62'63 These are related to the WKB formula for 
mode number 64 and the adiabatic approximation, 21'32 and are useful when 
the medium is range-dependent. Although these approaches have not 
formed the basis of computer codes they can provide insight through 
analytical or numerical calculations. Simple calculations may also be based 
on the method of images 65 in some circumstances. The concept of 'fuzzy' 
rays has also been developed recently. 66 

Frequency-dependent effects are sometimes included in ray-tracing 
models, but without detailed corrections to the phase of bottom reflections, 
ray tracing cannot compete with normal-mode models in shallow water. A 
rule of thumb is that ray tracing can be used when the water depth or the 
thickness of a refracting duct is many wavelengths. One disadvantage of ray 
tracing is that many rays need to be computed to provide a reasonable 
spread at the receiver end. Another is that ray computations need to be made 
at all ranges out to the specified receiver. This is not so with normal mode 
models. An advantage is that rays can easily be traced through varying 
velocity profiles and over undulating sea bed. Directionality of the source 
can be inserted, in principle, by selecting particular initial ray angles and 
weighting accordingly. 

3.2 Normal mode 

The Helmholtz equation can be separated in range and depth assuming 
cylindrical symmetry and vertical stratification. The solution of the resulting 
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one-dimensional equation in depth can be expressed as the sum of the 
discrete normal modes (i.e. the solution of a homogeneous Helmholtz 
equation) and one or more branch cut integrals. 27 The acoustic pressure is 
given by 

i ~ ,  q~.(zs)~.(zr)H~o 1)(K.r) (7) 
n 

where q~, are the normal modes evaluated at the source and receiver depths zs 
and z,, and K. are the eigenvalues. The discrete sum represents loss free 
modes equivalent to up- and down-going rays travelling at a well defined 
angle given by the horizontal wavenumber K, = k(z) cos O(z). The branch cut 
integrals represent lossy modes travelling at lower wavenumbers (steeper 
angles), and the contributions that are only effective at short range where the 
up- and down-going waves do not balance properly yet. 

The normal modes are calculated by choosing trial values of K. and using 
numerical techniques such as Runge-Kutta iteratively, until the boundary 
conditions are matched at depths zero and infinity with the correct number 
of zero crossings. 6v These methods are adequate for shallow water in which 
there are a small number of modes, and they are the basis of the model 
SNAP. In deep water the far larger number of modes is a problem in itself, 
but the close packing in wavenumber coupled with the refracting ducts 
means that low-order modes are likely to contain upward- and downward- 
decaying portions which lead to stability problems with standard shooting 
methods such as Runge-Kutta.  Porter and Reiss 4v'6a have used a finite 
difference approach which is adopted in SUPERSNAP to formulate the 
mode calculation as an algebraic eigenvalue problem which is more stable. 
Ferla et al. report some high-frequency normal mode calculations in deep 
w a t e r .  69 

Strictly speaking, because the normal mode method is based on 
separation of range and depth variables, it cannot be used unless the medium 
is horizontally stratified. Nevertheless, if the range variations in velocity 
profile and depth are only slight, the energy in each mode remains constant 
as the mode propagates (the adiabatic approximationS2'ss). In fact, the rays 
corresponding to a particular mode become steeper when the water becomes 
shallower because of the reflections from the sloping bottom. These steeper 
rays in shallower water correspond to exactly the same mode as the original 
one in deep water, although the mode shape will have squashed vertically to 
fit into the water column. Weak variations of velocity profile and water 
depth are incorporated into SUPERSNAP via the adiabatic approximation. 

Various other effects have been included in normal-mode models. The 
effect of different bottom types may be incorporated through the velocity 
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profile, density and absorption. 67 Shear wave effects, 7° and surface or 
bot tom roughness 7a can also be treated. 

Other variants of  the normal-mode programs include those which 
compute the complete spectrum of modes. This is necessary under certain 
circumstances, for instance when the last mode has passed cut-off (discrete- 
mode programs would give zero result) or when there are downward- 
propagating shear waves, weak reflections or when the receiver is close to the 
source. The extra computat ion involves evaluation of  a branch cut 
integral.27.72-74 It is probably more straightforward to use the Fast Field 
Program in this case since it routinely evaluates the whole spectrum of  
modes. 

3.3 Green's function solutions 

The complete solution of  the inhomogeneous Helmholtz equation for a 
stratified medium can be written as the Hankel transform of  the vertical 
Green's function 

dp(r, z,) = f o  G(K, z,, zs) Jo(Kr)KdK (8) 

This is the basis of  the Fast Field Program (FFP) 51'52 and SAFARI.  48 - s0 
In both programs the bulk of  the computat ion time is taken up with 
calculation of the Green's function G (as a function of horizontal 
wavenumber K). The Hankel transform is approximated by a Fourier 
transform which is implemented by F F T  algorithm. The original FFP  used 
the Thomson-Haskel l  method at each K to evaluate G by matching the 
solutions at each layer boundary and the source. SAFARI  starts with the 
same equations but uses a global matrix scheme to solve for all K and all 
layers simultaneously. 

The Green's function, as a function of  K for fixed source and receiver 
depth, is an intermediate output  of  the programs, and it is extremely useful 
not only for checking performance but for providing insight into the physics. 
The discrete and virtual modes are shown in Fig. l(a), and the corresponding 
transmission loss is shown in Fig. l(b). The distinction between the Green's 
function and the normal modes can be seen by analogy with a violin string 
stretched across the water column. The normal modes are the shapes of the 
violin string at its many resonances (the violin frequency corresponds to the 
horizontal wavenumber). Between resonances the amplitude is zero, and so 
the sequence is discrete. The Green's functions are the shapes of  the violin 
string when driven by a harmonic source at some particular position along 
the length (i.e. the source depth). These exist for any frequency of the 
harmonic source, although there will be a large amplitude at each resonance. 
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(a) SAFARI discrete and continuous mode spectrum. (b) SAFARI transmission loss. 

The effect o f  including bottom losses or any other losses is to broaden and 
shorten the resonance peaks in a calculable way. When the broadening is 
severe the modes are referred to as 'virtual' modes 75-77 and the modes 
decay exponentially with range (as is apparent from considering the Fourier 
transform of  an exponential). Similarly, the method can handle mode cut- 
offs, shear waves in solid layers (sediment, seabed, or ice) and near field as 
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opposed to far field. SAFARI (and FFP) is a very powerful program for 
research because it gives an accurate solution of  the wave equation for mixed 
liquids and solids (including compression, shear and interface waves13), at 
any range including the near field, above, below or near mode cut-offs. 
SAFARI  has been implemented by Schmidt on an array processor, making 
calculations with multiple frequencies, sources and receivers feasible. This 
has led to the ability to produce synthetic seismograms and contour plots of  
ultrasonic beams? ° Its two shortcomings are that it can (so far) only deal 
with horizontally stratified media, and its computat ion time is rather long 
despite the efficiency of the code. 

3.4 Parabolic equation 

The parabolic equation takes a different starting point from SAFARI,  FFP  
and the normal-mode programs. For waves travelling predominantly within 
a small range of angles (not necessarily horizontal) one can approximate the 
elliptic wave equation to a parabolic equation by taking out the main 
oscillating part of  the solution in a function S(r). Thus the velocity potential 
~b can be written in terms of  a slowly varying function, ¢, of range and 
depth2S,54: 

q~ = ¢(r, z)S(r) (9) 

and the parabolic equation is 

02¢ ~r Oz---- f + 2ik o + k2(n 2 - 1)¢ = 0 (10) 

where the wavenumber k = kon has been written in terms of an arbitrarily 
chosen constant ko (the 'reference wavenumber',  related to the 'reference 
sound speed' by k o = co~c) and the refractive index n = Co/C which is assumed 
to be slowly varying. It is evident from eqn (10) that if~, is completely defined 
over a vertical line at some given range then ¢ and d2¢/Oz 2 are known, and 
consequently de~Or is known. Therefore, ~k can be calculated for all z at the 
next range step r + dr, and so on. This 'marching' solution allows one to 
start with a known wavefront at some point and follow its horizontal 
progress as it diffracts through the medium and around the humps in the sea 
bed. Clearly, this approach can cope with horizontal variations in velocity 
profile and variations in depth. 78 A limitation is that it needs to be started up 
some way away from the source. For this purpose a normal-mode program 
is often used. An alternative is to assume the initial amplitude distribution to 
be a Gaussian function of  depth, centred on the true source location. 2s'55 

Equation (I0) can be converted into manageable form by taking vertical 
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Fourier transforms to give the split-step-Fourier algorithm s4 which is used 
in PAREQ: 

~O(r + Ar, z) = exp (iko(n 2 - 1)Ar/2) ~" -x {exp (-iArs2/2ko) ~,~(~(r, z))} (11) 

The process of recalculating ~ at successive vertical planes is almost 
identical to the propagation of Huygen's wavelets, and in fact the above 
formula can be derived from the Kirchhoffapproximation treating the plane 
at r as a diffraction screen. The various diffraction terms can be identified 
here simply by taking the Fourier transform of both sides of eqn (11) and 
writing the right-hand side as a convolution. Since the inverse FT of 
exp ( - iArs2/2ko) is (ko/iAr2n) 1/2 exp (ikoz2/2Ar), the result is 

ql(r + Ar, z)= ( k° 
1/2 

\iA---r~) exp(iko(n 2 - 1)Ar/2) 

x fo~ ~,(r,z')exp{[iko(z z')2]/2Ar} dz' 
J - -  oO 

Given the field on the vertical plane at r the second term in the integral is 
precisely the Fresnel diffraction term in passing from an arbitrary point (r, z') 
on the first screen to the observation point on the second at (r + Ar, z). The 
exponential term outside the integral corrects the phase already included in 
S(r) (i.e. kor, see eqn (9)) by adding in the phase due to the slowly varying 
refractive index but taking out kor. The result, koAr(n-1) is equal to 
koAr(n 2 -  1)/2 to first order since n is always very close to unity. The 
multiplier turns into the usual ko/2niAr of the Kirchhoff approximation 
when allowance is made for the other dimension of the diffraction screen 
(horizontal, out of the plane of  propagation) which supplies an extra 
(ko/2niAr) x/2 term. 

The method has been extended to wider angles (40-60 ° ) and stronger 
bot tom interaction by using finite difference methods, and one such model is 
Implicit Finite Difference (IFD). ~9 There have been developments in which 
density is treated more comprehensively. 8° A number of  operator techniques 
for manipulating the parabolic equation have been presented at Yale. al 
Recent extensions include calculating the field in a uniform a2 or sheared a3 
current, and close approaches to three-dimensional modelling. 25'a4- 86 

3.5 Model comparisons 

There seems to be a law of  nature that says that modellers do not go to sea 
and experimentalists avoid using advanced models. Therefore, empirical 
propagation laws tend to be extremely simple, whereas advanced models go 
largely unverified against trials data. There are many good reasons for this. 
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One is that transmission loss is very sensitive to environmental parameters, 
and measuring all the quantities in the sea trial demanded by the model and 
also guaranteeing to fulfil all the conditions of validity of the model in the 
trial is almost always impossible exactly. Therefore honest comparisons are 
difficult, although by varying some of the unknown parameters one can 
probably obtain a reasonable fit. Nevertheless, an area that does have scope 
for controlled tests is the reconciliation of existing models with themselves 
and other analytical solutions. Indeed, it is important to reach a consensus 
and map out regions of validity before attempting to make comparisons 
with trials data. 

Inter-model comparisons are occasionally made in the literature. Jensen 
e ta / .  2a'sT'S8 have compared SNAP, FFP and PAREQ. Gilbert et aL 29 have 
compared a normal mode model (COMODE) with a coupled mode model 
(CUPYL) and IFD. Stickler 73 has made comparisons between FFP and 
normal-mode solutions that include various branch cut integrals. A number 
of parabolic equation corrections have been compared in Refs 89-93. Some 
comparisons have been made by Tolstoy 92 between the parabolic equation 
and ray tracing in a focusing environment. A methodology for comparison 
and choice in models is given by De Santo 27 (pp. 121-34). 

There have also been a number of workshops and specialc0nference 
sessions based on model comparisons. The AESD workshop 94 compared 
some wave treatment models, including FFP, discrete and continuous 
normal-mode models and the parabolic equation. Another workshop at 
NORDA 95 concentrated on parabolic equation methods. More recently, 
there have been the ASA sessions organised by Felsen at Anaheim 96 on 
benchmarks, and on tests against some range-dependent and three- 
dimensional analytical solutions. 9~ 

4 PRACTICAL LIMITATIONS AND TUNING 

Having briefly reviewed the mode of operation of the models it is useful to 
look at some of the more practical limitations. These depend on validity in 
the given regime or environment, computation time and very often a lot of 
fine tuning and user experience. As well as the oceanographic and geo- 
acoustic inputs, which are themselves often difficult to define, most models 
have numerical inputs which need to be chosen by experience or trial and 
error. For instance, ray-tracing models require a ray density at the source; 
parabolic equation models require a reference sound speed and an 
understanding of the angle limits and constraints on medium variability; 
SAFARI requires various compromises to be made in numerical 
integration. One can usually devise simple formulae as an aid to choosing a 
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starting point, but there is no substitute for repeating runs with altered 
numerical inputs until convergence is reached. 

The following discussions are restricted to GRASS (ray), SNAP and 
SUPERSNAP (normal mode), SAFARI (Green's function) and PAREQ 
and IFD (parabolic equation). The comments are aimed at deep-water 
environments with source and receiver within a few hundred metres of the 
surface. 

4.1 GRASS 

It is obvious that the chosen ray density at the source must provide adequate 
ray coverage at distant points of interest. However, it is not always easy to 
predict what that density should be without a trial run. Ray traces with 
coarse and fine ray densities for an identical shallow surface duct are shown 
in Figs 2(a) and (b). The apparent size of the wedge-shaped shadow zone is 
quite different in the two cases. To a certain extent the worries are illusory 
because these rays (surface-reflected) do not contain much energy, but the 
incoherently added intensity (Fig. 2(c)) shows steps corresponding to the 
wide ray spacing in range, even for the high-density example. This kind of  
problem arises when the ray location at a distance is very sensitive to initial 
ray angle, i.e. lar/aOol is large, but this is exactly the condition that the 
intensity contribution is low. Whether or not the result is important  depends 
on whether or not there are stronger contributions from elsewhere. 

The obvious solution is to carry on increasing the ray density, but one 
penalty is increased numerical error, and another more practical limitation 
is computat ion time, which is roughly proportional to total range covered 
and number of rays. 

Although GRASS is essentially a high-frequency approximation, the 
'coherent' option sums rays with regard to their phase and is capable of  
showing some frequency dependence other than simple absorption effects. 
In principle, a ray treatment can handle bot tom reflections and bottom- 
refracted paths, but GRASS cannot handle both correctly. One choice is to 
use a compromise reflection loss curve which attempts to cover both cases, 
but this cannot possibly treat the horizontal offset associated with the 
refracted path correctly. Another  is only to use the model with the true 
reflection loss curve in the case where refracted paths are non-existent or 
extremely weak. The converse case where refracted paths dominate over 
reflected paths cannot be handled, despite the fact that refracted rays can be 
traced. This is because the sediment layer would have to be treated as part  of  
the water column, and GRASS does not  have the facility to include 
absorbing layers in the water. 

In a duct ray treatments are valid as long as the duct supports a 
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substantial number of modes (i.e. definitely greater than one, but not 
necessarily an extremely large number). Thus, treating the duct crudely as a 
rectangular well of height h, the mode number  is related to ray angle by 
2H sin 0 = n2. For weak ducts with velocity contrast, Ac, 

sin 0 = (1 - c2/(c  -[- A t )2 )  1/2 "~ (2Ac/c)  1/2 (12) 

and a rough formula for the cut-off frequency (i.e. n = 1) is 

f 2  = c3/8h2Ac (13) 

For instance, ray treatment in a surface duct with Ac = 4 m/s and h = 500 m 
requires frequencies to be well above 20 Hz. In fact, since the duct cross- 
section is closer to linear than rectangular, the values of h and kc  should be 
reduced to compensate, so that the cut-off frequency is two or three times 
higher. Better approximations to the formula may be made using the WKB 
phase integral 1 for n. The cut-off frequency for the complete water column 
is usually far lower, and for typical frequencies ray treatments are valid in 
deep water (provided that some allowance is made for Lloyd's mirror, the 
bot tom dipole effect, etc. as appropriate). The cut-off frequency is now 
roughly 

f 2  = [ 4 H 2 ( c o  2 _ c 1 2 ) ]  -1  (14) 

where H is the total depth and the larger velocity spread is defined by the 
limits c o and c 1 . For Co -- 1500 m/s, c 1 = 2000 m/s and H = 4000 m the cut-off 
frequency is 0.3 Hz. 

Above the mode cut-off the dependence of  intensity on mode number is 
weak, because although the number  of modes increases in proportion to 
frequency the wavenumber in the denominator  of the mode sum formula 
(originating from the square of  the Hankel function Ho(Knr ) in eqn (7)) also 
increases in proport ion to frequency. So, apart from some saw-tooth effects 
with very low mode number the response is flat. A more important  effect for 
sources and receivers removed from the centre of  the duct is the frequency- 
dependent reduction in mode amplitude near the boundaries. Crudely, the 
intensity for one mode is proportional  to sin 2 ~.zs sin 2 ~.z,, and with both 
source and receiver near the surface this reduces to ~,4.z~z,Z, where (in terms of  
the horizontal wavenumber, K,, and the wavenumber in the medium, k) 

V. = ( k2 - Kz.) 1/2 = (2rtf/c)sin 0. (15) 

Thus intensity will rise with the square of  frequency until saturation when 
sin 2 ?,z approaches 1 for most modes. This can only be modelled with 
GRASS by a very large number  of coherent rays. 

A clear indication of  the importance of  modal  effects at frequencies as 
high as 5 kHz (in typical shallow surface ducts) is shown by the comparison 
of  Fig. 3(a) (an IFD  intensity contour  run on a CRAY II) with Fig. 3(b) (ray 
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plot) for a surface duct. There are strong similarities in the shadow zone 
boundaries, but the sharp-edged shadow envisaged by ray exponents is 
clearly a myth. This area is partially covered by duct leakage which clearly 
includes downward-propagat ing beams repeating at the cycle distance and 
emerging from the duct just before the ray turning points at ranges of 1"3, 4.6 
and 7.6 km. 

4.2 SNAP and S U P E R S N A P  

Normal-mode models are relatively robust, and they have the potential 
advantage of being able to calculate intensity at any range or depth without 
making computat ions at all intermediate ranges. Computat ion time consists 
of the 'overhead' of calculating the modes, which increases in proport ion to 
the number of  depth points, the number of  modes and the uncertain but 
usually small number  of  iterations, and then the mode summation for each 
chosen range and depth point. 

For most purposes the discrete mode sum is adequate. However, there are 
several weaknesses in deep water apart from the large number  of modes and 
the convergence problems already mentioned. As a further extension of the 
analogy with the violin string which was introduced in section 3.3, a normal 
mode is a vertical standing wave caused by upward- and downward-going 
waves interfering. The amplitudes of  the two waves need to be comparable 
to form a true standing wave, and this cannot be so until there have been at 
least a few reflections or refractions to turn the down-going rays around. 
Therefore the normal mode solution is incomplete for ranges shorter than 
the cycle distance 9a for each mode (or ray family). 

There are a number of other important  effects that cannot be handled by 
discrete normal mode models, essentially because the effects require lossy 
modes to be included. Lossy modes form a continuous, rather than discrete 
spectrum, and this requires evaluation of  a branch line integral as well as the 
sum. An important  return at low frequencies in deep water at ranges before 
the first bottom-refracted arrival is bot tom reflection. Reflections from a 
density discontinuity where velocity is more or less continuous are 
necessarily lossy because the Rayleigh reflection coefficient is a constant 
independent of  angle, and there is no critical angle. The reflections therefore 
do not feature in the usual mode sum. Nevertheless, these reflections may be 
quite significant, as seen in the comparison of  SUPERSNAP with SAFARI  
(Fig. 4). This example has a water depth of  about 1000 m. At ranges beyond 
about 10km there are many deep bottom-refracted paths, and the good 
agreement implies that a discrete sum is perfectly adequate. At shorter 
ranges SAFARI  shows many rapidly interfering bot tom reflections which 
are not seen in SUPERSNAP.  
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Shear effects have been included in normal mode models, 67 but in many 
environments of interest lossy modes are again important, and these can be 
handled more faithfully by SAFARI. For instance, the shear critical angle is 
always smaller than the compression critical angle (since shear speed is less 
than compression speed) so that the spectrum includes a set of decaying 
modes, which is neglected by the discrete sum, but which may nonetheless be 
significant. 

The adiabatic approximation can be used for 'slowly varying' environ- 
ments, but it is sometimes difficult to see what this means in any other way 
than the statement that there is no mode coupling. In discussing applications 
of ray invariants, the author of Ref. 21 looked at the equivalence between 
adiabatic modes and ray angles and their joint conditions for validity in a 
reflecting duct. Rays become steeper in shallow water in a reversible way, 
provided that the reflecting surfaces are smooth and their shapes change 
slowly. This is equivalent to the adiabatic approximation. It is clear that in 
crossing a ridge, say, the process is not reversible if the critical angle is passed 
at any stage; it is also clear that undulations in between bottom bounces will 
produce a virtually random additional angle to the ray. Therefore the 
condition is roughly that ray angles (at the sea bed) should always be 
considerably greater than the slope of the sea bed, so that there are many 
bounces within a small change of environment. 

4.3 SAFARI 

SAFARI is an exact solution of the Helmholtz equation (in a stratified 
medium) for ranges greater that a wavelength or so. Compression and shear 
velocities with separate absorptions and stepped density profiles can be 
handled. Limitations are not fundamental since they stem from the problem 
of resolution in wavenumber which can be alleviated (without changing the 
code) given enough computation time and numerical accuracy. 

The number of points in the Fourier transform, N, constrains the range, 
re, and the usable portion of this is r, = ½r F. The usual Fourier transform 
relation is 

2nN=AKrF N =fc-~ (1 c _ ~ )  (16, 17) 

where AK, f, c 1 and c 2 are, respectively, the wavenumber resolution, 
frequency, and lower and upper phase velocity assumed in calculating the 
Green's function (as a function of horizontal wavenumber K). The CPU time 
to carry out the FFT is relatively small, but calculation of the N Green's 
function values for entry into the FFT increases in proportion to N. 
Calculations become much more efficient for large numbers of receivers, 1° 
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because the Green's function has been matched at all the layer boundaries 
and its form is known in each layer so that it is easily evaluated anywhere 
without starting from scratch. Without increasing N the only way of 
improving the resolution in deep water where there is a large number of loss- 
free modes (each corresponding to a spike in wavenumber, i.e. a pole in the 
complex wavenumber plane) is to offset the line of integration from the real 
wavenumber axis by adding a small imaginary part to K. This has the effect 
of moving the integration line further from the poles (which are on or very 
close to the real axis) so that the integral appears smoother; consequently 
resolution with the same Nis improved. A criterion has been given 4s for the 
offset which can be written in terms of dB per wavelength, J, as 

J = 6 0 c l / f r r  (18) 

Substituting for the maximum range this reduces to 

(19) 

A rule of thumb for having achieved a well sampled K-plot is that the 
function should look like a modulated sine wave with a smooth envelope. 
This is nearly always true for low K, but for high K a jagged envelope 
demonstrates poor sampling. 

This effect and the consequences for transmission loss are shown in Figs 
5(a)--(f). Firstly a small offset results in jagged peaks (a) and a 'noisy' 
transmission loss plot (b). The optimum offset case (c) shows a much neater 
K-plot with a smooth envelope and the low order modes have been lumped 
together. The loss plot (d) is relatively smooth but still rather noisy at long 
range. A large offset results in a very smooth K-plot (e), but the penalty is that 
the intensity begins to increase with range (f). In effect, the artificial insertion 
of a small imaginary part to the wavenumber e damps the modal resonances, 
but to retain the low loss of the original modes the formal mathematics 48 
needs to compensate by amplifying the result by an exponential exp (~r) at 
each range r. This delicate balance is upset if ~ becomes too large. 

A complementary point is that the Green's function amplitude must tail 
off to zero for high and low K to avoid superimposing Fourier transform 
noise. This appears at first sight to be a reasonable approximation in the first 
case, but as the function broadens with increasing offset the left-hand side 
rises (relatively) so as to be appreciably 'chopped' by the end of the Fourier 
transform. In fact, what has happened is that the area under the left-hand 
side has remained constant and so has the area under the right-hand side 
(low order modes), but the original spikiness of the modes gave the mistaken 
impression that the low K Green's function amplitude was negligible. 

The earlier equation for N makes it clear that for fixed computation time 
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(i.e. fixed N) the user may trade range for velocity contrast or frequency. At a 
fixed frequency this usually means that he or she has to open up the phase 
velocity limits Cl and c2 to accommodate the real environment. This puts a 
restriction on the maximum range. When there is an abrupt density change 
at the sea bed the wavenumber plot (integrand) often has significant 
amplitudes for phase velocities well above the maximum velocity in the 
sediment (i.e. wavenumbers much lower than 2rcf/cB), and a suitable phase 
velocity must either be found by trial and error or set to infinity. 

An interesting check for SAFARI in a non-trivial environment is given by 
an analytical image calculation. Imagining source images in the multiple 
surface and bottom image planes at depths -I-2nil +_ z, one can group the 
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sources according to the number of  bottom interactions (in isovelocity 
water). The true source and one image (in the surface) have no bottom 
interactions and produce a Lloyd's mirror effect. The next four images (or 
four rays) have one bottom interaction (but different numbers o f  surface 
interactions). The next four have two bottom interactions, and so on. It is 
assumed that the angle differences between each order of  reflection will be so 
great that very rapid oscillations will result, but that they can be neglected 
because usually one order of  reflection dominates for most ranges. Thus the 
main point o f  interest is the remaining relatively slow beats in the spatial 
pattern. The transmission loss for each reflection order is easily shown to be 

TL = - 1 0  l o g  P 

P = 16(R"/r')  2 [sin 2 (a,)sin 2 (at) + sin 2 (a~r)(1 -- sin2 (a,) -- sin 2 (at))] (20) 
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for n > 1, where 
r '2 = (2nil) 2 + r 2 

a,  = 2 k n H z , / r '  (21) 

a s = 2 k n H z , / r '  

as,  = k z : , / r '  

If the bottom interface is marked only by a change in density p, the Rayleigh 
reflection coefficient is 

R = (p - 1)/(p + 1) (22) 

This is a constant for all angles, and Fig. 6 compares numerical evaluation 
of  eqn (20) for n = 1 and 2 and Lloyd's mirror with SAFARI  in the case 
where R = 0.1. Agreement is extremely good, and the residual interference 
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can at least partly be accounted for by the neglected beating between paths 
with different numbers of  bottom reflections. Other examples have shown 
that the image calculation is extremely useful for filling in the short range 
reflections which are omitted by other models. 

4.4 PAREQ and IFD 

There is a considerable literature on the parabolic equation and its 
shortcomings, s1.99-1°2 The PE has a fundamental elevation angle 
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restriction regardless of  its implementation because it is an approximation 
to the Helmholtz equation. IFD has two implementations, 56 one due to 
Tappert 53 (narrow angle) and one due to Claerbout l°a (wide angle), referred 
to here as IFD (N) and IFD (W). PAREQ and IFD (N) are often quoted as 
having a limit of  order 20 °, whereas IFD (W) has a limit of  40 °. A weakness in 
these models is that there is no sudden change in the output at these angles, 
and contour and loss plots continue to look realistic to the uninitiated. This 
is because the wide angle returns are effectively mapped into narrow angles 
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rather than being ignored.I°4 An environment with a sediment velocity of 
1600 m/s and low absorption is all that is required to produce 20 ~ rays. After 
a long enough range the steep rays will die out, of course, but at low 
frequencies there are often significant returns remaining within the first 
convergence zone range. 

A ray trace in which rays are transmitted through the sea bed at 4000 m 
and refracted from the sediment back to the water is shown in Fig. 7(a). A 
repeated pattern of rays penetrating to the bot tom of the sediment (5000 m) 
is seen. At 50Hz, where the wavelength is 30m, this plot is reasonably 
representative except that it says nothing about the intensity. Equivalent 
intensity contour plots for PAREQ, IFD (N) and IFD (W) are shown in Figs 
7(b), (c) and (d). Since the loss is quite low (0.15 dB/wavelength) the repeated 
pattern still exists in each case. What is striking is the varying distances to the 
first bottom-refracted arrival at the surface; these are 10, 16, 21 and 16 km 
respectively. The grazing angle of the rays at the sea bed is 54 ° (with a 
sediment velocity gradient of  1 m/s/m) so it is not surprising that it is difficult 
to predict performance once the rough angle limit has been exceeded. 
Thomson & Wood1°4 have suggested a practical method for realising De 
Santo's correction. 27 This consists of separating out each horizontal 
wavenumber component  by Fourier transforming in range and performing 
a weighting and mapping to a new wavenumber before transforming back to 
range. In effect, the large-angle components  are separately set to larger 
angles while the small-angle components  are left untouched. An alternative 
approach is taken by Tolstoy, 92 where a similar effect is achieved by altering 
the velocity profile progressively away from the velocity minimum. Provided 
that the velocity contrast is small it is possible to make corrections by 
choosing the reference sound speed carefully; a 'natural '  choice is described 
in Ref. 105. Using the WKB approach this can be converted into a very 
simple practical formula.106 

There is an additional effect (which may be seen in Figs 7(b), (c) and (d) at 
very short ranges when source and receiver are at different depths. The 
marching solution results in zero intensity for Izs - z,[ > r tan a, where ct is a 
constant angle depending on the algorithm and the range step length. 

The standard versions of IFD and PAREQ cannot handle density 
changes in the sediment exactly. Instead PAREQ, for instance, emulates the 
change by altering the velocity profile. However, it can easily be seen that a 
boundary with a density discontinuity but continuous velocity gives a 
constant reflection coefficient, independent of  angle. Thus at short range 
there will be many reflections at steep angles right up to 90 ° . This can only be 
emulated if the two velocities are close in value and consequently the 
reflection coefficient is very low. More rigorous work on inclusion of density 
has been done by St Mary. 8° 
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A practical limitation to the PE is the cost of computation time. This rises 
in proportion to the number of calculation points in depth and range. The 
usual step sizes of 2/4 and 2/2 result in computation time being proportional 
to f2. However, this is offset to a certain extent by the fact that the 
calculation necessarily includes many receiver depths and is therefore 
directly suitable for contouring. In the vertical there is, in principle, some 
scope for increasing the step sizes since the spatial variation cannot be more 
rapid than the vertical wavelength of the highest order mode (at least for 
calculations starting beyond the cycle distance). Experimenting with step 
size is often made difficult by the assumption elsewhere in the code (e.g. in the 
Gaussian initialisation) that the step size is no greater than a quarter of a 
wavelength. 

5 REGIONS OF APPLICABILITY 

Each model has a range of input parameters for which the model outputs are 
reliable. There are two independent questions that need to be answered in 
any application. One is, what are these limits for a particular model? The 
other is, what are the required values of the inputs for the environment in 
question? These 'fuzzy' areas may not overlap, and there may even be areas 
where no model works. The input parameters of all models break down into 
operational parameters (i.e. frequency, source depth, receiver depth and 
range), environmental parameters (i.e. velocity profile, water depth, sediment 
depth, absorption and velocity and their gradients in the sediment, density 
etc.) and numerical tuning factors (e.g. reference sound speed, depth and 
range increments in IFD; integration offset, velocity contrast versus FFT 
size trade-off in SAFARI; and range and angle increments in GRASS). 

5.1 Effective angles dictated by the environment 

A clearer picture of the conditions under which the model has to operate is 
necessary in order to proceed further, and this can be seen by attempting to 
limit the number of parameters. The approach here is to take only three 
parameters: range and frequency, with the (horizontally stratified) 
environment drastically reduced to one parameter. These parameters define 
a volume that must be covered by the model. 

The single parameter used to describe the environment is the 'effective 
angle', as described below. At a particular range the total energy from an 
omnidirectional source is spread into a range of angles; Snelrs law and the 
reflection coefficients dictate the relation between angle and the complete 
velocity and density profile, but attenuation effects will eventually narrow 
the angle down at long range. The range of angles is related to the number of 
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remaining modes that have non-zero amplitudes at source and receiver 
depth (as can be seen from the WKB solution) and is related to Weston's 
invariants and flux formulation 26 which are useful concepts for range- 
dependent media. 

The initial energy split between surface duct, water column and sediment 
is determined by the angle at the source for the limiting ray in each duct, i.e. 

0 = cos-  1 (cs/c) (23) 

where c s is the velocity at the source and c corresponds to the maximum 
velocity in either the surface duct, the water column or the entire profile 
including the sediment. From simple flux arguments or WKB-mode 
formulae the distribution of energy in the ducts is in the proportions 

O~. (0,,, - 0~).  (Oh - Ow) 

lid" Hw "(lib + Hw) 

where the subscripts refer to the surface duct (d), water column (w) and 
sediment (b), and H is the appropriate layer thickness. 

The 'effective angle' is defined, rather loosely, as the steepest angle that 
succeeds in making a significant contribution for the given source-receiver 
combination at the given range. It is especially useful in defining the acoustic 
effects of the environment because it can be compared directly with angle 
limits of models or translated into wavenumber limits as appropriate. There 
are, of course, many complications, particularly at low frequency, such as 
near-boundary effects, which need to be borne in mind as well. 

At a single frequency there is a curve in the r-O plane which defines the 
angles 0el f that must be catered for at each range. Examples are shown in 
Figs 8(a) and (b) for low and high frequency respectively. The region that 
must be covered is above and to the left of the curve, i.e. for a given range r, 
all 0 < [01 < Ocff(r). 

With a dense sediment there will be reflections at angles up to 90 °, but at 
extremely short range these will be overpowered by the direct path. The 
effective angle will therefore be smaller than 90 ° depending on the detailed 
geometry, but steep angles will become significant at ranges comparable 
with the water depth. From then on the effective angle will fall to the critical 
angle and level out after a range of about the cycle distance 9s (2Hcot  0c). If 
the energy is spread more or less uniformly in angle each contribution will 
drop out at a range where its total loss, RL, exceeds a certain level. The 
relation between RL and range r is easily calculated by considering the 
absorption in transitting the sediment, and for small grazing angles, 0, 

RL = rfaO2/Hc ' (24) 

where f, a, H and c' are frequency, absorption in dB per wavelength, water 
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The regime defined by the environment in terms of a single parameter, the "effective 
angle', versus range for (a) low and (b) high frequencies. 

depth and velocity gradient in the sediment respectively. If the drop-out level 
is taken as a constant for all contributions then the range is 

r w. H c ' / f ~ O  2 (25) 

and has already been calculated for mode stripping. 1°7 If there is a surface 
duct (above cut-off) the effective angle reduces finally to a value defined by 
the velocity contrast and depth of the duct. 

Naturally, energy partitioning between surface duct, water column and 
sediment-refracted arrival must also be  considered. At low frequencies 
where the surface duct cannot support any modes its energy contribution is 
zero so that the surface duct can be ignored. At higher frequencies, despite 
the low spread of angles, there may be relatively high energy density in the 
duct because of  its limited depth. In extreme circumstances this may make it 
possible to ignore the bot tom returns despite their high angles. It is difficult 
to invent a general rule, though, because the relative strengths of the various 
returns change in an arbitrary manner. The best way to find out is to perform 
a pilot run to see which returns dominate and where, and then to use a ray 
trace to estimate the appropriate angles. 

5.2 Angles covered by GRASS 
GRASS can be run in two ways, one having a reflection loss table strictly 
covering reflections and ignoring bottom-refracted paths, and the other 
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having a compromise table covering all upward-turning rays. Neither case 
features in the low-frequency graph, Fig. 9(a), but the latter case occupies the 
whole of the high-frequency graph, the only limitation being the practical 
consideration of computation time and accuracy at the right-hand edge. The 
strict reflection loss case which is shown in Fig. 9(b) is only valid for the case 
in which bottom-reflected paths (total loss R L  = rLO/2H) are stronger than 
refracted paths (eqn (24)). This condition is 

0 >> c'L/2f~ (26) 

5.3 Angles covered by SNAP and SUPERSNAP 

The discrete normal-mode solution is valid at ranges beyond the cycle 
distance and frequencies above the cut-off of the entire water-sediment 
column. Shooting methods such as SNAP suffer not only from excessive 
computation time when there are many modes but also from difficulties with 
convergence in the mode shapes (particularly low-order modes). Thus they 
run into difficulties at high frequencies, but may also have trouble in deep 
water at low frequencies. The convergence problems are alleviated by 
SUPERSNAP although computation time will still limit performance. 
There is no particular angle limit in the normal-mode approach (other than, 
by definition, the critical angle) but, for a fixed computation time, frequency 
could be increased by artificially restricting the number of modes (in 
principle, the restriction could be to any given set, not necessarily the lowest 
order modes). This is shown by the horizontal line in Fig. 9. 

5.4 Angles covered by SAFARI 

The coverage given by SAFARI cannot be shown once and for all in Fig. 9, 
since there is a choice to be made by the user between range and velocity 
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contrast (effective angle). The computation time is roughly proportional to 
the number of points in the FFT, N and, putting cos 0~ff = c~/c2, the earlier 
formula (eqn (17)) corresponds to 

CPU ~: N N : f c l  1rE(1 -- cos  Oeff) (27) 

For fixed C P U  the 0eff(r ) cu rve  is therefore 

0et f = cos-1 [1 - Ncl/frF] (28) 

This is shown by the dotted line in Fig. 9. The user can choose any point on 
this dotted line to define 0ef f and rr, and so he has a choice of the rectangular 
boxes of validity defined by S 1, S 2, $3 etc. However, he does not have a free 
hand because the answers will be incorrect or suspect if the effective angle in 
Fig. 9 does not cover the required angle shown in Fig. 8, so there is always a 
limit on range. 

A possible, although tedious, way ofextending the range of SAFARI is to 
calculate loss for short extensions in range from non-zero starting points in a 
piecewise fashion. Another way is to calculate short-range TL from a high 
velocity contrast run, and then calculate long-range TL from a separate low 
velocity contrast run. The overlap is usually well behaved. 

5.5 Angles covered by PAREQ and IFD 

The parabolic equation is valid for large ranges and angles below some limit 
for the implementation regardless of frequency. The effect is a flat but hazy 
cut-off, as shown by the solid line in Fig. 9. At short ranges there may be 
phase errors, and at very short ranges there are guaranteed angle violations 
unless the receiver is at the same depth as the source. The practical limitation 
of computation time (and ultimately numerical accuracy) is shown by the 
dotted line on the right. 

5.6 General comments on coverage 

At short range the only wave treatment to give reliable coverage is SAFARI. 
This is complemented by and overlaps with SUPERSNAP at longer ranges. 
At frequencies where SAFARI becomes too expensive to run there is no other 
model that can handle short-range returns, and simple image calculations 
may be able to fill the gap. In a strongly range-dependent environment where 
neither SAFARI nor SUPERSNAP is applicable there is a strong possibility 
of a hole in coverage at high frequencies, which becomes a certainty at low 
frequencies. One hopes that, in practice, the environment only requires small 
angles that either GRASS or PE can handle. 
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6 C O N C L U S I O N S  

A review of  four types of propagation model has been given including 
GRASS (rays), SNAP and S U P E R S N A P  (normal mode), SAFARI  and 
FFP  (Green's function), and P A R E Q  and IFD (parabolic equation). 
References have been made to various model  comparisons.  Brief 
descriptions of the models and the environments to which they apply have 
led to a discussion of their limitations in terms of  validity, computat ion time 
and tuning. Finally, an attempt has been made to map out regions of  
applicability and to present a way of  choosing models in practice. 
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