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ABSTRACT

The mean wind profile and the Charnock coefficient, or drag coefficient, over mature seas are investigated.
A model of the wave boundary layer, which consists of the lowest part of the atmospheric boundary layer that
is influenced by surface waves, is developed based on the conservation of momentum and energy. Energy
conservation is cast as a bulk constraint, integrated across the depth of the wave boundary layer, and the turbulence
closure is achieved by parameterizing the dissipation rate of turbulent kinetic energy. Momentum conservation
is accounted for by using the analytical model of the equilibrium surface wave spectra developed by Hara and
Belcher. This approach allows analytical expressions of the Charnock coefficient to be obtained and the results
to be examined in terms of key nondimensional parameters. In particular, simple expressions are obtained in
the asymptotic limit at which effects of viscosity and surface tension are small and the majority of the stress
is supported by wave drag. This analytical model allows us to identify the conditions necessary for the Charnock
coefficient to be a true constant, an assumption routinely made in existing bulk parameterizations.

1. Introduction

Present parameterizations of the wind stress, or equiv-
alently the drag coefficient, over the ocean are far from
satisfactory, as pointed out in the recent book by Jones
and Toba (2001). Most operational atmospheric models
use a simple bulk parameterization based on the equiv-
alent surface roughness z0 being determined by

gz0 5 const (1)
2u*

(Charnock 1955), where g is gravitational acceleration
and u* is the wind friction velocity. This constant is
called the Charnock coefficient and is usually set to be
about 0.010–0.015. It is still being debated whether the
Charnock coefficient is a true constant or depends on
the wind stress and other parameters (e.g., Yelland and
Taylor 1996; Donelan et al. 1997; Taylor and Yelland
2001). One of the main uncertainties regarding the drag
coefficient estimation is the effect of the ocean surface
wave field. The bulk formulation is expected to be valid
only over a fully developed wave field. The effect of
growing or confused seas is still difficult to predict.
Jones and Toba (2001) review previous studies of the
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effect of the inverse wave age (u*/cp) on the Charnock
coefficient (here cp is the phase speed of dominant
waves) and conclude that the results are still far from
conclusive.

There have been many attempts to predict the drag
coefficient by explicitly calculating the stress supported
by surface waves, the so-called wave-induced stress.
Over the ocean surface, in stationary homogeneous con-
ditions the total stress is independent of height in the
lower part of the atmospheric boundary layer, the con-
stant stress layer. Since the total stress is the sum of the
turbulent stress and the wave-induced stress (except in-
side the viscous sublayer), the turbulent stress is reduced
inside the wave boundary layer. Earlier studies em-
ployed an eddy viscosity model to relate the reduced
turbulent stress to the mean wind profile (Janssen 1989;
Chalikov and Makin 1991; Makin et al. 1995) and then
predict the drag coefficient. Makin and Kudryavtsev
(1999) proposed a modified expression of the eddy vis-
cosity based on the turbulent kinetic energy budget in-
side the wave boundary layer. All of these studies used
empirical parameterizations of the surface wave field.
More recently, Kudryavtsev and Makin (2001) intro-
duced a much simplified model of the wave boundary
layer and included the effect of airflow separation due
to surface breaking waves. They also used the model
for the surface wave spectrum of Kudryavtsev et al.
(1999) instead of using an empirical surface wave spec-
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trum. Makin and Kudryavtsev (2002) further included
the effect of dominant wave breaking to the model of
Kudryavtsev and Makin (2001).

What these studies all show is that it is the short waves
in the wave spectrum (say, less than 10 m in wavelength)
that dominate the roughness of the sea surface and hence
the drag. This part of the spectrum is often in a local
equilibrium. Recently, Hara and Belcher (2002) devel-
oped a simple analytical model of this equilibrium range
of surface gravity wave spectra. The model predicts that
the equilibrium surface wave spectrum is determined by
a single parameter ks, called a sheltering wavenumber.
The sheltering wavenumber is determined by how the
total wind stress is partitioned into stress supported by
different parts of the wave spectrum as well as the sur-
face viscous stress. Here we use this analytical model
of the equilibrium wave spectrum to calculate the Char-
nock coefficient and mean wind profile over mature
seas. The study draws from the approach of Makin and
Mastenbroek (1996) and Makin and Kudryavtsev
(1999), in that it is based on conservation of momentum
and energy in the wave boundary layer, but there are
important differences:

1) Energy conservation is cast as a bulk constraint, in-
tegrated across the depth of the wave boundary layer,
which demonstrates that it is natural and sufficient
to close the turbulence by parameterizing the dis-
sipation rate of turbulent kinetic energy.

2) Momentum conservation is accounted for using the
analytical model developed by Hara and Belcher
(2002). This allows us to obtain analytical expres-
sions of the Charnock coefficient, and to examine
the results in terms of key nondimensional param-
eters.

As in Makin and Kudryavtsev (1999), we assume that
surface waves are not breaking and the airflow remains
attached to the water surface with a viscous sublayer
established just above the water surface.

In section 2 we briefly review the model of the equi-
librium wave spectrum by Hara and Belcher (2002) and
estimate the sheltering wavenumber ks over mature seas
in section 3. A new model of the wave boundary layer
is introduced in section 4 and the mean wind profile
and the Charnock coefficient over mature seas are cal-
culated, followed by concluding remarks in section 5.

2. Theory of equilibrium wave spectrum

In this section, we briefly review the theoretical model
of the equilibrium range of surface wave spectra de-
veloped by Hara and Belcher (2002). The model starts
with the conservation of momentum inside the wave
boundary layer. The mean wind and the wave field are
assumed to be aligned. The total air–sea momentum flux
ttot is expressed as a sum of the wave-induced stress
tw(z) and the turbulent stress t t(z),

2t 5 r u 5 t (z) 1 t (z),tot a w t* (2)

where ra is air density, u* is the friction velocity, and
z is the height above the instantaneous water surface
[see Makin et al. (1995) and Makin and Kudryavtsev
(1999) for discussion of the wave-following coordinate].
The wave-induced stress is expressed as

` p/2

t (z) 5 b (k, u)r sB(k, u)w E E g w

0 2p/2

243 k F(k, z) cosu duk dk. (3)

(The contribution to the wave-induced stress from
waves propagating against the wind, i.e., | u | . p/2, is
negligible because the energy in these components is
so small. Therefore, the integration in u spans 2p/2 to
p/2 only.) Here bg is the wave growth rate, rw is water
density, k is the wavenumber, s is the wave angular
frequency, u is the wave propagation direction relative
to the mean wind direction, and B is the degree of sat-
uration, which is related to the wave height spectrum c
as B 5 k4c. Following Makin et al. (1995), the decay
function F(k, z) is approximated by a step function,
namely,

F(k, z) 5 1, z # L(k), and

F(k, z) 5 0, z . L(k). (4)

Following Belcher and Hunt (1993) the wave-induced
stress penetrates a distance L(k) into the airflow and so
we set kL(k) 5 d 5 const. The wave-induced stress then
becomes

d/z p/2

24t (z) 5 b (k, u)r sB(k, u)k cosu duk dk;w E E g w

0 2p/2

(5)

that is, it is equal to the total momentum flux into surface
waves in the wavenumber range of 0 , k , d/z. If we
interpret height L(k) as a blending height, then d is a
constant O(0.05) (Mason 1988).

Belcher (1999) and Makin and Kudryavtsev (1999)
show that the growth rate bg(k, u) of a particular wave
scale is determined by the turbulent stress tt evaluated
at the height comparable to the depth of the inner region
L(k); that is,

t [z 5 L(k)]t

5 t 2 t [z 5 L(k)]tot w

k p/2

5 t 2 b (k9, u)r sB(k9, u)tot E E g w

0 2p/2

243 k9 cosu duk9 dk9. (6)

This is called a local turbulent stress and is denoted by
(k) 5 ra[ (k)]2. It is seen from (6) that the locall lt ut *

turbulent stress, which forces waves of a wavenumber
k, is equal to the total wind stress minus the stress sup-
ported by all the longer waves. Then, the growth rate
is described by
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l 2 lr [u*(k)] u*(k)ab (k, u) 5 c s h(u) $ ag b 22 [ ]r c cw

and

lu*(k)
b (k, u) 5 0 , a , (7)g 2[ ]c

where cb is an empirical coefficient and h(u) is the di-
rectionality of the wave growth rate. The coefficient a2,
which defines the smallest wavenumbers that are forced
by the wind, is set to 0.07 after Plant (1982).

The evolution of the surface wave spectrum is described
in terms of the wave action spectral density N(k),

dN
5 2= · T(k) 1 S 2 D, (8)k wdt

where k is the wavenumber vector, T(k) is the flux of
the wave action by nonlinear wave interactions, =k is
the gradient operator in k, Sw is the wind input, and D
is the dissipation. The action density is related to the
wave height spectrum c(k) and the degree of saturation
B(k) as

1/2 21/2 1/2 29/2N(k) 5 g k c(k) 5 g k B(k), k 5 |k | (9)

for surface gravity waves, where g is the gravitational
acceleration. It is well known that ocean surface wave
spectra at frequencies much higher than the peak fre-
quency attain an equilibrium state (called an ‘‘equilib-
rium range’’; e.g., Phillips 1977). In the equilibrium
range, the three input terms to the wave action conser-
vation equation balance one another to achieve a quasi
steady state (Phillips 1985); that is, the right-hand side
of (8) is equal to zero.

As in Phillips (1985), Hara and Belcher (2002) as-
sume that both the divergence of the wave action flux
=k · T(k) and the dissipation D in the wave action equa-
tion are proportional to the cube of the local wavenum-
ber spectrum. Since the sum of these two terms is bal-
anced by the input term in the equilibrium range, we
may set

24 3= · T(k) 1 D 5 S 5 agk B (k),k w (10)

where a is a nondimensional proportionality constant.
The wind input term is expressed as

1/2 29/2S 5 b (k)N(k) 5 b (k)g k B(k),w g g (11)

where bg(k)is the wave growth rate described in (7).
Introducing (11) into (10), the degree of saturation is
expressed in terms of the growth rate as

21 21/2 21/2 1/2B(k) 5 [a b (k)g k ] .g (12)

On differentiating (6) by k and introducing (12) and (7),
we obtain an integral equation of , which can belu*
solved analytically provided proper boundary condi-
tions are specified. Let the equilibrium range be estab-
lished for a wavenumber range of k0 , k , k1 and let
us specify the local friction velocities at k0 and k1, de-

noted by u*0 and u*1, respectively. Then, the solution
for the local friction velocity is written

2u*slu*(k) 5 , (13)
1/21 1 (k/k )s

where

21/2 1/22k u* 1 k u*0 0 1 1k 5 (14)s 1 2u* 2 u*0 1

is called a sheltering wavenumber and
1/2 1/2(k 2 k )u* u*1 0 1 0u* 5 (15)s 1/2 1/22(k u* 2 k u* )1 1 0 0

is called a sheltering friction velocity. The sheltering
wavenumber ks represents the wavenumber at which the
local friction velocity begins to be affected by sheltering
by the longer wavelength waves. At low wavenumbers
(k K ks), becomes constant and equal to 2u*s, whilelu*

decreases like k21/2 at high wavenumbers (k k ks). Iflu*
the solution (13) is introduced back into the differential
equation for , the coefficient a is found to belu*

2
r u*a s3 2a 5 4 c c , (16)b u 1 2r cw s

where cs 5 (g/ks)1/2 is called a sheltering wave phase
speed, cs/u*s is called a sheltering wave age, and

p/2

3/2c 5 [h(u)] cosu du. (17)u E
2p/2

Introducing (11), (13), and (16) into (12), the degree
of saturation B is found to be

211/21 ks 1/2B(k, u) 5 1 1 h(u) . (18)1 2[ ]c c kb u

If integrated over all angles, the solution becomes
211/21 ksB(k) 5 1 1 , (19)1 2[ ]c c9 kb u

with
p/21 1

1/25 h(u) duEc9 cu u 2p/2

p/2

1/2h(u) duE
2p/2

5 . (20)
p/2

3/2h(u) cosu duE
2p/2

At low wavenumbers (k K ks), where the sheltering
effect is weak, B(k) is proportional to k1/2 and is con-
sistent with the prediction by Phillips (1985). At high
wavenumbers (k k ks), B(k) is strongly influenced by
the sheltering effect and becomes independent of wave-
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FIG. 1. Upper and lower bounds of sheltering wavenumbers ks vs
wind friction velocity u

*
for mature seas. Solid lines indicate esti-

mates based on approach I with data of Banner and Peirson (1998).
Dash–dot lines indicate estimates based on approach II with the data
collated by Phillips (1985) with sheltering wave age cs/u*s 5 0.46
and 2.38.

number. Last, using the linear dispersion relation, the
frequency spectrum is obtained from (19), namely,

21
2 ss2 25F(s) 5 g s 1 1 , (21)1 2[ ]c c9 sb u

where ss 5 (gks)1/2. Therefore, the frequency spectrum
is proportional to s 24 at low frequencies (s K ss) and
is proportional to s 25 at high frequencies (s k ss).

In summary, the equilibrium spectrum is determined
by two empirical coefficients, cb and , and a singlec9u
dynamical variable, ks, called a sheltering wavenumber.
In the next section we estimate the value of ks for mature
seas.

3. Calculation of the sheltering wavenumber for
mature seas

In this section we present two different approaches
to determine the sheltering wavenumber ks over mature
seas. The first approach is based on measured values of
the stress and is the same as the method used by Hara
and Belcher (2002); the second is based on comparison
with the measured wave spectra.

a. Approach I

Hara and Belcher (2002) calculate the sheltering
wavenumber ks for mature seas using the empirical ob-
servations of the total wind stress (ra ) and the surface2u*
viscous stress (ra ) provided by Banner and Peirson2u n*
(1998). They start with two assumptions:

1) The lower bound of the equilibrium range is set:
2a g u*2k 5 or 5 a (22)0 22u* c0

with c0 5 (g/k0)1/2, and a2 5 0.07, because wind
forcing is negligible below this wavenumber ac-
cording to Plant (1982). Then the local stress,
ra , evaluated at k0 is equal to the total stress,2u 0*
ra .2u*

2) The upper bound of the equilibrium range is k1 5
100 rad m21 and the local stress, ra , evaluated2u 1*
at k1 is equal to the viscous stress, ra , at the2u n*
surface.

They then use Banner and Peirson’s (1998) estimates of
u* and u*n to calculate the upper and lower bounds of
ks. The results are reproduced in Fig. 1. The estimated
value of ks monotonically decreases as u* increases.

b. Approach II

An alternative approach to estimate ks is to use the
observed equilibrium wave spectra. Phillips (1985)
shows that previous observational data of the equilibrium
frequency spectrum agree with his predicted form,

24F(s) 5 a gu s ,p * (23)

for frequencies not too far from the peak and that the
empirical constant ap is between 0.02 and 0.11 (and
between 0.06 and 0.11 for most of the field observa-
tions). Our model, on the other hand, yields

1/22 2 g
2 24 21 24F(s) 5 g s s 5 gu*s , (24)s 21 2c c9 c c9 k u*b u b u s

for s K ss, which is a good approximation not far from
the spectral peak. Equating (23) and (24), we may write
the sheltering wavenumber in terms of ap:

22g 1 c 1sk 5 c c9a or 5 c c9a . (25)s b u p b u p2 1 2u* 2 u* 2

Therefore, ks is proportional to and is determined22u*
by three empirical coefficients, cb, , and ap. This es-c9u
timate of ks is also shown in Fig. 1 for ap 5 0.02 and
0.11. Here, we have set cb 5 40, following Plant (1982),
and 5 (3/16)p corresponding to h(u) 5 cos2u. Forc9u
a fixed u*, this estimate yields a relatively wide range
of ks, which includes the range of ks estimated from
approach I.

It is noteworthy that, if we set k 5 k0 and (k) 5lu*
u* in (13) and introduce (22), we obtain

2u* cs s5 1 1 a . (26)2u* u*
Therefore, we can write the sheltering wave age as

21c c cs s s5 2 1 1 a . (27)21 2u* u* u*s

Now, if the Phillips (1985) constant, ap, is truly constant
and independent of u*, then (25) shows that cs/u* is
also constant, and so according to (27) the sheltering
wave age cs/u*s is also independent of u*. Since the
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FIG. 2. Upper and lower bounds of sheltering wave age cs/u*s vs
wind friction velocity u

*
for mature seas. Solid lines indicate esti-

mates based on approach I with data of Banner and Peirson (1998).
Dash–dot lines indicate estimates based on approach II with the data
collated by Phillips (1985) with sheltering wave age cs/u*s 5 0.46
and 2.38.

sheltering wave age is related to a through (16), the
proportionality constant a, originally defined in (10), is
then also a constant. The lower and upper bounds of
the sheltering wave age, corresponding to ap 5 0.02
and 0.11, are cs/u*s 5 0.46 and 2.38. In contrast, the
sheltering wavenumber estimated from approach I
yields the sheltering wave age that depends weakly on
u*. Figure 2 shows the variation of sheltering wave age
calculated using these two methods.

4. Effect of mature seas on the atmospheric wave
boundary layer

In this section, we first develop a model of the wave
boundary layer based on the conservation of momentum
(described in section 2) and energy (section 4a). Next,
the equilibrium spectral model of Hara and Belcher
(2002), described in section 2, and the estimates of the
sheltering wave age cs/u*s, described in section 3, are
introduced into the model to calculate the Charnock
coefficient (sections 4b–4d) and the mean wind profile
(section 4e) over mature seas. Throughout this study the
wave field is assumed to be aligned with the mean wind
direction.

a. Conservation of energy in the wave boundary
layer

Previously, the effect of surface waves on the mean
wind profile was estimated using eddy viscosity models
(Janssen 1989; Chalikov and Makin 1991; Makin et al.
1995; Makin and Kudryavtsev 1999). It can be shown
that these models do not conserve energy within the
wave boundary layer (see appendix A). Makin and Mas-
tenbroek (1996) introduced a wave boundary layer mod-
el that does satisfy both momentum conservation and

energy conservation. Here, we develop a simple model
of the wave boundary layer based on bulk conservation
of energy, which demonstrates that it is natural and suf-
ficient to effect turbulence closure by parameterizing
the dissipation rate of the turbulent kinetic energy
(TKE).

Let us introduce a coordinate system in a fixed frame
of reference (in horizontal) and define the positive x
direction as the mean wind direction. The z coordinate
is the height above the instantaneous water surface as
defined earlier. We then introduce the following decom-
position of the wind velocity ui(i 5 1, 2, 3) and pres-
sure p,

u 5 u 1 ũ 1 u9 and p 5 p 1 p̃ 1 p9,i i i i (28)

where the overbar denotes time average, the tilde de-
notes the wave-correlated part of the signal, and the
prime denotes the turbulent fluctuation. The total kinetic
energy is also decomposed into

1
e 5 u u 5 e 1 ẽ 1 e9, (29)i i2

and the mean kinetic energy itself consists of threee
components,

1 1 1
e 5 u u 1 ũ ũ 1 u9u9. (30)i i i i i i2 2 2

The turbulent and wave-induced stresses are written as

t 5 2r u9w9 and t 5 2r ũw̃. (31)t a w a

Following Makin and Mastenbroek (1996), the energy
budget for the airflow over surface waves can be ex-
pressed as the budget for each of the three components
of the mean kinetic energy. The budget of the mean
kinetic energy of mean motions, 2, is1 u2

d
t w(ut ) 2 P 2 D 5 0; (32)totdz

the budget of the mean kinetic energy of wave-induced
motions, , is1 ũ ũ2 i i

dP
w w1 D 2 P 5 0; (33)

dz

and the budget for the mean TKE, , is1 u9u92 i i

dP9
t w1 (P 1 P ) 2 r « 5 0. (34)adz

Here, Pt 5 t td /dz is production of the TKE from theu
mean velocity shear;

]ũiw ˜P 5 2r (u9u9) (35)a i j ]xj

is production of the TKE from work done by wave-
induced turbulent stress against wave-induced shear; Dw

5 twd /dz is transfer of energy from the mean to theu
wave-induced motions;
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FIG. 3. Schematic of energy conservation inside wave boundary
layer.

˜P 5 2w̃p̃ 2 r ũ (u9w9) (36)a i i

is the vertical transport of the kinetic energy of the
wave-induced motions;

r ra a˜P9 5 2w9p9 2 w̃(u9u9) 2 w9u9u9 (37)i i i i2 2

is the vertical transport of the TKE; and « is the viscous
dissipation of the TKE. The total energy budget is ob-
tained by adding (32) to (34),

d dP dP9
(ut ) 1 1 2 r « 5 0, (38)tot adz dz dz

which states that the difference between the shear pro-
duction and the viscous dissipation is balanced by the
divergence of the total energy flux (P 1 P9). Therefore,
inside the wave boundary layer the shear production is
not equal to the viscous dissipation. Above the top of
the wave boundary layer P and P9 are both negligibly
small and the shear production balances the viscous dis-
sipation.

At the ocean surface the largest contribution to the
vertical transport of the wave-induced energy is from
the pressure transport,

P(z 5 0) 5 2w̃p̃, (39)

because at the ocean surface 2 is equal to the energyw̃p̃
flux into surface waves. (The contribution to P from
the surface shear stress is negligible for surface gravity
waves.) Hence, we may write

`

˜P(z 5 0) 5 F (k) dk (40)E W

0

with
p/2

23F̃ (k) 5 b (k, u)r gB(k, u)k du. (41)W E g w

2p/2

The lower boundary condition on the mean wind
speed is given in terms of the equivalent roughness scale
zn of the viscous sublayer,

nau 5 0 at z 5 z 5 0.1 , (42)n u*n

where na is the air viscosity and ra is the surface2u n*
viscous stress. If we integrate (38) from z 5 zn to the
top of the wave boundary layer (z 5 zT), we obtain the
equation for bulk conservation of energy:

zT

t u(z ) 2 P(0) 2 r « dz 5 0 (43)tot T a E
zn

since P(zT) 5 0 and P(zn) 5 P(0).
As schematically shown in Fig. 3, the bulk energy

conservation requires that the total energy flux from the
top must be equal to the sum of the energy flux into
surface waves and the total viscous dissipation of the

TKE inside the wave boundary layer. Above the wave
boundary layer, the mean velocity profile becomes a
standard logarithmic layer, with a roughness length that
characterizes the sea surface. Thus, from the condition
of bulk conservation of energy, once the total stress, the
total energy flux into waves, and the total TKE viscous
dissipation in the wave boundary layer are known, we
may determine (zT) and hence the equivalent roughnessu
length and the drag coefficient. This demonstrates that
it is natural and sufficient to close the turbulence by
parameterizing the dissipation rate of turbulent kinetic
energy. Therefore, we do not introduce an eddy viscosity
and prognostic equations for turbulence closure as in
Makin and Mastenbroek (1996). Instead, following the
approach used in one-equation models of turbulence,
the viscous dissipation of the TKE, «, is simply related
to the local turbulent stress, , at each height (ratherlu*
than the total stress) so that

l 3[u*(k 5 d/z)]
«(z) 5 , (44)

kz

where k is the von Kármán constant.

b. Analytical expression of the equivalent roughness
over mature seas

Consider now a fully grown sea with the equilibrium
spectral form presented in section 2. As before, the
wavenumber k0 is set to the lower bound of the equi-
librium range such that u*/c0 5 a2 5 0.07. We also set

(k0) 5 u*; that is, the wave growth rate is zero forlu*
k , k0. In addition, the equilibrium spectrum obtained
from section 3 is valid up to the large wavenumber
cutoff k1, which thus neglects effects of surface tension
and viscosity on waves up to k1. Last, assume that there
are no waves for k . k1 so that u*1 5 u*n. The flux
into surface waves F̃W(k) is evaluated using the defi-
nition of the growth rate bg in (7), as well as the equi-
librium form of B(k), given in (18), and , given inlu*
(13). This procedure yields

3
lc u*(k) 1s3F̃ (k) 5 r u*c0 (45)W a u [ ]u* u* ks

with
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p/21
3/2c0 5 [h(u)] du. (46)u E2cu 2p/2

Introducing (44) and (45) into (43), the mean wind speed
at the top of the wave boundary layer (z 5 zT 5 d/k0)
is found to be

3 33k d/k d/k1 1 0l lku(z 5 d/k ) c u*(k) dk u* dz u*(k 5 d/z) dz0 s 15 kc0 1 1 (47)E u E E1 2[ ] [ ]u* u* u* k u* z u* zsk z d/k0 n 1

3 3k d/k1 1lc u*(k) dk u* dzs 15 kc0 1 1 1 , (48)u E E1 2 1 2[ ]u* u* k u* zs k z0 n

which can be integrated (see appendix B for derivation)
to yield

3
ku(z 5 d/k ) u* d0 15 log 1 G(X ) 2 G(X ),0 11 2 1 2u* u* k z1 n

(49)

with

cs 26 4 2G(X ) 5 kc0 1 1 X [2X 2 2Xu 01 2u*s

22 2 log(1 2 X )] and (50)

1/2 1/2u* u*1X 5 , X 5 . (51)0 11 2 1 22u* 2u*s s

The equivalent roughness z0 is then found to be

d ku(z 5 d/k )0z 5 exp 20 [ ]k u*0

32(u* /u*)1d d
5 exp[2G(X ) 1 G(X )] (52)0 11 2k k z0 1 n

and the Charnock coefficient becomes
32(u* /u*)1z g d d0 5 exp[2G(X ) 1 G(X )]. (53)0 12 21 2u* a k z2 1 n

This analytical expression allows us to examine how
the Charnock coefficient depends on key nondimen-
sional parameters, as described in the next subsection.

c. Discussion

First, note that the Charnock coefficient is propor-
tional to

32(u* /u*)1d 32(u* /u*)15 (10dRe* ) , (54)11 2k z1 n

where Re*1 5 u*1/nk1 is the friction Reynolds number
of the flow over the smallest waves. Now, (u*1/u*)3

varies depending on the degree of sheltering across the
wave spectrum. When there is little sheltering, u*1 ø

u* and a large fraction of the total stress is supported
by the viscous stress on the sea surface. Hence in this
case, the Charnock coefficient varies inversely with
Re*1, as would be expected. But, when there is appre-
ciable sheltering across the wave spectrum, u*1 K u*
and

32(u* /u*)1(10dRe ) → 1.1* (55)

In this case the drag of the sea surface is dominated by
the aerodynamic drag supported by the waves, and so
there is no dependence on Reynolds number. In between
these two asymptotic limits, the Charnock coefficient
depends on Reynolds number with varying powers be-
tween 0 and 21, depending on how much of the stress
is supported by the waves. The estimates from Banner
and Peirson (1998) show that (u*1/u*)3 decreases rough-
ly from 0.54 to 0.11 as the wind speed increases from
6 to 14 m s21 over mature seas. Therefore, we expect
the Reynolds number dependence of the Charnock co-
efficient to reduce and become smaller at higher wind
speeds.

Kitaigorodskii (1968) and others have argued that
drag of the sea surface depends on the Reynolds number
through processes similar to those acting in flow over
a solid rough wall. Thus the flow is aerodynamically
rough when Ret 5 u*hs/n k 1 so that the roughness
elements, of height hs, are taller than the thickness of
the depth of the viscous sublayer, of depth n/u*. Toba
and Kunishi (1970) suggest that hs should be taken to
be the characteristic wave height, whereas Kitaigorod-
skii (1968) suggests that, since the roughness elements
are the short waves, hs ; 1 cm. The implicit assumption
in this picture is that the roughness elements act as bluff
bodies inducing separated flow. The present model
shows that this transition occurs differently when the
surface is streamlined and the flow remains attached. It
shows that large waves extract momentum from the
wind (through pressure forces) so that shorter wave-
length waves are ‘‘sheltered’’ and are exposed to a re-
duced stress. When sheltering is strong, the longer
waves support the majority of the stress, leaving very
little to be supported by surface viscous stress and hence
little Reynolds number dependence.
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FIG. 4. Upper and lower bounds of the Charnock coefficient vs
friction velocity for mature seas. Lines are results calculated with ks

estimated by approach II (dashed lines: k1 5 100 rad m21, dash–dot
lines: k1 5 400 rad m21, and solid lines: asymptotic limit of u

*1/u
*→ 0), with sheltering wave age cs/u*s 5 0.46 and 2.38. Diamonds

are results calculated with ks estimated by approach I. Squares are
empirical estimates by Banner and Peirson (1998).

Second, the Charnock coefficient also depends upon
X0 and X1, which are defined by

u* 1
2X 5 5 and0 1/22u* 1 1 (k /k )s 0 s

u* 112X 5 5 . (56)1 1/22u* 1 1 (k /k )s 1 s

So and measure the extent of the equilibrium2 2X X0 1

range, and the strength of sheltering in the equilibrium
range that is, k0 and k1 and their relation to ks. It is
noteworthy that the Charnock coefficient depends on
both.

When the sheltering is extremely strong, k1/ks → `
so that 5 u*1/2u*s → 0. In this limit G(X1) → 0.2X1

This limit is almost equivalent to the limit of u*1/u* →
0 since 2u*s/u* is close to 1 (between 1.02 and 1.09
corresponding to the sheltering wavenumber cs/u*s be-
tween 0.46 and 2.38). Therefore, in this limit the Reyn-
olds number dependence is also removed as discussed
earlier. Then, the Charnock coefficient simplifies to

z g d0 5 exp[2G(X )], (57)02 2u* a2

with

csG(X ) 5 kc0 1 10 u1 2u*s

26 4 2 23 X [2X 2 2X 2 2 log(1 2 X )]. (58)0 0 0 0

The result is now a function of X0 and cs/u*s. Since X0

is uniquely related to the sheltering wave age, cs/u*s,
through (26) and (27), the Charnock coefficient is a
function of the sheltering wave age only. So, if the
sheltering wave age is a true constant (i.e., independent
of u*), then the Charnock coefficient is also a true con-
stant.

When, in practice, do we expect this simplified form
(57) to be a good approximation? The limit u*1/u* →
0 is valid when the majority of the stress is supported
by form drag on the waves rather than by the surface
viscous stress. In addition, this form has been obtained
with an assumption that the analytical form of the equi-
librium spectrum by Hara and Belcher (2002) is valid
up to the cutoff wavenumber k1; that is, that the effects
of surface tension and viscous dissipation are small.
Both conditions are expected to become increasingly
valid as the wind speed increases.

In the atmospheric modeling community, the Char-
nock coefficient is commonly assumed to be a constant
of about 0.010–0.015. However, the present model in-
dicates that this assumption is strictly valid only if the
following three conditions are satisfied:

1) The surface wave field is fully developed.
2) Effects of surface tension and viscosity are small,

and the majority of the stress is supported by waves
(u*1/u* → 0).

3) The sheltering wave age, cs/u*s, is a true constant,
which, according to section 3, means that the equi-
librium frequency/wavenumber spectrum is propor-
tional to u* not too far from the spectral peak.

Although the first two conditions are naturally expected,
the validity of the third condition needs to be carefully
examined in the future, by inspecting fully developed
wave spectra under a wide range of wind forcing.

d. Calculation of the equivalent roughness over
mature seas

The values of ks and cs/u*s were determined for ma-
ture seas in the previous section. So, if d 5 0.05 and
when k1 is specified, the Charnock coefficient can be
calculated using (53). (In approach I, k1 was set 100 rad
m21; in approach II k1 is specified below.) Figure 4
shows the upper and lower bounds of the Charnock
coefficient versus the friction velocity using the values
of ks presented in Fig. 1.

Let us first focus on the results calculated using ks

values estimated by approach II, shown by different
lines. The upper and lower bounds correspond to the
lower and upper bounds of ks in Fig. 1 and the upper
and lower bounds of cs/u*s in Fig. 2, respectively. For
fixed u* and k1, the Charnock coefficient varies by a
factor of 5–10 depending on whether the upper bound
or lower bound of cs/u*s is used. That is, the Charnock
coefficient may significantly very depending on the lev-
el of the equilibrium spectrum. The effect of choosing
different k1 (for a fixed cs/u*s) is also noteworthy. If k1

is chosen to be above 400 rad m21, the calculated Char-
nock coefficient is not too far from the asymptotic limit
(say, within a factor of 1.5).
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We do not pursue here how the results are modified
if spectral forms of gravity–capillary and capillary
waves are introduced. However, the observation of the
sensitivity of the results to different choices of k1 sug-
gests that knowledge of the spectral form at very large
k is not critically important in determining the equiv-
alent roughness at higher winds, particularly with larger
values of the sheltering wave age cs/u*s.

So far, we have chosen a particular directionality of
the growth rate h(u) 5 cos2u. If we choose a different
form of h(u), the result of the Charnock coefficient is
modified through the change of [by modifying thec9u
estimate of cs/u*s in (25)] and through the change of

[by modifying the coefficient in (50)]. Hara and Bel-c0u
cher (2002) show that changes very little (from 3p/16c9u
ù 0.5890 to 189p/1024 ù 0.5798) if h(u) changes from
cos2u to cos6u. It is found that the coefficient variesc0u
little also [from 16/(9p) ù 0.5659 to 32 768/(19 845p)
ù 0.5256]. Therefore, our results of the Charnock co-
efficient are not sensitive to different choices of h(u).

The Charnock coefficient is also calculated using ks

values estimated by approach I. The results, shown in
Fig. 4 by diamonds, are within a factor of 2 or so of
the empirical results by Banner and Peirson (1998),
which are shown by squares. Since it is the drag that is
usually required, which varies logarithmically with the
Charnock coefficient, agreement within a factor of 2 is
satisfying. The agreement found here is not obtained
trivially: recall that approach I used only the empirical
estimate of the relationship between the total stress and
the surface viscous stress obtained by Banner and Peir-
son (1998); no information about the wind speed was
used. Therefore, the combination of the present models
for the equilibrium spectrum and the wave boundary
layer produces the Charnock coefficient (or drag coef-
ficient) that is consistent with the observations, provided
that the relationship between the total stress and the
surface viscous stress is given and reasonable values are
set for the two parameters, a2 and d.

How do the present theoretical predictions compare
to observations? The calculations have been completed
here for mature wind seas, when the peak of the spec-
trum is beyond the region of wind forcing; that is, u*/
cp , a2 5 0.07 (cp is the phase speed at the spectral
peak). It is therefore necessary to compare the results
with observations that also satisfy this condition. Ebuchi
and Toba (1991) report the Charnock coefficient of ma-
ture seas, with u*/cp , 0.07, spanning a wide range
from 0.005 to 3. Later, Donelan et al. (1993) report
values from 0.002 to 0.07, and mostly between 0.005
and 0.03. Johnson et al. (1998) present values between
0.002 and 0.2, and mostly between 0.005 and 0.04. The
more recent study of Drennan et al. (2003), which care-
fully selected only pure wind-sea conditions, show val-
ues between 0.005 and 0.1, and mostly between 0.005
and 0.05. They also show that most of previously pro-
posed empirical parameterizations fall roughly between

0.007 and 0.05. The value from the present model ranges
from 0.02 to 0.1, which has a strong overlap with values
observed by Drennan et al. (2003).

The asymptotic analysis shows that the Charnock co-
efficient becomes a constant at very high winds only.
However, Fig. 3 shows that in practice the Charnock
coefficient varies by at most a factor of 2 through all
wind speeds provided the sheltering wave age is con-
stant and k1 is chosen to be above 400 rad m21. There-
fore, it seems to be reasonable, in practice, to use a
constant Charnock coefficient over mature seas at all
wind speeds. This finding, however, does not mean that
the original dimensional argument by Charnock (1955),
that the only g and u* are relevant external parameters
to determine the roughness length, is valid at lower
winds. The Charnock coefficient does depend on the
Reynolds number significantly at lower winds. (For ex-
ample, if we change the value of air viscosity signifi-
cantly, the Charnock coefficient will not remain con-
stant!)

The results of the Charnock coefficient obtained using
the same wave spectrum but different wave boundary
layer models based on various forms of the eddy vis-
cosity (Janssen 1989; Chalikov and Makin 1991; Makin
et al. 1995; Makin and Kudryavtsev 1999) are discussed
in appendix C.

e. Determination of the wind profile in the wave
boundary layer

In section 4d, it was shown that the mean wind speed
at the top of the wave boundary layer (and hence the
Charnock coefficient) is uniquely determined from the
conservation of momentum and energy inside the wave
boundary layer, provided the viscous dissipation of the
TKE is related to the local, reduced turbulent stress at
each height. In order to determine the vertical wind
profile inside the wave boundary layer, two further con-
ditions need to be introduced.

First, linear analyses of airflow over sinusoidal waves
(Belcher and Hunt 1993; Belcher 1999) show that the
vertical decay of the pressure transport 2 associatedw̃p̃
with a particular wavenumber k decays vertically over
the same length scale as the wave-induced stress. Hence,
the vertical variation of 2 is represented here by thew̃p̃
same function as for the wave-induced stress, namely
F(k, z) defined in (4). Then, we may write

` d/z

˜ ˜P(z) 5 F (k)F(k, z) dk 5 F (k) dk, (59)E W E W

0 0

so that the vertical gradient of P is

dP(z) d d d d d˜ ˜5 F k 5 5 2 F k 5 . (60)W W21 2 1 2 1 2dz dz z z z z

Second, we suppose that within the wave boundary layer
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the divergence of the turbulent transport dP9/dz is small-
er than the other terms in the energy balance, as it is
in a homogeneous rough-wall boundary layer.

Introducing (44) and (60) into (38) and setting dP9/
dz 5 0, the net energy budget then becomes

l 3d d d [u*(k 5 d/z)]˜(ut ) 2 F k 5 2 r 5 0.tot W a2 1 2dz z z kz
(61)

This energy conservation equation, evaluated at each
height, may be used to determine the wind profile in-
side the wave boundary layer. [Compare this with the
integrated energy budget (43) that was used in section
4d.]

Introducing (45) into (61), the vertical gradient of
wind speed is expressed as

du u* d
5 , , z, (62)

dz kz k0

du u* cs5 kc0 1 1u1 2dz kz u*s

3
lu*(k 5 d/z) d d

3 , , z , , (63)[ ]u* k k1 0

and

3du u* u* d15 , z , z , . (64)n1 2dz kz u* k1

On integrating (62)–(64) in z, we may write the mean
wind speed analytically as (see appendix B for the der-
ivation)

3u* u* z d1u(z) 5 log , z # z , , (65)n1 2 1 2k u* z kn 1

3u* u* d d d1u(z) 5 log 1 G(X ) 2 G(X ) , # z , , and (66)11 2 1 2[ ]k u* k z k k1 n 1 0

3u* u* d k z d1 0u(z) 5 log 1 G(X ) 2 G(X ) 1 log , # z, (67)0 11 2 1 2 1 2[ ]k u* k z d k1 n 0

FIG. 5. Mean wind profiles over mature seas. Friction velocity u
*5 0.5 m s21. Sheltering wave age cs/u*s 5 0.46. Dashed line: k1 5

100 rad m21, dash–dot line: k1 5 400 rad m21, and solid line: asymptotic
limit of u

*1/u*
→ 0. Diamonds (z 5 d/k0) and squares (z 5 d/k1)

indicate top and bottom of the wave boundary layer, respectively. Dot-
ted line shows wind profile over a smooth solid surface.

with

csG(X ) 5 kc0 1 1u1 2u*s

26 4 2 23 X [2X 2 2X 2 2 log(1 2 X )] (68)0

and
1/2 1/2lu*(k 5 d/z) u*

X 5 , X 5 , and0 1 2[ ]2u* 2u*s s

1/2u*1X 5 . (69)1 1 22u*s

In the asymptotic limit of u*1/u* → 0, the wind profile
becomes

u* d
u(z) 5 G(X ), 0 # z , , (70)

k k0

and

u* k z d0u(z) 5 G(X ) 1 log , # z. (71)0 1 2[ ]k d k0

In Fig. 5 the mean wind profiles are shown with the
friction velocity u* 5 0.5 m s21, the sheltering wave age

cs/u*s 5 0.46, and different choices of k1. Just below the
top of the wave boundary layer (z 5 d/k0, indicated by
diamonds), the wind profile becomes slightly steeper be-
cause the loss of the kinetic energy of the mean flow is
enhanced by the energy flux into surface waves. How-



NOVEMBER 2004 2355H A R A A N D B E L C H E R

ever, the slope of the wind profile rapidly decreases to-
ward the bottom of the wave boundary layer (z 5 d/k1,
indicated by squares) because the viscous dissipation of
the TKE is reduced corresponding to the reduction of the
turbulent stress tt. The asymptotic result (solid line) is a
reasonable approximation for k1 $ 400 rad m21.

The wave boundary layer model presented here yields
the expression for the eddy viscosity K inside the wave
boundary layer. (In contrast, previous models needed to
specify the eddy viscosity.) Define the eddy viscosity
such that

2
t (z) d dut l5 u* k 5 5 K . (72)1 2[ ]r z dza

Then, from (63), we obtain
2121 lc u*(k 5 d/z)sK 5 ku*z kc0 1 1 ,u1 2 [ ]u* u*s

d d
, z , . (73)

k k1 0

The eddy viscosity is affected by surface waves in two
different ways. The first bracket on the right decreases
the eddy viscosity by a fixed factor throughout the wave
boundary layer. The second bracket on the right illus-
trates the effect of sheltering on the eddy viscosity,
which is small near the top of the wave boundary layer
but increases toward the bottom of the wave boundary
layer where the turbulent stress is reduced.

5. Concluding remarks

We have developed a model of the wave boundary
layer based on the conservation of momentum and en-
ergy. Energy conservation was cast as a bulk constraint,
integrated across the depth of the wave boundary layer.
The turbulence closure was then achieved by parame-
terizing the viscous dissipation rate of the TKE, «, in
terms of the local turbulent stress tt, following what is
done in conventional one-equation models of turbulence.
Momentum conservation was accounted for using the
analytical model of the equilibrium surface wave spectra
developed by Hara and Belcher (2002). This allowed us
to obtain analytical expressions for the Charnock coef-
ficient and to examine the results in terms of key non-
dimensional parameters. The results are generally con-
sistent with previous observations and existing empirical
parameterizations of the Charnock coefficient.

The strength of the analytical model developed here
is that we have been able to identify the conditions for
the Charnock coefficient to be a true constant. They are
(i) the surface wave field is fully developed, (ii) the ef-
fects of surface tension and viscosity are small and most
of the stress is supported by the wave drag, and (iii) the
sheltering wave age is independent of wind stress; that
is, the frequency/wavenumber spectrum not too far from
the peak is proportional to the wind friction velocity.

One fundamental question that arises from this study
is whether the sheltering wave age (cs/u*s) is truly in-
dependent of wind stress. The sheltering wave age
should be constant if the frequency/wavenumber spec-
trum not too far from the peak is proportional to the
friction velocity. A constant sheltering wave age is also
a necessary requirement for the Charnock coefficient to
be a true constant over mature seas. Field observations
of equilibrium wave spectra under wide ranges of wind
forcing are needed to answer this question.

When the wind sea is growing, the wave spectrum
near the peak is clearly outside the equilibrium range,
but contributes to the wave-induced stress. Hence the
present model based on the equilibrium spectral model
is not complete. If, however, the wave spectrum near
the peak is known (either through observations or
through numerical simulations) and the tail part of the
spectrum is specified using the equilibrium spectral
model, the wind profile and the drag coefficient may be
calculated using the present wave boundary layer model.
This may be a reasonable next step to examine the drag
coefficient over growing and confused seas.

Last, as suggested by Makin and Kudryavtsev (2002),
breaking waves may significantly enhance the roughness
length. How might the present model be affected by
breaking waves? Bulk energy conservation, as sche-
matically shown in Fig. 3, always needs to be satisfied.
Breaking waves are likely to modify the total energy
flux into surface waves and the viscous dissipation in-
side the wave boundary layer. At present it is difficult
to quantify these effects since our knowledge of break-
ing wave processes, such as statistical distribution of
breaking waves and energy and momentum flux into
individual breaking waves, is poor with uncertainties of
factor of 10 or larger.

Although we cannot present quantitative arguments
that neglecting breaking wave effects does not change
appreciably our model results, the model shows, for the
first time, a simple analytical picture of how the Charnock
coefficient depends on different parameters and it yields
the necessary conditions for the Charnock coefficient to
be a true constant. This model framework will be a rea-
sonable starting point to investigate breaking wave effects
once our quantitative estimates of breaking wave pro-
cesses become sufficiently constrained.
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APPENDIX A

Nonconservation of Energy in the Wave
Boundary Layer

In past studies, two eddy viscosity models were pro-
posed to determine the wind profile over surface waves.



2356 VOLUME 34J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. A1. Partition of the energy flux from the top of the wave boundary layer into the internal dissipation and the
flux into surface waves. Results are shown vs sheltering wave age. Solid line: FT/ra , dashed line: (FT 2 FD)/ra ,3 3u u

* *and dash–dot line: FB/ra . (a) Results with the first eddy viscosity model (Janssen 1989; Chalikov and Makin 1991;3u
*Makin et al. 1995); (b) results with the second eddy viscosity model (Makin and Kudryavtsev 1999).

Here, we consider the energy budget inside the wave
boundary layer using the two eddy viscosity models.
With both models, the mean wind profile inside the wave
boundary layer is related to the turbulent stress as

2
t (z) d dut l5 u* k 5 5 K , (A1)1 2[ ]r z dza

where K is the eddy viscosity and the viscous dissipation
rate is scaled as

3 24« 5 K (kz) . (A2)

The first eddy viscosity model, used by Janssen (1989),
Chalikov and Makin (1991), and Makin et al. (1995),
is simply related to the turbulent stress; that is,

lK 5 ku (k 5 d/z)z.* (A3)

The second eddy viscosity parameterization, proposed
by Makin and Kudryavtsev (1999), was obtained from
the TKE budget. It was assumed that the main balance
was between the shear production ttotd /dz and the vis-u
cous dissipation ra«. Then, the eddy viscosity param-
eterization is expressed as

1/2
lu*(k 5 d/z)

K 5 ku*z . (A4)[ ]u*

If we introduce (45), (A1), (A2), and the first eddy
viscosity model (A3) into the energy equation

d d d˜(ut ) 2 F k 5 2 r « 5 0 (A5)tot W a2 1 2dz z z

derived in section 4d, we obtain

3
3 l 3 lr u* u*(k 5 d/z) r u* c u*(k 5 d/z)a a s2 c0u [ ]kz u* z u* u*s

3
3 lr u* u*(k 5 d/z)a2 5 0. (A6)[ ]kz u*

Let us examine the overall energy budget inside the wave
boundary layer over mature seas. We consider the as-
ymptotic limit of u*1/u* → 0 and integrate the three terms
in (A6) from z 5 0 to z 5 d/k0. The results are written
analytically (see appendix B for derivation) as

F 1T 22 25 (22X ) log(1 2 X ), (A7)0 03r u* ka

F cB s 26 4 2 25 c0 X [2X 2 2X 2 2 log(1 2 X )], (A8)u 0 0 0 03r u* u*a s

and

F 1D 26 4 2 25 X [2X 2 2X 2 2 log(1 2 X )]. (A9)0 0 0 03r u* ka

Here, FT, FB, and FD denote the integral of the first,
second, and third terms, respectively. For a given shel-
tering wave age (i.e., for a given X0), we may compare
the magnitude of these three quantities. In Fig. A1a we
present how the total energy flux from the top of the
wave boundary layer (FT) is partitioned into the internal
dissipation (FD) and the flux into surface waves (FB).
All the results are normalized by ra and are presented3u*
versus the sheltering wave age cs/u*s between 0.46 and
2.38. Here, the solid line is the total flux from the top
(FT/ra ), the dashed line is the total excess energy, that3u*
is, the total flux from the top minus the internal dissi-
pation [(FT 2 FD)/ra ], and the dash–dot line is the3u*
flux into surface waves at the bottom of the wave bound-
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ary layer (FB/ra ). The energy is conserved if the3u*
dashed line and the dash–dot line overlap. Clearly, the
eddy viscosity model (A3) underestimates the viscous
dissipation and/or overestimates the shear production.

If we introduce (A1), (A2), and the second eddy vis-
cosity model (A4) into the energy equation and integrate
it from z 5 0 to z 5 d/k0, the results are written as

F F 1 1 1 XT D 0235 5 X 24X 1 2 log , (A10)0 03 3 1 2[ ]r u* r u* k 1 2 Xa a 0

and FB/ra is the same as (A8). We find that FT and FD
3u*

exactly cancel out as expected. In Fig. A1b we present
the total flux from the top (FT/ra ) with the solid line3u*
and the flux into surface waves at the bottom of the wave
boundary layer (FB/ra ) with the dash–dot line. The total3u*
excess energy {the total flux from the top minus the in-
ternal dissipation [(FT 2 FD)/ra ]} is zero; that is, there3u*
is no energy left for surface waves. Therefore, the second
eddy viscosity model (A4) overestimates the viscous dis-
sipation and/or underestimates the shear production.

APPENDIX B

Evaluation of the Integral of the
Local Friction Velocity

Let us evaluate the following integral of the local
friction velocity,

n nd/k k1l lu*(k 5 d/z) dz u*(k9) dk9
5 , (B1)E E[ ] [ ]u* z u* k9

d/k k1

which can be written

2nn 1/2d/k2u* d dzs 1 1E1 2 1 2[ ]u* k z zsd/k1

2nn 1/2k12u* k9 dk9s5 1 1 . (B2)E1 2 1 2[ ]u* k k9sk

We introduce a variable X9 such that

211/2lu*(k9) k9
2X9 5 5 1 1 and (B3)1 2[ ]2u* ks s

dk9 24
5 dX9. (B4)

2k9 X9(1 2 X9 )

Then, (B2) can be written

2nn 1/2k12u* k9 dk9s 1 1E1 2 1 2[ ]u* k k9sk

X 2n4X9
22n5 X dX9 (B5)0 E 2X9(1 2 X9 )X1

with

1/2 1/2lu*(k 5 d/z) u*
X 5 , X 5 , and0 1 2[ ]2u* 2u*s s

1/2u*1X 5 . (B6)1 1 22u*s

The integral on the right of (B5) may be solved ana-
lytically as

X 4X9
2 XdX9 5 [22 log(1 2 X9 )] (B7)E X121 2 X9X1

for n 5 1,
XX 24X9 1 1 X9

dX9 5 24X9 1 2 log (B8)E 2 1 2[ ]1 2 X9 1 2 X9 XX 11

for n 5 3/2, and
X 54X9

dX9E 21 2 X9X1

4 2 2 X5 [2X9 2 2X9 2 2 log(1 2 X9 )] (B9)X1

for n 5 3.

APPENDIX C

Charnock Coefficient with Different
Eddy Viscosity Models

Let us calculate the Charnock coefficient over mature
seas (idealized model) using the same equilibrium wave
spectrum but two eddy viscosity models discussed in
appendix A:

n
l 2 ldu [u*(k 5 d/z)] u* u*(k 5 d/z)

5 5 , (C1)[ ]dz K kz u*
with n 5 1 (Janssen 1989; Chalikov and Makin 1991;
Makin et al. 1995) and n 5 3/2 (Makin and Kudryavtsev
1999). The results can be expressed analytically as (see
appendix B for derivation)

n2(u* /u*)1z g d d0 5 exp[2G (X ) 1 G (X )] (C2)n 0 n 12 21 2u* a k z2 1 n

with
22 2G (X) 5 X [22 log(1 2 X )]1 0 (C3)

for n 5 1 and

1 1 X
23G (X ) 5 X 24X 1 2 log (C4)3/2 0 1 2[ ]1 2 X

for n 5 3/2. The asymptotic results of u*1/u* → 0 are

z g d0 222 2X05 (1 2 X ) (C5)02 2u* a2

for n 5 1 and
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FIG. C1. Charnock coefficient vs the sheltering wave age cs/u*s for
mature seas. Asymptotic results of u

*1/u
*

→ 0. Dotted lines: eddy
viscosity model with n 5 1 (Janssen 1989; Chalikov and Makin 1991;
Makin et al. 1995), dashed lines: eddy viscosity model with n 5
2/3 (Makin and Kudryavtsev 1999), and solid lines: the present model.

2322X0z g d 1 1 X0 0 225 exp(4X ) (C6)02 21 2u* a 1 2 X2 0

for n 5 3/2. These asymptotic results are shown in Fig.
C1 and compared with the results of this study. The
eddy viscosity model with n 5 1 yields lower values
of the Charnock coefficient than the other two models.
The difference between the eddy viscosity model with
n 5 3/2 and the present model is small at larger shel-
tering wave age but the former yields a lower value at
lower sheltering wave age. Therefore, the present model
results are less sensitive to the choice of the sheltering
wave age values, that is, less sensitive to the level of
the equilibrium spectrum.
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