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ABSTRACT

The Reynolds stress equation is modified to include the Craik–Leibovich vortex force, arising from the

interaction of the phase-averaged surface wave Stokes drift uS with upper-ocean turbulence. An algebraic

second-moment closure of the Reynolds stress equation yields an algebraic Reynolds stress model

(ARSM) that requires a component of the vertical momentum flux to be directed down the gradient ›zu
S

of the Stokes drift, in addition to the conventional component down the gradient ›zu of the ensemble-

averaged Eulerian velocity. For vertical w0 and horizontal u0 component fluctuations, the momentum flux

must be closed using the form u0w0 52KM›zu2KS
M›zu

S, where the coefficient KS
M is generally distinct

from the eddy viscosity KM or eddy diffusivity KH . Rational expressions for the stability functions

SM 5KM/(ql), SSM 5KS
M/(ql), and SH 5KH /(ql) are derived for use in second-moment closure models

where the turbulent velocity q and length l scales are dynamically modeled by prognostic equations for q2

and q2l. The resulting second-moment closure (SMC) includes the significant effects of the vortex force in

the stability functions, in addition to source terms contributing to the q2 and q2l equations. Additional

changes are made to the way in which l is limited by proximity to boundaries or by stratification. The new

SMC model is tuned to, and compared with, a suite of steady-state large-eddy simulation (LES) solutions

representing a wide range of oceanic wind and wave forcing conditions. Comparisons with LES show the

modified SMC captures important processes of Langmuir turbulence, but not without notable defects that

may limit model generality.

1. Introduction

Upper-ocean mixing models without explicit repre-

sentations of surface waves may implicitly represent

their impact when tuned to oceanic observations be-

cause of the natural correlation between wind and wave

forcing. However, such models may be inaccurate if di-

mensional scales of surface waves do not scale simply

with the wind, as is the case for variations in sea state or

wave age at a given wind speed, or for variations in the

relative strength of wave versus wind effects with the

upper ocean mixed layer depth.

Mixed layer models have primarily sought to ex-

plicitly articulate surface wave effects in two generally

distinct ways. One approach, after Craig and Banner

(1994), accounts for the loss of energy from waves into

the phase-averaged turbulent velocity fluctuations

u0 5 u2 u relative to an ensemble mean u as a source

term at the surface for turbulent kinetic energy (TKE)

k5 q2/25 ju0j2/2. This is added as a surface flux or

boundary condition in boundary layer turbulence clo-

sures such as ‘‘k–«’’ models, where a second equation

may predict dissipation «, or in analogous ‘‘k–kl’’ models

(a.k.a., q2–q2l) such as Mellor and Yamada (1982) and

Kantha and Clayson (1994, hereafter KC94). Enhanced

near-surface TKE and associated impacts on the turbu-

lence length scale l} q3/« serve to increase the vertical

eddy viscosity KM 5 SMql and diffusivity KH 5 SHql,

where stability functions SM, SH are determined from

a second-moment algebraic closure of Reynolds stress

and flux equations for an equilibrium state.

Another way waves can alter mixed layer models is by

accounting for the dynamical effects of surface wave

Stokes drift uS, which appears in the equation for mo-

mentum u through the Craik–Leibovich (CL) vortex

force uS 3 ($3 u) of Craik and Leibovich (1976) and

through an associated Bernoulli pressure term. These

dynamical effects can be included through modifications

of second-moment turbulence equations or through other
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closure assumptions. The modified second-moment clo-

sures of D’Alessio et al. (1998) and Kantha and Clayson

(2004, hereafter KC04), incorporate the corresponding

CL vortex production TKE source termKM›zu � ›zuS of
TKE production into the prognostic equation for k or q2

and infer an analogous modification in the prognostic

equation for « or q2l.

Including the dynamics associated with surface waves

in upper-ocean turbulence models appears warranted.

Turbulence observations in a wide variety of ocean re-

gimes find that vertical TKE below wave-bounded

mixed layers is significantly elevated abovew0w0 levels in
wall-bounded layers (D’Asaro 2001). The CL vortex

force appears most likely responsible for this broadly

observed elevation in TKE: large-eddy simulations

(LESs) of mixed layer turbulence that include the CL

vortex force after McWilliams et al. (1997), and carried

out for model forcing that covers a natural range of wind

seas, predicts w0w0 profiles that are consistent with these

elevated levels observed by Lagrangian floats (Harcourt

and D’Asaro 2008, hereafter HD08). This circumstance

motivates the further development here of a turbulent

mixing model that is focused on the effects of the CL

vortex force on the largest mixed layer eddies of

Langmuir turbulence. The omission of wave breaking

from this picture assumes this larger surface energy

flux is injected to small scales and dissipates rapidly

through a forward turbulent cascade near the surface,

without strongly impacting the dynamics of larger

Langmuir structures at the scale of the mixed layer

depth. Stokes–breaker interactions modeled in Sullivan

et al. (2004a,b) stand as a notable hypothesis counter to

this assumption.

The model formulation presented here was initially

motivated by the observation that the stability functions

SM 5KM/ql and SH 5KH /ql used in KC04 were derived

in KC94 from an algebraic Reynolds stress model

(ARSM) that includes only the local forcing effects of

stratification and shear, but not the CL vortex force. If

the additional vortex force TKE production is included

in the prognostic model equations predicting q and l, it is

inconsistent to omit them from theARSMpredicting SM
and SH . The remedy requires a fundamentally different

closure assumption, namely that a component of mo-

mentum flux is proportional to the Stokes shear ›zu
S.

2. Second-moment closure with Craik–Leibovich
vortex forcing

a. Reynolds equations

The CL vortex force due to surface wave Stokes drift

uSi is incorporated after McWilliams et al. (1997) into

the Navier–Stokes equations for wave-phase-averaged

Eulerian velocity uj as

Duj

Dt
52

›p*

›xj
2 gjau2 «jklfk(ul 1 uSl )

1 «jpl«lmnu
S
p

›un
›xm

1 n=2uj , (1)

where gj 5 [0, 0,2g] and fk are gravitational and Coriolis

components, and n is viscosity, with incompressible

flow ›uj/›xj 5 ›uSi /›xi 5 0. Nonhydrostatic pressure P is

scaled to p5P/r0 on reference density r0 and modified

by Stokes drift Bernoulli terms to p*5 p1 uSk(uk 1 uSk/2).

Eulerian advection of a thermodynamically active scalar

u with expansion coefficient a and diffusivity ku is mod-

ified by the Stokes advection

Du

Dt
52

›uSku

›xk
1 ku=

2u . (2)

Ensemble fluctuations u0i 5 ui 2 ui, u
0 5 u2 u, p0 5 p2 p,

and of buoyancy b0 5au0 are defined relative to en-

semble averages ui, u, and p. Fluctuations in Stokes drift

uSi are assumed here to have no significant coherence

with turbulent fluctuations u0i or u
0. Mean ui and u are

governed by

Duj

Dt
52

›u0ju
0
k

›xk
2

›p*

›xk
2 gjau1 n=2uj

1 «jpl«lmnu
S
p

›un
›xm

2 «jklfk(ul 1 uSl ) (3)

and

Du

Dt
52

›uSku

›xk
2

›u0ku
0

›xk
1 ku=

2u . (4)

In Eqs. (3) and (4), the Lagrangian derivative D/Dt5
›/›t1 uk›/›xk is redefined as following uk [from fol-

lowing uk in Eqs. (1) and (2)], and incompressibility is

now applied separately to both ensemble mean and

fluctuating velocities.

Following the development of the equilibrium model

in KC94, we begin by modifying the second-moment

equations for the impact of the CL vortex force. Using

DL/Dt[ ›/›t1 (uk 1 uSk)›/›xk, the equations for Reyn-

olds stress u0iu
0
j and flux u0ju

0 may be obtained from

Eqs. (3) and (4) as
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DLu0iu
0
j

Dt
1

›u0ku
0
iu

0
j

›xk
1

 
u0i
›p0

›xj
1 u0j

›p0

›xi

!
2 n=2u0iu

0
j 522n

›u0i
›xk

›u0j
›xk

2

�
u0iu

0
k

›uj

›xk
1 u0ju

0
k

›ui
›xk

�
2a(gju

0
iu

0 1 giu
0
ju

0)

2 fk(«jklu
0
iu

0
l 1 «iklu

0
ju

0
l) 2

 
u0iu

0
k

›uSk
›xj

1u0ju
0
k

›uSk
›xi

!
(5)

and

DLu0ju
0

Dt
1
›u0ku

0
ju

0

›xk
1 u0

›p0

›xj
2

›

›xk

 
kuu

0
i

›u0

›xj
1 nu0

›u0i
›xj

!
52(ku1 n)

›u0j
›xk

›u0i
›xk

2 u0ju
0
k

›u

›xk
2 u0ku

0›uj
›xk

2 fk«jklu
0
lu

02agju
0u0 2 u0u0k

›uSk
›xj

. (6)

Note in Eq. (5) that the form of the Reynolds stress

shear production (second term on right, first in brackets)

and that of the new contribution from CL vortex pro-

duction (last right term in brackets) differ subtly in

the arrangement of indices, and only become trivially

equivalent in the trace of these two terms contributing to

TKE production.

b. Closure

Standard closure assumptions invoked in KC94 are

used here with two minor changes, generalizing the de-

formation of turbulence by shear to formally include

Stokes drift effects. The two generalizations are made ad

hoc, and introduce two new model constants, CS
1 and CS

2 ,

in addition to the others that reappear here following the

notation in KC94: A1, A2, B1, B2, C1, C2, C3, and Sq.

Assumptions unchanged from KC94 include those for

dissipation and the dissipation (or master) turbulence

length scale l:

2n
›u0i
›xk

›u0j
›xk

5
2q3dij

3B1l
5 «dij; (n1 ku)

›u0j
›xk

›u0

›xk
5 0; and

x5 2ku
›u0

›xk

›u0

›xk
5

2qu0u0

B2l
. (7a--c)

Pressure–strain rate correlations are modeled in KC94

to include a return-to-isotropy term after Rotta (1951)

and a term for distortion by shear after Crow (1968).

Here, the latter is generalized to include a component

due to Stokes shear subject to a separate constant CS
1 :

p

 
›u0i
›xj

1
›u0j
›xi

!
52

q

3A1l

�
u0iu

0
j 2 dij

q2

3

�
1C1q

2

 
›ui
›xj

1
›uj

›xi

!

1CS
1q

2

 
›uSi
›xj

1
›uSj

›xi

!
. (8)

The pressure–scalar correlations modeled in KC94 after

Moeng and Wyngaard (1986) are extended by the same

similarity assumption, subject to the second additional

closure constant CS
2 :

u0
›p0

›xj
5

q

3A2l
u0ju

0 1C3agju
0u01C2u

0
ku

0›uj
›xk

1CS
2u

0
ku

0›u
S
j

›xk
.

(9)

While a wide variety of closure assumptions are made

in about as many second-moment closure (SMC)

models, the treatment considered here is constrained to

the form of the closures used in KC94 and KC04.

Closure assumptions for the third moment and for the

pressure–velocity transport terms are not altered as

follows:

u0ku
0
ju

052qlSuu

 
›u0ku

0

›xj
1

›u0ju
0

›xk

!
,

u0ku
0u052qlSu

›u0u0

›xk
, and (10a,b)

u0iu
0
ju

0
k52

3

5
qlSq

 
›u0iu

0
j

›xk
1
›u0iu

0
k

›xj
1

›u0ju
0
k

›xi

!
,

u0jp05 qlS0q
›q2

›xj
. (11a,b)

In the hierarchy of Mellor and Yamada (1974), closure

is obtained at different ‘‘levels’’ by retaining terms to

a given order in an expansion of Eq. (5) in terms of a

small nondimensional parameter controlling the depar-

ture of turbulence from isotropy. At a level qualitatively

referred to as ‘‘2½,’’ Eq. (5) is replaced by a prognostic

energy equation
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Dq2

Dt
2

›

›xk

�
qlSq

›q2

›xk

�

5 2

"
2u0iu

0
j

 
›ui
›xj

1
›uSi
›xj

!
2agju

0
ju

02
q3

B1l

#
(12)

for the trace of the Reynolds stress tensor, and the in-

dividual components are determined by algebraic ex-

pressions,

u0iu
0
j 5 dijq

2/32 3A1lq
21

(
u0iu

0
k

 
›uj

›xk
1

›uSk
›xj

!
1 u0ju

0
k

 
›ui
›xk

1
›uSk
›xi

!
1

2

3
dij

�
2u0ku

0
l

›

›xk
(ul 1 uSl )2agku

0
ku

0
�

2C1q
2

 
›ui
›xj

1
›uj

›xi

!
2CS

1q
2

 
›uSi
›xj

1
›uSj

›xi

!
1a(gju

0
iu

0 1 giu
0
ju

0)1 fk(«jklu
0
lu

0
i 1 «iklu

0
lu

0
j)

)
. (13)

The closure of KC94 follows the expansion procedure of

Galperin et al. (1988) in using the equilibrium solution of

Eq. (12) to substitute for terms in Eq. (5) before trun-

cating the expansion at a given order in nondimensional

anisotropy. The resulting ‘‘quasi-equilibrium’’ model is

sometimes referred to as the ‘‘level 21/4’’ closure to dis-

tinguish it from the level 2½ version.When the CL vortex

force is included in thismodel, Eq. (12) remains as in level

2½ and the algebraic Reynolds stress model (ARSM)

becomes

u0iu
0
j 5 dijq

2/32 3A1lq
21

(
u0iu

0
k

 
›uj

›xk
1

›uSk
›xj

!
1 u0ju

0
k

 
›ui
›xk

1
›uSk
›xi

!
1 2dijq

3/3B1l

2CS
1q

2

 
›uSi
›xj

1
›uSj

›xi

!
2C1q

2

 
›ui
›xj

1
›uj

›xi

!
1a(gju

0
iu

01 giu
0
ju

0)1 fk(«jklu
0
lu

0
i 1 «iklu

0
lu

0
j)

)
. (14)

For covariance fluxes at this level, the algebraic relation is

u0ju
0523A2lq

21

(
u0ju

0
k

›u

›xk
1 (12C2)u

0
ku

0›uj
›xk

2CS
2u

0
ku

0›u
S
j

›xk
1u0ku

0›u
S
k

›xj
1 (12C3)agju

0u0

1 fk«jklu
0
lu

0
)

(15)

and, following KC94, scalar variances are assumed to

follow

u0u052B2lq
21u0ku

0 ›u
›xk

. (16)

Turbulence closure still requires assumptions for the

form of fluxes and for the dissipation length scale.

c. The ARSM, flux forms, and stability functions

The form of turbulent fluxes and the associated stability

functions arise as solutions of the ARSM under boundary

layer assumptions that disregard horizontal variability in

the mean fields. Coriolis terms may be included in the

ARSM but are discarded following KC94 for the

wind-driven boundary layers considered here, with

large natural Rossby numbers Ro; u*/fHML . 1 for

wind-driven turbulence with friction velocity u*; 10222
1021 m s21 and mixed layer depths HML ; 102102 m.

However, the omitted Coriolis terms may be signi-

ficant in different parameter regimes, such as deep

convection. For these assumptions, CL vortex force

terms are now included in the ARSM of the level

21/4 quasi-equilibrium model with the following

components:

u025 q2(12 6A1/B1)/32 6A1lq
21u0w0›zu , (17a)

y02 5q2(12 6A1/B1)/32 6A1lq
21y0w0›zy , (17b)

w025 q2(12 6A1/B1)/31 6A1lq
21(agw0u0

2 u0w0›zu
S 2 y0w0›zy

S) , (17c)

u0w0523A1lq
21[(w022C1q

2)›zu2agu0u0

1 (u022CS
1q

2)›zu
S1 u0y0›zy

S] , (17d)

y0w0 523A1lq
21[(w022C1q

2)›zy2agy0u0

1 (y022CS
1q

2)›zy
S 1 u0y0›zu

S] , (17e)

676 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 43



u0y0 523A1lq
21(u0w0›zy1 y0w0›zu) , (17f)

u0u0523A2lq
21[u0w0›zu1 (12C2)w

0u0›zu

2CS
2w

0u0›zu
S] , (17g)

y0u0 523A2lq
21[y0w0›zu1 (12C2)w

0u0›zy

2CS
2w

0u0›zy
S] , (17h)

w0u0523A2lq
21[w02›zu2 (12C3)agu

02

1 u0u0›zu
S1 y0u0›zy

S], and (17i)

u0252B2lq
21w0u0›zu . (17j)

The terms 23A1lq
21u02›zuS and 23A1lq

21y02›zyS, ap-
pearing after distribution on the right side of Eqs. (17d,e)

for vertical momentum fluxes u0w0 and y0w0, preclude
using a down-gradient momentum flux assumption to

obtain algebraic closure for this equilibrium state be-

cause there are no nontrivial substitutions from within

the set of Eq. (17) that will render these terms tractably

proportional to the Eulerian shear ›zu. Incorporating

CL vortex production into the equilibrium model

therefore forces the assumption that momentum flux

has the form

u0w0 52lq(SM›zu1 SSM›zu
S) and (18a)

y0w0 52lq(SM›zy1 SSM›zy
S) , (18b)

incorporating a new stability function SSM for the com-

ponent down the Stokes drift gradient, while scalar

fluxes retain the form

w0u052lqSH›zu . (19)

Based on LES solutions of Eq. (1), several studies

(McWilliams and Sullivan 2000; Smyth et al. 2002)

have inferred the need for such a fundamentally dif-

ferent assumption for the momentum flux term in

the K-profile parameterization (KPP; Large et al.

1994), making u0w0 in part proportional to the Stokes

drift gradient ›zu
S. Recently, McWilliams et al.

(2012) explored the implications for KPP of assuming

that momentum is directed down the gradient of La-

grangian momentum, that is, u0w0 52KM(›zu1 ›zu
S).

Here, a component of momentum directed down

›zu
S arises as a direct consequence of properly ac-

counting in the algebraic closure for the contribu-

tions to second-moment production from the CL

vortex force of Eq. (1). These contributions, leading

through the last right term in brackets of Eq. (5) to

terms proportional to ›zu
S in Eqs. (17d,e) of the

Reynolds stress, entail instead an eddy coefficient

KS
M 5 SSMql that is generally distinct from the eddy

viscosity KM.

Substitution for terms on the right in Eqs. (17d,e)

and (17i) yields three equations relating u0w0, y0w0, and
w0u0:

u0w0523A1lq
21f[q2(12 6A1/B12 3C1)/31 6A1lq

21(agw0u0 2 u0w0›zu
S 2 y0w0›zy

S)]›zu

1 3agA2lq
21[u0w0›zu1 (12C2)w

0u0›zu2CS
2w

0u0›zu
S]1 [q2(12 6A1/B12 3CS

1)/32 6A1lq
21u0w0›zu]›zu

S

2 3A1lq
21(u0w0›zy1 y0w0›zu)›zy

Sg , (20a)

y0w0523A1lq
21f[q2(12 6A1/B12 3C1)/31 6A1lq

21(agw0u0 2 u0w0›zu
S 2 y0w0›zy

S)]›zy

1 3agA2lq
21[y0w0›zu1 (12C2)w

0u0›zy2CS
2w

0u0›zy
S]1 [q2(12 6A1/B12 3CS

1)/3

2 6A1lq
21y0w0›zy]›zy

S 2 3A1lq
21(u0w0›zy1 y0w0›zu)›zu

Sg, and (20b)

w0u0523A2lq
21f[q2(12 6A1/B1)/31 6A1lq

21(agw0u02 u0w0›zu
S 2 y0w0›zy

S)]›zu

1B2(12C3)aglq
21w0u0›zu2 3A2lq

21[u0w0›zu1 (12C2)w
0u0›zu2CS

2w
0u0›zu

S]›zu
S

2 3A2lq
21[y0w0›zu1 (12C2)w

0u0›zy2CS
2w

0u0›zy
S]›zy

Sg . (20c)

The fluxes in Eqs. (18) and (19) are then substituted into Eq. (20) and the cross terms are rearranged to give
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[SM›zu1 SSM›zu
S]5 3A1q

22(fq2(12 6A1/B12 3C1)/32 3f[2A11A2(12C2)]SH 1 SMA2gl2ag›zu
1 3A1l

2[4SM(›zu›zu
S1 ›zy›zy

S)1 3SSM(›zu
S›zu

S1 ›zy
S›zy

S)]g›zu1 [q2(12 6A1/B12 3CS
1)/3

1 3A2(C
S
2SH 2 SSM)l2ag›zu1 3A1l

2SSM(›zu›zu
S1 ›zy›zy

S)]›zu
S), and (21a)

SH›zu5 3A2q
22[(q2(12 6A1/B1)/3)›zu2 SH[6A11B2(12C3)]agl

2›zu›zu

1 3A2SHl
2[(12C2)(›zu›zu

S1 ›zy›zy
S)2CS

2(›zu
S›zu

S 1 ›zy
S›zy

S)]›zu

1 SSMl2(6A11 3A2)(›zu
S›zu

S1 ›zy
S›zy

S)›zu1 SMl2(6A11 3A2)(›zu›zu
S1 ›zy›zy

S)›zu] . (21b)

This yields three equations

(12 9A1A2GH 2 9A2
1GV)S

S
M 5A1(12 6A1/B12 3CS

1)2 9A1A2C
S
2GHSH , (22a)

(12 9A1A2GH 2 36A2
1GV)SM 5A1(12 6A1/B12 3C1)1 9A1[2A1 1A2(12C2)]GHSH 1 27A2

1GSS
S
M, and

(22b)

f12 3A2[6A11B2(12C3)]GH 2 9A2
2(12C2)GV 1 9A2

2C
S
2GSgSH

5A2(12 6A1/B1)1 9A2(2A11A2)GSS
S
M 1 9A2(2A1 1A2)GVSM (22c)

that produce rational expressions for the stability func-

tions flux forms Eqs. (18) and (19) in terms of new

nondimensional local forcing functions

GV 5 l2q22›zu � ›zuS, GS5 l2q22j›zuSj2 , (23a,b)

in addition to those already appearing in second-

moment closures without ARSM CL vortex forcing

GH 52l2q22ag›zu52l2q22N2, GM 5 l2q22j›zuj2 .
(24a,b)

The resulting stability functions are

SH 5
DH0DM1DS11DH2DM0DS11 (DH3DM11DM3DH2)DS0

DH1DM1DS12DH2DM2DS12 (DH3DM11DM3DH2)DS2

, (25)

SSM 5 (DS0 1DS2SH)/DS1, and (26)

SM 5 (DM01DM2SH 1DM3S
S
M)/DM1 , (27)

where

DS05A1(12 6A1/B12 3CS
1),

DS15 12 9A1(A2GH 1A1GV), and

DS2529A1A2C
S
2GH ; (28a--c)

DM0 5A1(12 6A1/B12 3C1) and

DM1 5 12 9A1(A2GH 1 4A1GV) ; (28d,e)

DM25 9A1[2A11A2(12C2)]GH and

DM35 27A2
1GS ; (28f,g)

DH05A2(12 6A1/B1) and

DH15 12 3A2f[6A11B2(12C3)]GH

1 3A2(12C2)GV23A2C
S
2GSg; and (28h,j)

DH25 9A2GV(2A11A2) and

DH35 9A2GS(2A11A2) . (28k,l)

As in the Galperin et al. (1988) equilibrium model

used in KC94 and extended here, the stability func-

tions do not depend explicitly on nondimensional shear

forcing GM.

Such expressions for stability functions [Eqs. (23)–

(28)] are typically subject to ‘‘realizabilty constraints’’

when invoked in the context of a SMC model where

dynamic conditions may at any time be far from the

equilibrium state they represent. These limit the
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permitted ranges of some nondimensional forcing

functions to avoid producing impossible states such as

GM , 0, or with improbably small levels of w02/q2.
Otherwise, a new wave-modified SMC model of upper-

ocean turbulence is obtained by combining these sta-

bility functions Eqs. (18)–(28), the prediction of q2 by

Eq. (12), and the prediction of the dissipation or ‘‘mas-

ter’’ length scale l to determine contributions to vertical

fluxes down the local gradients of temperature, salinity,

momentum and Stokes drift. The stability functions are

restated in the appendix as ratios of polynomials, along

with a summary of SMC model constants introduced in

sections 3 and 4.

3. LES solutions for SMC comparison

a. LES forcing case sets

To tune the new model, SMC predictions are com-

pared here with steady-state solutions from LES in

HD08, where the Craik–Leibovich vortex force models

the interaction of waves and turbulence. Steady-state

forcing cases in HD08 are specified from the 10-m wind

speed U10 and the surface wave age Cp/U10, where Cp is

the spectral peak phase speed, using an empirical surface

wave spectra and an associated wave-age-dependent neu-

tral drag coefficient CD. The set of LES simulations is

composed of several subsets of forcing cases labeled as

‘‘Si,’’ where S1 is a matrix of forcing cases varying wave

age over four values in 0:6,Cp/U10, 1:2 for each of

eight values in 8m s21 ,U10, 33m s21, with mean

mixed layer depths HML of 61–82 m. Set S2 repeats the
eight fully developed cases Cp/U10 ffi 1:2 of S1 using

a monochromatic approximation from Li and Garrett

(1993) to specify uS(z). Set S4 repeats the same eight

Cp/U105 1:2 case components of S1 with HML reduced

by one-half. In HD08, case sets S3a and S3b provide a

continuation of theCp/U10 5 0:6 subset ofS1 to hurricane-

strength winds 33m s21 #U10 , 70m s21 using a drag

coefficient that continues to increase withU10 inS3a, and

one that remains constant for U10 . 20m s21 in S3b. Mix-

ing dynamics in these high-wind, young-sea case sets are

governed more strongly by entrainment zone shear. These

case sets S1, S2, S3ab, and S4 containing 55 LES steady-

state solutions for wind and wave forcing that are described

in greater detail in HD08 and are listed in correspondingly

numbered tables therein. They are supplemented here

by three additional wave-free forcing cases corresponding

to S1 (U10 5 8.3 m s21), S2 (U10 5 8.3 m s21), S3 (U10 5
32.6 m s21), and S4 (U10 5 8.3 m s21), for a total of 59

cases. Figures 1–3 present dynamically scaled overviews

of relevant mean LES profiles. Profiles from a subset

of 8m s21 ,U10 , 33m s21 cases S1, S2, and S4 are

shown in Figs. 1 and 2, and profiles from high wind

33m s21 #U10, 70m s21 cases of S3ab are in Fig. 3.

b. Scaling for bulk and near-surface TKE
components

We reported (HD08) that the scaling hw2i/u*2 of bulk,
mixed-layer-averaged vertical kinetic energy (VKE) on

friction velocity u* is predicted for aligned wind and

wave forcing by a surface layer (SL) Langmuir number

LaSL that is a variant of the McWilliams et al. (1997)

turbulent Langmuir number Lat 5 (u*/uSz50)
1/2, where

the surface Stokes drift uSz50 is replaced by a near-surface

average over the upper 1/5th of the mixed layer, relative to

a reference value in the lower layer:

hw2i/u*25
(
0:3981 0:480La24/3

SL , LaSL# 1

0:6401 3:50 exp(22:69LaSL), LaSL. 1

huSiSL 5 (5/HML)

ð0
2H

ML
/5

uS dz

uSref 5uSjz520:765H
ML

. (29)

This scaling effectively absorbs variations in the Stokes

drift e-folding depth scale DS* relative to the mixed layer

depth, as well as higher order effects owing to varia-

tions in the shape of uS/uSz50 between monochromatic

and broadband surface wave spectra. Figure 1 com-

pares the performance of the two different Langmuir

numbers in scaling the profiles, rather than the bulk av-

erages, of TKE components with u*, that is, on either

u*2La24/3
SL or u*2La24/3

t . Crosswind u02, downwind y02, and
vertical w2 TKE component profiles are shown for LES

forcing setsS2 (Figs. 1a–c) andS4 (Figs. 1j–l), and for the

matureCp/U105 1.2 (Figs. 1d–f) and young Cp/U105 0.6

(Figs. 1g–i) sea components of S1. These TKE compo-

nent profiles are shown for high wind cases S3ab in Figs.

3a and 3b. As noted inHD08, uSz50/U10 is constant for the

empirical spectra at fixed wave age, so Lat varies only

with changes in CD with U10 at constant Cp/U10.

This causes the scaling of TKE components on Lat to

appear more effective within some Fig. 1 plots of LES

case subsets at fixed Cp/U10 than it does between dif-

fering Cp/U10 plots. The LES model used in HD08 ad-

vects eSG, a dynamically simulated subgrid turbulent

kinetic energy (TKE), used in combination with a sub-

grid length scale d, set by either the model resolution

scale or by the length scale of smaller unresolved tur-

bulence, to set the local nonlinear subgrid viscosity, that

is,;de1/2SG. The LES profiles (Figs. 1a–c and 2b) combine

explicitly resolved TKE with a contribution from the

advected subgrid TKE used for LES closure. It is ap-

portioned equally into the TKE components except near

the surface, where an adjustment is made for presumed
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FIG. 1. (left) Crosswind u02, (middle) downwind y02, and (right) vertical w2 TKE component mean profiles for LES forcing sets (a)–(c)

S2 and (j)–(l)S4, and for the (g)–(i) youngest (Cp/U105 0.6) and (d),(e)mature seas (Cp/U105 1.2) subsets ofS1.Wind speed for each LES

case is indicated by color in the legend. Solid U10-colored profiles with black dots are scaled by u*2La24/3
SL , and the same profiles scaled

by u*2La24/3
t are overstruck in dashed color over gray.
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FIG. 2. For LES case sets as in Fig. 1, (left) simulated TKE dissipation profiles «SG are scaled by La2SLHML/u*
3 (solid

colors, black dots) and by La2t HML/u*
3 (overstruck by gray dashed), and profiles of q2 5 u02 1 y02 1w2 5 (2kLE 1 2eSG),

(middle) the turbulent energy scale are scaled as in Fig. 1 by both La4/3SL/u*
2 (solid colors) and by La4/3t /u*2 (with gray

dashed). (right) Dissipation length-scale lLES 5q3LES/B1«SG 5 (2kLE12eSG)
3/2/B1«SG profiles are estimated here from LES

solutions using the dissipation closure constantB1 5 16:6; they are shown (solid colors, black dots) scaled bymixed layer depth

HML, as are profiles of the buoyancy length scale lb 5 q/N(with gray dashes). (right) Also shown are lLES profiles from forcing

cases without Stokes drift forcing, driven only by surface stress from the lowest wind case in each subset, U10 5 8:3m s21.
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subgrid anisotropy (Harcourt et al. 2002; HD08) to pro-

duce more consistent profiles and bulk averages across

variations in grid resolution. The overall scaling com-

parison shows that, although u*2La24/3
SL scales the layer-

averaged bulk VKE studied in HD08 accurately and

provides a better interior mixed layer scaling for net and

component TKE profiles, u*2La24/3
t provides a better

scaling for near-surface TKE levels and for correspond-

ing boundary values in the SMC.

c. Near-surface scaling of dissipation length scale l
with depth

To evaluate the SMC prediction of l and the relevance

of the underlying equilibrium model, the dissipation

FIG. 3. For high-wind LES case set S3ab, composed of subsets S3a (surface drag saturates at 0.0023) and S3b (surface drag continues to

increasewithwind),mean profiles of (a) crosswind u02, (b) down-wind y 02, and (c) verticalw2 TKEcomponents, (d)TKEdissipation «SG, (e) the

turbulent energy scaleq2, and (f) estimated dissipation lLES andbuoyancy lb length scales, are all scaled and displayed as in correspondingFigs. 1

and 2 profiles. Also shown in (f) is a case without Stokes drift forcing driven only by surface stress near the lowest wind caseU10 5 8:3m s21.
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length scale is diagnosed from the LES solutions and

averaged over a period of steady-state evolution. The

dissipation of explicitly resolved TKE kLE 5 ju0j2/2 is the
shear-production source term in the conservative prog-

nostic equation for advected eSG, and that includes pa-

rameterized subgrid buoyancy fluxes and dissipation

«SG 5C«e
3/2
SGd

21, where both the coefficient C« and the

subgrid length scale d may depend on eSG and stratifi-

cationN2 in the pycnocline. To compare with l in a SMC

or an equilibriummodel, the dissipation scale in the LES

may be diagnosed as

lLES 5 q3LES/B1«SG 5 (2kLE 1 2eSG)
3/2/B1«SG (30)

using a traditional KC94 value for the coefficient B1 5
16:6 in Eqs. (7a) and (12). The LES closure is based on

a conservative prognostic equation for advected subgrid

TKE eSG, where themajor production source is dissipation

of resolved TKE and where dissipation «SG ; e3/2SGd
21.

Because mean subgrid dissipation profiles were not rou-

tinely savedduring theLES runs, the diagnosis of lLES here

relies on a combination of offline computations of «SG
profiles for select cases and an estimate «SG ffi C«e

3/2
SGd

21

usingmean stability and subgrid TKE profilesN2 and eSG.

Figure 2 shows the diagnosis of the dissipation length

scale lLES based on q2LES and the estimate of «SG for the

forcing sets S2 and S4, and for the young Cp/U10 5 0.6

and mature Cp/U10 5 1.2 sea components of S1, arrayed

as in Fig. 1; Figs. 3d–f provide the corresponding profiles

for high-wind cases S3ab. Profiles of estimated «SG are

shown scaled by both La2SLHML/u*
3 and La2t HML/u*

3,

and profiles of q2LES 5 (2kLE1 2eSG), scaled by both

La4/3SL/u*
2 and La4/3t /u*2, are shown in Figs. 2 and 3.

In Figs. 2 and 3 profiles are also shown for estimated

lLES/HML versus z/HML, for the same LES case subsets

along with profiles indicating the buoyancy length scale

lb 5 qLES/N, using buoyancy frequencyN. These profiles

are given for the LES cases in Fig. 1, and an additional

profile for each set shows a wave-free, low-wind case. In

a near-surface region, the estimated LES dissipation

length-scale estimate is constrained approximately to

20:5z, lLES , 2 1:0z, a scaling significantly higher than

law of the wall lLES ffi 2kz predictions of turbulence

dissipation and length scale for nonslip shear boundary

layers without wave effects. Even the profiles for wave-

free low-wind cases well exceed the2kz scaling expected

for nonslip wall boundaries, though they are ultimately

much smaller in the interior and lower layers than the

other profiles with Langmuir turbulence.

Figure 4 compares profiles of lLES 5 q3LES/B1«SG
computed offline from saved model fields for three LES

forcing cases, to length-scale profiles estimated using

«SG ffi C«e
3/2
SGd

21
(as in Fig. 2). These LES cases are

identified in HD08 as S1 (U10 5 14.8 m s21, Cp/U10 5
0.8) for a young sea, S1 (U105 18.1 m s21,Cp/U105 1.2)

for a mature sea, and for a high-wind case with very

young waves and strong pycnocline shear, S3b (U10 5
44.5 m s21, Cp/U10 5 0.6).

The estimates of l are shown to be about 1.2 times the

more accurately calculated profiles above the pycnocline.

This difference is due to the replacement of e3/2SG by e3/2SG

in «SG, and therefore corresponds to a scaling for the lead-

ing omitted Taylor expansion term of (3/8)e0e0 ffi 0:2e2.

However, the dissipation length scale l still well exceeds

2kz for the cases with strong Langmuir turbulence.

For comparison, profiles of a related Langmuir turbu-

lence dissipation length scale lLE 5 k3/2LE/«LE are shown in

Grant and Belcher (2009, hereafter GB09, their Fig. 6),

based on the dissipation «LE of their resolved TKE kLE.

Adopting again the traditional value for the dissipation

constant B1 5 16:6, their reported results for Langmuir

turbulence have l ffi (23/2/B1) lLE 5 0:17lLE approxi-

mately between20:17(2z)520:34z and20:17(2:25z)5
20:38z until the levellLE ffi HML is reached atmiddepths.

These results of GB09 for Langmuir turbulence are less

in violation of the expectation, transplanted from solid-

wall boundary layers, that l# kjzj. However, the profile

provided in Fig. 6 of GB09 from a comparison case with

no Stokes drift translates to a dissipation scale l ffi
20:17(4:5z)5 0:76z that exceeds kjzj.
Further development and tuning of a SMC model

assumes that in the near-surface region of strong vortex

force TKE production, a corresponding growth in the

dissipation length scale occurs, with the result that both

it and the vertical TKE component may be about double

their values in the nonwave case. This expectation is in

line with the qualitative understanding that the presence

of Langmuir circulation structures, embedded in the

turbulent boundary layer flow, entails an increase in

the energy injection rate and energy levels at the larger

O(HML) scales characterizing the separation between

jets. As a result there should be a corresponding near-

surface increase in the turbulence decay time scale l/q,

and enforcing conformity to the expectation of l# kjzj
would defeat this additional effect of the Craik–Liebovich

vortex force over the very depth range where its effect

should be strongest. However, given what disagreements

there are between the LES results for dissipation length

in this and other studies, subsequent model adjustments

may be required.

4. The second-moment closure model

Equation (12) for q2 and the stability functions [Eqs.

(25)–(28)] are extended into a SMC model with the

prognostic determination of l after KC04 through
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Standard closure constants are retained as possible

following KC94 and KC04, with unaltered values for

fA1 5 0.92, A2 5 0.74, B1 5 16.6, B2 5 10.1, C1 5 0.08,

C2 5 0.7, C3 5 0.2, Sq2 5 0.41SH, Sl 5 0.41SH, E25 1.0g,
and new constants for Stokes effects in third moment

closures are taken here to be CS
1 5C1 and CS

2 5C2. The

surface boundary condition for energy is informed here by

HD08 near-surface LES results for q2 (Fig. 2, middle

column, dashed lines), and using the more appropriate

Langmuir number scaling assumption it is set at q2jz50 5
B2/3

1 (11 0:2La22
t )2/3u*2. This gives q2jz50 ffi 3:6La24/3

t u*2

under typical La22
t ffi 10 oceanic conditions, and reverts

to the KC94 level q2jz50 5B2/3
1 u*2 in wave-free cases.

Note that neither this SMC surface boundary condition

nor the forcing of the HD08 LES model cases contain any

additional TKE fromwave breaking; additional changes in

this boundary condition would be necessitated by direc-

tionally misaligned wind and waves. The large increase

required inKC04 for the length-scale diffusion coefficient

Sl over its KC94 value has not been found necessary.

Indeed Sl 5 Sq2 appears necessary to produce broadly

well-behaved l profiles in the lower mixed layer. Several

more discontinuous departures from standard SMC im-

plementations are described below.

Near-surface LES comparisons motivated a modifica-

tion of the wall damping function with a dependence on

Lat in Ê4 5 1:33(110:5La22
t )1/3, a change fromE4 5 1:33

that is equivalent within the wall function dissipation

term to an increase in theVonKármán constant from 0.4

to 0.7 for a typical oceanic case with La22
t 5 10. Simu-

lations without Stokes drift but with strong entrainment

FIG. 4. The length-scale profiles lLES 5 q3LES/B1«SG (solid curves) are computed using mean dissipation profiles «SG 5C«e
3/2
SGd

21 computed

from saved three-dimensional model subgrid TKE fields for three LES cases, identified in HD08 as (a) S1(U10 5 14.8 m s21, Cp/U10 5 0.8),

(b) S1(U105 18.1 m s21,Cp/U105 1.2), and (c) S3b(U105 44.5 m s21,Cp/U105 0.6). Estimates of these profiles (est. lLES) are computed from

mean subgrid TKE profiles eSG using «SG ffi C«e
3/2
SGd

21
. The estimated profile coincides with 1.2 times themore accurately determined one

within the mixed layer, with near-surface wall distance scalings for the more accurate lLES profiles between the 0:4jzj and 0:8jzj guides.
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shears (not shown) can also have larger near-surface

scalings for l. If these LES results are correct, it suggests

further modifications of this wall damping term may be

necessary, but these are not implemented in the SMC

model version presented here, where the focus is typical

open ocean conditions with waves.

The pattern of l values diagnosed from LES solutions

in the lower boundary layer are better replicated by

increasing the buoyancy forcing coefficient to E3 5 5.0,

in line with the generally larger values suggested by

Burchard (2001) as an alternative to restricting l values

used to compute the stability function so that it not fall

below the Ozmidov scale lOz 5 («/N3)1/2 ffi 0:53q/N.

However, because tuning for entrainment fluxes still

benefits from l$ lOz, that is, GH $ 20:28 after KC94,

this limitation was retained. Trial and error with SMC

stability suggests it is also necessary to restrict l values on

the upper end in the stability functions to keep

GV , 0:024, in analogy to the standard GH , 0:029 re-

alizability condition of KC94, which is also retained.

Here, these limitations, and an additional requirement

for stability that l# jzj, were applied to l values

throughout its use in determining the stability functions,

but not directly to the prediction of q2l.

Furthermore, the blunt shape of some interior profiles

(e.g., over 0:4 , 2z/HML , 0:8 for the higher wind cases

in Fig. 2f) are reproduced better by adding a dependence

on the projections

rE 5
›zu � ›zuL
j›zujj›zuLj

5
GV 1GMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(GS1 2GV 1GM)GM

q , (32a)

and

rV 5
›zu

S � ›zuL
j›zuSjj›zuLj

5
GS1GVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(GS 1 2GV 1GM)GS

q (32b)

of the Eulerian ›zu and Stokes ›zu
S shear direction into

the Lagrangian ›zu
L 5 ›zu1 ›zu

S, through modify-

ing the coefficient of shear production from 1.8 to

Ê1 5 1:8max(0, rE)
2, and vortex force production by

Ê6 5E6rErV . The underlying rationale is that neither

shear nor vortex force processes can effect an increase in

the integral length scale unless the relevant shears are in

line with the Lagrangian one, a condition suggested by

results of Van Roekel et al. (2012) for the scaling of

energy when wind and wave directions are not aligned.

Toward the bottom of the mixed layer a limitation

is imposed on the relative vertical decay with depth

of each eddy coefficient K 2 fKH ,KM,KS
Mg to not ex-

ceed exp(3:0z/lmax) while N2 .N2
lmax, where lmax is the

maximum value of l within the layer where l, jzj and
l, lb, and whereN2

lmax is the lower layer stratification at

the depth where lb 5 lmax. Applied at grid level iz as

Kiz $Kiz21e
3:0Dz/lmax , this only impacts the tail of relatively

small eddy coefficients in the lower mixed layer and is

restricted to N2 .N2
lmax on the presumption that it rep-

resents the effect of internal gravity wave dynamics in

the pycnocline (cf. Polton et al. 2008). The resulting eddy

coefficient ‘‘tails’’ have a significant impact on the steady-

state entrainment rates when pycnocline shear is not

large because without them buoyancy flux w0b0 is ex-

tinguished immediately below the entrainment minimum,

resulting in the growth ›tN
2 52›2zw

0b0 of excessively

concentrated stratification at that depth, by comparison to

the LES. As an additional measure to prevent the growth

of instabilities in transient solutions, the value of q2l in

the pycnocline is also not permitted to exceed q2lmax.

Given these model features governing the prediction

of q2l and eddy diffusivities, the coefficient E6 of the

vortex TKE production is left to be determined by

tuning SMC predictions to match LES results. Here, this

is done for the ensemble of LES cases on the basis of lmax

and themixed layer average of q2. However, it is notably

more difficult to tune SMC performance to a large en-

semble of LES results than it would be to a small

handful; Figs. 5 and 6 illustrate that choosing a value for

E6 presents a dilemma between tuning tominimize error

in predicting lmax (Figs. 5b,d) with E6 5 4.0 versus pre-

dicting energy levels (Figs. 5a,c) using E6 5 7.0. To

predict mean vertical TKE (Figs. 5e,f) by inference from

the SMC equilibrium model [Eq. (17c)] for comparison

with Lagrangian float measurements (D’Asaro 2001;

Harcourt and D’Asaro 2010), an intermediate value of

E6 5 5 would be better. Figure 6 shows SMC to LES

comparisons on the (power) rate of energy conversion

into work w3
e 5

Ð
w0b0 dz done against gravity by the

buoyancy flux w0b0 due to entrainment, computed both

by integrating from the depth Zmin of the w0b0 minimum

to the surface (Figs. 6a,b) and as an integral over the full

model domain (Figs. 6c,d). These comparisons for two

different u*3-scaled metrics of entrainment (Figs. 6a–d)

favor the larger value E6 5 7.0 when, as is usually the

case, predicting vertical buoyancy flux is the primary con-

sideration. Some outlying values are due to excessive en-

trainment in LES case set S4 owing to inadequate vertical

domain size and excessive interaction with the radiative

bottom boundary conditions. Still, even after discounting

these, the tuning to entrainment is not strongly compelling;

there is a large scatter (Figs. 6a,c) and the poor dissi-

pation length-scale predictions for E6 5 7.0 (Fig. 5a)

belie the model’s purportedly more accurate articula-

tion of the underlying physics. The equivocation here on

the value of E6 echoes different values reported by
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FIG. 5. Mixed layer turbulence properties from the second-moment closure (SMC) model using two tunings, one

with (left) E6 5 7.0 and one with (right) E6 5 4.0 are compared against LES results for forcing case sets identified in

HD08 as S1, S2, S3a, S3b, and S4. Properties compared are (top) the maximum nondimensional dissipation length

scale l/HML, where the LES estimates from mean profiles are corrected by 1/1.2, (middle) the u*-scaled layer-

averaged turbulent energy scale hq2i/u*2 and (bottom) the scaled, layer-averaged vertical kinetic energy hw2i/u*2
implied by the equilibrium model [Eq. (17c)]. For each LES case a gray dot gives a corresponding comparison to the

wave-free SMC with uS 5 0.
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KC04 (E6 5 4.0) and Carniel et al. (2005, p. 36), which

recharacterizes theKC04 value toE65 7.2. Kantha et al.

(2010) reconfirm that the value in KC04 was reported

incorrectly and that the larger value should be used.

However, it is unclear if the ambiguity here stemming

from tuning priorities is directly relevant to the simi-

larly different choices for E6 reported for these prior

studies.

SMC model profiles

Profiles of SMC eddy coefficientsKH ,KM,KS
M and the

underlying stability functions SH , SM,SSM are shown in

Fig. 7 for the three example cases of Fig. 4, with themore

accurate calculation of l. The profiles for these cases

demonstrate how the shape and order of these mixing

coefficients changes with E6 and with the relative rate of

vortex force TKE production, switching from KM #

KH #KS
M in the lower mixed layer to KS

M #KH #KM

under stronger Stokes shear and toward the surface.

Large changes in eddy coefficients SH , SM correspond as

much, if not more, to variations in stability functions

than they do to changes in ql. This reflects both the in-

creased ARSM contributions to w2 from vortex force

production [Eq. (17c)], and the transfer of that increase

into the leading turbulent flux terms, that is, the first

right side terms in Eqs. (17e,d,i). Neither of these pro-

cesses is included in the KC04 model.

The shape of the diffusivity profiles differs between

the coefficients and varies with the relative penetration

of Langmuir turbulence into the layer, with the order

of buoyancy and momentum coefficients reverting to

KM #KH at much lower levels when uS 5 0. Under

FIG. 6. Metrics of mixed layer entrainment from the second-moment closure (SMC) model using two tunings, one

with (left) E6 5 7.0 and one with (right) E6 5 4.0 are compared against LES results for forcing case sets identified in

HD08 asS1,S2,S3a,S3b, andS4. Metrics compared are (top) the u*-scaled product min(w0b0)Zmin/u*
3 of the vertical

buoyancy flux minimum and its position Zmin, and (bottom) the u*-scaled net rate of work against gravityÐ 0
2‘ w

0b0 dz/u*3. For each LES case a gray dot gives a corresponding comparison to the wave-free SMC with uS 5 0.
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strong Langmuir forcing (Figs. 7b,c), profiles of these

coefficients are more similar to those prescribed for the

more empirical K-profile parameterization of Large

et al. (1994) than they are to those in KC04 (their Fig. 1),

due in large part to the higher value of E3 5 5.0 used for

the effect of buoyancy flux on l through Eq. (31). This

increased sink of q2l in response to entrainment of heavy

water brings the dissipation length-scale profiles of Fig. 8

more in line with LES results in the lower mixed layer.

Energy profiles in Fig. 9 show interior SMC predictions

of q2 to be more accurate in conjunction with the over-

predicted l values when E6 5 7.0, but sometimes more

FIG. 7. Mean profiles of SMCmodel eddy coefficientsKi 2 fKH ,KM ,KS
Mg scaled by (a)–(c) u*Zmin and (d)–(f) corresponding stability

functions Si 2 fSH , SM ,SSMg, using either E6 5 4.0 or E6 5 7.0, for SMC simulations corresponding to the three LES case examples of

Fig. 4, and for wave-free SMC results with uS 5 0. Values in lower (d),(e) plots reflect small additions to denominators to avoid division by

zero in the limits q2, l, «/0.
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consistent near the surface when the E6 5 4.0 SMC

values are close to the LES profile. While LES and SMC

q2 profiles are significantly elevated over the uS 5 0

SMC case throughoutmost of themixed layer in the case

S1 (U10 5 18.1 m s21, Cp/U10 5 1.2) of Fig. 9b with

relatively deep penetration of Stokes shear, interior

SMC TKE levels differ little at depths where Stokes

shear is small. In these cases (Figs. 9a,c) where Stokes

shear is either restricted within the surface layer or small

compared to Eulerian shear, the most significant change

in the strength of mixing then comes primarily from the

larger new stability functions, and to a lesser extent from

increases in l. Both q2 and l diverge from LES profiles in

the pycnocline where the dynamics of internal gravity

waves are fundamentally not represented by the SMC

closure assumptions, for example, « 6¼ q3/B1l unless the

FIG. 8. Mean dissipation length scale l« 5q3/B1«SG profiles from the three LES case examples of Fig. 4 are compared with l5 q2l/q2

profiles averaged over the same periods in two SMCmodels where the coefficient of vortex production in the q2l is increased fromE65 4.0

toE65 7.0, and for wave-free SMC results with uS 5 0. Profiles are scaled on the depthZmin of theminimum in entrainment buoyancy flux.

Also shown is the LES buoyancy length scale lb 5q/N and wall-scaling guides for l520:4z and l520:8z.

FIG. 9. Mean energy profiles q2/u*3 from the three LES case examples of Fig. 4 are compared with profiles from SMCmodels using either

E6 5 4.0 or E6 5 7.0, and with uS 5 0.
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measure of q is restricted to scales within the inertial

subrange. At depths below about 0.9, 1.0, and 1.1 times

Zmin (Figs. 7a,b,c, respectively), the limitation on the

decay rate with depth of the eddy coefficients serves to

mitigate to some extent the cessation of mixing with

SMC-predicted q and l when the closure ceases to be as

relevant. The effect on buoyancy flux profiles in Fig. 10

allows the SMC to follow the curve of the entrainment

zone w0b0 into the pycnocline, which in turn prevents

a barrier of stratification forming too rapidly at the

mixed layer bottom. This correction generally does not

extend to cover the lower tail of the decay of the LES

flux profile, but background eddy diffusivities repre-

senting the mixing effects of much larger-scale near-

inertial internal wave climate in the ocean (not a part of

LES forcing) would become comparable to SMC pre-

dictions at these depths. Even aside from these details of

pycnocline mixing there are some significant discrep-

ancies in mixed layer entrainment, such as the compar-

ison in Fig. 10b, that are not eliminated by this SMC

model tuning.

Figure 11 demonstrates one of the major outcomes of

modifications introduced into the model by the compo-

nent of momentum flux down the Stokes drift gradient,

most markedly by comparison with SMC results where

uS 5 0. While LES downwind Eulerian shear profiles ›zy

are positive approximately over a20:1Zmin # z# 0 near-

surface layer, those cases with deeply penetrating

[DS*#O(0:1) Zmin] present a retrograde shear ›zy, 0

below this level that is predicted with varying skill by the

new SMC; it is predicted well using E6 5 7.0 for the case

in Fig. 11b. For most comparison cases, however, the

retrograde SCMshear continues to strengthen toward the

surface and does not revert into a downwind shear in the

approach to the surface boundary. Another significant

difference betweenLES and SMCpredictions is apparent

in the comparison of vertical TKE profiles in Fig. 12,

where the SMC profile is inferred from the equilibrium

model Eq. (17c) for w0w0. While the SMC does not ex-

plicitly predict vertical kinetic energy, this underlying

ARSM expression significantly impacts the stability

functions SM, SH because w0w0 is the energy factor in the

leading terms [Eqs. (17d,e) and (17i)] for these vertical

fluxes. While there is a clear improvement over SMC

models with uS 5 0, this implicit w0w0 profile remains

surface intensified except at z5 0, which does not exhibit

the subsurfacemaximumof theLES profiles, and perhaps

most critically it underpredicts w0w0 in the lower mixed

layer. The low values of w0w0 in the lower layer entail

underprediction of SH ,SM and of vertical fluxes at these

depths where Stokes drift is small, making it necessary to

commit compensating errors elsewhere in the closure at

the ultimate expense of model generality. The effect of

instead correcting the equilibrium model through im-

proved closure assumptions, or a higher-order closure

with a separate prognostic equation for w0w0, would then

be to shift the concave shape of diffusivities KM,KH

downward, thereby increasing lower mixed layer and

pycnocline diffusivity.

In Figs. 13 and 14 the equilibriummodel [Eq. (17)] for

the Reynolds stress tensor is evaluated to examine the

self-consistency of its predictions in the context of the

three example LES case steady-state solutions. The com-

parison in Fig. 13 of the resolved TKE components with

their corresponding right side equilibrium model expres-

sions shows that while differences for the downwind

FIG. 10.Mean vertical buoyancy flux profilesw0b0/(Zminu*
3) scaled by u* and the depthZmin of the entrainmentminimum inw0b0, from the

three LES case examples of Fig. 4 and from the SMC model, using either E6 5 4.0 or E6 5 7.0, and with uS 5 0.
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TKE component y0y0 are relatively small, a significant

term responsible for rotating vertical TKEw0w0 into the
crosswind component u0u0 is missing from the closure.

Further analysis, not shown here, suggests this term is

missing from the pressure–strain closure [Eq. (8)] and

would represent the acceleration of near-surface water

into the pressure low along Langmuir jets, in response to

the downwelling driven by the Craik–Leibovich force

below them. Diagnosis of the missing pressure–strain

closure terms is the subject of further ongoing research

to improve the SMC.

Applying the same self-consistency test to the Reyn-

olds stress tensor cross terms in Fig. 14 shows that for

y0w0 (Figs. 14d–f) the large retrograde SMC shear in

downwind momentum corresponds to near-momentum

flux levels in the equilibrium model level diagnosed

from LES that well exceed the surface flux u*2. While

the ad hoc pressure–strain closure term [Eq. (8)] pro-

vides a plausible and tractable interior contribution with

CS
1 5C1, the large retrograde shear in the near-surface

layer may be due to the inaccuracy of this closure as-

sumption. Indeed, it seems unlikely that the deformation

of turbulence by Stokes and Eulerian shears would be

equivalent as implied by Eq. (8).

On the other hand, the LES subgrid closure accounts

(as in KC04) for only the additional vortex force pro-

duction of subgrid TKE and does not include a subgrid

momentum flux component down the Stokes gradient.

The significance of this omission would increase as the

ratio of subgrid to resolved TKE increases toward the

surface, coincident with the discrepancy between LES

and SMC Eulerian shear. As the excessive vertical

FIG. 11. Mean profiles of horizontal velocity components relative to midlayer values, with (a)–(c) downwind [y2 y(z5Zmin/2)] and

(d)–(f) crosswind [u2u(z5Zmin/2)] scaled by u*, shown for the three LES case examples of Fig. 4 and from the SMCmodel, using either

E6 5 4.0 or E6 5 7.0, and with uS 5 0.
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momentum flux in the surface layer is similar to that

component in the LES (dot-dashed in Figs. 14d–f)

down the Eulerian shear, it is therefore also possible

that this shear develops erroneously or excessively in

the LES solutions in response to the lack of a correct

subgrid momentum flux component down the Stokes

drift gradient.

Other differences in the momentum fluxes suggest

that several other smaller closure contributions are

missing. The covariance (Figs. 14g–i) of horizontal mo-

mentum u0y0 is assumed without consequence to be zero

in KC94 and indeed the small non-Stokes drift terms

on the right side of Eq. (17f) may well cancel against

closure expressions not included here. However, the near-

surface comparisons for both u0y0 (Figs. 14g–i) and u0w0

(Figs. 14a–c) suggest that additional surface-intensified

closure contributions are missing in these components

that may be proportional to Stokes shear. While it is

possible to find functions of the local nondimensional

forcing that are consistent with these missing closure

terms, their physical import can be unclear and the re-

sulting equilibrium model might not yield rational ex-

pressions for stability functions. More accurate closure

expressions may then necessitate a higher level of closure

with more than two prognostic equations.

5. Summary

Anew level 21/4 second-moment closure (SMC)model

was developed that extends the model of KC04 to in-

clude Langmuir turbulence effects in the algebraic

Reynolds stress model (ARSM) and in the resulting

stability functions and turbulent flux closure. This

required adding vortex force TKE production in the

ARSM, as well as the introduction of a new momentum

flux component that is directed down the gradient of the

Stokes drift, in addition to the conventional term down the

gradient of the Eulerian momentum. Relative to KC04,

the new model includes changes in the momentum flux

closure [Eq. (18)] and in the response of stability functions

to Stokes shear [Eq. (23)–(28)] that result directly and

unequivocally from the inclusion of the CL vortex force

in all components of the Reynolds stress tensor equation

[Eq. (5)] that is used to derive the ARSM. Additional

changes in the stability functions stem from the general-

ization of KC94 closure assumptions for pressure–strain

and pressure–scalar correlations [Eqs. (8) and (9)] and are

subject to corresponding choices in two new closure con-

stants. Several other SMC model components were mod-

ified to conform to a suite of LES simulations for mixed

layers with varying degrees of Langmuir forcing. Tuning

the SMC model presents a dilemma between skill at pre-

dicting the dissipation length scale versus predicting mixed

layer TKE and the entrainment rate. In general, the eddy

coefficients formomentumflux due toEulerian and Stokes

shear vary independently with the relative strength of

Langmuir and shear-driven turbulence because of the

corresponding dependence of leading closure terms on

different components of the TKE in theARSM.Analysis

of the equilibrium model using LES results suggests

several closure terms are still missing, notably a pressure–

strain contribution responsible for transferring vertical

into crosswind TKE. The new SMC model improves the

prediction of momentum profiles, reproducing a retro-

grade Eulerian shear in mixed layer interiors, and sug-

gesting that downwind near-surface LES shear profiles

FIG. 12.Mean vertical kinetic energy (VKE) profilesw2/u*2 from the three LES case examples of Fig. 4 are comparedwithVKEprofiles

implied by the equilibriummodel [Eq. (17c)] underlying the stability functions of the SMCmodel closure, using eitherE65 4.0 orE65 7.0,

and for wave-free SMC results with uS 5 0.
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FIG. 13. Evaluation of the equilibrium model from LES results for the three example forcing cases (Fig. 4). Given

steady-state LES profiles of the Reynolds buoyancy flux (u0ib0) and stress tensor (u
0
iu

0
j) and the dissipation length scale

lLES 5q3LES/B1«SG, the equilibrium model predictions of TKE components (i.e., the diagonal Reynolds stress tensor

elements) are evaluated using Eqs. (17a)–(17c) (solid) and excluding Stokes drift contributions (dot-dashed) for self-

consistency in the LES solutions (dotted). Equations (17a)–(17c) are reiterated below each TKE component’s set of

plots, underscored to match the corresponding part of the equation plotted by substituting LES results.
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FIG. 14. Evaluation as in Fig. 13 of equilibriummodel fromLES results for the three example forcing cases (Fig. 4).

Given steady-state LES profiles the equilibrium model predictions of momentum flux profiles (i.e., the off-diagonal

Reynolds stress tensor elements) are evaluated using Eqs. (17d)–(17f) (solid) and excluding Stokes drift contribu-

tions (dot-dashed) for self-consistency in the LES solutions (dotted). (d)–(f) Vertical flux of downwind momentum

also shows profile from right of Eq. (17e) with new closure constant set to CS
1 5 0. Equations (17d)–(17f) are re-

iterated below each TKE component’s set of plots, underscored to match the corresponding part of the equation

plotted by substituting LES results.
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not replicated by the SMC model may be at least partly

due to missing LES subgrid flux components directed

down the Stokes drift gradient.

Modifications made to the wall-damping function, to

the decay of eddy coefficients below the mixed layer,

and the introduction of functional dependence for q2l

equation coefficients on local nondimensional forcing

scales, may each have limited general validity. While

these features served to pull SMC performance into line

withHD08 LES results, theymay not represent themost

robust solutions and should be considered subject to

further testing through a broader range of LES forcing

cases and modeling techniques as well as empirical val-

idation. The new SMC model serves primarily here as

a vehicle to articulate the significant effects of the CL

vortex force on both the momentum flux closure, and on

the SMC equilibrium model. It is presented here in the

hopes that practitioners of themany other approaches to

turbulence closure distinct from Mellor and Yamada

(1982), KC94, and KC04 may also consider corre-

sponding adaptations to better represent the effects of

Langmuir turbulence. Future studies may include con-

sidering a broader possible set of turbulence closure

assumptions, examining the interaction of energy in-

jected by wave breaking with the new momentum flux

closure, and exploring the relationship between the

Stokes-mediated vertical momentum flux and the evo-

lution of surface wave spectra.
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APPENDIX

Summary of Stability Functions and SMC Model
Constants

TheARSM stability functionsmay be written as ratios

of polynomials:

SH 5 numfSHg/denfSHg; SM 5 numfSMg/denfSMg;
SSM 5 numfSSMg/denfSSMg , (A1)

where

numfSHg5A2f(9A1A2GH 2 1)(12 6A1/B1)2 9A1[(A2 2 2A1)(12 6A1/B1)2 3C1(A21 2A1)]GV

2 9A1[(A21 2A1)(12 6A1/B1)2 3CS
1(A21 2A1)]GSg , (A2)

denfSHg5 (9A1A2GH 2 1)f12 3A2GH[6A1 1B2(12C3)]g2 9A2
2C

S
2GS2 9[A2

2(C22 1)2 4A2
1]GV

2 54A2
1A2f3[2A11A2(C22 2)]1 2B2(12C3)gGHGV 2 2CS

2(9A1A2)
2GHGS

2 (18A1A2)
2[(12C2)G

2
V 2CS

2GVGS] , (A3)

numfSMg52A1(3C11 6A1/B12 1)2 [27A3
1(3C

S
1 1 6A1/B12 1)1 9A1A

2
2C

S
2 (3C11 6A1/B1 2 1)]GS

1 [9A3
1(3C11 6A1/B12 1)2 9A1A

2
2(C22 1)(3C11 6A1/B12 1)]GV 1 f9A2

1A2(3C11 6A1/B12 1)

1 3A1A2[6A12B2(C3 2 1)](3C1 1 6A1/B12 1)2 9A1A2[2A12A2(C22 1)](6A1/B12 1)gGH

1 f81A2
1A

2
2[2A12A2(C22 1)](6A1/B1 2 1)2 27A2

1A
2
2[6A12B2(C32 1)](3C11 6A1/B12 1)gG2

H

1 f81A3
1A2[2A12A2(C22 1)](6A1/B1 2 1)1 81A2

1A
3
2(C2 2 1)(3C11 6A1/B12 1)

2 27A3
1A2[6A12B2(C32 1)](3C11 6A1/B12 1)gGHGV 1 f81A2

1A
3
2C

S
2(3C11 6A1/B12 1)

1 81A3
1A2[6A12B2(C32 1)](3CS

1 1 6A1/B12 1)2 81A2
1A

2
2C

S
2 (2A11A2)(3C1 1 6A1/B1 2 1)

2 81A2
1A2(2A11A2)[2A1 2A2(C2 2 1)](3CS

1 1 6A1/B12 1)1 243A3
1A

2
2C

S
2 (6A1/B12 1)gGHGS

1 [81A3
1A

2
2(C22 1)(3C11 6A1/B12 1)]G2

V 2 [243A3
1A

2
2C

S
2(3C

S
1 1 6A1/B12 1)]G2

S

1 [81A3
1A

2
2C

S
2 (3C11 6A1/B12 1)2 243A3

1A
2
2(C22 1)(3CS

1 1 6A1/B12 1)]GVGS , (A4)
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numfSSMg52A1(3C
S
1 1 6A1/B12 1)1 3A1A2f3A1(3C

S
1 1 6A1/B12 1)1 3A2C

S
2(6A1/B12 1)

1 [6A1 2B2(C32 1)](3CS
1 1 6A1/B12 1)gGH 1 9A1[4A

2
1(3C

S
1 1 6A1/B12 1)

2A2
2(C22 1)(3CS

1 1 6A1/B12 1)]GV 2 9A1A
2
2C

S
2 (3C

S
1 1 6A1/B12 1)GS

2 27fA2
1A

2
2[6A12B2(C32 1)](3CS

1 1 6A1/B12 1)1 3A2
1A

3
2C

S
2(6A1/B12 1)gG2

H

1 f2324A3
1A

2
2C

S
2(6A1/B12 1)1 81A2

1A
3
2(C22 1)(3CS

1 1 6A1/B12 1)

2 108A3
1A2[6A12B2(C32 1)](3CS

1 1 6A1/B12 1)

1 81A2
1A2(2A1 1A2)[2A12A2(C22 1)](3CS

1 1 6A1/B12 1)

1 81A2
1A

2
2C

S
2(2A1 1A2)(3C11 6A1/B12 1)gGHGV

1 [81A2
1A

3
2C

S
2(3C

S
1 1 6A1/B1 2 1)]GHGS 1 [324A3

1A
2
2(C2 2 1)(3CS

1 1 6A1/B12 1)]G2
V

1 [324A3
1A

2
2C

S
2(3C

S
1 1 6A1/B12 1)]GVGS , (A5)

and where SM and SSM share the common denominator

denfSMg5 denfSSMg
5 [(9A1A2)GH 1 (9A2

1)GV 2 1]denfSHg .
(A6)

ARSM closure constants unchanged from KC04 are

A1 5 0.92, A2 5 0.74, B1 5 16.6, B2 5 10.1, C1 5 0.08,

C2 5 0.7, and C3 5 0.2. New ARSM closure constants

are assumed to have values CS
1 5C1 and CS

2 5C2. The

nondimensional forcing functions GV , GS, GH , and GM

[Eqs. (23) and (24)] and eddy flux coefficients KM 5
SMql,KS

M 5 SSMql,KH 5 SHql,Kq2 5 Sq2ql, andKl 5Slql

are subject to limiting values. Stability functions of

KC94 are recovered for GV 5GS 5 0. The prognostic

equations for TKE [Eq. (12)] and length scale [Eq. (31)]

use Sq2 5 0.41SH, Sl 5 0.41SH, Ê1 5 1:8max(0, rE)
2,

E2 5 1.0, E3 5 5.0, Ê4 5 1:33(1 1 0:5La22
t )1/3, (E5 5 0),

and Ê6 5E6rErV with rE, rV given by Eq. (32). SMC

results compared above use either E6 5 4.0 or E6 5 7.0.
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