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Abstract

This paper investigates the idea that each Reynolds stress has its own velocity scale – the mean shear stress cann
velocity scale for the near-wall turbulence near reattachment, for example, and cannot by definition provide a velocity
‘inactive’ motion. Beneath a separation bubble, the tangential velocity fluctuations scale on the r.m.s. of the respective w
stress fluctuation and onv/y, which is the viscous velocity scale in the usual way, independent of the other flow. This pap
shows that the wall-normal direct stress and the shear stress have respective, independent velocity scales. Moreove
remarkably, the scaling functions for these latter stresses appear to be universal in that they are unchanged for the
layer upstream of separation or downstream of reattachment, and are as in the canonical zero-pressure gradient boun
The streamwise direct stress does not exhibit this universality, raising questions about the near wall structures: it is inf
the change in form is associated with the disappearance and reappearance of the streak-like structures.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Gaining an understanding of the scaling laws for turbulent motion is a fundamental step in gaining an understandi
complex structures that makes up that motion. It is also the case that gaining an understanding of the structures shou
gaining an understanding of the scaling laws. Historically, because the scaling laws involve only ensemble-averaged
and involve relatively much more straightforward measurement techniques (or analysis from Large Eddy or Direct Nu
Simulation) and less of a conceptual challenge, attention to scaling laws has by and large preceded attention to struc

Much effort has been given to the scaling of the “canonical” zero-pressure-gradient two-dimensional flat plate b
layer, but despite this questions still remain even for this ‘basic’ case. However, DeGraaff and Eaton [1] conclude fa

vincingly that in the inner layerv2 anduv do scale uponuτ (defined as
√

τ/ρ, whereτ/ρ is the kinematic mean wall shea

stress), but thatu2 does not, scaling instead on a mixed velocity scale based the (product of)uτ and the free-stream velocit
Here,u andv are, respectively, the velocity fluctuations in the streamwise and wall-normal directions,x andy. Their mea-
surements are also supported by the recent measurements of Metzger et al. [2]. DeGraaff and Eaton did not measure

fluctuation,w, and although bothu andw are wall-parallel fluctuations it does not follow thatw2 will exhibit a scaling like

E-mail address:p.hancock@surrey.ac.uk (P.E. Hancock).
0997-7546/$ – see front matter 2004 Elsevier SAS. All rights reserved.
doi:10.1016/j.euromechflu.2004.10.003
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that foru2. Their results are opposite to the earlier conclusions of Fernholz and Finley [3] based an extensive review

surements, namely, thatu2 scales onuτ and that there is some uncertainty as to whetherv2 anduv (and alsow2) scale onuτ .
The scaling of DeGraaff and Eaton does not alter the conclusion that the extent over which an inner layer scaling appli
Reynolds stresses is markedly less than that for the mean velocity (U ), the reasons for this remaining as yet unresolved. W
in the classical scaling framework, a boundary layer is subjected to, in particular, an adverse pressure gradient the s

and lateral Reynolds stresses (u2 andw2) are increased in relation tou2
τ , butuv andv2 are in essence unchanged. Townsend

attributed this to ‘inactive’ motion driven by the more intense large-scale motion in the outer layer. Inactive motion is pr
the canonical case but is much weaker, and it is interesting to note Robinson’s [5] review summary that outer flow eve
a definite but not controlling effect on the near-wall flow of the canonical layer. The influence of the free-stream velocit

scaling ofu2 [1] is, therefore, not all that surprising.
The present flow, that of a near-wall layer formed beneath the region of reattachment, is perhaps the most remo

that of the inner layer of a zero-pressure-gradient canonical boundary layer in that the outer flow is very much more
and the layer itself newly developing rather than long established. Compared with the canonical layer relatively little is
about the structures in separated flow. The near-wall layer in both cases is characterised by a mean strain rate arisin
direct effect of viscosity on the velocity field, and the wall constraints on the turbulence, and so some similarity of str
might exist. However, Fernholz [6] and Na and Moin [7], for instance, show the near-wall layer to be dominated by im
outer-layer structures, and Hancock [8] found the wall-shear stress fluctuations to be very nearly axisymmetric, imp
preferred alignment of structures, and determined primarily by the outer flow.

The consideration given in this paper is to the idea that, in the near-wall region, a separate velocity scale is ne
each Reynolds stress, and is done so primarily in the context of the layer beneath a reattaching separated flow, tho
discussion of boundary layer flow is also given. No structure-function measurements were made. It was prompted by a
of measurements of Hardman [9] in the reattachment region of a three-dimensional separated flow. These strongly

that the tangential intensities,u′ andw′ (=
√

u2 and

√
w2) in the near-wall flow scale on velocities,u′

τ andw′
τ , formed from

the r.m.s. of the wall shear stress fluctuations in the streamwise and lateral directions, respectivelyτ ′
x andτ ′

z. Specifically, they
indicated that

u′
u′
τ

= fu

(
u′
τ y

ν

)
(1.1)

and

w′
w′

τ

= fw

(
w′

τ y

ν

)
, (1.2)

where this behaviour existed beneathu′
τ y/ν andw′

τ y/ν of about 70, and over a fetch exceeding half a bubble length upst
and downstream from the attachment line. Moreover, (i) to within the measurement uncertainty,fu andfw were indistinguish-
ably different from each other and (ii) exhibited a region of approximately logarithmic behaviour. (Some results regardi
were given in [10].)

Now, asymptotically, asy → 0, u′ andw′ are related toτ ′
x andτ ′

z by

u′ = y
τ ′
x

µ
and w′ = y

τ ′
z

µ

which can be written in non-dimensional form as

u′
u′
τ

= u′
τ y

ν
and

w′
w′

τ

= w′
τ y

ν
.

These are, of course, true for any flow very near a surface. The proposition in this paper is that, beneath a separated flu′ and
w′ in the near-wall layer depend only on, respectively,u′

τ , y andν, andw′
τ , y andν. This, is the simplest possible hypothes

and requires that neither the mean flow nor the outer layer scales have anyexplicit parametric influence. Nevertheless, the ou
layer is expected to have influence in that it is at least partly responsible for driving the velocity fluctuations in the near-w
(inactive motion). But, the proposition here is thaty is sufficiently small compared with the length scale,L, of these structure
thatL is itself unimportant in the near-wall layer. Eqs. (1.1) and (1.2) follow. It is clear though, as will be demonstrate
that Eq. (1.1) is certainly not generally true for all wall-bounded flows, and thatfu and perhapsfw is a function of other
flow parameters. The reasons for supposing that the mean flow in the near-wall layer might have no significant effe
observation that streamwise and lateral gradients in mean velocity are very much less than they are in the viscous-d
layer immediately adjacent to the surface, and the results of [8]. Those results showed that the mean shear(∂U/∂y, ∂W/∂y)
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at the surface had no effect on the r.m.s. of the wall shear stress fluctuations. Even so, it is to be expected that a

developmental length of the near wall layer, the gradient in mean velocity and the generation ofu2 must become significant.
In extending the above line of argument it is supposed, prima facie, that the Reynolds normal stress arising from th

fluctuations,v2 and the shear stress,uv also have velocity scales, which we denote asν′
0 ands′

0. That is,

v′
v′

0
= fν

(
v′

0y

ν

)
(1.3)

and

s′
s′
0

= fw

(
s′
0y

ν

)
(1.4)

for some range ofv′
0y/ν ands′

0y/ν as yet to be determined (i.e., from the surface to some outer point), wheres′ = |uv|1/2.
Unlike, u′

τ andw′
τ , which are defined in terms of the (r.m.s. of the) wall shear stress fluctuations,v′

0 and s′
0 do not have a

similarly easy physical interpretation, available from independent measurement. As a consequencev′
0 ands′

0 have therefore to
be determined indirectly – that is from the profiles ofv′ ands′ themselves, the necessary and sufficient condition being thv′
ands′ conform to Eqs. (1.3) and (1.4), independently of the outer flow, as will be discussed further in Section 3.

The pulsed-wire velocity probe as set up was only capable of making measurements of the fluctuations paral

surface. In principle, the probe could be set at an angle to the perpendicular to measurev2 anduv, but this would be more
difficult to achieve in practice (needing a new probe) and has not been attempted. To test the proposed idea forv′ ands′ we

use the particularly careful measurements ofu2, v2 anduv by Song et al. [11] who used a miniature LDA. However, th
did not measure the wall shear stress fluctuations and so there is no independent check onu′

τ . Therefore, the approach here
to infer u′

τ (firstly) from measurements nearest the wall and (secondly, for three cases) from consistency further out
present results. Obtainingu′

τ by extrapolation from the nearest measurements ofu′ is very demanding of the accuracy of the
few points, and is something that has to be done with caution even for the mean shear stress in a standard boundar
example, where the measurements are much easier to make. Several other sources of laboratory data were examined
that the measurements would be accurate enough to infer velocity scales, but the very-near-wall data were far too sc
obtain anything like a reliable r.m.s. of the wall shear stress fluctuation. As far as the author is aware no others sets
separated flows; there are a some limited measurements for boundary layer flows. The DNS of Le et al. [12] of a back-
is used, though the Reynolds number may be too low for proper comparison to be made. It is included here partly bec
data set is quite often used as a reference.

In that no structure-function measurements were made it is not possible to make more than a few inferences h
gards structure. At and over a substantial fetch either side of reattachment the fluctuations in wall shear stress are v
axisymmetric [8], whereas in a canonical boundary layer the streamwise fluctuations are larger by a factor of roug
Na and Moin’s [7] DNS of separation and reattachment over a smooth wall show the streaky structures disappear
of separation, replaced by a much larger-scale near-wall structure showing little preferred direction beneath the bu
re-establishment of the streaky structures some distance after reattachment.

2. Experimental techniques

A two-dimensional separated flow was formed downstream of a sharp-edged, normal flat plate mounted central
front of a horizontal splitter plate. The razor sharp edges of the normal flat plate were slightly uneven after manufactu
were very slightly blunted (parallel to the horizontal) be means of a precision grinding machine to give an accurately co
‘fence’ height. Tip-to-tip, the normal flat plate height was 23.8 mm, and the plate thickness was 3.2 mm. The rig was s
by slender legs on the centre-plane of the wind tunnel working section, of height 500 mm, span 1.53 m and overa
2.8 m. The splitter plate was made in two parts. The first, 500 mm in length, was aligned with the working section axi
the second, 350 mm in length, formed a trailing edge flap, where the angle (of about 1◦ upwards) was controlled by adjustin
the length of the supporting legs, to give equal bubble lengths on both surfaces. (A similar normal flat plate and split
arrangement has been used in a number of other studies – see [13].) All the measurements were made at an up
stream speed,Ur , of 5.9 m/s, giving a Reynolds number based onhf of 3900, wherehf is the ‘fence’ height of the tip abov
the splitter plate surface.

The distance to reattachment from separation,X, was 216 mm, implying a ratio of flow width to bubble length of 7. Ciamp
and Hancock [14] concluded that this ratio should not be less than 4 if significant end-wall effects were to be avoided
even at a ratio of 7 there are still residual end effects. However, any residual end effects are not particularly impor
because our concern is to relate only the near-wall intensity to the r.m.s. of the wall shear stress fluctuations.
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The probes were supported in a plug which in turn was held in a slot along the centreline of the first splitter plate, a
a probe to be placed in the rangex = 22 mm to 317 mm, the remainder of the slot being filled with blank plugs to gi
smooth surface. The velocity in the near-wall layer was measured by means of a special ‘near-wall’ pulsed-wire prob
to but smaller than the second probe of Schober et al. [15] – the pulsed- and sensor-wires where, respectively, pa
perpendicular to the surface. The probe prongs were supported from beneath the plate surface and passed through s
the prongs and wires being moved as a whole by means of a micrometer head to a height accuracy of 0.01 mm. At t
position the pulsed wire touched the (electrically and thermally insulating) surface, and reached 13 mm at its high
wire lengths were about 6 mm in each case, and the pulsed- and sensor-wire diameters were 9µm and 2.5µm, respectively.
Characteristics of the velocity probe are given by Hancock [16], but key points are given below.

The velocity probe was calibrated with it mounted close (70 mm) to the leading edge of a small, thin horizontal pla
a gently rounded leading edge, mounted ahead of the main flow rig. The probe was (i) close enough to the leading
it to be above the boundary layer at all speeds at its maximum travel, (ii) far enough from the leading edge to be
its effects. A third-order polynomial was fitted to the velocity calibration in the usual way, but with careful attention
calibration velocity intervals so as to give higher weight to the lower velocities and hence a comparable error as a fr
the calibration velocity, over the whole range. In addition, two ranges were employed for these calibration fits: 0.4 to 6/s and
0.4 to 2 m/s, with the appropriate calibration curve selected (though not dynamically) according to the level of fluctuatio
errors between the curve and the calibration points were within the greater of±0.07 m/s or±4% for the first range and within
the greater of±0.03 m/s or±2% for the second.

The pulsed-wire velocity probe gives a systematic error in regions of high velocity gradient as arise near the wall
because vertical thermal diffusion of the heat tracer leads to a faster convection and therefore earlier detection of t
Castro and Dianat [17] first identified this behaviour, and a consistent correction given by Schober et al. [15] was e
to a method for high-intensity turbulent flow by Hancock [16], which showed the error was only significant belowu′

τ y/ν of
10 or less, and significant only belowu′

τ y/ν of 3 for some stations. The calibration for the effect of shear was achieved
the probe in the measurement position by requiring themeanwall shear stress as implied by the mean velocity to be consi
(in an iterative procedure) with the mean wall shear stress as measured by the pulsed-wire wall shear-stress probe. Th
to defining an effective value for the parameterC in Schober et al. [15], which was taken as 6 in the measurements her
[16] for further details, where it is demonstrated that this leads to the correct measurement ofu′ neary = 0 as implied by the
(r.m.s. of the) wall shear stress fluctuations, this concurrence providing a check on the correction procedure.

As just mentioned the wall shear stress was measured by means of a pulsed-wire shear stress probe [18]. This was
against a Preston tube [19], itself within±2% of two other tubes of differing diameter, in a zero-pressure gradient turb
boundary layer on the working section floor, and fitted by a third-order polynomial. The Preston tube calibration is itself a
to about±3% [19]. As for the velocity probe, the shear stress intervals were chosen so as to maintain accuracy at lo
stress, and again the fits were made over two ranges,±0.2 Pa and±0.08 Pa, with the range chosen according to the leve
fluctuation. The error between the curve and the calibration points were within the greater of±0.003 Pa or±5% for the first
range and within the greater of±0.002 Pa or±3% for the second. Like the error limits given earlier for velocity these
extreme limits of expected error; the actual errors are expected to be not more than about half these.

The lateral velocity,W + w, and the lateral wall shear stress,τz + τ ′′
z , were measured by rotating the respective probe

angles (θ ) of ±45◦, with mean and fluctuating quantities found in the normal way. That is, forW andw2

Uθ = U cos(θ) + W sin(θ),

u2
θ = u2 cos2(θ) + uw sin(2θ) + w2 sin2(θ),

whereUθ andu2
θ are as measured by the probe at angleθ . The equations for the mean wall shear stress and the mean s

of the shear stress fluctuation are of the same form, where the fluctuationsτ ′′
x andτ ′′

z replaceu andw, and the meansτx and
τz replaceU andW , respectively. In the present measurementsW anduw were zero, within the expected error band limits,
wasτ ′′

x τ ′′
z .

Both pulsed-wire probes were driven by a Pela anemometer, with control and data acquisition by means of LabVie
instruments and a Macintosh computer. Pulse duration was 4µs, sensor current 2 mA and gain and threshold were 2 and 0
or 1 and 0.5 V for the shear stress probe. The yaw responses for the velocity and shear stress probes were±75◦ and±85◦,
respectively, the latter implying negligible error.

The parameterε in the error analysis of Castro and Cheun [20] was less than 0.03, and the associated errors inU andu′ were
within about±2.5%. Sample periods were at least 5000 samples, at about 30 Hz, which was a rate low enough for con
samples to be statistically independent and amounted to about 5000 or more time scales based on bubble length and
velocity. Some measurements were made from 3000 samples at 10 Hz.
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Fig. 1. Coefficients of mean and r.m.s wall shear stress, normalised by1
2ρU2

r .

3. Present and other measurements, and discussion

3.1. Present measurements

Fig. 1 shows the means and r.m.s. of the fluctuating wall shear stresses,τx and τz, and τ ′
x and τ ′

z as measured by th

wall-shear-stress probe, as functions ofx/X, where these quantities have been normalised by1
2ρU2

r . The mean lateral stres
τz, which ideally would be zero, is acceptably small. In contrast to the earlier measurements of Hancock [8] using t
technique, which showed these two quantities to be equal,τ ′

z is slightly larger thanτ ′
x . However, the Reynolds number

significantly different in the two cases in a range where Reynolds number effects in the outer flow are also significa

Fig. 2 showsU/Ur andu2/U2
r as functions ofy for each of the measurement stations, where the near-wall measure

have been corrected for the gradient error, as discussed in Section 2. (As part of the correction procedure the mean
adjusted beneathu′

τ y/ν = 7 so that the wall shear stress implied by∂U/∂y concurs with that from the wall-shear stress prob
At reattachment, the bubble height is about 54 mm, the present measurements extending to∼10 mm at each station, thoug

only part of this range need be shown. Both parts of this figure clearly show the effect of viscosity in reducingU andu2 to zero

beneathy of roughly 1.3 mm,U andu2 changing relatively slowly withy further out.
The measurements of Fig. 2(b) are shown again in Fig. 3, this time in the form of Eq. (1.1), whereu′

τ /Ur (= √
τ ′
x/ρ/Ur)

has been taken from the wall shear stress measurements of Fig. 1. Those profiles at stations in the range 0.38� x/X � 1.47 are
seen to fall closely to a single curve, and are certainly within the band of confidence that can be ascribed to these meas
The bars shown to the left in the figure represent, pessimistically, the error inu′/u′

τ (atu′/u′
τ = 4) arising separately from error

in u′
τ andu′, as implied by the largest of the peak-to-peak calibration error bands given in Section 2 for shear stress and

More, typically, the expected error limits are about half these, and indeed this is comparable with the width of the ban
in this figure. The data shown in Fig. 3 exhibit a structural similarity beneathu′

τ y/ν of about 70. Although measurements we
not made further out than shown, the measurements of Hardman [9] indicate a clear departure from similarity in the o

Fig. 3 also shows a quadratic viscous sublayer according to

u′/u′
τ ≈ u′

τ y/ν − a(u′
τ y/ν)2, (3.1)

wherea = 0.1, and a logarithmic behaviour according to

u′/u′
τ = A + B ln(u′

τ y/ν), (3.2)

whereA = 2.5 andB = 0.5. At this stage the logarithmic behaviour is presented as an empirical finding. It is of course p
to argue such a behaviour if it is valid to assume that velocity and length scales associated with the flow well away
wall are not relevant wheny is sufficiently small but still large enough for viscous effects to be negligible. That is, tha
gradient of r.m.s. velocity,∂u′/∂y, scales on velocity and length scales of the near-wall turbulence, namelyu′

τ andy. This of
course follows the very well trodden line of argument for the mean velocity of the canonical boundary layer and chann
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Fig. 2. (a) Mean velocity,U/Ur , in the near-wall layer, as a function ofy andx/X. (b) u2/U2
r in the near-wall layer as a function ofy and

x/X. Symbols as in (a).

Fig. 3.u′/u′
τ vs u′

τ y/ν in semi-logarithmic axes. Symbols as in Fig. 2(a). Other lines are Eqs. (3.1) and (3.2) [16]. Extreme error ba
text.

In one respect, the present application of this argument is more satisfying in that it involves only turbulence quantities
it is also true that no reference is made to the mean velocity, which appears to play a passive role.

Indeed, that there is no noticeable effect of the mean velocity in Fig. 3 is a notable point in itself. If, the mean veloc
have no effect, andy and a velocity scale based on the r.m.s. of the wall shear stress fluctuations are the only relevan
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Fig. 4.w2/U2
r in the near-wall layer as a function ofy andx/X.

Fig. 5.w′/w′
τ vsw′

τ y/ν in semi-logarithmic axes, and data of Fig. 3.

and velocity) scales, then it would be anticipated that the lateral velocity fluctuations,w′, would scale according to Eq. (1.2

Fig. 4 showsw2 as a function ofy and, as in Fig. 2(b), viscous effects are seen beneathy of roughly 1.3 mm. Fig. 5 shows th
same data but now in terms ofw′/w′

τ as a function ofw′
τ y/ν at four stations, together with data from Fig. 3, wherew′

τ has been
obtained fromτ ′

z given in Fig. 1. To within the uncertainty of the measurements there is no distinction to be drawn betw
two sets beneathw′

τ y/ν, u′
τ y/v ≈ 70. There is a trend ofw′/w′

τ lying slightly aboveu′/u′
τ , but this is within the uncertaint

of the measurements, and there is no trend with position. To within the expected errors Eqs. (1.1) and (1.2) represen
functional relationships. As foru′ (Eq. (3.2)), a logarithmic form forw′ follows if ∂w′/∂y scales only onw′

τ andy. The lines
given in Fig. 3 are also given in Fig. 5. Further out,u′ andw′ are different, withu′ clearly larger thenw′.

A quadratic viscous sub-layer behaviour comes from supposing a sinusoidally oscillating flow above, imposed by t
flow [16]; the quadratic form is the first two terms. Even as close asu′

τ y/ν = 1, and takinga = 0.1 as typical,u′/u′
τ is 0.9,

and so there is no significant region of alinear viscous sublayer. A buffer layer could be said to exist between∼2 < u′
τ y/ν,

w′
τ y/ν < ∼10. As noted in Section 2, the error arising from high instantaneous velocity gradients is only significant b

u′
τ y/ν = 10 or less, and beneathu′

τ y/ν = 3 for some stations. Therefore, the concurrence seen aboveu′
τ y/ν (andw′

τ y/ν) = 10
or less in Figs. 3 and 5 is independent of this error and the associated correction.

Finally, as a footnote concluding this section, it should perhaps be mentioned that because of the familiar form it is
to compare the accuracy of the measurements in Figs. 3 and 5 with that achieved for the mean velocity in boundary
must be remembered that the former are considerably harder to make to the same level of accuracy, which is why the e
are larger. The current departure from a precise collapse is consistent with the expected error limits in measuring the
of the velocity the wall shear stress fluctuations.
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3.2. Measurements of Song et al.

Song et al. [11] made measurements ofu2, v2 and uv for a thick turbulent boundary layer separating from the cur
backward-facing step, as shown in Fig. 6. The upstream boundary layer (0.99) thickness was about 0.6 of the bubble le
so the initial conditions are therefore very different from the sharp-edge separation of a very thin laminar boundary lay
present flow. In their data setx is zero at the start of the curvature and 1 at the corner. The measurements were made a
upstream of and near mean separation(x ≈ 0.77) and at and downstream of reattachment(x ≈ 1.36), along vertical traverse
lines. For the present purposes, where the surface is curved, the Reynolds stresses have been resolved into axes ro
local surface direction. One set of data, that atx = 1, is not used because of ambiguity of direction at the corner. In that turb
separation from a smooth surface is spatially intermittent it is at least legitimate to suppose that it might have some
similar to that beneath and near reattachment, and on this basis measurements at and upstream of separation are in
Although this flow is substantially different from the present flow just discussed there is, as will be seen, close agreem
behaviour of the near-wall layer.

Their data, reproduced in Fig. 6, is normalised by a reference friction velocity,uτ ref, taken at the upstream-most stati
(x = −2, where the Reynolds number based on momentum thickness was 3500). Fig. 7(a) showsu′ from 6(a) normalised, in
stead, in terms ofu′

τ , together with the two trend lines (a quadratic sublayer and a ‘log-law’) from Fig. 3 to aid comparison
u′
τ has been determined, byextrapolation, from the first few points in each profile nearest the surface, by rewriting Eq. (3.

(u′/u′
τ )/(u′

τ y/ν) = 1− au′
τ y/ν and adjustingu′

τ anda for best fit;u′
τ is given directly by this fitting procedure applied to t

first few points. The agreement with the present results is remarkably good, given that it is dependent on differentiatio
few measurements in each case, and on extrapolation – and highly dependent on measurement accuracy.

Fig. 7(b) shows the same data (for three profiles) but now with theu′
τ obtained so as to give closer agreement with

‘log-law’ trend line. This is like the Clauser chart method for calculating mean wall shear stress from the mean velocity
As a procedure it gives broadly uniform weighting of importance to each point belowu′

τ y/ν of about 70, and exhibits a uniform
degree of scatter, which adds to the justification of adjustingu′

τ in this way. From some of the data points, assuming the
behaviour is a smooth variation, one can see a degree of variation between some adjacent points that gives an uncert
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Fig. 7. (a) Song’s measurements (beneath and near bubble) in new scaling. Other lines as in Fig. 3. (b) Song’s measurements foru′
τ

cases – see text. Other lines as in Fig. 3.

slope that would explain the greater spread seen in Fig. 7(a). For this reason, Fig. 7(b) is regarded as the more reliableu′
τ /uτ ref

as used in both figures is given in Table 1.
The concurrence in these three profiles (Fig. 7(b)), two near separation (rather than just around reattachment

concurrence with the present measurements is remarkable, adding strong support to the original conjecture that th
scale as defined here is a relevant scale for the near-wall turbulent motion. Moreover, the fact that the flow of Fig. 7 wa
from a separatingturbulentboundary layer, adds further support to the view (initially based on Figs. 3 and 5) that the ne
layer beneath a separated flow, so scaled, is independent of the outer flow.

Figs. 8(a) and 8(b) show, respectively, the velocitiesv′ ands′ in the scaling of Eqs. (1.3) and (1.4), from Song’s measu
ments. As noted in the introduction,v′

0 ands′
0 do not have the immediate connection with other quantities, unlikeu′

τ andw′
τ .

The essence of Eqs. (1.3), and similarly (1.4), is that a velocity scale may be found at eachx-station which will cause the
corresponding profiles ofv′ to fall on a single curve, and likewise fors′. This is the procedure that has been used here – w
an arbitrary factor is involved, as discussed shortly. Remarkably, and unexpectedly, the collapse was also found to ap
profiles in both the upstream boundary layer and in the boundary layer developing downstream. Both figures show a
beneathv′

0y/ν of 30 and beneaths′
0y/ν of 20, irrespective of the conditions further out, allowing the collapse to be descr

at least provisionally, as ‘universal’. As will be seen in Subsection 3.3 below,u′/u′
τ is clearly not a universal function ofu′

τ y/ν,
and so the quite remarkable behaviour displayed in Fig. 8 was even less anticipated than that already exhibited in
and 7.

As just mentioned, there is an arbitrary factor involved in choosingv′
0, and similarlys′

0. Supposing the behaviour conform
to Eq. (1.3), then if allv′

0 are multiplied by some factor,f say (in effect, to make newv′
0), the resulting behaviour will still be

of the form given by Eq. (1.3). For convenience,v′
0 ands′

0 have been chosen so that in the upstream boundary layer(x = −2)

they are equal touτ ref, the mean wall shear stress friction velocity. Values ofv′
0/uτ ref ands′

0/uτ ref are given in Table 1.
Figs. 8(a) and 8(b) also show ‘log-law’ lines and the simulation results of Spalart [21], (where, for the latter,v′

0/uτ and
s′
0/uτ are unity). The log-law lines shown are given by,

v′/v′ = A + B ln(v′ y/ν) and s′/s′ = A + B ln(s′ y/ν), (3.3,3.4)
0 ν ν 0 0 s s 0



434 P.E. Hancock / European Journal of Mechanics B/Fluids 24 (2005) 425–438

ical
Eqs. (1.3)

ctor

This
r

l
the rise in

esponds
and so
are
e second

to be that

ant
Table 1
Inferred velocity scales. Song et al.: ( ) denotesu′

τ used in Fig. 7(b); otheru′
τ determined

from extrapolation of first few points. (See text.)

Song et al.
x′ u′

τ /uτ ref v′
0/uτ ref s′

0/uτ ref

−2 0.66 1.00 1.00
0 0.67 1.00 1.08
0.50 0.63 1.33 1.06
0.61 0.65(0.70) 1.46 0.97
0.74 0.58(0.65) 1.30 0.69
1.36 0.57(0.55) 1.08 0.62
2 0.50 0.90 0.64
4 0.53 0.80 0.80
7 0.54 0.90 0.85

Spalart
Reθ u′

τ /uτ v′
0/uτ w′

τ /uτ s′
0/uτ

1410 0.650 1 0.545 1

Moser et al.
h+ u′

τ /uτ v′
0/uτ w′

τ /uτ s′
0/uτ

590 0.637 1 0.511 1

Le et al.
x/h u′

τ /U0 v′
0/U0 w′

τ /U0 s′
0/U0

−3 0.0345 0.047 0.0230 0.051
4 0.0330 0.067 0.0325 0.033
6 0.0345 0.070 0.0350 0.045

10 0.0317 0.056 0.0290 0.048
15 0.0303 0.048 0.0252 0.046

where, respectively,Aν andBν are−0.82 and 0.5, andAs andBs are−0.55 and 0.5. The slopes of these purely empir
lines appear to provide a reasonable representation in the outer parts of the ‘universal’ regions (i.e. the outer parts of
and (1.4)), before the various profiles start to diverge above the near-wall layer. Of course, logarithmic forms follow if∂v′/∂y
scales only onv′

0 andy – and likewise fors′. That the slopes are also 0.5 is fortuitous in that they are dependent on the faf ,
mentioned above.

3.3. Boundary layer flow

As already said, Fig. 8 clearly showsv′ ands′ to follow an apparently universal scaling irrespective of the external flow.
is not the case foru′, as can be seen from Fig. 9, which shows profiles upstream of separation (x = −2 and 0.5), profiles afte
reattachment (x = 2,4 and 7), and that at reattachment (x = 1.36). Each of these profiles is presented withu′

τ evaluated from
extrapolation of the first few points, as in Fig. 7(a). (Exactly the same conclusions would follow had the adjustedu′

τ been used
for the profile atx = 1.36.) Comparing the profiles (of Fig. 9) atx = 1.36 and 2 shows the redevelopment of the peak atu′

τ y/ν

of about 10, but with virtually no difference aboveu′
τ y/ν of about 50. Au′

τ y/ν of 10 is equivalent touτ y/ν of 15 in a canonica
boundary layer, and it is presumed that the development (or redevelopment in this case) of the peak is associated with

generation ofu2 and with the development of the structures characteristic of the standard inner layer. This height corr
to v′

0y/ν ands′
0y/ν of ∼15 (in the canonical layer) and to where the turbulent kinetic energy production is at a peak,

it is noteworthy that there is no noticeable affect seen inv′ or s′ in Fig. 8. Streamwise vortical structures in the inner layer
associated with the transfer of streamwise momentum towards and away from the surface, contributing primarily to th

and forth of theu − v quadrants and to the creation of the main contribution touv, as well as contributing tov2. (For reviews of
near-wall structures see, for example, Robinson [5] and, more recently, Tomkins and Adrian [22].) One conjecture has
development of these structures is such that the whole of the near-wall layer is influenced in a way thatv′ ands′ still conform
to Eqs. (1.3) and (1.4), and that only the velocity scalesv′

0 ands′
0 are changed as a result. While this would be both signific

and surprising, the absence of any influence onv′ ands′ would be even more so.
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Fig. 8. (a)v′ from Song et al. in the scaling of Eq. (1.3). Other lines are data of Spalart [21] and Eq. (3.3). (b)s′ from Song et al. in the scalin
of Eq. (1.4). Symbols as in Fig. 8(a). Other lines are data of Spalart [21] and Eq. (3.4).

Fig. 9.u′ from Song et al. in the scaling of Eq. (1.1), upstream and downstream of the bubble. Symbols as in Fig. 8(a). Other lines a
Spalart [21], and as in Fig. 3.
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Fig. 10. Simulation data of Le et al. [12]. (a)u′/u′
τ vs u′

τ y/ν; (b) w′/w′
τ vs w′

τ y/ν; (c) v′/v′
0 vs v′

0y/ν; (d) s′/s′
0 vs s′

0y/ν. Inset in (d) is at
x/h = 4 (see text). Other lines are data of Spalart [21] and Moser et al. [23].

The profile ofu′/u′
τ at x = 0.5 (Fig. 9) shows a marked amplification of the peak (with respect to that atx = −2) before

its subsequent disappearance byx = 0.61 (as can be seen in Fig. 7). This peak inu′/u′
τ (at x = 0.5) is at aboutu′

τ y/ν = 20,
which at this station corresponds tov′

0y/ν of about 40 ands′
0y/ν of about 30. But, as can be seen from Fig. 8, there is agai

affect onv′ or s′, at least in terms of a corresponding peak. It is interesting to note, too, that aboveu′
τ y/ν of about 80 the r.m.s

velocity, u′/u′
τ , is as in the unperturbed boundary layer atx = −2. This resembles the comparison made above betwee

profiles atx = 1.36 andx = 2, marking the reappearance of the peak. In both cases the changes between these pairs o
is confined to an inner layer. In contrast, the same sort of behaviour, of an inner-layer peak disappearance and reapp
not seen inv′/v′

0 or s′/s′
0 (Fig. 8).

3.4. Back-step flow of Le et al.

Another test is provided by the direct numerical simulations of Le et al. [12], for a turbulent boundary layer, albeit a
momentum thickness Reynolds number of 667, separating from a backward-facing step. The profiles, including thos
lateral fluctuations (w′), are shown in Fig. 10, whereu′

τ andw′
τ have been obtained fromu′ andw′ at smally. These figures

include the DNS results of Spalart [21], as in preceding figures, and also of Moser et al. [23]. Reattachment is atx/h = 6 where
h is the step height andx is measured from the step. Figs. 10(c) and 10(d) show good agreement with the measurem
Song et al., though the upper limit of collapse is less, atv′

0y/ν ≈ 25 ands′
0y/ν = 10. It is supposed that this is a conseque

of the lower Reynolds number of this flow (as can be seen from the lowerv′
0y/ν ands′

gy/ν at whichv′ ands′ fall to zero in the
free stream.) In contrast, the profiles ofu′ (and likewisew′) fall well below both the present measurements and those of S
and it is again supposed that this is also a consequence of the low Reynolds number. Atx/h = 4, i.e. upstream of reattachmen
there is a very small region of positiveuv. The profile ofs′ for this case is shown in the inset in Fig. 10(d), where the depa
from the sublayer form (broken lines) ats′

0y/ν of about 2 is a consequence of there being only a very small extent of po
uv at this station. Beneath this height the agreement is remarkably good.

4. Further discussion and concluding comments

The present measurements and those of Song et al. [11] provide strong support for the scaling of the Reynolds s
the near-wall region beneath the bubble according to Eqs. (1.1) to (1.4). These two sets of measurements show a h
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Fig. 11. Development of velocity scales for Song et al. [11]. Normalised by free-stream velocity atx = −2.

Fig. 12. Development of velocity scales for Le et al. [12]. Normalised by free-stream velocity atx/h = −3.

of agreement even though the flows differ substantially – most notably at and near separation. Indeed, Song’s mea
show the same scaling to apply upstream of and at separation of a turbulent boundary layer from a smooth wall, ind
of flow conditions further out, as well as through reattachment. However, these results suggest that the distance over
near-wall scaling applies, in terms of the bubble overall height, does depend on the outer flow conditions (and, it ap
Reynolds number as would be expected). This distance for theu′ profile was roughly 0.1 bubble heights at attachment, whil
Song’s flow it was roughly 0.05.

Quite unexpectedly, and quite remarkably,v′ and s′ exhibit an apparently universal behaviour beneath the whole o
bubble and in standard and developing (or relaxing) boundary layers. The simulations of Le et al. [12], for a turbulent b
layer separating from a back step also show good agreement ofv′ and s′ with the above results,u′ beneath the bubble i
markedly lower than in Song’s or in the present measurements and, tentatively, this is attributed to the low Reynolds n
the simulation having a larger effect onu′ than on eitherv′ or s′. Overall, the fact thatv′ ands′ behave in an apparently univers
manner, but thatu′ does not, poses some interesting questions regarding the near-wall structures. It appears the behavu′
may be linked with the disappearance and reappearance of the near-wall streaks [7].

The change in the velocity scales with the flow development gives an indication of the change taking place in the n
layer. The variation inu′

τ andw′
τ for the present measurements is given in Fig. 1, albeit asτ ′

x andτ ′
z. Figs. 11 and 12 show

respectively, the velocity scales for Song et al. and Le at al., where the horizontal bar in each figure indicates the bub
length. Fairly dramatic changes can be seen in Fig. 11 forv′

0 ands′
0 , the first showing a rapid rise and the latter a rapid f

with both returning much more slowly to about the same proportion ofu′
τ as in the upstream layer byx = 4, if not before. In

contrast,u′
τ shows a much more gradual and smaller variation. It is of course true that these data lack detail within the

for v′ ands′. However, the apparently universal behaviour of these quantities upstream of and at separation, at reat
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and downstream, and in the canonical boundary layer, suggestsv′ ands′ might behave the same way beneath the whole of
bubble.

Song et al. note that in the inner layer their profile atx = 7 falls close to that atx = −2, once the scaling of DeGraa
and Eaton [1] is used, reinforcing, they argue, the case for that scaling. Fig. 9 includes these two profiles, but in th
framework, where the two can be seen also to fall close to each other beneathu′

τ y/ν of about 100. Their scaling [1] is onl
formally consistent with the present one where the velocity scales are in constant proportion. The present approac
advantage of involving only one rather than two velocity scales. Further investigation is needed.

Finally, the constancy of the scaling beneath and near the bubble and the apparently passive role played by the m
vection) velocity suggests the behaviour might be equivalent to the ‘box of turbulence’ conceptualisation, where the
mean velocity (relative to the walls). Other than to make this point this is not pursued further here.
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