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Stability Balloon for Two-Dimensional Vortex Ripple Patterns
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Patterns of vortex ripples form when a sand bed is subjected to an oscillatory fluid flow. Here we
describe experiments on the response of regular vortex ripple patterns to sudden changes of the driving
amplitude a or frequency f . A sufficient decrease of f leads to a “freezing” of the pattern, while a
sufficient increase of f leads to a supercritical secondary “pearling” instability. Sufficient changes in
the amplitude a lead to subcritical secondary “doubling” and “bulging” instabilities. Our findings are
summarized in a “stability balloon” for vortex ripple pattern formation.
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A flat bed of sand subjected to an oscillatory flow of
water is seldom stable but instead displays the formation
of patterns. Classical studies [1] have shown that, after
the flat bed becomes linearly unstable, so-called rolling
grain ripples (small heaps of grains) are formed first. These
are, however, always transient [2], and eventually strongly
nonlinear vortex ripples are formed in a coarsening-type
process. These ripples have triangular crests with slopes
roughly at the angle of repose, and the flow around the
ripple crests is dominated by vortices that occur in the wake
of the ripples. Together with the converging flow at the
“upwind” side of the ripples, these vortices yield sand mass
transport directed toward the crests of the ripples, which
is balanced by sand avalanching down when the slopes
grow too large. The wavelength of such ripple patterns is
comparable to the amplitude of the fluid motion which sets
the scale for the size of the separation bubbles [2–4]; this
wavelength is substantially larger than the most unstable
wavelength of a flat bed [5,6].

To characterize the vortex ripples, we have studied their
pattern forming properties [7]. From this perspective, the
system combines a number of unique features. First, the
driving is anisotropic which results in alignment of the rip-
ples perpendicular to the flow. This allows for studies
in one-dimensional (1D) geometries [2,8], although our
experiments indicate that instabilities of the ripples lead
to intrinsically two-dimensional (2D) patterns. Second,
typical ripple wavelengths are essentially independent of
the system and grain dimensions and f, but scale with
the driving amplitude a [2,3]. Finally, due to the strongly
nonlinear character of the development, it has thus far not
been possible to describe the pattern dynamics in terms of
an “amplitude equation” [7].

Our setup consists of a tray of sand that is oscillated
with amplitude a and frequency f in a tank of water, al-
lowing us to study two-dimensional patterns. To probe
the fully developed vortex ripples, we have studied their
response to sudden changes of the control parameters a
and f. Our findings lead to a “stability balloon” for vortex
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ripple pattern formation shown in Fig. 1. First we study
the amount of grain motion for patterns that have evolved
“freely” from the flat bed and have a wavelength selected
by the driving amplitude. This leads to the “freezing line”
in Fig. 1 (and discussed in more detail in Fig. 3). In the
second set of experiments, we study the response of regular
patterns with initially fixed wavelengths to changes in f or
a. We find that a secondary “pearling” instability (Fig. 4)
occurs when the frequency is sufficiently increased, while
secondary “doubling” and “bulging” (Fig. 5) instabilities
occur when the amplitude a is decreased or increased,
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FIG. 1. Stability balloon for fully developed vortex ripples.
The initial ripple pattern with wavelength 4.2 cm is compatible
with driving parameters a � 2.8 cm and f � 0.6 Hz (cross) and
remains stable for drivings indicated in full circles. Triangles,
squares, and diamonds indicate drivings where this pattern ex-
periences a doubling, pearling, or bulging instability. The open
circles correspond to the n � 10 measurements shown in Fig. 3
and the dashed line roughly indicates where the pattern freezes.
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respectively, beyond some threshold. A qualitative pre-
sentation of these instabilities has appeared in [9].

Experimental setup.—Our setup is sketched in Fig. 2.
An 0.6 m 3 1 m aluminum tray (A) suspended from
rollers (B) mounted on a stiff frame (C) is immersed in
a sufficiently deep tank (D) filled with water. To avoid
sloshing, a 3 cm thick flat plate of Plexiglas (E) is placed
on top of the tank. The frame and tray are driven with
a continuously controllable frequency f (period T ) and
amplitude a by an ICME ac motor (F). The sides of
the tray consist of 2 cm high straight boundaries, while
the ends are triangular wedges with a slope of 15± and
maximum height 2 cm (see Fig. 2); the rationale behind
these “soft” boundaries will be discussed below. The
“sand” consists of spherical glass beads, ranging in size
from 250 to 350 mm. The thickness of the sand layer is
smallest in the troughs of the ripple pattern, but always
larger than 5 mm. The whole setup is illuminated from
the left side and filmed from above by a Dalsa 8-bit
CAD4 CCD camera with 10242 resolution. A trigger is
mounted on the motor so that all pictures are taken at
the same extremal position of the tray. For the values
of the driving considered here (Fig. 1), typical ripple
patterns consist of 15–20 ripple lengths. Suspension
can be ignored and the maximal acceleration of the
tray is well below the fluidization threshold. For appro-
priate values of a and f, fairly regular ripple patterns
grow from the flat bed. For example, for a � 2.8 cm
we find ripple patterns with wavelength 4.2 cm.

Grain motion.—Once a fully developed pattern is
formed, how does the number of grains in motion vary
with f and a? We observed that, due to irregularities in
some grains, sand bed images usually display a number of
very bright spots. The difference between two subsequent
images is dominated by the appearance or disappearance
of a number N of such bright spots; we assume that N is
proportional to the number of grains which have moved.

To measure N we proceed as follows: We start from
a flat bed and obtain an equilibrated pattern by running
the system for one hour, so that the driving amplitude se-
lects the ripple wavelength, in contrast to the secondary
instability experiments presented below. We then take a
series 50 images from which the average of N is deter-
mined. The frequency is then lowered to a new value, the
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FIG. 2. Sketch of the experimental setup. The tray A is filled
with sand and its oscillations are driven by the motor F via the
rail B.
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system is allowed to relax for 15 min, and 50 new images
are recorded. This procedure is repeated for ten decreas-
ing values of the frequency. In Fig. 3a, three examples of
the number of moving grains as a function of frequency
are shown. For large grain motions, suspension blurs the
blinking grains and, consequently, N ceases to be a good
measure for the grain motion: The corresponding data
points were discarded in the analysis presented below.

The Shields parameter s is a measure of the nondi-
mensional shear stress on the sand bed and is defined as
t��gd�rs 2 rw��, where t�x, t� is the shear stress on the
bed, g denotes gravity, d is the diameter of the sand grains,
and rs and rw are the densities of the sand and water. For
fully developed vortex ripples, s varies with space and
time. Locally, the number of moving grains n is related
to the Shields parameter as n ~ �s 2 sc� when s . sc,
sc being the threshold for grain motion [6]. What we mea-
sure is in fact N �

R
dx

R
dt n. Even though the variation

of s with space and time is not known in detail, we as-
sume that this function scales with the maximum Shields
parameter on a flat bed sm. As a result, we expect N
to be an (unknown) function of sm only. For a lami-
nar boundary layer, one obtains sm ~ af2�3 from the
solution to Stokes’ second problem [10], while for tur-
bulent flow a semiempirical relation sm ~ a1.75f2 is ap-
propriate [11]. In Fig. 3c we have plotted

p
N versus

the turbulent expression a1.75f2 and obtain a fairly good
collapse, while the correlation between

p
N and the lami-

nar expression af2�3 is very weak (Fig. 3d). This indicates
that the sand transport is driven by a turbulent flow.

Secondary instabilities.—Thus far we have described
patterns with a wavelength that is selected by the driving
amplitude. Now we ask what happens when a perfectly
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FIG. 3. (a) The average amount of moving grains N as a func-
tion of the driving frequency f for amplitudes 1.4 (dot-dashed),
2.4 (dashed), and 4.4 (dots). (b) Points in control parameter
space where N is 10 (open circles) and 50 (closed circles)
compared to a curve where a7�4f2 is constant. (c) and (d)
Data collapse of

p
N versus the turbulent expression a7�4f2

and the laminar expression af2�3 , with a in cm and f in Hz
(we have chosen

p
N for clarity).
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regular pattern is suddenly subjected to changes in the
driving parameters a or f.

Obtaining a completely regular pattern is not entirely
trivial. Freely grown patterns contain defects, which may
be annihilated only after long times (on the order of days),
although other distortions of the pattern may then appear.
These are partially driven by a small drift of the pattern,
which has a velocity on the order of one ripple wavelength
per 104 oscillations [12]. The deformations due to the drift
are partly eliminated by using the slanted boundaries, al-
lowing ripples to “drift out” of the system (leading to a
small loss of sand at the edge of the plate). To obtain com-
pletely regular initial conditions, we have adopted the fol-
lowing procedure: First a flat bed is obtained by fluidizing
the sand during a short period of strong oscillations of the
plate. Then a regular pattern is imprinted into the sand by
pressing down a frame with parallel equally spaced metal
ridges. Small irregularities are then eliminated by a few
(�10) oscillations of the plate.

By making large changes in a or f it is relatively simple
to get regular secondary instability patterns as shown in
Figs. 4 and 5. A study of the precise nature of these
transitions involves runs performed at parameters close to
the instability boundaries. Here time scales are long and
the pattern is very sensitive to deformations due to drift, so
it can be difficult to distinguish genuine instabilities from
“experimental artifacts.” By introducing appropriate order
parameters, we will below precisely characterize both the
pearling and the bulging instability.

Pearling.—When the driving frequency is increased be-
yond a certain critical value, we find a secondary pearling
instability (Fig. 4). Here, the crests of the initial rip-
ples remain essentially undisturbed, but in their troughs

FIG. 4. (a) Central section (43 cm 3 53 cm) of a pearling
state obtained by subjecting a pattern with wavelength 4.2 cm
to a driving of a � 2.8 cm and f � 1 Hz. (b) Corresponding
power spectrum (range 188 cm21 3 94 cm21). (c) Time series
of PP when f is changed from 2�3 Hz to f 0 � 1 Hz and back
again. (d) The order parameter DPP as a function of the fre-
quency f 0. For details see text.
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new small ripples (pearls) emerge, and the resulting stable
pearling pattern is periodic with the pearls aligned on
lines inclined by approximately 45±. The pearling tran-
sition is a supercritical secondary instability. When pearls
are formed, their strength quickly saturates at some well
defined value, and they disappear when the frequency is
lowered as shown in Fig. 4c: Starting from an imprinted
perfect ripple pattern with wavelength 4.2 cm (correspond-
ing to an amplitude a � 2.8 cm), the system was driven
at a low frequency of 0.67 Hz. After 1000 oscillations,
the frequency was suddenly increased to f 0, kept there
for 500 oscillations, and then again lowered to the initial
frequency.

To characterize the strength of the pearls, we have
measured PP, the total intensity in the primary satellite
peaks of the power spectrum (Fig. 4b). Because of
finite size effects and noise, PP is not zero for perfect
patterns, and as order parameter we therefore use DPP,
the difference between mean values of PP during period
1000–1500 and period 0–1000. A plot of DPP as a
function of the quenching frequency f 0 shows a well-
defined transition point, above which the order parameter
increases continuously (see Fig. 4d). A further increase
of the frequency leads to more erratic states and finally to
fluidization where the ripple patterns are washed away.

Bulging.—When the driving amplitude a is increased
sufficiently, the regular ripple patterns become unstable
to two-dimensional modulations. While we cannot com-
pletely rule out that this is a long wavelength instability
[7], our data strongly suggests that the wavelength of this
modulation perpendicular to the ripples is locked on
4 times the wavelength of the underlying pattern, with a
similar wavelength along the ridge of the ripples. In con-
trast to the pearling instability, this instability is subcritical.
The bulging deformations grow until neighboring ripples
become so close that they form defects, which climb and
glide rapidly through the system, finally leading to a regu-
lar pattern with a larger wavelength. For a sequence

FIG. 5. (a) Central part (53 cm 3 53 cm) of a bulging pattern,
525 T after the driving amplitude is changed to 4 cm ( f � 0.41).
(b) The growth of deviations of a straight ripple pattern, quan-
tified by the variance V for f � 0.55 Hz and a range of ampli-
tudes. The thin curves with symbols correspond to amplitudes
2.4, 2.8, 3.0, 3.2, and 3.4 cm (below the bulging instability),
while the thick curves correspond to 3.6, 3.8, 4.0, 4.2, 4.4, 4.6,
4.8, and 5.0 cm (above the bulging instability). (c) The maxi-
mum slope of V (for times up to 300T) as a function of a shows
a sharp transition for a � 3.55 cm.
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of pictures showing the development of the instability,
see [9].

Close to the instability boundary, it becomes very dif-
ficult to distinguish slow drift from slow development of
the instability, and we have therefore developed the fol-
lowing sensitive measure for the onset of the instability.
Starting with a perfect pattern of wavelength 4.2 cm, we
suddenly shift the amplitude. To characterize the time
evolution of the pattern, we have extracted the local val-
ues of the ripple length li taken over the whole two-
dimensional image. The variance V , defined as S

N
i�1�li 2

l̄�2��N 2 1�, is then a simple measure for the amount of
deformations in the pattern. The evolution of V is shown
in Fig. 5b for a variety of values of the amplitude a.

Even below the formation of bulges, V grows slowly due
to slow large scale deformations of the pattern, although
the growth rate is essentially independent of the driving
amplitude a. For a above some critical value, V displays
a clear, surprisingly linear, growth after which saturation
occurs for values of V of order 10. In Fig. 5c we have
plotted the maximum of �V �tf 1 100� 2 V�tf���100 for
t up to period 200. This quantity, which measures the
maximum slope of V , clearly identifies the location of the
secondary instability at a � 3.55�5� cm. In this way, we
can distinguish between slow expansion or contraction of
the pattern and the bulging instability.

Doubling.—When the amplitude a is decreased suffi-
ciently, a subcritical doubling instability occurs. The initial
phase of the development of this instability suggests that
it can be captured in a one-dimensional framework. When
the driving amplitude gets sufficiently small, the separation
vortices that drive the sand transport no longer reach over
the trough between ripples. This leads to the formation
of bumps in the ripple troughs, which in turn grow out to
form new ripples. Behavior similar to this has been seen in
numerical studies of 1D vortex ripple patterns [4,13]. For
a picture of this transition, see [9].

Discussion and outlook.—We have characterized some
of the pattern forming properties of fully developed vortex
ripple patterns. By observing the number of moving grains
on the ripples, we have shown that the maximum shields
parameter on the flat bed, calculated using the turbulent ex-
pression, is a relevant control parameter. We have shown
that regular vortex ripple patterns are stable for a range
of driving amplitudes and frequencies. Outside this range,
the vortex ripples show a rich variety of secondary insta-
bilities; pearling, bulging, and doubling.

Vortex ripples pose many theoretical challenges. The
existence of a stable band and the doubling transition
have been found in a simple model of ripple patterns [4].
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The bulging and pearling are, to the best of our knowl-
edge, not present in any simple theoretical models, such
as Swift-Hohenberg–type models incorporating local mass
conservation, left right symmetry, and a finite wavelength
instability (which leads to spatial derivatives of order 6).
We believe that the origin of the instabilities is basically
hydrodynamical and related to the dynamics of the sepa-
ration zones. In the doubling transition, it is thus clearly
seen in the 1D experiments that the new ripples originate
approximately at the reconnection point for the separation
vortex. The bulging and pearling transitions are genu-
inely 2D and thus more complicated, but we speculate
that the bulging transition is basically a Rayleigh-Plateau
“sausage” instability of the almost cylindrical separation
vortex, whereas the pearling instability might be related
to the centrifugal instability of the cylinder, giving rise to
transverse Taylor vortices. Obviously, these ideas need
considerable elaboration in view of the strong time depen-
dent shear experienced by the separation vortex.

It is a pleasure to acknowledge discussions with M.-L.
Chabanol, J. Krug, A. Stegner, and E. Wesfreid.
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