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ABSTRACT

Based on an interpretation of a field experiment it is argued that, due to breaking of wind waves in deep
water, the dissipation of energy is restricted to a range of frequencies w > w, much higher than the frequency
w,, of the dominant waves. In this dissipation range the spectrum has the form S(w) = 8g%»~° where g is the
acceleration due to gravity and 8 = 0.025. For spectral wave components at w < w,, only a local balance
between energy input from the wind and the weak, third-order, nonlinear interaction is important. Asymptoticaily
as w » wy, the wind input becomes unimportant, and the wave spectrum has the Kitaigorodskii form of a
Kolgomorov analog S(w) = 2aey'/*g*/%w* where ¢, is a constant flow of mean energy per unit surface area
through the spectrum dissipated at high frequencies (when multiplied by g and water density p,,). From a
method of M. S. Longuet-Higgins we estimate the magnitude of the dissipation (due to wave breaking) and
find the Kolmogorov constant to be a2 ~ 0.6. When a model, explained by Phillips, for wind energy input to
the wave spectrum is applied to a simplified spectral model prescribing the scales of dissipation and growth of
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spectral wave components, good agreement is found with measurements by Donelan et al. of the coefficient

2060”3

and its dependence on the frequency w,, of the dominant waves at the spectral peak.

1. Introduction
a. Development of the theory

Since the measurements in the late 1950s it has been
known from experiments that the frequency spectra of
water elevation due to wind waves at different stages
of development practically lie on one line. Phillips
(1958) proposed that this universal line is due to the
statistical limitation of the random wave field caused
by wave breaking, yielding, on similarity grounds, a
spectral form in the frequency domain

S(w) = pg’w™? (1.1)
called Phillips’ saturation form where g is the accel-
eration due to gravity, w (angular) frequency, and 8 is
a universal constant.

. Since then especially the work of K. Hasselmann
and co-workers has shown, beginning with the deri-
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vation of the wave kinetic equation (1962) through
the JONSWAP report (1973) to recent numerical cal-
culations (e.g. Komen et al. 1984), that weak nonlinear
interactions between wave components is an important
mechanism for the development of the wind-wave
spectrum with fetch or time. However, until recently
wind input to the spectral wave energy and dissipation
of this energy have both been understood only in a
qualitative sense, their quantitative description being
very speculative. A general similarity form of wave en-
ergy input from the wind has now been empirically
established by Plant (1982) and explained in more
general terms by Phillips (1985).

Concerning the dissipation by wave breaking, Ki-
taigorodskii (1983) suggested that wave breaking is
important only at frequencies higher than some fre-
quency w, of gravitational instability, which is much
higher than the frequency of dominant waves w,,. The
weak nonlinear interactions then serve to redistribute
energy from the range w,, € w <€ w, to new waves at w
< wn, and to dissipation at w 2 w, in such a way that
the nonlinear divergence of energy in the range w,,, € w
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< w, is balanced by the wind energy input in a sta-

tionary wave field. Several experiments, of which

Kahma (1981), Forristall (1981) and Donelan et al.”
(1985) are the most convincing, have shown that the

high-frequency part of the spectrum is adequately de-

scribed by the form S(w) = a,gu 0w ~* where u;g is the

mean wind speed 10 meters above the water and «, is

nearly independent of wind speed and fetch and has

the mean value a,, ~ 4.5 X 1073 (Kahma 1981).

This paper provides a theoretical general explanation
of the development of wind-wave spectra. The idea
may be outlined as follows.

After some time of wind action (or some fetch over
which wind has acted on the waves) the wave field has
developed through initial wave generation processes to
a state where the wind acts mainly on the dominant
spectral wave components at a wavenumber &, in
wavenumber space. According to the hypothesis of Ki-
taigorodskii (1983), dissipation due to gravitational
instability takes place only at very high wavenumbers,
kg » kn,. It was further suggested by Kitaigorodskii that
wind energy input becomes asymptotically negligible
at high wavenumbers, and that a k,, < k < k, range
exists where local weak nonlinear interactions are the
only forces acting on individual wave components, with
possibly a sharp transition to the range of breaking
waves at some k > k,.

The energy loss from waves may generally be due
to either gravitational instability of the potential motion
(i.e., wave breaking), wave-turbulence interaction
(e.g., see Kitaigorodskii and Lumley 1983), or viscous
decay of the wave motion. Any such physical process
that leads to energy loss from the wave potential motion
to mean Kkinetic energy, turbulent energy or heat, we
will term dissipation and its characteristic wavenumber
range, the dissipation range.

b. The spectral asymptotes of weak nonlinear energy
transfer

The weak nonlinear interactions are governed by
the Hasselmann (1962) nonlinear energy transfer
equation which is written in terms of spectral wave
action density Ny, = Fy/wy where F, is the energy den-
sity in wavenumber space and wy is given by the dis-
persion relation.

When surface currents are negligible, the energy
transfer equation for the action spectrum N is

ONy

a[ + Cg‘VxNk = Skn[ + Nk+ - Dk

(1.2)
where C, is the group velocity of the waves of wave-
number k, S, the directional spectrum of the rate of
convergence of weak nonlinear interactions, Ny * is the
spectrum of action input from the wind to the waves,

and D, the spectrum of the rate of action loss from
waves.
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We wish to describe the spectral ranges which are
horizontally homogeneous and in equilibrium. This
means that the left-hand side of Eq. (1.2) is zero. Due
to weak, nonlinear interactions the spectral flux con-
vergence is (Hasselmann 1963)

st~ [ e

X {(N1 + Nia) NisNi — (Mg + Ni) NuiNia }
X B(k + k] - k2 - kg)&(wk + Wy
- Wg2 — wkz) X dkldkzdk:; (13)

Integration is taken over all wavenumber triplets (k;,
k,, k;) which interact resonantly with wavenumber k
according to the resonance condition

k+k1=k2+k3
wk+wk, =wk2+wk3.

For infinitely deep water the interaction coefficient O
is a third-order homogeneous polynomial in the four
variables (k, k;, ks, ks3).

In Eq. (1.3) the spectral flux convergence scales to
the third order in the action density Ny, and assuming
a scalar dispersion relation w? = gk it scales to the
power 19/2 in wavenumber modulus k. This scaling
consideration, which was used by Kitaigorodskii ( 1983)
and Phillips (1985), leads to the similarity form

Sknl o g3’2k‘9’2Nk3. (14)

The existence of two equilibrium ranges of the Kol-
mogorov type in atmospheric turbulence, for which
both the energy source and dissipation terms in Eq.
(1.2) are zero, was proposed by Zakharov and Zaslav-
skii (1982) and Kitaigorodskii (1983). The energy
transfer equation then reduces to a so-called kinetic
equation

S = 0. (1.5)

With angularly integrated action, N, defined by Nj
= f T Nydb, an exact solution of Eq. (1.5) was found
by Zakharov and Filonenko (1968) in the form of a
power function Ny oc k™4

In their comprehensive review of the theory of the
kinetic wave equation, Zakharov and Zaslavskii (1982)
pointed to another power-form solution of Eq. (1.5),
N, oc k=23/6_ The solutions scale with a constant spec-
tral flux of wave energy density p, g€ and of wave ac-
tion density p,gey, respectively,

Nk = an‘/Bg_Z”k“‘ (16)

Nk = a]€N1/3g—l/2k—23/6. (17)

The factors a and g, are assumed to be universal con-
stants of order unity in analogy with Kolmogorov’s



1266

theory of isotropic turbulence. Kitaigorodskii (1983),
using some estimates for the overall momentum bal-
ance, gave plausible arguments for the constant a ac-
tually being of order unity.

¢. On the existence of a quasi-universal form of the
spectral tail

It is convenient to express spectral density and fre-
quency in dimensionless form. The scaling parameters
are wind velocity at a certain height, e.g. 10 meters,
U9, and gravity, g. The dimensionless frequency is for
linear deep-water waves with phase velocity ¢ = g/ w,

~ Wl _ U

@ =—=— (1.8)
g c

and the dimensionless spectral density

~ S(w)g?

S(a) = 208" (1.9)

Uio
In terms of the dimensionless energy flux
=28 (1.10)
uo

the asymptotic spectrum corresponding to Eq. (1.6) as
w > w., where w, = g/c. is a characteristic frequency
of energy input from the wind, becomes

S(®) = 2a&," a7, (1.11)

Correspondingly, in terms of the dimensionless action
flux

& =—, (1.12)
N uto
the frequency spectrum corresponding to Eq. (1.7) be-
comes

S(w)—2ale,v 313, (1.13)
Besides momentum and energy density, also the total
mean action per unit surface area of a system of waves
is conserved by weakly nonlinear interactions (Zak-
harov and Zaslavskii 1982). Energy and thereby action
are created by wind at low frequencies near the spectral
peak. Some fraction of the energy input is dissipated
at much higher frequencies. A much smaller fraction
of action (= energy/frequency) is dissipated together
with the energy (Zakharov and Zaslavskii 1983). A
large fraction of the action input is thus transferred to
generation of new waves near the spectral peak, Here,
fully developed waves show &,, ~ 0.7 [see Eq. (1.8)],
while experiments show that energy input to the waves
takes place for @ > @, ~ 2. Therefore, Zakharov and
Zaslavskii (1983) suggested that the spectral form in
Eq. (1.7) may be found in the frequency range 0.7
€ ® < 2. The action flux to new waves is advected
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away, carried by the waves and gives rise to the growth
of total action (or of energy ) density of the wave spec-
trum with fetch. From measurements of this growth
Zakharov and Zaslavskii (1983) estimated the action
flux and by comparing with the magnitude of the well-
known Pierson-Moskowitz model spectrum, they es-
timated the universal constant of Eq. (1.7) to be a,
~ 0.8.

Based on the measurements reported in the present
paper we shall argue (section 4c¢) that with energy cas-
cading from low to high frequencies the spectral form
[ Eq. (1.6)] applies to young, growing waves at rela-
tively short fetches or time with the Kolmogorov type
constant a estimated to be a ~ 0.6. It is worth pointing
out that the energy flux spectral form (Eq. (1.6)) applies
to young waves while the action flux form [Eq. (1.7)]
applies to well developed waves, but yet the spectral
tail has the overall quasi-universal form of Eq. (1.1).
This means that at some stage of development with
the dimensionless peak frequency &, = &, say, there
is transition from the spectral form [Eq. (1.11)] to the
spectral form [Eq. (1.13)] in the sense that both equa-
tions equally represent the spectral value at some fre-
quency w; on the spectral tail. Equating (1.11) and
(1.13) at w, yields

2a|EN”3 = 2(1;0”3&&_1/3.

Zaslavskii and Lobysheva (1983) applied empirical
data to the power-form relation ¢y = by®,,*", and
found for developed waves with &, < 2 the values by
~ 1.4 X 107%; ay =~ 1.0. In Fig. 1 are shown selected
well-developed wave spectra of Forristall (1981) some
of which seem indeed to be of the form S(w) oc w™''/3
rather than »™* with the straight line representing
2a,éx'/? = 3.6 X 1073, Later we shall show (see Fig.
6) that approximately 2a%,'/%@,,'/> = by = 5 X 1073
in the neighborhood of &,, = 2. Thus, for transition in
the neighborhood of &, ~ &,,, = 2 we have

(1.14)

~ Wy 13 1/3
alwml(w—) = bo/(ZbN / ) ~ 1.0. (1.15)

my

An empirical estimate of the transition peak frequency
&m, may be derived from the assumed continuity of
the growth de/ dt across the transition. For ideal fetch-
limited situations empirical relations have been pro-
posed in the dimensionless form dé/dt = b,&,* for
very developed waves ( Zaslavskii and Lobysheva 1983,
see above, with é = &,,év) and for growing waves
(JONSWAP Hasselman et al. 1973, b, =~ 0.8 X 1072,

= —1). Equating the two expressions for dé/ dt ylelds
wm ~ 1.8. In connection with Eq. (1.15) this yields
a,(w,/ wm)'/? =~ 0.6. Although these estimates show
fairly good consistency with our hypothesis, an »™'!/3
spectral form has been identified only for the case of
Fig. 1a while it is completely absent in the spectra of
Fig. 1b where the dimensionless angular peak frequency
@, 1s only slightly larger than one.
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FiG. 1. Spectra of well-developed waves selected from Forristall
(1981) using the criteria that 1) the spectral tail extends to at least
three times the peak frequency and 2) the apparent 90% confidence
limits should be less than +30% (a): Hurricane Anita, (b) Hurricane
Eloise.

2. The high-frequency spectral tail
a. Spectral cascade and dissipation of wave energy

Zakharov and Zaslavskii estimated the universal
constant @, of the asymptotic spectrum in Eq. (1.7)
using empirical data for the flux of wave action to the
spectral peak at low frequencies. We shall now similarly
estimate the universal constant @ in the asymptotic
spectrum in Eq. (1.6) from indirect estimates of the
dissipation ¢ at high frequencies. In general scaling
terms, this was done by Kitaigorodskii (1983) who
showed that a is of ‘order unity. The calculation pre-
sented here uses the method of Longuet-Higgins (1969)
whose aim was to estimate the universal constant 3 of
Phillips’ saturation spectrum [Eq. (1.1)].

Following the arguments in section 1, we will adopt
the assumption of Kitaigorodskii (1983) that a fre-
quency range exists below a frequency w, where the
spectrum has the form of Eq. (1.6) and is unaffected
by wave breaking. Above w, the spectrum is limited
by wave breaking. This assumption of a sharp transition
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at w, implies that only wave components in a narrow
band of frequencies higher than w, combine into
breaking-wave fronts. The energy transfer equations
on either side of the transition are

S"=0 for w<uw,

(2.1)
(2.2)

where we have assumed that the wind energy input is
negligible near the transitional frequency w,. Using the
similarity expression Eq. (1.4) for S, we find

Dy oc g3 2N 3, (2.3)

For the fully saturated spectrum above w, limited by
wave breaking, we postulate that the wave-action den-
sity dissipated per wave period 27 / w is a constant frac-
tion, r, of the spectral wave action density

Sknl_Dk=0 for w>wg

D
(27 /w) F: =r. (2.4)
Inserting Eq. (2.4) in Eq. (2.3) we find a similarity
form of the wave-action density expressed in terms of
the wavenumber modulus k&,

Ni = Bg™112=9/2, (2.5)

where B is a numerical constant. The energy spectrum
in frequency representation is readily found to be the
well-known Phillips’ (1958) form [Eq. (1.1) with 8
= 2 B] which in dimensionless terms reads

S(&) = 2B&3, (2.6)

We assume that B is a wind-independent constant
characterizing the spectral range of dissipation due to
wave breaking at frequencies w > w,. In the literature
earlier estimations of B have been found by fitting an
w ™ spectral form very close to the spectral peak. For
the JONSWAP spectrum for example, B was found to
decrease with increasing dimensionless fetch (Hassel-
mann et al. 1973), and Geernaert et al. (1986) found
B to increase as a function of both w and dimensionless
peak frequency @,,. We believe this observed variation
of B to be due to the spectral tail actually being of the
form (1.11) near the spectral peak rather than the as-
sumed power w~°. Following this idea, Mitsuyasu et
al. (1980) demonstrated that the mean JONSWAP
spectrum is approximated very well by the form (1.11)
in the range 1.2 € w/w,, <2, with 2a%,'/®> = 1.0 B&,,~",
where B is the wind-dependent JONSWAP estimate.

The action-dissipation density is found from Egs.
(2.4) and (2.5)

w 1
Dk—rszk-g

and the spectral density of energy dissipation rate is
found to be

rBk*, (2.7)

€ = wDy =ing”2k—7/2. (28)
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We are now able to calculate the total energy dissipation
in the saturation range [k, 0],

€@ = f ekdk. (2.9)
Using as dispersion relation
w? =gk, (2.10)
we find
1 _
€ =3—7rng2wg 3 (2.11)

where w, = (gk,)'/?, and in dimensionless terms:
(2.12)

Similar to the definition of energy dissipation, Eq.
(2.9), we may define the total action dissipation

Do=f Dykdk, (2.13)
kg

and if the dispersion relation [Eq. (2.10)] is valid to

sufficient accuracy, the characteristic frequency scale

of dissipation, w,;, may be defined as
€0 4

Wg = 757 T 5 W

Dy 3 (2.14)

We apply the assumption of a sharp transition at w,
where the expressions in Eqgs. (1.11)and (2.6) are equal
and find by use of Eq. (2.12)

2a%,'? = 2B&,, (2.15)

from which an expression for the universal constant a
is derived
37B%\!/3
a= .

There is no obvious way of determining theoretically
the ratio r, but as we will see in section 4, a fine agree-
ment is found with observations of the spectral form
S(w) = 2a&,'u,ogw™* reported in literature, if we use
the value

(2.16)

r = e_l/(IGB)_

(2.17)
This value obtained by Longuet-Higgins ( e.g., see Phil-
lips, 1977, p. 196) is the ratio of energy lost by wave
breaking in one overall mean wave period defined as
T = 2w /o, where

f w?S(w)dw
=

s

i f: S(w)dw
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to the total wave energy

J:o S(w)dw

of a spectrum S(w) = 2Bg?w ™ for w > w,,, S(w) =0
for w < w,,, where it was assumed that the wave max-
ima are Rayleigh distributed.

b. Energy input from the wind to waves

According to Phillips’ theory (1985) the frequency
range appears to be very wide where energy input to
waves is important. Phillips assumes that the pertu-
bation of wind stress over a wave is proportional to
pauiak, a is the amplitude, k the wavenumber, and
the mean wind stress is 7 = p,u2. The energy flux to
the wave is the mean scalar product of the stress vari-
ations and the orbital velocity akc of the water surface
and is thus proportional to p,u2(ak)?c. The rate of
energy density transfer p,,gF*(k, 6) to a directional
spectrum F(k, §) may thus be written as

2
pwgF*(k, 0) = mpwg¢2(0)(%) wF(k,0), (2.18)

where m is a proportionality constant. The transfer
rate of action density N(k, 6) = F(k, 6)/w is similarly

N*(k, 8) = m¢p2(0)(ux/c)’wN(k, 8). (2.19)

In Egs. (2.18) and (2.19) the term ¢2(6) indicates the
influence on the wave component moving in a direc-
tion 6 relative to the mean wind direction. The param-
eter m and the form of ¢2(#) must be deduced from
experiments.

Phillips assumes that an equilibrium range of the
wave spectrum exists where the wind energy input is
locally balanced both by the weak nonlinear flux di-
vergence and by dissipation due to breaking waves. In
the context of the present paper we assume that the
dissipation is negligible over the range where energy
input from wind is important so that the energy transfer
equation (1.2) is reduced to

S+ MT=0 for w.<w<w, (2.20)

where w, is a lower limit to wind energy input. The
solution of Eq. (2.20) must be an asymptotic solution
of the wave-kinetic equation (1.5) as N, * tends to zero.

Applying the similarity expression [Eq. (1.4)] and
the source function [Eq. (2.19)] to Eq. (2.20) we find

N(k, 0) = v(0) “7 w!/2g=SI4194 (2.21)

where v is a proportionality constant. Assuming that
the dispersion relation w? = gk is valid independent of
direction of wave propagation, we have ¢ = (g/k)'/?
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yo(O)u g k™!, for — g < <—72I
N(k, 8) =
0, otherwise

(2.22)
which is similar to Eq. (1.6) if we replace gey with the

scaling parameter u3.
The directionally averaged spectrum is

T

Nk = N(ka 0)d0 = ‘Y’u*g_lk_‘ts
where
/2
Y = 'yf #(8)db.
—-7/2
The corresponding frequency spectrum is

S(w) = 2y'u go™. (2.23)

Substituting Eq. (2.22) into Eq. (2.19), taking the di-

rectional average and transforming to the frequency

domain, we find the rate of energy input from the wind
3 /2

S*T(w) = 2mu’ % 'y(f ¢3(B)d8)u*gw_4 (2.24)
-%/2

which by use of Eq. (2.23) becomes

3
SH(w) = m'u % S(w) (2.25)
where
w/2
[ s
, —x/2
m=m-—zm—.
f #(8)do
-w/2

As shown in a recent work by Donelan et al. (1985),

several generally known experiments favour a direc-

tional distribution proportional to ¢(8) = sech?(86)

with § = | except very close to the spectral peak.
From Eq. (2.25) we find

,_ 4 T 8
m —15(2+sech26)m~15m.

The value of m was determined by Plant (1982) who

compared several experiments where 6 was close to 0
with Eq. (2.19) and found

m = 0.04 £ 0.02.

We then have an estimate for the coefficient m’ of Eq.
(2.25)

m’ = 0.02 + 0.01. (2.26)

In dimensionless terms using u,o and g as scaling pa-
rameters, the rate of energy input, Eq. (2.25), becomes
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SH(&) = ha?S(&), (2.27)

where A = m'Cp, and the drag coefficient, Cp = u2/
u?. The rate of action input similarily becomes

N (@) = ha?S(&). (2.28)
In dimensionless terms the spectrum Eq. (2.23) reads
S(&) = 2v'Cp' %74, (2.29)

and attains by hypothesis the asymptotic form in Eq.
(1.11) as @ = oo. Kitaigorodskii (1983) denoted the
numerical constant of the & law by a,, so we have

S(3) = a,&7™%,
o, = 2453, (2.30)

We assume that the numerical constant of Eq. (2.29)
asymptotically adjusts to match the form in Eq. (2.30)
so that 2y'Cp'/? = a,,. For a spectrum of the form in
Eq. (2.30) the rate of energy input from the wind [ Eq.
(2.27)] is

SH&) = ho,&~". (2.31)

Many wave-spectra measurements show that they
do indeed have the form of [Eq. (2.30)] except in a
narrow range around the frequency w,, of the spectral
peak, e.g., Donelan (1985) and Kahma (1981). Be-
cause of the weak decrease with increasing frequency
of the form in Eq. (2.31), only a small fraction of the
total energy (or action) input to the wave spectrum
occurs in the frequency range close to the peak. Thus,
the slight deviation from the form in Eq. (2.31) near
the peak may be neglected in a model of the total energy
input. We may assume a model spectrum of the form

0, for &< an
S(&) =4 a,67% for G,<&d<d, (2.32)
o=, for &= &,

where § = 2B, a, is given by Eq. (2.30) and &, is the
dimensionless critical frequency of gravitational insta-
bility. Inserting Eq. (2.32) into Eqs. (2.27) and (2.28),
we may derive model expressions for the energy and
action input to the wave field.

3. The experiment

The field measurements were made on Lake Wash-
ington during one morning in August 1977. The fetch
was approximately 5 km in the wind direction over
deep water, and at the measuring site the water depth
was about 4 m.

The instruments were mounted on a mast located
20 m from the shore. All instrumental outputs were
sampled at a rate of 25.55 per second. Three-dimen-
sional fluctuating components of the wind together with
temperature and humidity were measured 67 cm above
the water surface, using hot wires mounted on a wind
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vane. The measurements were calibrated against a Gill-
propeller system and thermocouples on the mast 3.6
m above the water surface. The atmospheric stratifi-
cation was slightly unstable with a Monin-Obukhov
length of the order of 100 m so a neutral mean wind
at 10 m was obtained from the logarithmic profile u
(10 m) —u (67 cm) = (u,/x) In10/0.67, « is von
Karman’s constant. The value of the friction velocity,
Uy, was estimated from the hot-wire measurements
with a standard error of about 10 percent (Hansen
1985).

Using a 0.4-mm diameter nichrome resistance wire,
the fluctuating water height was measured. The re-
sponse of this wire was examined in a wave tank study
by Liu et al. (1982) with special emphasis on the re-
sponse to waves in the capillary gravity range. In their
study the resistance gauge (RG) was compared to a
laser displacement gauge (LDG). In Fig. 2 we have
plotted their measured ratios of mean square surface
displacement {%g/¢ipc against the peak frequencies
of the rather narrow spectra. The straight line in the
figure is of the form

Hﬁ(;(f)=(;—{(;)—n, fo=1Hz, n=0.5 (3.1)

and works well with the data of Liu et al. around 5 Hz.

In Fig. 3 we have fitted by eye to the rear face of the
LDG spectrum a spectral model of the form

S(f) = aug* ™, (3.2)

where g* = g + vk?, k is related to f by the wave
dispersion relation (2xf)? = gk + vk* and au, is just
a best fit coefficient with dimension velocity. We see
that the functions S(f) = Hs(f) - S(f) agree well
with the measured RG-spectra over the whole range 4

T [ T T
- v 013 mm stainless steel wire -
© 0.4 mm nichrome wire

T rrrry 7T T T T T 77

i A TR | L

01 L i 1

1 2 5 10 20 50
f [H2)

F1G. 2. Response function for the wave gauge. The points are the
ratios between mean square surface elevation of wind-tunnel water
waves measured by resistance wire (RG) and laser beam (LDG) as
a function of frequency of the spectral peak from the data of Liu et
al. (1982). The line is our “eyeball” fit to the response His(f) at
all the measured frequencies given by Eq. (3.1) and extrapolated to
1 Hz.
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Hz <€ f <30 Hz and Eq. (3.1) is thus chosen as a valid
spectral response function for all frequencies f = fj.
Although the spectral response function given by Eq.
(3.1) is a good approximation to the data of Liu et al.
(1982) over the broad frequency range 4 Hz < f < 30
Hz, the application to the range | Hz < f €4 Hzisa
pure extrapolation. As a support to consider fo = 1 Hz
as a fair representation of the point where the response
is 100%, we may consider a reference to an earlier ex-
periment by Liu et al. (1982), using a stainless steel
wire with presumably a better wetting characteristic
than the 0.4 mm nichrome wire used on Lake Wash-
ington. This measurement yielded a 100% response at
1.6 Hz.

In our Lake Washington measurements the voltage
output from the RG was recorded in a digital form by
a FSK (frequency shift keying) system. In the FSK a
low-pass filter Hsk (w) was applied to avoid aliasing.

The output of the digitizer is an integer /(). Assume
that the digitized signal y(¢) = [(¢)+ A is within +A/2
from the true signal where A is the digitization step,
then for a steep wave spectrum the discretization noise
is approximately white and attains the value Np(w)
= N = A%/(12wy), where wy is the Nyquist frequency
(Kristensen and Kirkegaard 1987).

At the high-frequency tail of the measured spectrum
we identified an apparent white noise, which was about
twice the digitization noise N(w) = N ~ 2Np. We
estimated a minimum value of the noise N individually
for each spectrum.

The construction of the wave spectrum S(w) from
the spectrum Spg(w) of the digitally recorded spectrum
involved three steps as shown in Fig. 4. In this figure
the spectrum is multiplied by w*, and the spectrum
and frequency are scaled by use of a,u;o and g. The
Kitaigorodskii constant «,, is calculated from the spec-
trum S(w) as the average of S(w)-w* over the fre-
quency interval from 1.5w,, to 3.0w,, where w,, is the
spectral frequency at the peak of the spectrum or of
the dominant waves. The three steps in constructing
S(w) from Spig(w) are

1) Subtraction of the noise yielding the spectrum
before digitizing

Sesk(w) = Spic(w) — N.

A slight underestimation of the noise results in a small
residual noise appearing at the highest frequencies.

2) Correction for the low-pass filter of the FSK-sys-
tem yielding the output from the resistance gauge sys-
tem

1
Hisg(w)
3) Correction for the wave gauge response yielding
the estimated true spectrum

Sra(w) = Spsk(w) -

S(w) = SRG(“’)'M .
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FIG. 3. Wind-tunnel wave spectra by Liu et al. (1982) measured by laser (LDG) and resistance wire. It is seen that the
frequency response function Hg(f) given in Eq. (3.1) applied to the high-frequency model of the true (LDG) spectrum
S(f) in Eq. (3.2) yields a function which is in good agreement with the measured resistance wire spectrum. Two wind speed
cases are shown: (a) U = 8 m s~ and (b) U = 10 m s™". The error bars represent the 95 percent confidence limits of the

spectra.

In the Lake Washington experiment the wind was calm
in the early morning, but around 0600 local time the
wind increased from approximately 2 m s™! to ap-
proximately 6 m s in 20 minutes. From 0635 the
wave spectra calculated from segments of the time se-
ries of 11 min each seemed to have a high-frequency
tail in equilibrium with the wind. From the following
four hours of measurement 14 such 11-min segments
with a rather steady wind were chosen. Listed in Table
1 are 10-m mean wind, u,0, the Kitaigorodskii constant
«, estimated from the range [1.5w,,, 3.0w,,], the phase
speed of the spectral peak and the stability parameter
z/L at z = 0.67 m.

During the first two hours of measurement the wind
direction was almost parallel to the shore of the lake
permitting waves only from directions ~0° to ~90°
from the shore to arrive at the measuring tower. This
might be the reason for the rather low values of o, for
runs 246 and 248 due to the truncated direction dis-
tribution.

The wave spectra from runs 246 and 248 are shown
in composite forms in Fig. Sa.

From the value of the group velocity c,,/2 of the
wave spectral peak, which is about 1.5 m s~! for all
runs, we find that the travelling time over the 5-km
fetch is about 3 X 10> s or 50 minutes. Thus the wave
spectral peaks for runs 252 and 254 may be strongly
influenced by higher winds at earlier times of their de-
velopment, and the level «, of the spectral tail may be

Tt orrry T LI

—
o
o

w* Slw)/ayurg

1 10l t 1 1)

1t 1]

107 .
1072 107
WUy ey /g

FIG. 4. Construction of the wave spectrum from the raw data. The
figure shows the spectrum multiplied by w*. The spectrum and angular
frequency are scaled with the parameters a, 4,0 and g where a, is the
mean of w*S(w)/u0g over the frequency range 1.5w,, t0 3.0wp,.
Dot-dash: raw spectrum; dash: after subtracting white noise, residual
noise indicated by the arrows; dotted: after correction for low-pass
filter of the recording system,; solid: the true spectrum after correction
for the wave-gauge response function defined by Eq. (3.1).
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TABLE 1. Ten-meter wind speed, Kitaigorodskii factor of S(w)
= g, u,0gw™*, phase speed c,, of the spectral peak and stability param-
eter for the selected time segments.

Time
(approx.) Uo Cm

Run (local time) (ms™!) a,X 107  (ms™) z/L
246

b) 0635 6.5 3.6 2.6 —0.03

c) 0645 7.1 33 2.7 -0.02

d) 0655 6.1 33 2.4 —0.04
248

a) 0715 6.3 35 3.0 -0.04

b) 0725 6.0 3.6 32 —0.05

c) 0735 5.9 3.7 33 —0.05

d) 0745 6.2 34 33 -0.07
252

a) 0905 4.9 4.3 2.7 —0.06

c) 0925 5.0 4.2 2.9 —-0.05

d) 0935 4.8 4.6 2.8 —0.08
254

a) - 1020 3.6 5.8 2.8 —0.11

b) 1030 33 6.1 3.0 —~0.20

c) 1040 34 6.2 2.8 -0.19

d) 1050 34 6.6 2.6 —-0.29
Mean : 5.0 4.4 29 —0.09

higher than will be found in steady wind conditions.
The spectra from runs 252 and 254 are shown in com-
posite form in Fig. 5b.

It caused some trouble to find the voltage-to-water
height calibrations for the resistance gauge because
some unknown gain was introduced by mistake in the
recording end. The results were therefore calibrated
against some spectra measured with the same wave
gauge on the same site four months earlier. However,
we estimate this calibration to be accurate within +20%
for the measure a,,, or 8, of the spectral level. The rms
deviation of our values for a, (Table 1) from the re-
lation empirically obtained by Donelan et al. (1985),
ay = 0.006(110/¢n) %%, is 17% of the mean value, «,
= 4.4 X 1073. This compares very well with the 20%
accuracy of our calibration and coincidentially the
mean o, = 4.4 X 1073 is very close to the mean values
of Donelan et al. (1985) and Kahma (1981).

4. Interpretation of results

a. The transition from w % to 0™

The composite spectra in Fig. 5 clearly have a tran-
sition at a high frequency w, (approximately at w,
~ 3w,) from an w™* range below w, to roughly the
form depicted by the lower of the broken curves. These
curves are derived from some plausibility arguments
given in section 4b and represent the enhanced spectra
due to a vertical profile of steady wind-drift velocity
below the water surface. The straight line of slope —1
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in Fig. 5 is the corresponding intrinsic spectrum of the
form S(w) = Bg%w>.

The value 8 = 0.025 = 20% is an overall best fit
(iteratively found) to the spectra in the range 0.03
< witioay/ g < 0.05 of the spectral model given by Eqgs.
(4.11) and (4.4). Here, the surface drift velocity is
chosen among various possibilities as U, (z = 0) = u, /2

- |T|| L 1 T 1 1 1T 7T

a)

109

10!

w*S{w)/ayupg

100

I GO B |

i L 1 '

107 .
1072 10

Wy &y /g

FIG. 5. Composite spectra of 11-min time series with (a) steady
wind between 5.9 and 7.1 m s™! and (b) steady wind between 3.3
and 5.0 m s™'. The spectra in this figure are scaled as in Fig. 4 and
are presented in two parts by mean wind speed (a) 1,0 = 5.9 to 7.1
m s~} (b) #0 = 3.3-5.0 m s™* (see Table 1). The vertical bars at
approx. 1.5w,, and 3w, are here 90% confidence intervals (the spectral
peaks lie at ,, 001,/ g slightly less than 1072 The solid lines are the
models (2.30) and (2.6) for the intrinsic spectrum intersecting at
wethyoer,/g = B = 0.025. The broken curves are the enhanced spectrum
due to a wind-drift velocity profile in the water as explained in section
4b. The lower of the broken curves was chosen as the best fit to the
observed spectra and corresponds in both (a) and (b) to a surface
drift velocity u, = 0.015iz,4 while the upper broken curves describes
the effect of u; = 0.03i.
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where the air friction velocity u, is the measured mean
over the runs represented in Figs. 5a and 5b, respec-
tively. The upper broken curve corresponds to Uy (z
= 0) = u, and is merely shown to illustrate the depen-
dence of the model result given by Eq. (4.8) on the
choice for U,. The drift profile in the highest fractions
of mm of the water where the turbulent eddy viscosity
is weaker than molecular viscosity has little influence
on the waves so we may consider the depth z = 0 to
lie just below this layer.

b. The correction for influence by drift motion and low-
Jfrequency orbital motion on the high-frequency
part of the spectrum

The high-frequency part of the wind-wave spectrum
is Doppler-shifted by both the surface drift current and
the orbital motion of waves of lower frequency. In this
section we will argue that the influence of the orbital
motion is negligible compared to that of the drift cur-
rent as long as we consider only frequencies just above
the transition from the w* to the w™ spectral forms
in Fig. 5. The situation in this range is different from
what it is for waves with a wavelength of a few centi-
meters which are intensively studied by microwave
backscatter experiments. Using wire data, the Doppler
shift of centrimetric waves due to orbital motion of
the dominant waves was found to have the same order
of magnitude as the influence of drift current (Ataktiirk
and Katsaros 1986). Their dataset is also from Lake
Washington under similar conditions as the August
1977 dataset discussed here.

Following Kitaigorodskii et al. (1975) we assume
that in the presence of low-frequency wave motion the
spectral form in the two-dimensional wavenumber
plane is

F(k, 8) = Bk™*¢(6) (4.1)

where k is the wavenumber modulus and ¢(#) the di-
rectional distribution of wave energy propagation such
that the energy transport is Bk ~*¢(6)kd@ at wavenum-
ber k in the interval dk moving in the direction df.
The frequency spectrum measured at a fixed point is

/2
sw = [ kK, 0/c)80)d0

-

(4.2)

where c, is the group velocity, ¢, = dw/dk. S(w) thus
depends on the dispersion relation which has the form

w(k) =[(g+ aDk]"* + u-k, (4.3)

where a° is the local vertical component of surface
acceleration due to the orbital particle motion in the
low-frequency waves and u = u’ + u, is the sum of
orbital and surface-drift velocity.

First, we consider only the drift component, 1, of u
and assume it is aligned with the mean wave direction.
Kitaigorodskii et al. (1975) solved Eq. (4.3) for k. By
applying the transformation Eq. (4.2) to the spectral
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form in Eq. (4.1), they found for the case where low-
frequency orbital motion is zero

S(w) = 2Bg%w 3 J(wy). (4.4)
Here, J(wy) has the form
J(wd) =1+ 3[1,(.0,1 + dez (45)

to the second order in the dimensionless frequency wy
= wiuy/ g where u and v depend on the directional dis-
tribution of energy. For the directional distribution ¢(8)
= 2/ cos?0 for |#| < w/2 and ¢(8) = O elsewhere,
they derive exact values

-8
3’
The wave components of wavenumber k ride on a sur-
face-drift current profile with a scaling depth of order
1/k. Thus, the drift velocity is to be taken at a depth

zz= 1/k = g/w? and the dimensionless frequency wy
of Eq. (4.5) must be evaluated as

(4.6)

, =3
u 2

- wuy(zg)
——g .

To estimate uy(z,;) we shall below seek to relate it to
the formation of turbulence by wave breaking at fre-
quencies above w,, the transition frequency between
the forms w ™ and w™>,

According to the observations by Donelan (1978)
breaking waves generate a turbulent patch extending
to the depth of approximately the wave height, which
means that the characteristic scale of the surface per-
turbation is H ~ 2a ~ 1/k,. We assume that the
wavenumber k, of the breaking wave shall be taken as

. = w,°/g where w, is the transitional frequency de-
fined by applying the model in Eq. (2.32). Assuming
a simple linear profile for the drift velocity and pointing
the z-axis downward, we can write

_ ug(0)

4.7)

Wyq

—_— =

dz

This assumption agrees quantitatively with theories of
a constant turbulent exchange coefficient 4,
du
—A4, 2 = wl

dz

nst = for O0<z<H. (4.8)

(4.9)

where w2 is the vertical momentum transfer = nor-
malized with the water density;
wh

=
Pw’

or wy is the friction velocity in the water.
Dimensional arguments (Long 1979) yields A4,

= Aw, H. Using the results of the measurements by

Robertson (1959), Long estimates A = 0.12. Inserting

Long’s expression in Eq. (4.9), we find
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dug

Wy

dz \H’

and for our velocity profile [Eq. (4.9)] to hold, we
must have

Wy

— = u4(0).
X u4(0)
Normalizing the Lake Washington momentum transfer
7 above the surface with air density and 10-m wind

speed, we obtain:

(4.10)

T

2
Palhio

=ul/ulp=1.1X1073,

As only a negligible fraction of the momentum transfer
is retained in waves, we have w3 /u3 = (pa/pw) ~ 1.2
X 1073, and thus for our experiment w,/u;o ~ 1.2
X 1073, Using Eq. (4.10) with A ~ 0.12, we find

u4(0)
Uio

~ 0.01.

For simplicity we assume the linear dispersion relation
w? = gk for all frequencies of interest here. From Eq.
(4.8) we find the drift current at depth z = 1 /k

2 2
ud(z = %) = (“’—w;—"g—)ud(oy

The dimensionless frequency w, to be used in the for-
mula of Kitaigorodskii et al. (Eq. (4.5)) is thus by Eq.
(4.7)

w 1 w w,2
gl Funfs=3)

2
—a,-(l—“’—%)-w (4.11)
w U0
where @ is the dimensionless frequency using g and ;g
as scaling parameters, 1.e. @ = wit;p/g.

The assumption is here that in Lake Washington the
current is negligible at depths larger than 1/k,. On
larger lakes, though, and especially under open-ocean
conditions, deeper current systems like the Ekman
profile are generated by turbulent transport of mo-
mentum, and the function J(w,) may be much larger
under such conditions. The lower stipled curves in Figs.
5a and 5b, which appear to correspond well with the
composite spectra, are given by Eq. (4.4) where 2B
=8 =2.5X 1072 and J(w,) is calculated from Eq.
(4.5) by use of our model, Eq. (4.11). wg1s an increas-
ing function of wupa,/g, and we consider the ap-
proximate formula, Eq. (4.5), to be accurate only up
to wiyoa,/g = 5 X 1072 where w, = 0.14.

We now turn toward the orbital component u® of u
in Eq. (4.3). A wave solution for the surface elevation,
¢?, of the linearized equations of motion valid at the
water surface is
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g-a = Aaei(k“- X—wt)

The corresponding surface orbital velocity #° and ac-
celeration a° in the direction of k are
[uU = wﬂg—ﬂ

aa = _(wa)Zg-a = gkag-cr‘
In the case of non-negligible orbital motion but zero
drift velocity, Kitaigorodskii et al. (1975) find that the
w >-spectrum is augmented by the factor J(&)

S(w) = 2Bg%w™5J(w)

where J’(@) is the time average J(w) = {(1 + (a°/
8))*J(w)); Jisthe function in Eq. (4.5), and the vari-
able w is defined as w = wu’/(g + a°). In terms of k°
and w’ using Eq. (4.12), » may be written

(4.12)

@ 1

w' 1/k°¢"—1"

When averaging the function J in Eq. (4.5) it yields a
new function in terms of second moment in k°{°,

J“(%,k“f’) =1+ q*(%)((k")2§2>, (4.13)
w w

with

® =

2
q*(%) =1-3r=+ q(—‘%) . (4.14)
w @ w

where r and ¢ are both of the order of 1.

The first two terms of g* arise from the acceleration
a’® while the term g(w/w?)? comes from the Doppler
shift. It is seen that the effect of acceleration is negligible
compared with that of Doppler shift only for very high
ratios of w/w’. For w/w® ~ 3, the two parts are of
equal magnitude but of opposite sign, yielding g* =~ 0.
For w/w? < 3 the acceleration effect dominates yielding
negative but small values of the g*-function.

In case of a wave spectrum S(w?) the augmentation
function J%(w)is 1 + ¢* (w/w°)(k°)%S(w®)dw’ arising
from the interval dw® around w?. For simplicity we
will assume that the total augmentation function J*(w/
w,,) is a product of the contributions J°(w) from all
spectral components in the range [w,,, w[. To a suffi-
cient degree of accuracy we can put (k°) = (w°)?/g,
and we find

w o\ 4
Js(_“’_) =1 +f q*(—‘%) (wz) S(w)dw’. (4.15)
wm w g

Wm

Using the spectrum S(w) = a,u;0gw* we find that
the ratio of the function J*(w/w,,) to the drift motion
augmentation function J(w,) increases with increasing
w. At the upper end of the definition of J(w,) (wu o,/
g~ 5X 107%), we find from Eq. (4.15) for the typical
value w/w,, = 8 that J*(w/w,,) = 1.08 while the effect
of a constant drift motion is found from Eq. (4.4).
Using wg = 0.14, J(wg) = 1.37. Therefore, we neglect
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the effect of orbital motion for the range considered,
wua,/g <5 X 1072 (For a discussion of the effect of
orbital velocity of the long waves on the point mea-
surement of wave frequency spectra, see Ataktiirk and
Katsaros 1987).

¢. The Kolmogorov-type universal constant a

Here, the experimental results shall be compared
with the theoretical discussion of sections 1 and 2. The
universal constant g of the wave analog [Eq. (1.6)] to
the Kolmogorov spectrum of isotropic turbulence may
be estimated from the theoretical result in Eq. (2.17),
using the value of Phillips constant 2B = 8 = 0.025
found from Fig. 5 and the ratio of energy loss r
= exp[—1/(88)]. This yields

a = 0.6.

As the estimate [Eq. (2.17)] for the dissipation rate is
not a theoretical one but merely a postulate, our results
must be checked against other results before we are
able to accept the value a = 0.6. The key for doing this
is the conservation of overall energy and action.

d. The energy and action budget for fetch-limited spec-
tra

A simple model for the overall energy and action
budget per unit surface area will be formulated using
the spectral model [Eq. (2.32)] for the energy and ac-
tion source Egs. (2.27) and (2.28). This model will be
used to estimate the uncertainty of our estimate of the
Kitaigorodskii constant «,,. We assume that the energy
and action dissipation take place at the scale w, given
by Eq. (2.14), and the growth of wave energy and ac-
tion takes place from the peak frequency w,, and is
advected to larger fetches. We will further simplify the
model by assuming the energy/action source to be zero
for w = w, and for w < w, where w, is given by w, = 2g/
;0 on the basis of the discussion in section la. The
model equations are

conservation of energy:

9=4q" — &
conservation of action:
p=p" — e«/wa
advection at w,,:
D =4q/wm,

where w; = $w,. We assume that input from the wind

occurs only to wave components in the interval [w,
wg], and find from Egs. (2.27) and (2.28) in dimen-
sionless terms

energy input:

G* = hay, Inw,/ w,
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action input:

~. ~ —1 ~
p+ = hau(wc — Wg 1)5

where
o = Wm, fOr w,=2g/u, young waves

© |2g/u, for w,<2g/u, developed waves
and

o, = 2083, (4.16)

The assumption of a sharp transition at wg'implies for
the model spectrum [Eq. (2.32)]

B = B/ oty (4.17)

From the model equations we directly derive the forms
of § and % as explicit functions of the ratio w,/w,,,
with the parameters ¢ and #,

i _ ln(wg/wc) — (Wm/we — wm/wg)

4.18
ha, 1 — wn/wg ( )
where «, = 2a%,'/ and w; = (4/3)w,, and
q _ ln("’g/wc) — (wq/ we — wd/‘-'-’g) ] (4‘19)

hey,

By use of Eq. (4.17) we find implicitly from Eq. (4.18)
«, as a function of &,, with the parameters a, h, b.
This function is shown in Fig. 6 calculated with the
values 8 = 0.025, a = 0.6 from our results, and 4 = 2
X 107> from Eq. (2.26), assuming ¢p = 1 X 1073,
Donelan et al. (1985) found empirically the relation

o, = 0.0068,, %4

1 - wd/w,,,

also shown in Fig. 6 and valid for the range 1 < @,,
<4.

It is interesting to compare the result with the general
considerations by Hasselmann et al. (1976) who found
that the spectral form in the vicinity of the peak was
practically invariant for various measured spectra. They

0.006 — ™ T T —T

0.004 n
3>

- The regression line of .
Donelan et al.19853 -
0.002 ] i 1 1 ! (|
05 1 2 4

Wm U10/9

FIG. 6. The coefficient «, of the spectrum S(w) = a, i 0gw™ cal-
culated from the model for energy and action balance, Egs. (4.16),
(4.17) and (4.18) as a function of dimensionless spectral peak fre-
quency wy,tho/g for wauo/g = 2 (solid curve) and assuming the
energy input from wind to be zero for w,u)0/g < 2 (broken curve).
The dotted line is a regression fit from Donelan et al. (1985) to their
experimental results.
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defined a form parameter [ for the spectral tail: S(w)
= fg’w™]

As = &' /B, (4.20)

where é= [° S(&)d is the dimensionless wave energy
per unit surface area.

Hasselmann et al. (1976) found that A\; has the al-
most constant value 0.25 for the JONSWAP spectra.
According to Mitsuyasu et al. (1980), a fit of the form
S(w) = a,u0gw * to the near-peak spectral tail of the
mean JONSWAP spectrum yields o, = 0.508&,,”". A
form parameter defined for a spectral tail S(w)
= a,upgw tis

e = 68,7/ aty. (4.21)
The argument of Mitsuyasu et al. yields A, = 2.0\ for
the mean JONSWAP spectrum.

We may approximate the function a,(®,,) from Fig.
6 by the power law

ay = 0.00528,,71/3 (4.22)

in the vicinity of @,, = 2 which represents the center
of most reported fetch-limited field data. Taking the
constant value A, = 0.50 for the JONSWAP data, we
find from Eq. (4.21) that & = 0.0026&,,'%/3. This ap-
proximation for & is valid only in the neighbourhood
of @,, = 2. Hasselmann et al. (1976) found for the
JONSWAP data & = 0.0024%,,”'°/3. Donelan et al.
(1985) found & = 0.0027&,, 3.

Equation (4.22) corresponds to the function &/
(ha,) = 0.16w,/w,,, from which we see that «,
= 2a&,'’? scales like

a, = bah'PB'35,, 73, b,=1.1. (4.23)

If we insert Eq. (4.23) in (4.21), we see that & scales
like

é=b,ah'?335,, 7193, b, = N\b,=0.56. (4.24)

We note again that Eqs. (4.23) and (4.24) shall be
considered as approximations 'in the vicinity of @,
=2,

Figure 6 suggests that our value for «,, obtained from
the form «, oc ah'/38'/? is correct. From Eq. (2.26)
we expect that # is correct within £50 percent, and in
section 3 we estimated the uncertainty of 8 to be
roughly 20 percent. Accordingly, the universal constant
a is correctly estimated within 1 (AA/h) +1(AB/B)
= #23 percent or roughly

a=06=0.1. (4.25)

5. Conclusions

We have demonstrated that for an intermediate
range of high frequencies, i.e. in the high-frequency
tail of the wind-wave spectrum in equilibrium, S(w)
= a, U 0gw ™ for w < weand S(w) = Bgw > for w > w,,
a simple model describes our experimental data when
account has been taken of Doppler shift due to the
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wind-drift velocity near the water surface. The coeffi-
cient a,, is parameterized as o, = 2a%,'’® where through
the spectrum from low to high frequencies by nonlinear
interactions the dimensionless constant flux of energy
o basically is a function of the ratio between wind speed
ujo and wave phase speed ¢, of the spectral peak, &
= f(uy0/¢,). The Kolmogorov-type universal constant
a has been determined, using a simple model for the
overall balance of energy and action; the calculations
based on the measurements suggest that a = 0.6 £ 0.1.

For similarity reasons involving the equation for
nonlinear spectral flux convergence, we have suggested
a spectral model for the dissipation of wave energy due
to wave breaking. This implies that the wave spectrum
in the dissipation range has the form S(w) = 8g%w>.

This model is attractive though perhaps simplistic
because it conserves energy and action and balances
the empirically known energy input from the wind in
the form suggested by Phillips (1985) in such a way
that the resulting growth of the total wave energy agrees
well with empirical data reported in literature.
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