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MOTION-INDUCED SINGULARITIES IN POWER SPECTRA
ASSOCIATED WITH OCEAN GRAVITY-WAVE FLUCTUATIONS*

E. Y. HARPERfY

Abstract. We consider an observer with a measuring device having a scalar output that is linearly related
to the random motion of ocean gravity waves. The device could measure waveheight, a component of flow
velocity, etc. We study the power-spectral density of the time record obtained when the observer moves at
constant speed in a horizontal plane. When the observer is at rest the spectrum is wideband, or incoherent.
However when the observer moves, he may move with the envelope of a certain packet of waves, thereby
introducing a strong coherence. This coherence manifests itself as a singularity in the power-spectral density
of the time record. The location of the singularity in the frequency domain is predicted by the method of
stationary phase, but the nature of the singularity is not. It is shown that for the case of swell the spectrum has a
square-root singularity on the left, and a finite limit from the right, at the singular point. This peculiar
behaviour is demonstrated experimentally. For the case of a wind-driven sea the singularity is logarithmic and
unsymmetric about the singular point. For this case the location of the singularity in the frequency domain
depends only on the observer’s speed, U, and is given by g/8#U (cycles/unit time) where g is the acceleration
of gravity.

1. Introduction. We consider an observer who is moving horizontally at constant
speed in proximity to a random field of linear ocean-surface gravity waves. The
observer records the output from a measuring device whose response is linearly related
to the local surface-wave motion. The device could be a wavestaff, a flowmeter, or even
a magnetometer (see Podney, (1979)). We wish to describe the statistical properties of
this record; in particular, we are interested in the power spectral density, S(o"), where o
denotes angular frequency. We assume that the measuring device has a transfer
function with no sharp peaks, that is, no resonance features within the measurement
frequency band. In that case the power spectrum measured when the observer is at rest
is a smooth continuous function that we would characterize as wideband and inco-
herent; see for example the waveheight spectrum, S, (@), in App. A. We have used
the symbol w for angular frequency, as distinct from o, to denote spectra of time records
taken by a nonmoving observer.

It is generally the case that when the observer moves there is a strong coherence,
that is, a singularity in the spectrum S(o), at a frequency, o, that depends on the
observer’s speed, U. This is due to the dispersive nature of gravity waves, and is most
easily appreciated by first considering all the gravity waves to be moving in the same
direction. The waves contained within a narrow band of frequencies, centered at w,,
within the spectrum S, , (»), have wavenumbers with magnitudes in a narrow band I',,,
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where g is the acceleration of gravity, and have a group speed U,
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in the direction of wave motion. Suppose the observer moves at an angle, a, with respect
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to the direction of motion of this “packet” of waves, where

|ae| < T
2
and suppose his speed U is

=‘Ug - 8
cosa 2w, cosa

Then the observer moves with the envelope of the wave packet; that is, the projection of
his velocity in the direction of motion of the wave packet equals the group velocity of the
wave packet. In more mathematical terms, the Fourier integral analysis of the above-
cited situation reveals a point of stationary phase at w = w,, Where

-8
2U cosa’

This means that in an asymptotic sense, the observer always sees the same wavelength
and frequency as he moves along with this dispersive wave field (see Lighthill (1978,
3.7)). The interpretation of this asymptotic result with respect to the spectrum, S(o), of
a time record taken by the observer, is that there will be a delta function in S(o) at the
observer’s frequency of encounter, o, with the crests of this wave packet

Wm

<

_Om___ &
Tm Ty T4Ucosa

Of course there will also be broadband energy in the spectrum S(o), due to the

observer’s encounter with all the other wave packets constituting S,,, ,(w), with those

envelopes he is not moving.

The stationary phase result is asymptotic. The observer does not see exactly the
same wavelength and frequency associated with the wave packet. Rather, the wave
packet produces a very narrowband process centered at o, and displaying amplitude
and phase modulation (see Lighthill (1978, 3.6)). The spectrum S(o") does not have a
delta function at o,,, but it does have an integrable singularity there. The purpose of this
paper is to display the nature of that singularity. This is best achieved by computing the
spectrum, S(o), exactly.

The ocean surface is generally composed of dispersive waves moving in all
directions, . The surface is described in terms of a directional-frequency spectrum,
Smap (@, ) (see Phillips (1969)). The point of stationary phase for the two dimensional
Fourier integral analysis is at

which means that there is destructive interference among all the waves except for the
wave packet moving in the direction of the observer and overtaking him at his own
speed. Again, this is an asymptotic result, and the spectrum, S(o), does not manifest
perfect coherence (a delta function) at o = g/4U. The exact representation for S(o)
reveals an integrable singularity at that frequency, but of a type different from the
singularity that occurs when all the waves move in the same direction.

The spectrum S(o) is one statistic of the time record taken by the observer. Many
processes can have the same spectrum because the relative phase of sinusoids at
different frequencies is not specified. Therefore a time series realization of the process
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in question is of interest because the ‘“‘coherence” implied by the singularities in S(o)
may be appreciated in another way. For this reason a few theoretical time series
realizations are presented. We have chosen to compute the axial component of
fluctuating velocity because this quantity could easily be measured by means of a
flowmeter aboard a ship at sea.

Finally, the theoretical results have been verified experimentally. This will be the
subject of another paper. However, we show here one preliminary result for the
following reason. The predicted singularity for the case of waves moving in one
direction is quite unusual. It is discontinuous at ¢,,, and singular from the left but not
from the right. The result for waves in all directions is an integral over this solution. One
may well ask whether this mathematical result, based on linear theory, would ever be
seen in nature. A preliminary answer has been obtained in the main towing tank at the
David Taylor model basin. The tank is 15.2 m wide, 549 m. long, and 7 m. deep, and
has a random wave generator at one end with an absorbing beach at the other. The
wavemaker generates random finite-amplitude gravity waves, with a prescribed spec-
trum, for the primary purpose of testing ship slamming. A variable-speed towing
carriage runs on rails at a fixed height above the waves for the purpose of towing the
models. It was a fairly easy matter to mount an ultrasonic down-looking device on the
carriage which could measure the free surface fluctuations with the carriage moving
both with and against the waves. The discontinuous singularity from the leftin S, (o),
is clearly visible, and is displayed in § 4 of this paper.

2. Problem formulation and derivation of results. We consider an observer with a
measuring device who is moving at constant speed U and angle «, in a horizontal plane
above or below the ocean surface (see Fig. 1). The observer records the fluctuating
scalar output from a measuring device, say a wavestaff or flowmeter, that is linearly
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X
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FI1G. 1. A view looking down on the ocean surface. The positive z axis is directed vertically downward.

related to the random motion of ocean-surface gravity waves. He then forms a power
spectrum from this time record. As indicated in the -introduction we expect this
spectrum to manifest a strong coherence, that is, a singular behavior, for those waves
whose projected group velocity, in the direction of the observer’s motion, equals the
observer’s velocity. Our aim is to display the precise nature of this singular behavior.

We consider two cases of arandom gravity-wave field. The first case we refer to as a
wind-driven sea, with a two-dimensional directional-frequency waveheight spectrum,
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Snaol@, ¥), given by

(12) Suanl 1) =2 5, @),
where
(1b) 2= pway,

and where S,,,,(») is the one-dimensional frequency spectrum (see Phillips (1969)).
The wind is assumed to be blowing in the positive x-direction. For the purposes of
computation, we choose S,,,(w) to be the Pierson-Moskowitz (1964) frequency
spectrum (also see App. A), and D(¢) to be )

(1o) D)=

2
Ccos 1k

In the second case, which we refer to as the case of swell, the random field is
composed of a spectrum of plane gravity waves all moving in the positive x-direction.
We treat swell as a special case of a wind-driven sea by setting

(1d) DW)=6W), PD=1.

The use of the Pierson-Moskowitz frequency spectrum for the case of swell is a matter
of computational convenience. The formulas given in this paper are completely general,
and any other one-dimensional waveheight spectrum, S,,,(w), could be used for
computations involving the swell case.

The time series from the measuring device has a correlation function, R(7), of the
general form

e RO=2[ [ Gt @Seus (0, 9) cos[o@)r] dv ds
m Jo a—m
where
. w
(2b) o(w)= w(l 5 (w)),
_ 8
20) o) = Spremar =

and g is the acceleration of gravity. The function G(w, ¢, &) represents the response of
the linear measuring device, e.g., for a wavestaff, whose output is the vertical wave-
height, G = 1, while for the case of an axial flow meter (see App. A)

G_{cos2 (Y —a)w? e 2B z>0,
0, z<0.
Equation (2) is derived in App. A by constructing realizations of the above-cited
random processes as a double sum (over frequency, w, and direction, ¢) of plane gravity

waves with random phases. The correlation function is obtained by ensemble averaging
over the random phases and taking the limit as Ay and Aw approach zero. The

argument o (w)T,

€)

' 2
a'(w)1'=[w -2 U cos (4//—01)]7,
4
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arises as follows. A plane gravity wave of frequency w;, moving in the direction ¢, has
the phase (see Fig. 1)

wft - Fif P + Yiis
where

2
I= QgL (cos ¥iXo+sin ¢;yo),

Xo and y, are unit vectors in the x- and y- directions, and y;; is arandom phase uniformly
distributed on the interval —s to . The observer’s location is given by p, where

ps = Ut(cos axo+sin ayo).

Substitution of p, for p and ensemble averaging on v;; to obtain the correlation function
R(1), leads to (see App. A)

[wj __w?,? U cos (¢; —a)]'r.

Equation (2) may also be derived by means of a continuous stochastic integral
representation of the gravity wave field. Our reason for constructing the realizations in
App. A is that the time series themselves are interesting and clearly display the
coherence properties implied by the spectra. Some time-series realizations, computed
from the formulas in App. A, will be presented at the end of this paper. Our main
objective, however, is to display the structure of the singularities in the power spectra.
The swell case is treated first; the wind-driven case is then treated as an integral over the
solution for swell.

2a. Results for the case of swell. In order to treat the case of swell, we rewrite the
kernel of the integral in (2) as

D(¥)

“4) G, ¥, @)Sy,, (0, )= 2 k(w, ¥, a),
whence (2) becomes
_ L a+Tm s o] 3 @ )]
(3 R)=— L-, L D(W)k(w, ¥, @) cos [w(l sy | 7w v
- &
(5b) w'"('p)_ZUcos W—ay
The case of swell is then obtained by invoking (1d) whence,
(6a) R(T)=lj K (@, 0, a)cos[w(l—-—w—)]fdw,
m Jo 2wm
where
- 8
(60) Om = oUcosa’

This integral has a point of stationary phase or saddle point at = w,, when |a|<m/2.
Rather than finding the asymptotic stationary phase approximation to R(7), we recast
the integral in (6a) so as to display the exact Fourier transform of R (7), that is, the power
spectrum, S(w).
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We begin by making the change of variable
w
~of1-52);
@) o w( o

this function is shown in Fig. 2. In order to compute the Jacobian of the transformation
we must consider two cases.

g
% <laj< T
m
9 =
Wz — 2
m = 2Ucosa /
. _%m /
Tm =~ // SADDLE POINT
Im— /éen.scnon
w
Wm 2wm
cw)- @Y
o=w(l g cosa] IGI<%

FI1G. 2. The relation between the frequency of encounter with the wavecrests in the moving frame o, and the
frequency in the fixed frame, w.

For the case w, <0, the ship moves against the waves, that is, 7/2 < || < 7, and
there is no saddle point. The functional relation between o and w is single valued and
we have

(8a) w=—wm(\/1—-2—a—l), oy, <0,
Wm

and

do

do =——.
(8b) w \/I__T_a‘
w

m

The correlation function is then written

1(® cos
(92) R (r)=— j <(Nio, o}, 0, ) 227 4o
™, [ p
1 —_—
Om
where
(9b) o =No, a‘m}=20'm<\/1—a—?-——l),
_Wm_ 8
®c) m e T AU cosa’

and the —subscript denotes o,,, <0. The power spectfum in the moving frame is simply
the kernel of the integral in (9a),

k(N{o, o}, 0, )

vi-Z ’
g,

m

(10) S(o)=

on<0.

As expected, there are no singularities in the power spectrum S(o).
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For the case w,, > 0, the ship moves with the waves, thatis |a| < 77/2. The functional
relation between o and w is multiple valued, and there is a saddle point, or point of
stationary phase, at w = w,,. For 0 <w < w,

(11a) " =2a,,,(1 —y/1 —Ui) —Mio, 0.}, on>0,

m

and

(11b) dw =

while for w,, = w,

(12a) o= 20',,,(1 +4/1 —l) “MJo,0,),  on>0,
a,

m

and
do

\/1—1‘
g,

m

(12b) | dow =—

The correlation function for w,, >0, denoted R.(7), is

1 (%™

R (7)= —I k(M_{o, om}, 0, a) _SOSIT do

7l [ o

1__

Om

(13a) +lj " kMo, o, 0, @) —L dor

w o o
,/1__
Om

1@
+—I K(M+{_0, o-m}9 0, a) T

m
0 Vi+—
g,

m

do,

where

(13b) M0, om}= 20',,,(1 +4/1 +£)

Again the power spectrum is the kernel of the integral in (13a). However, for o, > Oitis
discontinuous at o = o,,, and there is a square-root singularity from the left. That is,

S(O’) =—1——{K(M_{0', g-m}, 0, a)+K(M+{0', o'm}, 0, a)}H(l _l)
Vi-Z o
Om
(14)
+_1'" K(M+{_0, a'm}, 0, a)’

Vi+-Z
a,

m
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where
=
w2 e
Om O, o> 0m.

2b. Results for the case of a wind-driven sea. The double integral representation
for R(7), (5a) and (5b), has a point of stationary phase at

£
2U°
(see Felsen and Markuvitz (1973)). The asymptotic representation of the integral picks
out the waves moving in the observer’s direction with the group velocity equal to the
observer’s velocity. However, it is not the stationary phase representation for R () we
seek; rather, we seek the exact representation for the power sepctrum S(o).
Inspection of (5a) and (5b) for the wind-driven case, and (6a) and (6b) for the swell
case, indicate that the desired result for the wind-driven sea may be obtained as an
integral over the result for swell.
For the case of swell, the rlght hand side of (6a) was put in the general form

$=a, w =

(15) Ri(7)= I F:lk(w{o, om0, @), o/0o,] cos o do

where & denotes a function of « and o,,, and the subscripts — and + denote the cases
0m <0 and o, >0, respectively (see (9a), (13a)). The argument w{c, o,.} denotes a
member of the set of functions N{c, o}, M_{o, o}, M {0, 0w}, or M. (—0, o)
defined by (9b), (11a), (12a), and (13b), respectively. The expression for the wind-
driven case is obtained by replacing k(w{o, 0.}, 0, @) with «(w{c, om(¥)}, ¥, @) and
o/om With /0, (¢), and integrating over (). The result is

7R(7)=

(L:m W+ sz ) J PW g [k(wlo, on@hs ts @), /o)l cos or do

(16) a+m/2
D
[ [ P 5 ot w0, ot @] cos v

Now, since

1 o0

R(r)=— J S(o) cos o7 do,

m™Jo

we have

a—m/2 a+r

so=g([ @+ " a)pwiF xwlo onwl, b @), olonwi d
- a+m/2
(17a) a+m/2
+5 ] DT (ol on@)h s @) ofom(@)]

where

_k(N{o, o ()}, ¥, @)

(17b) F_k(wlo, om (W), @), o/ om(P)]=
‘ V 1_0 (:,/,)
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and
Filc(Wlo, om()}, ¥, @), 0/ 0m(¥)]
(17¢) _ kM=o, o)} ¥, @)
1+—2
om(¥)
LM Ao, am(@)}, ¥, @) + k(M o, om(@)}, ¥, a)} H(l s )
V1-—Z Tm(®)
om(P)
and where

o 1 N T=0m (1.0),
17d H( 1- ) = {
174 o) 10,  o>on(¥).
We note that over the range of integration indicated in (17a), o () takes on only
negative values, so that the function %_ is never singular. On the other hand, the range
of integration for &%, is such that o, (i) takes on only positive values. As a consequence

part of the integrand, namely the second term on the right-hand side of (17c¢), is singular
when

(18a) \/1- z =\/1—Mcos(«p—a)=0,
o) g
that is, when
(18b) ¢r=a:i:cos_14—tgj—a_.
Of course this is the square-root singularity due to waves moving with the ship, that is

| —a| < /2.

It should be remembered that the integration in (17a) is with respect to ¢, with o as
a parameter. When o # 0y, the singularity in the integrand is of the square-root type
and is integrable. However, when o = o the singularity in the integrand is a first-order
pole. As a consequence the power spectrum S(o) has a logarithmic singularity at
o =0o=g/4U. The power spectrum is unsymmetric about oo. The singular behaviour
near o = oy is derived in App. B.

2¢. Summary of results. With reference to Fig. 1, the results may be summarized
as follows. For the case of a random spectrum of plane gravity waves all moving in the
positive x-direction (the case of swell) there is no singularity in the spectrum S(o") when
the observer moves against the waves, that is when 7/2 <|a| <. When the observer
moves with the waves, that is when |a| < /2, the spectrum is discontinuous and has a
square-root singularity from the left at

(193) T=0m= o >
cos o
where
g
1 =
( 9b) (o4 4U

The singularity is created by the packet of waves with oscillation frequency w (measured
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in the fixed frame of reference) given by,

O=0n=20m= _g_'
2U cos a

If the observer changes his speed U, or heading «, the frequency a,, of the singularity
in the measured spectrum S(o) changes, as does the identity of the packet of waves
responsible for the singularity. If a singularity occurs in the swell case it is because the
projection of the observer’s velocity in the direction of motion of the wave packet
equals the group velocity of the packet.

For the case of an angular distribution of gravity waves (the case of a wind-driven
sea) the singularity in S(o) occurs at the frequency

(20) or=00= %,

and is.logarithmic. The singularity is due to those packets of waves moving in, and very
nearly in, the direction of the observer, with group velocities equal to, and very nearly
equal to, the observer’s velocity. These waves oscillate with frequencies near w,,

wo= i’,
2U
have wavelengths Ag of
2
Ag= 87U ,
g
and move with phase speed U, of
U= sy,
27

that is, they move at twice the observer’s speed. What the observer sees then is a nearly
sinusoidal wave overtaking him at a rate equal to his own speed.

The effects predicted herein, including the discontinuous spectrum of (14), exist in
nature. This is demonstrated in § 4, where time records are presented of the waveheight
measured from a stable carriage moving with and against random waves propagating
down the large towing tank at the David Taylor Model Basin. However, we first show
some spectra calculated from the equations derived in this section. We also show
time-series realizations, based on the formulas derived in App. A, and having the same
theoretical spectra.

3. Spectra and time series. Equations (3), (10), and (14) have been used to
calculate the power spectrum of the axial component of fluctuating velocity for the case
of swell. Figs. 3 and 4 are for headings of @ = 37/4 and @ = 7/4 respectively. The depth,
windspeed and ship speed (observer’s speed) are shown on the figures. The windspeed
enters through the ocean-surface spectrum S, (w) (see App. A.) Time series realiza-
tions for the same directions and values of the parameters are shown in Figs. 5 and 6.
The coherence implied by the square-root singularity of Fig. 4 is clearly visible in Fig. 6.

Equations (3) and (17) have been used to calculate the power spectrum of the axial
component of fluctuating velocity for the case of a wind-driven sea and a ship’s heading
of « =0. The results are shown in Fig. 7 along with the values of depth, windspeed and
ship speed. The logarithmic singularity at the frequency g/8#U (Hz) is clearly visible.
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FIG. 7. The power-spectral density for the axial component of fluctuating velocity. The observer is moving
with the wind in a wind-driven sea.

4. Experimental result. The main towing tank at the David Taylor model basin is
approximately 15.2 m (50 ft) wide, 549 m (1800 ft) long, and 7 m (23 ft) deep. At one
end, a computer driven pneumatic wave maker can produce waves with a predeter-
mined spectrum. At the other end, an absorbing beach reduces the reflection of waves.
The aim is to create one-dimensional, unidirectional surface waves with a prescribed
spectrum. In practice, a small amount of energy is reflected by the beach and the tank
sides, causing the wave spectrum to vary slightly down the length of the tank.

An instrumentation carriage spans the width of the tank. The carriage is normally
used to tow model ships and can move at speeds up to 8.2 m/sec (16 knots). The
presence of a beach and the starting and stopping distances for the carriage limit the
usable length of the tank from 366 to 457 m (1200 to 1500 ft).

An ultrasonic device, which did not affect the free surface motion, was mounted on
the carriage so as to measure the fluctuations in vertical waveheight with the carriage
moving against the waves and with the waves. The power in the wavemaker was
adjusted slightly below the threshold where there was wave breaking (there was
occasional wave breaking during the experiment). The peak in the waveheight spec-
trum, S,,,(w), measured with the carriage at rest, corresponded to wavelengths of
about 10 feet. The maximum vertical excursion of the surface, peak to trough, was
about 1 foot.

If Fig. 8 we present 270 sec of the waveheight time record for the carriage moving 4
feet per second against the waves. In Fig. 9 we present 270 sec of the time record for the
carriage moving 4 feet per second with the waves and with the wavemaker still running
at the same setting. The coherence is clearly visible from the record, as it was to
observers looking at the waves from the carriage. Observers on the carriage could see
that as the carriage speed was adjusted from small to larger values in successive tests,
this coherent wave appeared to overtake the carriage at higher speeds, until speeds
were reached where there was no longer energy in the spectrum.

In Figs. 10 and 11 we present raw spectral estimates (2 degrees of freedom) of the
time records of Figs. 8 and 9, respectively. Each spectrum was computed using 320 sec
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F1G. 10. The raw spectral estimate of the time
series shown in Fig. 8 using 320 sec. of data. The
observer is moving against the waves.

FI1G. 11. The raw spectral estimate of the time
series shown in Fig. 9 using 320 sec. of data. The
observer is moving with the waves.

of data (the portions of the record when the carriage was near the wavemaker and the
beach were discarded) without any smoothing.

The predicted discontinuity, and singularity from the left, associated with a
carriage speed of 4 feet per second, is at

Om _

2 87TU

The largest Fourier coefficient computed from the experiment was at 0.313 Hz. At a
frequency 0.01 Hz higher than this, the spectrum had dropped by over 19 dB.

The time series of Fig. 9 is a realization taken from an ensemble. Our definition of
power spectrum involves an average over that ensemble (see App. A). One may well ask
what, if any, relation this definition of power spectrum bears to the energy measured by
means of a finite time record of a single realization, i.e., the spectral estimate of Fig. 11.
That is, can we appeal to the usual ergodic principle to relate the ensemble and time
averages? There is reason for concern here, particularly with respect to the estimation
of the power spectrum in a moving frame and in a narrow frequency band around
0 = 0. The description of the simplest one-dimensional example of dispersion, givenin
most texts on waves, serves to illustrate this concern. Consider the addition of two plane
sinusoidal gravity waves of equal amplitude but of slightly different wave number,
moving in the same direction. An observer moving in the wave direction with the speed
of the envelope (group speed) would measure a perfectly coherent signal, but the power
in that signal would depend on which point on the envelope the observer follows. For
example, the phases of the two waves could be such that the observer moved forever
with a null in the envelope in one realization and moved (forever) with a maximum in
the envelope in another realization. This is certainly not an ergodic process!

The answer to the above-cited question has been obtained, but the analysis is
beyond the scope of this report and will be presented in a subsequent paper. The results
are merely summarized here. It is well known that, away from the singularity, the
equivalent number of degrees of freedom of a spectral estimate is given by twice the

fm= =0.32 Hz.
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time bandwidth product. The effect of a square-root singularity in the spectrum is to
slightly modify this formula, at least for the case of a stationary Gaussian process. In
effect, the continuum of frequencies near o = o,,, destroys the strict coherence of the
two-wave example as well as the concept of moving with a point of constant amplitude
of the envelope. Power spectra obtained from successive runs in the towing tank, and
having the same parameter values, may be averaged to increase the confidence in the
spectral estimate (degrees of freedom), and improve the signal to noise ratio. These
results will also be presented in the paper to follow.

5. Acknowledgment and dedication. I wish to acknowledge the assistance of Drs.
Bruce Bogert, Al Claus, Gerald Grube, and Gary Deem, of Bell Laboratories, in the
development of these results. I also wish to acknowledge Mr. Ralph Skelly for his
computer programming assistance. Most important, I wish to dedicate this paper to my
late wife who, despite her illness, encouraged me to continue this research.

Appendix A. We begin by constructing mathematical realizations of the random
processes of interest. We choose a Cartesian (x, y, z) coordinate system such that the
positive z axis is directed vertically downward and the horizontal x —y plane is
coincident with the mean (undisturbed) ocean surface (see Fig. 1). For the case of swell
(gravity waves in the frequency band all progressing in a single direction) the direction
of propagation is taken to be that of the positive x axis. For the case of wind-driven
gravity waves (waves progressing in all directions) the wind is assumed to be blowing in
the positive x direction. The ocean surface, n(p, ¢), and the fluid velocity potential,
& (p, z, t), (the vector p denotes the point x, y in the plane z = 0) are assumed to satisfy
the steady-state equations of linear invicid gravity-wave theory

on_3¢
(A1) at 9z
o onz =0,
il
(A2) gn =7,

where g is the acceleration of gravity. For the purpose of computing realizations the
ocean-surface is constructed as a (double) sum of gravity waves over frequency (index f)
and direction (index i), with amplitudes k;; and random phases v;;. The phases are taken
to be statistically independent and uniformly distributed on the interval — to r,

N M
(A3) n(p, 1) = _Zl '21 hi; cos (T - p— it + 7).

i=1j=
The gravity waves oscillate with frequency w;, have a wave-number I'; given by the
dispersion relation

2
(A4) T, =Ty ==,
g
and propagate at an angle ¢;, —7 = ¢; =, with respect to the positive x axis,
2

(AS) L= % (cos ¢ixo+sin ¢;Yo).

In (2¢), Xo and y, are unit vectors along the positive coordinate axes in the (xyz) frame,
which is fixed in space, i.e.,

(A6) P = (XXo+YyYo).
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The associated potential function that satisfies (A1) and (A2) is

(A7) (0, 2,1)=— zl zl M4 4 in (-~ + .
i=1j
We consider a continuous (in tlme) point measurement made by an observer
moving in a ship at constant velocity U in a horizontal frame at an angle a with the x axis
(see Fig. 1.) The observer’s location is given by

(A8) ps = Ut(cos axq+sin ayo).

Suppose the observer to be measuring the fluctuating component of water speed,
relative to the ship, by means of a flowmeter directed along the longitudinal axis of the
ship at a depth z below the mean surface. The fluctuating component of water speed
relative to the ship is created by the surface-wave motion. The horizontal water velocity
measured in the fixed frame, V, is obtained from (A7),

—(w2/g)z Lij
(A9 V0.20=Ve6= 3 T hye V" T cos (T p = wjt +1vy).
i=1j=1 i
The scalar component of V in the ship direction and measured at the ship is
u(ps; z,t)= Z Z hu cos (l/,l —a)we wi/e)
(A1Q) e
.cos [% Ut cos (¢; —a) —wjt + yi,].

We compute the correlation function by taking the ensemble average over v;. The
result for #(p,, z, t) is

N M 2
(A11) R;(r)=13 z z h% cos® (Y —a)w? e 2“7 cos gy,
where
(A12) ai,-=wi[l—%]cos (l/,,-—a)].

In order to render the simulation of the ocean surface ergodic with respect to its
mean and correlation function, the amplitudes &;; are chosen in accord with the method
of Shinozuka and Jan (1972). The aim is to have the one-dimensional frequency power
spectrum of the simulated ocean surface,S,, , (w) coincide with that of a real measured
spectrum S, (w), say that of Pierson and Moskowitz (1964). The procedure for
calculating the appropriate amplitudes is outlined herein for the case where the
directional frequency spectrum to be approximated, S, (w, ¢), has a product form.

We wish to compute the k; of (A3) so as to simulate a real ocean surface with
directional frequency spectrum given by (2), which allows the separation

(A13) hij = hih.
We choose for S,,(w) the Pierson-Moscowitz (1964) frequency spectrum,
2
o ~074(e/ Wayt _(m) —0 <@ <00
(A19)  8,(w)=(0.008D) 5 s, (rad/sec)’ R

where W is the wind speed in (m/sec) (see Fig. A1). The mean square wavelength is
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FIG. Al. The one-dimensional Pierson-Moskowitz frequency spectrum of the ocean surface for various
values of the wind speed W.

given by
1 0 1 o0 T
(A15) o2 =5 J'_ms,,o(w) do =5 J:m L Sy, ) dis deo.

The one-dimensional frequency power spectrum associated with (A3) is obtained
by taking the ensemble average,

(A16) R, (r)=E[n(p, )n(p, t+ 7)),

forming the Fourier transform

(A17) Soap (@, ¥) = J R, (1) e dr=2 j R, (7) cos wr dr,
—o0 0
and integrating over ¢,
(A18) S @)= [ Srapl, )
the result is
T N M 5, 2
(A19) S,,w(w)=§ 'gl i;h,~h;8(|wl—w,-).

We now define

27
Ay =—
¥ N’

(A20)
lﬁz:(l"l)Alﬂ’ i=1a2a~"7M
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and
hi =D() Ay,

where D(¢) is defined by (1).
Equation (A14) is then written

m( XN 2
(A21) Smp(@)=7 (El D(¢) A,/,) L h;é(w|-w).
We choose N sufficiently large so that
N m
(a22) (£ pwosw)~[ pw)aw=a.
i=1 -7

Henceforth we shall denote the sum in (A16) and (A17) by 9.

The frequency spectrum of (A9) is nearly band limited between the frequencies
@min and wmax, Which depend on the wind speed W, (see Fig. Al). We define the
frequency interval

_ Wmax™ Wmin

(A23) Aw = YA

and the discrete frequencies w,
(A24) W =omnt(j-D)bo+dw,  j=1,2,..., M,

where the dwj are statistically independent random variables uniformly distributed
between —Aw/L and Aw/L where L » 1. The continuous spectral density, (A9), is then
discretized by concentrating the power in each narrow frequency band Aw at the
associated frequency w;, the frequency spectrum then has the form of (A16) where
A25 W= A

( ) i= E no(@;j) Aw.

The purpose in introducing the random frequency perturbations éw; in the
definition of w;, in (A19), is to preclude the possibility of periodicity in time in the
simulation of n(p, ¢), in (A3). Without these perturbations the representation, (A3), is
ergodic with respect to the correlation function. The introduction of the dw; renders the
stimulation approximately ergodic with respect to R, (7).

Shinozuka and Jan (1972), have shown that the autocorrelation function of the
simulated surface, R, (), approaches the autocorrelation function of the real surface,
R, (1), as 1/M? for M - 0. Also, by virtue of the central limit theorem, the simulated
surface n(p, t) approaches a Gaussian process as M —> 0.

Appendix B. As pointed out in § 2, the solution for S(o) in the wind-driven case
involves an integration over the angle ¢ of the solution for swell, D(y) = §(¢). Part of
the integrand in (17), namely the second term on the right hand side of (17c), is singular.

In order to investigate the effect of the singularity on S(o’) we isolate the singular
part of the integral in (17¢), S,(o),

1 Ia+ﬂ/2 D('!/) [K(M_{O',>0'm(¢.[/)}, '!/, a)+ K(M+{0', o'm('//)}’ (ﬁ, a)]

Ss(o') =
9 a—m/2 g
V=5 @

(B1)

: H(l _a,;«/x)) dy.
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Because of the step function H, the integral for S;(co") has two representations depend-
ing on whether o is less than or greater than o. Since

o

om(W)

(B2) 1 =1-L cos (¢ —a),
o

we have for o <o,
a+m/2
(B3) S.(0) = 1 D) [« (M Ao, om (W)}, b, @) + k(M {a, om(W)}, ¥, @)] d
\/1——U~COS (Y—a)
0o

b,

<00 P a—m/2

and for o > oy,

S.(0) = l(J'msqwa)d¢1+ [ m/z )pw)

og>o9 9 a—m/2 a+cos Yoo/o)

(B4) kMo, om0}, ¥, @) + kMo, omWh , @)] "

\/l—zcos (Y —a)
To

Under the change of variable ¢ —a = cos ' x, (B1) becomes

S, (o) a= %LI{D(a + 0)[K(M_{0', @}, a+6, a) + K(M+{0', 2};2}’ a+6, a)]

<oo X

(B5) +D(a — 0)[K(M_{O', ng}, a—0, a) + K(M+{0', 2)'69}’ a—0, a)]}

: [(1—010x)(1—x)(1+x)]_1/2 dx,

where

(B6) 6 =cos ' x.

The integrand in (BS5) has a first-order pole at x =1 when @ = gp. We remove the
singularity by taking the limit of the integrand for x - 1 with o/ 09 <1 a fixed parameter.
We subtract this limit from the integrand of the integral in (BS), and then add the
integral of the limit as a second integral; the sum of the two integrals is identical with the
integral of (B6). The first integral is now convergent at x = 1 and is regular as o - 0.
The second integral is singular at x = 1 and contains the singular behavior of S;(o) as
o - 0o from the left. The singular part is

(B7)  S(o) ~ V2D(a)[x(M{o, oo}, a, a)+k(M.{, oo}, @, @)1F0< 00

where
1 o o -1/2
g = J [——xz—(1+——)x+1] dx
ao<ao Jo LOo 0o
(B8)
Z-1
ag g9
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The argument of the logarithm in (B8) is always positive for o < oy and is zero when

o = ago. Under the assumption that the coefficient of £, ., in (B7) is slowly varying and
regular as o - o, the singular behavior of S(c) from the left is,

S(@) ~ V2D(a)[k(MA{ao, oo}, &, @)+ k(M. {o0, o0}, @, )]

1/2 3/2
: 1n[§(59) +l(59) - 1] +0(1).
4\ o 4\ o

o<og
Use of the same assumptions and techniques leads to the following results for S(o)
as oo from the right,

S(g) ~ V2D(a)[x(M_{oo, oo}, a, &) + k(M {ao, oo}, a, )]

(B9)

el
(B10) ai+ 1 |
-In 0 +0(1).
R
go Oo
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