
An Unstructured Mesh Generation Algorithm for Shallow
Water Modeling

SCOTT C. HAGENa,*, OLAF HORSTMANNb and ROBERT J. BENNETTc

aUniversity of Central Florida, Orlando, FL 32816-2450, USA; bBrandenburg University of Technology, Karl-Marx-Strasse 17, D-03044 Cottbus,
Germany; cMarshall, Provost and Associates, 340 North Causeway, New Smyrna Beach, FL 32169, USA

The successful implementation of a finite element model for computing shallow water flow requires: (1)
continuity and momentum equations to describe the physics of the flow, (2) boundary conditions, (3) a
discrete surface water region, and (4) an algebraic form of the shallow water equations and boundary
conditions. Although steps (1), (2), and (4) may be documented and can be duplicated by multiple
scientific investigators, the actual spatial discretization of the domain, i.e. unstructured mesh
generation, is not a reproducible process at present. This inability to automatically produce variably-
graded meshes that are reliable and efficient hinders fast application of the finite element method to
surface water regions.

In this paper we present a reproducible approach for generating unstructured, triangular meshes,
which combines a hierarchical technique with a localized truncation error analysis as a means to
incorporate flow variables and their derivatives. The result is a process that lays the groundwork for the
automatic production of finite element meshes that can be used to model shallow water flow accurately
and efficiently. The methodology described herein can also be transferred to other modeling
applications.
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1. INTRODUCTION

Recent advances in surface water modeling have

permitted the development and successful implementation

of coastal ocean circulation models for increasingly larger

domains (Lynch, 1983; Kinnmark, 1984; Westerink and

Gray, 1991; Luettich et al., 1992; Blain et al., 1994;

Westerink et al., 1994; Kolar et al., 1996). While a large

domain increases the predictive capabilities of coastal

ocean models (Blain et al., 1994; Westerink et al., 1994),

it complicates the process of computational node

placement. Large domains require a strategic placement

of nodes in order to maintain acceptable levels of local and

global accuracy for a given computational cost. However,

the actual gridding of larger, more complex domains relies

on crude criteria and results in a mesh that is user-

dependent and indirectly related to the physics of flow. In

the following, the process of boundary definition and

computational node placement will be discussed and an

automatizable method of mesh generation will be

presented that more successfully couples the physics, as

represented by discrete equations, underlying tidal flow

and circulation to the mesh generation process.

Larger domains warrant a method of gridding that

utilizes unstructured meshes, e.g. the finite element

method, which allows for spatially-varying levels of

discretization. Since, in general, shallower water has a

higher localized wave number content than deeper water,

higher resolution will be required in shallow water

regions. Furthermore it has been shown that the computed

response is highly sensitive to grid resolution in regions

with steep bathymetric gradients (Westerink et al., 1992;

Luettich and Westerink, 1995; Hagen, 1998; Hagen et al.,

2000; 2001). Two-dimensional (2D) response structures

associated with intricate shorelines, 2D topography,

amphidromes (the intersection of all phase lines and a

point at which all cotidal lines meet) and resonant bays

also require local refinement of grids. Conversely, deep

ocean waters usually result in large expanses with more

slowly varying response structures in space, which can

utilize a coarser level of resolution. These considerations

indicate that variably-graded meshes are needed, which,

once they are generated, are easily implemented with the

finite element method.

The method of production of variably-graded meshes

for large-scale domains is currently poorly defined,
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imprecise and ad hoc. It is a tedious and time-consuming

process at best. Since no robust criterion or node spacing

routine exists that incorporates the aforementioned

physical characteristics and subsequent responses into

the mesh generation process, modelers are left to rely on

their knowledge of particular domains and their intuition.

While there has been progress made in the automatic

production of unstructured meshes for coastal and ocean

circulation modeling (Frey, 1987; Ho-Le, 1988; Jones and

Richards, 1992; Kashiyama and Okada, 1992; Taniguchi

et al., 1992; Turner and Baptista, 1993; Henry and

Walters, 1995), the process as currently practiced is far

from automatic. As a result, one modeler cannot replicate

another’s results unless they possess the original mesh.

Further, the fast application of the finite element method

to un-gridded surface water regions is not possible.

We utilize a localized truncation error analysis (LTEA),

an a posteriori error estimation procedure, to define local

limits on element sizes and then interpret these

requirements with a hierarchical technique. The LTEA

is of the actual discrete equations and includes

approximations to the variables being simulated and

their derivatives (Hagen, 1998; Hagen et al., 2000; 2001).

Thus our LTEA-based approach directly couples the

estimated truncation errors to the actual mesh generation

process. We present our progress toward an automatic

procedure by describing an example mesh generation for

the entire coast of South Carolina.

2. SOUTH CAROLINA MODEL

2.1 South Carolina Coastal Domain

The objective of this paper is to demonstrate that 2D, finite

element meshes that will deliver accurate and efficient

solutions can be automatically produced. We choose the

coastal region of South Carolina (Fig. 1) because it

provides an illustrative example for our mesh generation

procedure. In addition, a mesh is needed to generate a tide

stage hydrograph at the downstream end of the Waccamaw

River for the National Weather Service’s Southeast River

Forecast Center.

The project area is located in the northern region of the

South Atlantic Bight along the southeast coast of the

United States. The Waccamaw River drains the coastal

areas of southern North Carolina and northern South

Carolina. The river leaves Lake Waccamaw in North

Carolina and flows southward through Conway, South

Carolina. From there, the river flows southward to the

confluence with the Great Pee Dee and Black Rivers,

through Winyah Bay, and into the Atlantic Ocean as

shown in Fig. 1.

For the purposes of the present paper and the tidal study,

a grid domain for the area surrounding the Waccamaw

River coastal region is defined. The domain is chosen to be

large enough to include the area surrounding Charleston,

South Carolina where historical tidal stage data is

available. Further details on boundary definition, bathy-

metry and the entire finite element mesh generation

approach will be provided in “Mesh generation”.

2.2 Finite Element Model

The computations that are performed to generate a 2D

LTEA-based grid for the South Carolina domain are

realized with a finite element model of the linearized

shallow water equations. There are two main reasons that

justify using a linear form of the shallow water equations.

First, the concept of mesh generation that is based on

multiple orders of the truncation error series is in the early

stages of research. Simplicity, here in the form of

linearized shallow water equations, facilitates a clear

understanding of the details and implications of this

FIGURE 1 The coast of South Carolina.
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theory. Second, shallow water modeling of a long-wave

process in a large basin is weakly nonlinear. Because the

nonlinear-term contribution is minimal, examination of

the truncation error associated with the linear form of the

shallow water equations should produce a finite element

grid that will be suited for nonlinear simulations.

2D shallow water equations are comprised of depth-

integrated formulations of primitive continuity and

momentum equations. For this paper, the continuity

equation is formulated in the generalized wave continuity

equation form (GWCE) (Kinnmark, 1984; Luettich, et al.,

1992). The linearized 2D GWCE is given by
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and the 2D, linearized, non-conservative momentum
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where t is the time, x and y the spatial coordinates, h the

deviation of the free surface from the geoid, u the velocity

in the x-direction, v the velocity in the y-direction, t0 a

weighting parameter in the GWCE, which controls the

contribution from primitive continuity, g the gravitational

acceleration, h the depth below the geoid and t is the

bottom friction coefficient.

3. MESH GENERATION

The following sub-sections describe five major tasks that

are performed to produce an unstructured mesh for the

South Carolina model domain. First, a discrete boundary

is defined such that a user-defined level of detail is met.

Second, a structured grid is produced to serve as a base

grid that contains all domain dependent detail (e.g.

bathymetry). Third, point-wise, time-independent trunca-

tion errors are analyzed at the nodes of the base grid from

harmonic, linear simulation results. Fourth, local element

sizes are produced in the form of maximum allowable

radii. Finally, a hierarchical technique is employed to

generate a variably graded mesh that follows the maximum

allowable radii requirements on element sizes. The result is

a process that lays the groundwork for the automatic

production of finite element meshes that can be used to

model shallow water flow accurately and efficiently.

3.1 Boundary Definition

World Vector Shoreline data is downloaded from the

United States Geologic Survey Coastal Data Information

Internet site at http://crusty.er.usgs.gov/coast/getcoast.

html. Shoreline data with a coarse resolution of

1:250,000 (1:250) is extracted for the area bounded by

32 and 348 north latitude and 78 and 81.58 west longitude

(see Fig. 1). This corresponds to the entire shoreline of the

South Carolina Coast plus a small section of the North

Carolina coast up to Cape Fear. The data consists of nodes

(longitude and latitude locations) that demarcate land/-

ocean boundaries.

Since the boundaries for the 1:250 resolution do not

extend far enough into the estuary where the final tide

stage hydrograph is desired, three segments of 1:70,000

(1:70) resolution data for the Waccamaw River are

extracted to create a shoreline for this region. Table I

provides the end points of each these segments. The 1:70

data is used to illustrate an algorithm for boundary node

definition.

Figure 2(a) displays the raw shoreline data with the 1:70

resolution for the Waccamaw River boundary. Since the

total number of nodes/elements in the finite element grid is

a function of the boundary node resolution, the number of

nodes on the boundary is minimized while maintaining

physical geometry characteristics. In addition, the

spacings between the nodes are required to be relatively

uniform to assure that the triangular elements formed

adjacent to the boundary nodes are approximately

equilateral.

To accomplish both objectives, a minimum/maximum

spacing routine is implemented. The routine deletes nodes

that are closer together than a specified minimum distance

and adds a node(s) when the spacing between two nodes is

greater than 1.75 times the minimum spacing distance. A

minimum distance of 0.0028 is chosen for this region of

the grid domain. In addition, all tributaries with a width of

less than 0.0028 are deleted. The final shoreline for the

Waccamaw River boundary is displayed in Fig. 2(b)).

TABLE I End points of three segments for the Waccamaw River (see
Fig. 2)

Longitude (degrees west) Latitude (degrees north)

79.247929 33.353808
79.100298 33.522266
79.142248 33.500265
79.247635 33.395684
79.242502 33.432060
79.279098 33.352561

FIGURE 2 Waccamaw River boundary: (a) raw data, (b) refined.
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The minimum/maximum spacing routine is also applied

to the 1:250 resolution data. Here an arbitrary minimum

spacing of 0.0058 is utilized. The refined Waccamaw River

boundary is then incorporated. Finally, an ocean boundary

is generated by swinging an arc of node points. The center

between the two end land boundary points is established at

79.383358 west, 33.028208 north and an ocean boundary

node is placed at intervals equal to an arc length of

0.008348. The final boundary is presented in Fig. 3. Depth

contours, from the National Geophysical Data Center

Coatal Relief Model (1999), are also included in Fig. 3.

3.2 Structured Grid

The next step is to generate a structured grid. This is done

in our application using polar coordinates. First, a center is

established at 79.383358 west, 33.028208 north. (Note, this

is the same location as is used for defining the ocean

boundary.) Second, 198 arcs are swung beginning at 1358

and ending before a complete revolution is made. Each arc

radius, r, is incremented by dr ¼ 1:590318=199; where

1.590318 is the distance from the center to the sea

boundary. A node is placed every du ¼ dr=r as each arc is

swung.

In addition, nodes are placed within the Waccamaw

River boundary (Fig. 2). After the initial nodes from the

previous routine are removed from within the Waccamaw

River boundary, a center is established at 79.2530248 west,

33.3522978 north. Here 73 arcs are swung beginning at 458

and ending at 1358. Each arc radius, r, is incremented by

dr ¼ 0:19317368=74: A node is placed every du ¼ dr=r as

each arc is swung. All boundary and interior nodes are

then triangulated and bathymetry from the National

Geophysical Data Center Coastal Relief Model (1999) is

interpolated at each node point to complete a structured

mesh with a total of 69,816 nodes.

3.3 Localized Truncation Error Analysis

LTEA Formulation

The development of truncation error associated with

solutions from any given structured or unstructured grid

would result in a set of equations that would be tedious to

work with because of the potential irregularity of the grid

spacing. More importantly, the resulting equations would

not lend themselves to an algorithm that promotes a

domain-wide, constant truncation error, which is the basis

for adjusting the local spacing. Herein, point-wise, time-

independent, truncation error associated with a linear,

harmonic form of the primitive momentum Eqs. (2) and

(3), is developed and estimated for the central node of an

assumed regular triangular mesh (Fig. 4).

It is assumed that the finite element mesh that will be

generated will have equilateral, triangular elements on a

local scale (as represented by Fig. 4). The assumption

permits: (1) an a priori estimation of truncation error for

the finite element mesh that is being developed; (2) that Dy

may be expressed as a function of Dx, i.e. Dy ¼
ffiffiffi
3

p
Dx:

Note that the assumption of equilateral triangular

elements would be valid locally throughout a given finite

element mesh, however, since the meshes that are

generated will have irregular spacings, the assumption

cannot be valid globally. This does lead to some

dependence on pseudo 2D mesh generation because the

mesh design is constrained to use equilateral triangles.

Because the truncation error is developed for a specific

configuration, a valence of six (Fig. 4), the truncation error

series may be summed, truncated and solved together for

D, noting that D ¼ Dx: This provides an estimation of the

second and fourth-orders of truncation error associated

with the discrete form of the second and fourth-orders of

truncation error associated with the discrete form of the

linear, harmonic, non-conservative momentum Eqs. (2)

and (3), on the interior nodes of an equilateral triangular

FIGURE 3 South Carolina domain boundary with depth contours
(in m).

FIGURE 4 An interior node, k, and the surrounding nodes for a six-
element configuration.
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grid (Hagen, 1998)
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î4þ t

2

� �
›2ûk
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›4ûk

›y4
þ

›4v̂k

›y 4

��

þ
g

24

�
22

10

›5ĥk
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›5ĥk

›x2›y3
þ 3

›5ĥk
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where û; v̂ and ĥ are the complex amplitudes of u, v and h

evaluated at node k (the center node in Fig. 4), g the

gravitational acceleration, t the bottom friction coeffi-

cient, î ¼
ffiffiffiffiffiffiffi
21

p
; and 4 is the response frequency.

Central difference approximations for a regular finite

difference grid ðdx ¼ dyÞ are applied to estimate the

partial derivatives of Eq. (4). These approximations are

carefully developed such that the estimate of the second

and third-order partial derivatives have a leading order

accuracy of order four and the estimate of the fourth and

fifth-order partial derivatives have a leading-order

accuracy of order two (Hagen, 1998).

LTEA Computations

Hydrodynamic calculations are performed with ADCIRC-

2DDI, a 2D depth integrated circulation code (Luettich

et al., 1992). The simulation utilizes linear, Galerkin finite

elements in two dimensions, with triangular elements, and

employs a constant bottom friction coefficient and GWCE

weighting parameter of 0.0004. A no-flow boundary

condition is enforced at all land boundaries and open

ocean boundaries are forced with the M2 tidal constituent.

Thirty days of real time are simulated with the structured

grid, which is described in “Structural grid”, to ensure that

a dynamic steady-state is achieved. A time step of 30 s is

used. In addition, a hyperbolic ramping function (Luettich

et al., 1992) is imposed during the first two days.

Harmonic solutions from the structured grid simulation

are employed to evaluate Eq. (4), with D ¼ 900 m; which

is the approximate spacing between nodes for the structured

grid, and produce local truncation error estimates.

3.4 Maximum Allowable Radii

A scalar value, which represents a radius of maximum

allowable node spacing, is computed at interior nodes of

the structured grid by setting Eq. (4) equal to the peak

local truncation error value associated with the structured

grid, 7.90 £ 1026 m/s2. This complex quadratic is solved

for D with the minimum real root selected as the scalar

value (Hagen, 1998). The scalar value represents a radius

of maximum allowable node spacing. This procedure is

carried out for interior nodes of the structured grid.

FIGURE 5 Maximum allowable radii (in kms).
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Figure 5 presents a contour plot of the maximum

allowable radii for the South Carolina domain. Note that

use of the central difference approximations does not

permit an estimate of the local truncation error up to the

boundaries. The local node spacing requirements are

changed as a result of forcing the truncation error to be

constant, with the one exception being the node where the

peak local truncation error is attained. Maximum

allowable radii range from 0.9 to 55.89 km.

3.5 Unstructured Mesh Generation Based on the

SHIDOMO Approach

A mesh generation method based upon the concept of

schematized hierarchical domain models (SHIDOMO) is

employed to automatically produce an unstructured mesh

(Horstmann, 1998). The maximum allowable radii from

the “Maximum allowable radii” section are utilized.

For the mesh of the South Carolina coast area it is

crucial to preserve the structure of the coastline and the

discrete representation of shore and nearshore features,

such as the Waccamaw River and other estuaries in

addition to islands situated near the shore. Therefore, the

following features are isolated for the input to the

SHIDOMO process:

. South Carolina Coastline and sea-side boundary (as

defined in the structured grid);

. internal terrain near the shore (where no modification

of the mesh will occur);

. internal terrain offshore (rest of the domain).

The different features are extracted from the structured

grid (described in “Structured grid”) to obtain polygonal

definitions and digital terrain models for the linear and

planar features, respectively.

The actual adaptive step in the SHIDOMO process is

the extraction of segments during traversing of the

hierarchical domain models for the different domain

features. Every single segment met during the traversing

may in principle be examined in terms of its own

properties (size, shape, physical value representation), its

relative position towards a target entity (polygon, etc.) or

the properties of a reference entity at its position. In

general, the application of various adaptation criteria is

possible through a generic interface.

A background mesh approach is employed for the

production of the South Carolina mesh, which allows for a

quite simple algorithmic handling of the problem. The

structured grid from “Structured grid”, with the allowable

maximum radii stored at its nodes, is loaded into the

background as a control space. To make a decision about

the fitness of a segment to be incorporated into the

adaptive selection, its size is simply compared to the

allowable size, that can be interpolated from the back-

ground mesh at a simplex’ center position (Fig. 6).

The following eight steps are performed to produce the

South Carolina mesh.

1. The trend of the maximum allowable radii is

extrapolated into the regions near the boundaries,

where no LTEA spacing calculations can be

performed.

2. For the seaside boundary a hierarchical domain is set

up with a minimum resolution of about 300 m

(minimum linear segment length).

3. From this model, an adaptive segmentation is selected

with the target segment lengths determined by

interpolation of the allowable spacing from the

structured background grid at the intersection of the

segments middle perpendicular with the background

meshes boundary. The segmentation is transformed

into an adapted boundary polygon.

4. The adapted seaside boundary is merged with the

unchanged shore boundary polygon, which has been

extracted from the structured grid.

5. A hierarchical domain model is set up for the offshore

terrain with a maximum resolution of 300 m

(triangular segment side length). The adaptive set of

segments is selected from that model by traversing the

tree and comparing each segments side length to the

allowable spacing for the segments center position

defined in the background mesh.

FIGURE 6 Background mesh technique.
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6. From this adaptive segment set, a set of internal nodes

is generated. This is merged with the set of internal

nodes from the nearshore boundary strip extracted

from the structured grid.

7. The resulting set of internal nodes is merged with the

boundary polygon obtained from step 4.

8. The resulting set of internal nodes and boundary edges

is triangulated with a Delaunay triangulation method.

One major problem of the multi-scale representation of

domain features, with geometrical and physical properties

in a hierarchical tree order, is that the scale resolution is

not continuous but discrete. This always yields size steps

of two in adaptive meshes produced with the SHIDOMO

approach (just as in bintree/quadtree methods, which the

SHIDOMO meshing approach resembles not concep-

tually, but in its final effects). This property is shown in

Fig. 7. If the adaptation rule cumulates in a decision of the

form (in pseudo-code):

if (delta_xseg , delta_xtarget(x,y ))

choose_segment;

else

try_children;

then at a “target size iso line” h1 in the domain the size of

the segments of level n will be fitting perfectly, while at

iso line h2 the segments of level n þ 1 will fit perfectly and

a level step will be provoked there. But between lines h1

and h2 from Fig. 7 the segments will be too large, reaching

the double required size at iso line h2, if the behavior of

Dxtarget is continuously changing in the domain (x,y ) as

suggested in the sketch and as will be the usual case in

practical applications. This may cause a rather poor

mapping of the adaptation requirements into the mesh.

To improve the situation, additional measures are taken

to enhance the grading of the quadtree-like portion of the

unstructured South Carolina mesh. These measures affect

the transformation of segments into respective simplexes

after compilation of the adaptive meshes. Three nodes

from each triangular segment (one for each corner) are

generated in the transformation process to determine the

internal node distribution in the final mesh. To refine the

mesh size grading, an additional node is generated on one

of the sides of the segment if its size is greater then 4/3

times the target size, by dividing the segment in two. A

node is generated in the center of the segment if the

segment size is more than 5/3 of the required size, by

dividing it in three (Fig. 7).

There is a jump in resolution from the fine structured

grid to that of the LTEA-based portion of the grid. (Note

from Fig. 5 that maximum allowable radii are not

computed up to the coastal boundary). Therefore, a

transition zone is established around the seam between

both mesh portions. A scaling factor of 0.65 is applied to

the maximum allowable radii during the SHIDOMO

selection procedure to produce an area with a resolution

halfway between the intended LTEA-based resolution and

the nearshore resolution.

The unstructured mesh obtained from the SHIDOMO

procedure has a controlled quality in terms of element

shapes and mesh resolution adaptation. Degenerated

elements are widely avoided (although some may occur

in unfortunate cases even with adapted boundaries) and

the method promotes a dominance of very well shaped

(i.e. equilateral) triangles in the mesh. However, to

improve the mesh element overall shape quality, mainly in

the size transition zones, some smoothing is employed. In

this pilot implementation a simple Laplacian smoothing

algorithm is utilized for this task.

Figure 8 displays the resulting mesh. The final

unstructured mesh is reduced to 10,013 nodes from the

69,816 nodes of the structured mesh. All algorithms

described herein for the generation of the unstructured

mesh, which include a discrete boundary definition and a

high-resolution of bathymetric features (through the

FIGURE 7 Mesh grading.
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structured grid), lead toward a fully automatic procedure.

The LTEA-based approach to a variably graded mesh

assimilates those bathymetric features from the structured

grid that are important to the physics of shallow water

flow, as represented by discrete equations, by maintaining

refinement of the mesh where high gradients in the

response variables dictate and allowing relaxation of

element sizes elsewhere. The modeler need only define the

limits of the boundary and specify a minimum element

size for the structured grid. It is noted that the procedure as

presently defined is limited by the central difference

approximations of partial derivatives in the truncation

error series, which do not permit an estimation of

truncation error up to the boundary.

4. SIMULATIONS

Fully nonlinear, hydrodynamic calculations are performed

with ADCIRC-2DDI, a 2D integrated circulation code

(Luettich et al., 1992). The simulation employs a constant

bottom friction coefficient of 0.003, a GWCE weighting

parameter of 0.009 and an eddy viscosity of 0.0. A no-flow

boundary condition is enforced at all land boundaries and

open ocean boundaries are forced with the M2, M4, M6, O1,

N2, S2, K1, and STEADY tidal constituents. 90 days of real

time are simulated with the unstructured mesh (Fig. 8),

beginning at 12:00 a.m. (GMT) on 1 January 1998. A time

step of 10 s is used. In addition, a hyperbolic ramping

function (Luettich et al., 1992) is imposed during the first

five days.

Figure 9 displays the historical and modeled tide

elevations for a 15-day period at the end of March 1998.

When comparing the modeled results to the historical

data, it is important to realize that the historical data

results from all actual astronomical and meteorological

tidal forcings present at that time while the modeled

results include only the astronomical tide forcings. Figure

9 indicates that the modeled results estimated the tidal

elevations reasonably well at Charleston, SC.

5. CONCLUSIONS

We have shown that an unstructured mesh for coastal and

ocean circulation modeling can be automatically pro-

duced, by combining the results from a LTEA and a

schematized hierarchical domain model. The truncation

error-based approach to generating local node spacing

requirements incorporates an a posteriori estimation of

FIGURE 8 Unstructured mesh for the South Carolina domain.

FIGURE 9 Charleston historical data and modeled results, 16 March 1998–31 March 1998.
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flow variables and their derivatives, which enable the

resulting mesh to model shallow water flow accurately and

efficiently. The hierarchical technique permits the mesh to

be generated in a reproducible fashion. The ability to

assimilate a large bathymetric data set into a variably

graded mesh provides a further benefit of the procedure.

The end result is a process that will permit the fast

application of the finite element method to new shallow

water modeling challenges.

While the LTEA-based process lays the groundwork for

fully automatic production of finite element meshes,

refinements must occur before a generalized application is

produced. At present, central difference approximations

are used to estimate partial derivatives in the truncation

error series. As a result, local truncation error can only be

estimated on the main interior for an existing structured

grid. A different technique must be developed that will

permit truncation error estimation, and thereby maximum

allowable radii computations, to be carried out up to and

including the boundary, which will have the added benefit

of incorporating the effect that the physics of flow has on

boundary definition. In addition, the mesh generation

algorithms of a LTEA should be extended to include

nonlinear bottom friction, Coriolis terms, tidal potential

terms, and multiple tidal constituents.

The LTEA-based procedure may also enhance shallow

water modeling problems that require adaptive mesh

refinement, e.g., storm surge simulations and transport

problems. The process results in a variably graded mesh

that can be used as a base grid for any adaptive mesh

refinement scheme. In addition, further refinements in the

procedure, as noted above, may lead to an adaptive mesh

refinement process that is LTEA-based. The methodology

described herein can also be transferred to other modeling

applications.
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